
1.  Introduction
Deep earthquakes are understudied because they tend not to generate shaking-induced damage, only rarely gener-
ate surface displacement (Luo et al., 2023; Park et al., 2023; Steblov et al., 2014), and their extreme remote-
ness yields poor seismic signals on surface sensors. They usually occur in a region that surrounds the deep 
portion of the subducted oceanic lithosphere. The mechanisms that lead to the unstable seismic slip of deep 
earthquakes are still debated (Zhan, 2020). Indeed, the rheology of Earth materials does not favor brittle failure 
below about 70 km, thus requiring mechanisms different from shallow earthquakes. A minimum seismicity rate 
is reached at a depth of about 300 km (Frohlich, 1989; Green & Houston, 1995; Kirby et al., 1996; Zhan, 2020), 
indicating different mechanisms operate the intermediate (above 300 km) and deep-focus earthquakes (below 
300 km). Previous studies have revealed somewhat complicated characteristics of the deep earthquakes (Knopoff 
& Randall, 1970; Ye et al., 2016). The focal mechanisms of deep earthquakes usually show non-double-couple 
components (Knopoff & Randall, 1970), implying more complex rupture processes than simple shear dislocation 
on faults with uniform fault geometries. The non-double-couple moment tensor could also be partially attrib-
uted to the anisotropic features of the slab rock fabric (Li et al., 2018). The greater stress drop claimed for deep 
earthquakes is well explained by the increased rigidity with depth (Vallée, 2013), though the low-stress drop is 
occasionally found for deep earthquakes (Turner et al., 2022). Multiple investigations found a strong magnitude 
dependence of the stress drop, which may be interpreted as dynamic weakening mechanisms (Oth et al., 2009; 
Poli & Prieto, 2016; Prieto et al., 2013; Radulian & Popa, 1996). Deep earthquakes follow Gutenberg-Richter 
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median radiation efficiency is 5%, a low value compared to crustal earthquakes. Overall, we show that deep 
earthquakes have weak rupture directivity and few subevents, suggesting a simple model of a circular crack 
with radial rupture propagation is appropriate. When accounting for their respective scaling with earthquake 
size, we find no systematic depth variations of duration, stress drop, or radiated energy within the 100–700 km 
depth range. Our study supports the findings of Poli and Prieto (2016, https://doi.org/10.1002/2016jb013521) 
with a doubled amount of earthquakes investigated and with earthquakes of lower magnitudes.

Plain Language Summary  The vibration of the Earth's ground recorded at seismometers carries 
the seismic signatures of distant earthquakes superimposed to the Earth's natural or anthropogenic noise 
surrounding the seismic station. We use artificial intelligence technology to separate the weak signals of distant 
earthquakes from other sources of ground vibrations unrelated to the earthquakes. The separated signal provides 
new insights into earthquakes, especially those within the Earth's deep interior, most of which have not been 
investigated due to noise levels. In contrast with shallow earthquakes, deep earthquakes are less efficient at 
radiating energy, though they exhibit a higher rate of increase in both stress drop and radiated energy as they 
grow. This may suggest that deep earthquakes tend to be more confined fault surfaces. A dual mechanism 
between nucleation in the subduction-zone core and propagation of larger events in the dry mantle explains our 
observations.
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law (Gutenberg & Richter, 1949) but have depleted aftershock productivity compared to shallow earthquakes 
(Dascher-Cousineau et al., 2020; Ye et al., 2020).

The presence of deep earthquakes within the subducted slab provides an interesting window to explore the phys-
ical processes of subduction. Zhan (2020) reviewed the three leading mechanisms that favor dynamic rupture of 
deep earthquakes: (a) mineral dehydration from metamorphic processes that release fluids and lubricate faults 
(i.e., dehydration embrittlement), (b) phase transformation that changes mineral density and volume, and (c) 
thermal runaway that lowers fault friction from shear heating. The fluids released by mineral dehydration are 
thought to explain the double-seismic zone (DSZ) (Abers et al., 2013; Brudzinski et al., 2007; Hacker et al., 2003; 
Yamasaki & Seno, 2003). Whether the released water can penetrate the slab core (Boneh et al., 2019; Green 
& Houston, 1995) and be transported deeper in the mantle is still under debate (Pearson et al., 2014; Plümper 
et al., 2017; Schmandt et al., 2014; Sobolev et al., 2019; Tschauner et al., 2018).

Teleseismic observations of deep earthquakes are the most common data available to study these earthquakes. 
Although regional observations of deep earthquakes may be available at some area with densely distributed 
seismic networks (Chu et al., 2019; Kita & Katsumata, 2015; Ko & Kuo, 2016; Nishitsuji & Mori, 2014) or with 
temporary seismic arrays (Tian et al., 2022), teleseismic observations are usually the most important data for the 
most regions in the world. Because small events are more frequent than large earthquakes, moderate-size earth-
quakes (Mw5.0–6.0) could provide crucial constraints on the rupture mechanisms of deep earthquakes. However, 
elevated seismic noise has limited our ability to investigate the dynamics of moderate-size earthquakes (Mw5.0–
6.0) from teleseismic distances. The source analyses of deep earthquakes have been conducted with only the high 
signal-to-noise ratio (SNR) data of Mw5.8+ earthquakes (Poli & Prieto, 2014, 2016), leaving a vast number of 
moderate-magnitude earthquakes ignored given then with lower SNR waveforms. Furthermore, SNR-based data 
selection of teleseismic P waves may result in azimuthal biases with azimuths and take-off angles due to the 
radiation pattern. The intrinsic variability of rupture mechanisms associated with magnitudes has not been fully 
explored. Hence, the events with a wider range of SNR may be more meaningful.

The superposition of seismic noise and signal at overlapping frequencies poses challenges to the traditional 
Fourier-based noise removal approaches (Douglas, 1997). Other time-frequency methods are useful in separating 
the overlapped spectra but require extensive human intervention (Chang et al., 2000; Donoho & Johnstone, 1994; 
Mousavi & Langston, 2017; Stockwell et al., 1996). The recent development of deep neural networks for seis-
mological research has repeatedly demonstrated its potential for extracting coherent earthquake features from 
noisy seismic observations. Several recent studies have applied machine learning to denoise the signals in the 
time-frequency domain with the assumption that local earthquake and noise signals have distinct Fourier spectra. 
Zhu et al. (2019) converted seismic time series (seismograms) of local earthquakes to a time-frequency representa-
tion and developed a deep convolutional neural network to extract the earthquake signals in a time-frequency latent 
space. Using direct time-frequency input has gained traction (Chen et al., 2022; Saad & Chen, 2020). In fact, 
the time-frequency information may also be utilized implicitly by appropriate convolutional layers considered 
multi-frequency-band “filters” in the time domain. Using that concept, Novoselov et al. (2022) showed that recur-
rent neural networks could separate overlapping seismic signals produced by distinct sources. Yin et al. (2022) 
combined two-branch encoder-decoder and recurrent neural networks to compose the WaveDecompNet, which 
has been proven effective in reconstructing local earthquake and noise waveforms. Yin et al. (2022) demonstrated 
that even the clean noise waveforms improved the coherence of noise single-station cross-correlations for ambient 
noise seismology.

Challenges remain in using these existing models to denoise teleseismic recordings. First, teleseismic waveforms 
have a much lower SNR than local or regional waveforms for the same earthquake magnitude, mainly due to the 
geometrical spreading and attenuation. Second, the attenuation of global seismic phases distorts the signal such 
that signal frequencies overlap with the microseismic signals in velocity seismograms.

This study uses a multi-task encoder-decoder to denoise the teleseismic waves of global M5.0+ earthquakes, a 
method that we name “DenoTe” (Shi, 2023). The neural network takes the architecture of WaveDecompNet (Yin 
et al., 2022) as a kernel to extract high-level features of the teleseismic body waves and uses convolutional layers 
to reconstruct the denoised signals and pure noise signals. We add a layer on the top and bottom of the kernel 
network to adjust the input window lengths. Our training data comprises teleseismic data from the International 
Federation of Digital Seismograph Networks (FDSN) and Global Seismographic Network (GSN) for Mw5.0+ 
earthquakes of the 2000–2021 International Seismological Centre (ISC) earthquake catalog (International 
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Seismological Centre, 2022). The pre-trained kernel is updated through transfer learning. We denoise the teleseis-
mic body waves to extract P-wave pulses of deep Mw5.0+ earthquakes. We estimate several source parameters: 
pulse duration and rupture directivity using relative duration measurements and radiated energy, stress drop, and 
fracture energy using denoised P-wave spectra. We discuss the strong scaling of these properties with earthquake 
magnitude in contrast with the typical scaling of crustal earthquakes and the possible dual mechanisms that 
explain intermediate and deep earthquakes.

2.  Data Preparation
We use supervised learning to separate the earthquake and noise waveforms from their combined form. The 
amount, diversity, and accuracy of the training data greatly impact learning performance. The volume of 
high-quality earthquake records from global seismic networks has grown vastly in the past two decades. We 
extract 1148 Mw5.0+ earthquakes from the 2000–2021 ISC earthquake catalog (International Seismological 
Centre, 2022) based on focal mechanisms to ensure a relatively even number of strike-slip (306), normal-faulting 
(242), and reverse-faulting (600) earthquake types. Specifically, we classify the event mechanisms using the rake: 
reverse faults are between 45° and 135°, normal faults are between −45° and −135°, and the rests are strike-slip 
events. The extracted earthquake list includes events from diverse seismic regions and depths ranging from the 
surface to 700 km (Figure 1a).

To prepare the labels of “clean” P waves seismic waveforms, we download data from all broadband seismometers 
available from the FDSN stations selected at teleseismic angular distances between 30° and 90° to avoid Moho 
and core reflected and converted phases. The P waves of Mw5.0–5.9 are noisy in general and, thus, tend not to 
be included in the training data given our signal-to-noise ratio-based selection criteria. We calculate the P-wave 
arrival time based on the catalog origin time and hypocentral location using an Obspy implementation of Tau-P 
(Beyreuther et al., 2010; Crotwell et al., 1999) in an IASPI91 Earth model (Kennet, 1991). We then downsample 
the three-component ground velocity waveforms down to 10 Hz and cut a wide time window starting from 2,500 s 

Figure 1.  Earthquakes and seismic stations. (a) The 1148 earthquakes with high-SNR recordings were used as training data. (b) The FDSN and GSN broadband 
stations recorded the 45,262 high-SNR teleseismic waveforms of the 1148 earthquakes. (c) The 920 deep earthquakes with low-SNR teleseismic waveforms labeled 
with focal mechanisms are denoised and tested in this study. The legends and color scale are indicated on the lower-right. We use the depth range of 0–600 km for the 
better visualization of the color scale and note that the actual data for the depth range of 0–100 km are not presented using this color scale throughout this article.
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before and 2,500 s after the P-arrival. Keeping wide time windows allows sufficient data before and after the P 
for our data augmentation strategy discussed below. We then calculate the amplitude-based SNR using a noise 
window (75–10 s before) and a signal window (0–75 s after the P-wave arrival) with the following definition,

𝑆𝑆𝑆𝑆𝑆𝑆 =

𝐴𝐴𝑆𝑆

𝐴𝐴𝑁𝑁

,� (1)

where AS and AN are the standard deviations of the amplitudes of the signal window and noise window, respec-
tively. We only select the clean P-wave labels with SNR higher than 25 for training. We gathered 45,262 high-
SNR P waves of 1,148 earthquakes of magnitude Mw5.5+. To generate realistic noise waveforms, we extract a 
150-s noise window before each P wave arrival time and consider it as the noise signal specific to the station. Our 
data selection provides 45,262 earthquake traces and 45,262 noise traces, each composed of three-component 
seismograms. The proportions of waveforms generated by the strike-slip, normal-faulting, and reverse-faulting 
events are 21%, 25%, and 54%, respectively (Figure 1b).

3.  Denoising
We develop, train, and apply a multi-task encoder-decoder to denoise the teleseismic P waves in the time domain. 
We adapt from an existing model architecture by Yin et al. (2022) to use teleseismic data.

3.1.  Neural Network Architecture

We expand from the encoder-decoder network of Yin et al. (2022) to adapt to longer input window lengths. We 
follow a similar style as WaveDecompNet in Yin et al. (2022). Because the teleseismic waveforms have distinct 
low-level features from the local waveforms, we stack the WaveDecomNet kernel with feature extraction layers. 
The stacked neural network on the top encoder branch is a two-layer convolutional neural network (CNN) with a 
one-layer fully connected layer (FCNN) on the optimal training performance. Next, we introduce the architecture 
of the two-branch encoder-encoder (Figure 2) and the strategy to enhance training efficiency.

Similar to Yin et al.  (2022), we use a stride of two after each CNN layer to avoid aliasing (Zhang, 2019). A 
skip connection is introduced after the first CNN layer to retain the fine scale of the feature. Compared to the 
single-branch prediction of either the earthquake or noise signal (Novoselov et al., 2022; Zhu et al., 2019), our 
multi-task model (i.e., two-branch prediction) depends on the efficiency of feature extraction for both earthquake 
and noise signals.

The data is normalized using standard scaling (removing the mean and normalizing by the data standard devi-
ation) and can be rescaled after the wavefield separation by the same scaling factor. In the following analysis, 
where we measure duration estimates and normalize the data to seismic moment, we do not rescale the data after 
denoising.

3.2.  Data Augmentation

Training the model with 60% of the overall data is insufficient to yield a satisfying model performance (see 
details below). Therefore, we proceed with a data augmentation approach to improve model training. We conduct 
a three-step data augmentation to increase the diversity of the training data (Figure 3), which is most important to 
the generalization of neural networks. The training data is more likely selected from higher magnitude earthquakes 
(i.e., Mw6.0+), which tend to have longer source duration and thus tend to generate relatively lower-frequency 
signals compared to the more frequent smaller earthquakes. Hence, the raw training data lacks high-frequency 
information, such as those expected for lower-magnitude earthquakes (Mw5.0–6.0). To generate high-frequency 
data compatible with these small earthquakes, we augment the training data of earthquake waveforms by squeez-
ing the seismogram along the time axis. The squeezing ratio is randomly sampled from 1,2,…8 with equal proba-
bility (i.e., 12.5% for all ratios). We then shift waveforms to avoid the case of the denoising algorithm memorizing 
the stationary P-wave arrival time (Zhu et al., 2020). We take the theoretical P arrival time as the original zero 
and then shift waveforms using a uniform probability between ±75 s. After shifting, we trim the time series to 
the −75 s ∼ +75 s time window. Thus, the trimmed waveforms mostly include the P wave onsets. In the final 
augmentation step, we stack each 150-s trace with the 150-s amplified noise extracted from pre-P noise at the 
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same channel. A random SNR (as defined in Equation 1) between 0.5 and 10 is selected to give earthquake and 
noise relative weights in the combined, “noisy” waveform. The three-step augmentation –stretching, shifting, and 
adding noise– is performed repeatedly in every training epoch with randomly selected parameters. The diversity 

Figure 2.  Architecture of the teleseismic wave denoiser, DenoTe. DenoTe is constructed based on the U-net with symmetric 
structures in the encoding and decoding branches of WaveDecompNet (Yin et al., 2022). The neural network reads composite 
earthquake waveforms (black) and predicts earthquake (red) and noise (gray) signals through the two output branches, which 
have the same structure and length. The sizes of feature maps in each layer (s-1500, s-750, and s-600) and kernel length 
(k-9, k-21, and k-45) of each convolutional filter are indicated as gray text. The number of traces represents the number of 
channels. CNN: convolutional neural network. FCNN: fully connected neural network.

Figure 3.  The three steps of data augmentation. (a) The raw high-SNR P wave (red) is (b) stretched, (c) shifted along the 
time axis, and (d) vertically scaled, and (e) stacked with the noise (gray) extracted from the same station to compose the noisy 
waveform (black).

 21699356, 2023, 12, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023JB

027334 by U
niversity O

f W
ashington Lib, W

iley O
nline Library on [21/12/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



Journal of Geophysical Research: Solid Earth

SHI AND DENOLLE

10.1029/2023JB027334

6 of 25

of the data is enhanced with each additional training step (epoch), which reduces the possibility of overfitting the 
training data (Zhu et al., 2020).

3.3.  Training

We train DenoTe using the composed waveform data and high-quality labels of the P-wave and noise signals. 
We first shuffle and then split the entire data set and corresponding labels into three subsets: 60% for training, 
20% for validation, and 20% for testing. Data augmentation (Section 3.2) is done after the split, ensuring no data 
exchange among subsets or no data leakage leading to unrealistic testing scores. The validation and test data are 
also augmented data sets after data augmentation of the original data. Training is greatly improved thanks to data 
augmentation.

The main criterion for proper denoising is the similarity between the predicted and labeled waveforms for both 
earthquake and noise time series. To improve from the classic loss function mean-squared error (MSE) and focus 
on wiggle-by-wiggle reconstruction, we define a new loss function that combines the Pearson correlation coeffi-
cient (CC) and the MSE of the residual waveforms: loss = MSE + (1 − CC). The CC is independent of the abso-
lute wave amplitude, typically between −1.0 and 1.0, such that (1 − CC) varies between 0 and 2. In comparison, 
the MSE typically ranges between 0 and 1. Different weighting choices are tested between MSE and (1 − CC). 
We find by trial and error an equal weighting between both is optimal for reducing the waveform misfit.

We train for up to 200 epochs and set up an early stopping mechanism when the minimum validation loss is not 
updated for 20 consecutive epochs. We randomly divide the training subset into 177 mini-batches containing 256 
three-component waveforms. The learning rate is fixed at 0.001, combined with an adaptive momentum (ADAM) 
to control the step size in the gradient-decent process. This training process is efficient and converges at a low 
loss of about 0.45 after 140 epochs (see Figure S1 in Supporting Information S1). The validation loss computed 
for every epoch closely follows the training loss. The final testing loss is 0.45 (Figure S1 in Supporting Infor-
mation S1), similar to the training and validation losses. The training, validation, and test losses suggest that the 
neural network does not over-fit the training data and may generalize to diverse teleseismic waves. In Figure 4, 
we compare the ground truth waveform and the predicted waveforms (P wave and noise), both matching well 
the amplitude of the pulse and the phases in the direct and coda waves of P and S waves. In Figure S13 of the 
Supporting Information S1, we plot the statistics of the accuracy scores of 2000 testing waveforms, including the 
explained variance (EV) and cross-correlation coefficient (CC) of both the earthquake and noise branches. The 
high EV for even the lowest-SNR data as an input indicates that our denoiser is well-trained and generalizable. 
Note that CC correlates with the input SNR, although generally above 0.7, implying CC is a more strict criterion 
to enhance DenoTe's learning efficiency.

3.4.  Predicting (Denoising) the P Waves

We apply DenoTe to 3,079 Mw5.0+ deep earthquakes between 1/1/2000 and 12/31/2021, of which 920 are 
labeled with focal mechanisms (217 strike-slip, 341 reverse-faulting and 362 normal faulting events as shown 
in Figure 1c). The data is normalized before prediction and rescaled after wavefield separation using standard 
scaling.

For subsequent validation of the source characteristics, we select the raw, noisy P waves with SNR > 2 (as defined 
in Equation 1) and extract the denoised P waves through DenoTe. This ensures that the post-processing analysis 
is only selecting data that could have been included in previous analysis and should limit the effect of artifacts 
generated by the model (though these were minimal when using the WaveDecompNet kernel Yin et al. (2022)).

The first-order source processes are better analyzed from displacement waveforms since these are proportional to 
the moment-rate function in the far-field seismograms. Therefore, we integrate all denoised velocity waveforms to 
displacement and normalize them to their maximum absolute amplitude. We show waveform examples from  two 
earthquakes, original and denoised waveforms, sorted by station azimuth relative to the earthquake epicenter, 
aligned using cross-correlation (Figure 5). We find a systematic improvement of the P wave signal-to-noise ratio 
for a broad range of frequencies after denoising.

We find, in general, that the noise is considerably reduced: pre-P signals have much lower amplitudes and 
low-frequency noises after the P and are also absent in the post-P pulse. Because of the noise removal, it is a lot 
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easier to visualize and automatically measure pulse width. The statistical improvement of SNR for the deep-focus 
and intermediate-depth earthquakes is shown in Figure 5f.

4.  Source Parameters
The goal of this study is to improve the quality of the source parameters of the deep Mw5.0+ earthquakes. Source 
parameters are directly extracted from the time domain (source duration and directivity) or measured from the 
spectral domain after correction for the path effects (corner frequency, stress drop, radiated energy, and radiation 
efficiency).

There exist many sources of uncertainty when estimating earthquake parameters: seismogram noise, distribution 
of the stations for a full sampling of the focal sphere, attenuation effects on the seismograms, limited frequency 
bandwidth of the data, simplified model, etc. Recent efforts by the community have addressed some of these 
issues. Bindi et al. (2023) propagated errors from data truncation, model assumptions, and choices in site ampli-
fication correction to derive uncertainties and assume normal distributions. Abercrombie (2021) illustrated the 
impact of using different attenuation models and the limited bandwidth on estimating the spectral source prop-
erties of the small and moderate-size events. This study does not attempt to propagate the model-related error 
quantitatively as Bindi et al. (2023) but to demonstrate how to reduce the uncertainties in the measurements by 

Figure 4.  Example of DenoTe's performance. In the time domain: (a) composite waveform, (b) (label) earthquake signal 
(label data, P-wave, its coda, and the direct S wave), (c) comparison between the labeled (red) and predicted (blue) earthquake 
signals (and their variance reduction and correlation coefficient) (d) comparison between the labeled (red) and predicted 
(blue) noise signals (and their variance reduction and correlation coefficient). In the frequency domain: (e) comparison 
between the velocity spectra of the label and predicted earthquake data and (f) comparison between the velocity spectra of the 
label and predicted noise data.
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Figure 5.  Denoising performance on real earthquakes. Denoising performance on two representative earthquakes deep 
earthquakes: the Mw6.1 2013 April 21 earthquake near the Izu Islands in Japan and the Mw5.9 2002 February 1 earthquake 
at Primor'ye in Russia. (a) and (c) show the original displacement waveforms, and (b) and (d) show the denoised waveforms. 
The waveforms are aligned with the peak amplitude, stretched based on the maximum cross-correlation coefficients, and 
sorted by azimuth relative to the epicenter. The blue waveforms are flipped in polarity for better visualization. The dashed 
line marks the onset of the P waves. The stacked displacement waveform is shown in green. The cumulative energy waveform 
shown in red is computed using the integral of the squared stacked velocity waveform. The black and yellow dots indicate 
the onset and termination time of the energy growth, which defines the duration. Denoising performance of overall deep 
earthquakes: (e) shows the increment of average SNR of each event by denoising as the function of the moment, color-coded 
by depth. (f) Shows the statistics of SNR increments for all deep earthquakes in this study (gray) and for intermediate-depth 
earthquakes (red) and deep-focus earthquakes (blue). The SNR improvement is defined by the increment 20 log10(SNR).
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denoising low SNR data and how it does so by widening the frequency range of available data. Neely et al. (2020) 
found that large uncertainties exist for stress drop measurements and are not comparable between different studies 
of different tectonic settings. We analyze the variations of the global deep earthquake source properties based on 
the uniform model assumption and consistently compare them.

We explored a quantification of uncertainties in the source parameters by using bootstrapping over the stations 
for both the raw data and denoised data. While this quantifies “data consistency” over epistemic uncertainties, the 
variability in the data may represent the range of possible uncertainties due to SNR, frequency content, imperfect 
attenuation removal, and source directivity. The distribution of source parameters measured from the subsets, 
the corresponding standard deviations as well, and the deduced scaling relationships are shown together with the 
final measurements of the full data set in Figure 6.

In the following subsections, we select the denoised deep events with at least 20 data in at least six azimuthal bins 
(each of 45° width). This selection leads to 783 deep Mw5.0+ earthquakes for further analysis and ensures that 
the statistical properties of deep earthquakes are not biased by imperfect data coverage. This about doubles the 
number of events studied relative to Poli and Prieto (2016).

4.1.  Source Duration

The event source duration is assumed to be the measured pulse width of the stacked P displacement waveform 
(we ignore the broadening of the pulse due to attenuation). This assumption is made because displacement seis-
mograms are proportional to moment rate functions in the far field of an attenuation-free whole space. We first 
shift the time series using cross-correlation. We use the highest SNR trace as a reference and align all others using 
cross-correlation. We normalize the waveforms with their maximum amplitudes (flipping those with negative 

Figure 6.  Durations scaling with magnitude and depth. The duration scaling coefficients derived from the raw 
data are shown in (a) and (c) in comparison to the duration scalings derived from the denoised data in (b) and (d). 
Moment-dependence: (a) and (b) the source duration rescaled by S-wave velocity is shown as bigger circles color-coded by 
depth and compared with the self-similar scaling relationships in dashed lines. The gray circles with 50% transparency are 
calculated by bootstrapping with stations, and the black error bars denote their standard deviations. The open black circles 
are the bootstrapped mean values of eliminated events due to the relatively unstable measurements (depth phases, stronger 
coda, insufficient azimuthal coverage, etc.). The black solid line indicates the optimal scaling relationship, estimated with the 
average duration (green squares) of 1,000 bootstrapped mean values over events (standard deviation as the green error bar) 
in each moment bin. The uncertainty of the final scaling is denoted in the legend. (c) and (d) The magnitude-scaled source 
duration (Equation 2) against depth and color-coded by the event magnitude. The green square, green error bar, gray circle, 
and black error bar are in the same fashion as (a) and (b). The best-fit scaling is shown as the black solid line with the slope 
uncertainty in the legend. H: Earthquake focal depth.
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polarity). We then stack the aligned and normalized traces for a first reference waveform. In a second iteration, 
we align the waveforms according to the first reference. We show these aligned and normalized waveforms in 
Figure 5.

In the second iteration, we take the stacked waveform as a reference to align each normalized trace again. We then 
stretch each normalized trace according to the reference using the stretching ratio that maximizes the Pearson 
coefficient between the stretched trace and the reference. We then stack the aligned and stretched pulses to obtain 
our improved stacked P-wave pulse.

We measure the source duration of the average from cumulative energy. We first take the derivative of the stacked 
displacement pulse (i.e., velocity), square it, and integrate it over time to compute the cumulative energy function. 
A typical cumulative energy function shows a flat-ramp-flat shape, where the time when cumulative energy rises 
corresponds to the source duration. We use the time when 5% and 90% of the total energy are reached to approx-
imate the onset and termination of the event. The threshold choice was chosen to mitigate the artifact of the coda 
waves. All durations done in the time domain follow this calculation.

Because earthquake duration varies greatly with earthquake magnitude, we also calculate the scaled duration τS in 
a similar way to Houston et al. (1998) and Poli and Prieto (2014), using the following definition,

𝜏𝜏𝑆𝑆 =

𝛽𝛽

𝛽𝛽𝑟𝑟𝑟𝑟𝑟𝑟

(

𝑀𝑀
𝑟𝑟𝑟𝑟𝑟𝑟

0

𝑀𝑀0

)

1

3+𝜖𝜖

𝜏𝜏𝜏� (2)

where τ is the source duration, β is the shear-wave velocity at the event depth of the Preliminary Reference Earth 
Model (PREM) (Dziewonski & Anderson, 1981), and M0 is the event seismic moment. 𝐴𝐴 𝐴𝐴

𝑟𝑟𝑟𝑟𝑟𝑟

0

 is the reference 
moment 10 19 N m and β ref is the shear-wave velocity 4.4 km/s at the reference depth 170 km. Here, ϵ repre-
sents the departure from the self-similarity and is fit to the data (Houston et al., 1998; Kanamori, 2004; Poli & 
Prieto, 2014). The map view of the scaled duration is shown in Figure S2 of the Supporting Information S1.

We also measure duration as the inverse of the corner frequency. Section 4.4 discusses how we perform spectral 
fitting, extracting the corner frequency that is inversely proportional to the duration. We test this relation and 
show it in Supporting Information S1 (Figure S3).

The source duration of moderate-size earthquakes (10 16 < M0 < 10 19 N m) shows relatively higher variability than 
those of larger earthquakes (M0 > 10 19 N m), possibly due to the limited number of large events or sensitivity to 
residual noise (Figures 6a and 6b). This increased variability at low magnitudes is typical of studies Allmann and 
Shearer (2009), Denolle and Shearer (2016), and Courboulex et al. (2016). As shown in Figure 6b, the source 
duration of the earthquakes of moments around 10 18 N m (equivalent to MW5.9) ranges between 1 and 8 s, which 
is about an order of magnitude difference. The duration measurement taken as the inverse of the corner frequency 
exhibits similar variability (Figure S3 in Supporting Information S1).

Potential errors that introduce variability in the measurements could be attributed to depth phases of the shallow-
est deep earthquakes, which can be easily eliminated for short-duration events using a cut-off time window of 
0–20 s following the first arrival but could be difficult to remove for long-duration events where the depth phases 
interfering with the direct phases.

We fit the observed log10τ  ∼  a log10M0 with linear regression, where the duration is corrected with the 
depth-dependent bulk properties (i.e., shear-wave velocity). We find that a = 0.25 ± 0.02 matches best with 
the moderate- to large-magnitude earthquakes, and this represents the scaling 𝐴𝐴 𝐴𝐴 ∼ 𝑀𝑀

0.25

0
 . The measurements of 

the  inverse of corner frequency further confirm the scaling assuming τ = 1/fc (see Figure S3 in Supporting Infor-
mation S1). This scaling is similar to what has been found for intermediate-depth and deep-focus earthquakes 
(Allmann & Shearer, 2009; Poli & Prieto, 2016; Turner et al., 2022).

The depth dependence in scaled duration is well explained by the depth variations in material properties, or 
equivalently, that the scaled duration is depth independent. Given a reference magnitude of Mw6.6, the scaled 
duration at a depth of 100–250 km has a mean value of about 5.5 s, while those at a depth of 500–600 km have 
a mean value of about 5.3 s. The mean scaled duration, when estimated from corner frequency (i.e., 1/fc), of 
the intermediate-depth and deep-focus events are both about 5.5 s. Similar variability of 1/fc is found for the 
intermediate-depth and deep-focus events (2–12 s).
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4.2.  Directivity Effects

The rupture directivity alters the shape of far-field P-wave pulses by stretching or squeezing the seismic wave-
forms with ratios that vary with the azimuths and take-off angles away from the direction of rupture propagation. 
Directivity effects usually yield a shorter apparent duration and an enhanced high-frequency content in the direc-
tion of rupture propagation. These effects may be referred to as Doppler effects. When the earthquake rupture 
propagates in a unilateral direction, the Doppler effects are clear and asymmetric with respect to the direction 
of rupture. When the earthquake rupture propagates fast, as measured by the ratio of the rupture speed Vr to the 
velocity of the seismic wave propagation VP, it enhances the contrast in apparent duration and magnifies Doppler 
effects.

Figure S4 in Supporting Information S1 illustrates the geometrical relation between the direction of rupture and 
the direction of the seismic ray taking off. We modify Equation 1 of Park and Ishii (2015) to express the apparent 
duration of the P-wave pulse at station i, τi:

𝜏𝜏𝑖𝑖 =
𝐿𝐿

𝑉𝑉𝑟𝑟

(

1 −
𝑉𝑉𝑟𝑟

𝑉𝑉𝑃𝑃

cos 𝜃𝜃𝑖𝑖

)

,� (3)

where Vr is the average speed of a unilaterally propagating through rupture, L is the total length of rupture, VP is 
the P-wave velocity at the source, and θi is the angle between the rupture propagation and ray take-off directions. 
Because Vr tends to be closer to the shear-wave speed VS, directivity effects in P-wave pulses are typically less 
than observed in S-wave pulses. Based on the geometry between the rupture directivity and the seismic ray path 
(Figure S4 in Supporting Information S1), cos θi is

cos 𝜃𝜃𝑖𝑖 = sin 𝛾𝛾𝑖𝑖 sin 𝛽𝛽 + cos 𝛾𝛾𝑖𝑖 cos 𝛽𝛽 cos(𝜙𝜙𝑖𝑖 − 𝜙𝜙𝑟𝑟),� (4)

where the angle parameters are explained and illustrated in Figure S4 of the Supporting Information S1. Each 
source-station geometry provides a unique set of geometrical parameters. We know ϕi and γi from the earthquake 
and receiver location and τi from measurements. We need to find L, Vr, β, and ϕr. We perform a grid search for 
the four parameters. β is searched between −π/2 and π/2 with 36 grid points, ϕr is searched between 0 and 2π with 
72 grid points, Vr is searched within 0 ∼ VP with 100 grid points and L is searched between 0.6 Vr τ and 1.4 Vr τ 
with 8 grid points.

To get apparent Vr and the direction of directivity, we need to measure τi. We measure the τi at each station using 
the stretching/squeezing ratio between the station-specific and the station-stacked displacement P waveforms. 
Then, we take the ratio between the relative pulse durations and the average source duration.

We select the events with at least 20 data in at least six azimuthal bins (each of 45° width). The ratio of the opti-
mal rupture velocity of the events with the local S-wave velocity is referred to as the “Doppler ratio” because 
it is only relevant for unilateral moving ruptures. Here, we cannot determine the rupture velocity of a radially 
propagating rupture, but we can assess the circularity of the rupture propagation with the Doppler ratio. A high 
Doppler ratio indicates a rather unilateral rupture and a low Doppler ratio indicates a rather circular rupture. Our 
measured Doppler ratio (Vrup/VS) is shown in Figure 7a. Most earthquakes in this analysis have an apparent unilat-
eral rupture speed slower than 50% of the S-wave velocity. Hence, we draw our first conclusion that unilateral 
propagation is not the dominant mode of propagation of deep earthquakes. Rather, the crack model of radially 
propagating rupture might well suit our observations.

We report that the denoised waveforms yield a much-reduced variance among the station-specific Doppler ratio 
values. We attribute this to the enhanced cross-correlation coefficients of stretched P waves, contributing to a 
more precise estimation of the relative source durations.

Our result shows a significant correlation between the estimated Vrup/VS and earthquake moment. The smaller 
earthquakes have a broad range of Doppler ratios between 0.0 and 0.8, with a mean value of 0.3 (Figure 7a). 
This means the equivalent unilateral rupture speeds of the moderate-size deep earthquakes are mostly lower than 
30% of the S-wave velocity. The large deep earthquakes have a narrower range of Doppler ratio values between 
0.0 and 0.4, with a mean value of 0.15. The decrease of the maximum Doppler ratio with the increasing moment 
may be related to (a) the weakening of material beyond the seismogenic width (i.e., the slab) or (b) the growing 
complexity of the rupture processes, which can be involved with multiple faults or multiple mechanisms during 
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a single large deep event, leading to more homogeneous rupture propagation and a poorer representation of the 
directivity with the Doppler ratio.

We conduct statistical tests to demonstrate the significance of the difference between the distributions of the 
Doppler ratio at different depths. The null hypothesis is that the mean of the two distributions of Doppler ratios 
(depth ranges of 100–300 km and 300–700 km) are equal. We then obtain a t-score of 1.6 with an associated 
p-score of 0.11. Hence, this is not sufficient evidence to reject the null hypothesis. Therefore, Doppler ratios of 
earthquakes at the depth range of 100–300 km are statistically similar to that of earthquakes deeper than 300 km.

4.3.  Earthquake Complexity With Subevents

Complex earthquake ruptures may comprise subevents that are bursts of moment release well separated in time 
(Antolik et al., 1999; Danré et al., 2019; Duputel et al., 2012; Houston et al., 1998; Ihmlé, 1998; Kikuchi & 
Fukao, 1987; Shi & Wei, 2020; Tibi et  al., 2003; Tsai et  al., 2005; Wei et  al., 2013; Yin et  al., 2021; Zhan, 
Kanamori, et al., 2014). We count the number of peaks of the stacked P-wave displacement for all deep earth-
quakes analyzed in this study. We use a peak detector function (scipy.signal.find_peaks in Python) 
and only search between the P-wave arrival time and the apparent duration. The data has been low-pass filtered 
below 4 Hz before integrating into displacements. We pick the subevent peaks from the stacked displacement over 
stations. We found that most events have between 1 and 3 subevents, as shown in Figure 7b. The waveform reso-
lution (<4 Hz) is sufficient for Mw > 6 events and well below some Mw5.0–6.0 earthquakes. Three subevents 
are only detected for Mw > 5.5, and smaller events present fewer subevents (i.e., 1 or 2) as shown in Figure 7b. 
Larger earthquakes have a few and more subevents than smaller earthquakes, but overall, deep earthquakes are 
simpler ruptures with fewer subevents confirming Danré et al. (2019) and Yin et al. (2021) and the hypothesis 
that deep earthquakes are rather crack-like.

In the following section, we assume a simple source model to estimate the parameters in the frequency domain, 
which we justified using two metrics: rupture directivity and source pulse complexity quantified by the number of 
subevents. Our result shows that the large deep earthquakes are rather symmetric in terms of rupture propagation 
and contain fewer subevents compared to their shallow counterparts. This supported our choice of a simplified 
source model, even for large earthquakes.

4.4.  Spectral Fitting

The far-field P wave displacement waveforms are an approximation to the moment-rate function. Their ampli-
tudes are controlled by moment, radiation patterns, and geometrical spreading, mostly frequency-independent. 
The seismogram amplitudes are also affected by seismic attenuation, which considerably decreases the seismic 

Figure 7.  The Doppler effect of deep earthquakes analyzed in this study. (a) The equivalent unilateral rupture speed ratio to 
the S-wave velocity near the earthquake source is plotted to show the relation with the moment, color-coded by event depth. 
The green square and green error bars are the average value and the standard deviation of the bootstrapped mean Doppler 
ratios in each moment bin. The gray circle and the black error bar are the Doppler ratio using bootstrapped stations and the 
corresponding standard deviation for each event. The best-fit scaling relationship between the Doppler ratio and moment is 
shown as the black solid line with uncertainty denoted in the legend. (b) The number of peaks of the source time function in 
relation to seismic moment color-coded by event depth.
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amplitudes at frequencies greater than 1 Hz. It is common in seismology to remove the attenuation effect by 
correcting the amplitudes in the frequency domain. We first transform the displacement time series to the Fourier 
amplitude spectrum using the package mtspec (Prieto, 2022; Prieto et al., 2009), which uses a multi-taper spec-
tral analysis that is robust for short windows (Thomson, 1982). To correct for the attenuation of high-frequency 
energy for teleseismic P waves, we use the following equation,

𝑆̂𝑆(𝑓𝑓 ) = 𝑈̂𝑈 𝑈𝑈
2𝜋𝜋𝜋𝜋𝜋𝜋

∗
∕2
,� (5)

where the attenuation parameter t* = 0.3 s for the P waves that originate from the mantle (Poli & Prieto, 2016). 
f is frequency, 𝐴𝐴 𝑈̂𝑈 is the observed spectrum and 𝐴𝐴 𝑆̂𝑆(𝑓𝑓 ) is the corrected spectrum. To understand the trade-offs with 
attenuation, we add experiments using different attenuation parameters t* = 0.05, 0.15, 0.25, 0.35, and 0.45 s, and 
summarize the effect in Figure S11 of the Supporting Information S1. We notice that when t* > 0.4 s, the spectra 
(below 2 Hz) start to deviate from the theoretical source spectra, which is a sign of over-correction. Within the 
range of 0.05–0.35 s, the t* does not change much the scaling between the spectral parameters and magnitude of 
Mw5.0+ deep earthquakes discussed later. This experiment validates that t* = 0.3 s is overall a good value that 
leads to results consistent with the temporal measurements (1/fc ∼ T). We then scale each attenuation-corrected 
displacement spectra to one. To avoid biases of azimuthal distributions in the station coverage, we group the 
P-wave spectra into eight π/4-wide azimuth bins. We first compute the average spectrum in each bin if there is 
data, then stack the spectra over azimuth bins, ignoring those without data. This procedure is to approximately 
correct the radiation pattern and geometrical spreading effects. We then level the stacked P spectra with the ISC 
catalog earthquake moment. Next, we use the following equation to model the source spectrum, assuming a 
Brune model (Brune, 1970).

𝑆̂𝑆
′

(𝑓𝑓 ) =
𝑀𝑀0

1 +

(

𝑓𝑓

𝑓𝑓𝑐𝑐

)𝑛𝑛
,� (6)

where the two parameters to find are the fall-off rate n and corner frequency fc. The choice of a simple spectral 
shape is justified because of the low Doppler ratio and low complexity of the P-wave pulses. We perform fitting 
in the log-log space: log of amplitudes resampled on a log-frequency array. We then perform a grid search by 
minimizing the mean square residuals between the modeled and observed spectrum below 1 Hz. We limit the 
grid search to 2.5 Hz for the corner frequency, approximately the corner frequency (or inverse of duration) of an 
Mw5.0 earthquake based on the regional data analysis of intermediate-depth earthquakes by Prieto et al. (2013). 
A visual comparison between the optimal modeled spectra with the stacked spectra of the noisy and denoised 
P waves is shown in Figure S5 of the Supporting Information S1. The difference in spectral shapes between the 
synthetic and stacked spectra is reduced after denoising.

There are clear trade-offs when fitting for both fall-off rates n and corner frequencies. This problem was exten-
sively discussed in the literature and widely recognized by the community (Denolle & Shearer, 2016; Eulenfeld 
et al., 2021; Huang et al., 2016; Kaneko & Shearer, 2015; Shearer et al., 2019; Trugman & Shearer, 2017). We 
address similarly this issue by solving for both parameter in the grid search and set a upper bound of 2.5 for the 
fall-off rate and 2.5 Hz for the corner frequency.

We now explore the effects of earthquake size on the shape of the observed and modeled spectra. We group the 
spectra in seven-magnitude bins by normalizing all spectra and leveling them to the bin central moment. We show 
the bootstrapped spectra in Figure 8. We average the logarithmic spectra amplitude in each magnitude bin by 
bootstrapping (selecting with replacement) 1,000 times the data. We obtained 1,000 averaged spectra, shown in 
Figure 8, and then averaged again for a single stacked spectrum per magnitude bin. We perform the same analysis 
for the original and the denoised seismograms.

The main results that can be interpreted are the variation of the corner frequencies with the seismic moment for 
the denoised seismograms (Figure 8b). We find a visual correlation that 𝐴𝐴 𝐴𝐴0 ∝ 𝑓𝑓

−4
𝑐𝑐  , again supporting a deviation 

from a self-similar behavior. This result holds when considering the 783 individual estimates of fc (Figure S3 in 
Supporting Information S1) and confirms the inverse relation between duration τ and moment, M0 ∼ τ 4, illus-
trated in Figure 6b.

With the recognition that such noisy waveforms (Figure 8a) would be disregarded in seismological studies, we 
want to highlight the impact of including noise in the spectral fitting. Microseismic noise particularly biases the 
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retrieval of corner frequency for magnitude Mw5.0–6.5. Moreover, high-frequency noise biases the retrieval of the 
high-frequency fall-off rate (and thus corner frequency given the parameter trade-offs) of the larger earthquakes.

4.5.  Stress Drop

As stated above, we justify using a circular, radially propagating crack model for deep earthquakes because (a) the 
source spectra fit well using a single-corner frequency model, (b) we infer the weak directivity effects, and (c) we find 
low complexity in the time-domain pulse. Crack models are modes of rupture where the fault slips behind the rupture 
front from the beginning of the fault slip until the earthquake fully arrests. We use the classic model of Brune (1970) 
later updated by Madariaga (1976) and Wang and Day (2017) to relate event duration and moment to stress drop Δσ:

Δ𝜎𝜎 =
7

16
𝑀𝑀0

(

𝑓𝑓𝑐𝑐

0.35𝑉𝑉𝑆𝑆

)3

,� (7)

where the geometrical parameter 7/16 is used for a circular crack, the radius of the crack is estimated as 0.35VS/fc. 
Here, the coefficient 0.35 is obtained in Wang and Day (2017) in dynamic rupture models of expanding cracks. 
We extract the shear-wave velocity VS from the 1D PREM model (Dziewonski & Anderson, 1981). We show the 
values of stress drop in Figures 9c and 9d and Figures 10c and 10d, together with the uncertainty distributions 
obtained by bootstrapping the stations. We find a strong scaling of stress drops with earthquake magnitude but no 
variation with depth. We perform a linear regression 𝐴𝐴 log

10
(Δ𝜎𝜎) ∼ 𝑎𝑎 log

10
𝑀𝑀0 using linear-least squares and find 

the exponent a = 0.21 ± 0.03. The resulting strong scaling suggests that if the Mw5.0 earthquakes have a stress 
drop of about 1.8 MPa, the Mw7.5 earthquakes have a stress drop of 10 MPa. This scaling is slightly weaker 
than that found by Poli & Prieto (2016), though we generally find lower stress drops more consistent with global 
studies and crustal earthquakes (Allmann & Shearer, 2009), and using the time-domain duration estimate T would 
decrease the mean value of stress drop.

As expected from the non-typical scaling of duration with seismic moments, the scaling of stress drop with 
magnitude is strong (Figures 9c and 9d). We bootstrap the stress drop of the events in the moment bins, calculate 
average stress drops, perform a linear regression in the log-log space, and find a best slope of 0.21 ± 0.03, such as 

𝐴𝐴 Δ𝜎𝜎 ∼ 𝑀𝑀
0.21±0.03

0
 . Furthermore, the scaling is stronger for earthquakes deeper than 300 km: “intermediate depth” 

earthquakes have a scaling 𝐴𝐴 Δ𝜎𝜎 ∼ 𝑀𝑀
0.23

0
 and “deep focused” earthquakes have a scaling of 𝐴𝐴 Δ𝜎𝜎 ∼ 𝑀𝑀

0.26

0
 , as shown 

in Figure S6 of the Supporting Information S1.

Unsurprisingly, the variability in spectral shapes shown in Figure 8a yields a higher variability in corner frequency 
and, consequently, in estimated stress drop. The variability may be unreasonable and span four orders of magnitude 
higher than for the same waveforms but denoised using DenoTe. Therefore, our denoising technique has been essential 

Figure 8.  Spectra averaged in magnitude bins. (a) The noisy spectra are divided into seven magnitude groups, as indicated on 
the left, and bootstrapped in each group 1,000 times to compute the average spectra (gray). The median of the bootstrapped 
spectra mean (black lines) is well fit by the spectral model (blue dashed lines) after searching for the optimal corner frequency 
(white dots) and high-frequency fall-off rate. The gray bars indicate the uncertainties of the corner frequencies. The darker 
green line represents the scaling between corner frequency and moment fitted to the measurements, and the light green line 
represents the self-similarity model. (b) Same as (a) for the denoised waveforms.
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and provides more precise stress drop measurements and their scaling with magnitude. We calculate the stress drop 
using the duration estimates and find similar moment-dependence (Figure S7 in Supporting Information S1).

We do not see any strong dependence between stress drop and depth (Figures 10c and 10d). We measure an 
increased variability of the shallowest intermediate-depth earthquakes, which may indicate that we have less 

Figure 9.  Radiated energy, Stress Drop, Radiation efficiency, Fracture energy, and earthquake size. (a), (c), (e), and (g) 
are derived from the raw data while (b), (d), (f), and (h) are derived from the denoised data. The source parameters in each 
subfigure are presented similarly: Bigger circles are individual events color-coded by depth. Each gray circle with 50% 
transparency and black error bar are measurements using bootstrapped stations and the corresponding standard deviation 
for each event. Each green square and error bar are the average value and the standard deviation of the bootstrapped mean 
over events in each moment bin. The optimal scaling relationship between the X and Y axes is the black solid line with slope 
and uncertainty denoted in the legend. (a) and (b) Moment-scaled radiated energy as a function of moment. (c) and (d) The 
scaling relationship between stress drop and moment. (e) and (f) Radiation efficiency as a function of moment. (g) and (h) 
The scaling relationship between earthquake average slip and fracture energy, in comparison with the dashed curves derived 
from the thermal-pressurization-based model by Viesca and Garagash (2015).
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stable duration measurements for the shallowest earthquakes (some depth phases may leak in our measurements), 
a greater sensitivity of the measurements to unknown attenuation effects, or may indicate a greater heterogeneity 
in source properties of shallow earthquakes. Overall, a depth-varying attenuation correction does not seem as 
necessary as that of the observed stress drop of crustal earthquakes (Abercrombie et al., 2021). Vallée (2013) 
found the constant strain drop with depth better fits the data. We scale the source duration using Equation 2, a 
different approach from Vallée (2013), based on the assumption of constant stress drop with depth. However, 
since the density and S-wave velocity vary by some moderate amount, we can not discriminate between constant 
stress drop and constant strain drop.

Figure 10.  Radiated energy, Stress Drop, Radiation efficiency and earthquake depth. (a), (c), (e), and (g) are derived from 
the raw data, while (b), (d), (f), and (h) are derived from the denoised data. The source parameters in each subfigure are 
presented similarly: Bigger circles are individual events color-coded by magnitude. Each gray circle with 50% transparency 
and black error bar are measurements using bootstrapped stations and the corresponding standard deviation for each event. 
Each white square and green error bar are the average value, and the standard deviation of the bootstrapped mean over events 
in each depth group. The optimal scaling relationship between the X and Y axes is shown as the black solid line. Using the 
PREM velocity model: (a) and (b) Scaled radiated energy as a function of depth, (c) and (d) stress drop and depth, (e) and (f) 
radiation efficiency and depth. Using AK135 velocity model (g) and (h) radiation efficiency and depth.
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4.6.  Radiated Energy

Next, we estimate the radiated energy of these earthquakes using the denoised waveforms. The kinetic energy 
of the radiated P wave can be estimated by integrating the squared P-wave velocity spectrum. We were partially 
motivated to measure if ML-denoising affected the waveforms over a range of frequencies to which radiated 
energy is particularly sensitive. We estimate the radiated P-wave energy using,

�� =
2��2

0 ⟨�
2
� ⟩

�� 5
�

∫

∞

0

[

� �̂(� )
]2
�� ,� (8)

where, 𝐴𝐴 ⟨𝑅𝑅
2

𝑃𝑃
⟩ = 4𝜋𝜋∕15 is the squared P-wave radiation pattern coefficient averaged over the double-couple focal 

sphere assuming the uniform shape of source spectra 𝐴𝐴 𝑆̂𝑆(𝑓𝑓 ) , VP is the P wave velocity at the location of the source 
and ρ is the density of the material at source. The seismic moment M0 is calculated from moment-magnitude.

With the radiated energy, we can further calculate the apparent stress (see Figure S8 in Supporting Informa-
tion S1) by

𝜎𝜎𝑎𝑎 = 𝜇𝜇𝜇𝜇𝑅𝑅∕𝑀𝑀0,� (9)

The shear modulus μ is calculated with the shear-wave velocity of the PREM model.

In general, the observed spectra well match the model 𝐴𝐴 𝑆̂𝑆
′

(𝑓𝑓 ) in Equation 6 below 1.5 Hz (see Figure 8; Figure S11 
in Supporting Information S1). Higher than 1.5 Hz, the observed spectra have a steeper fall-off than the model, 
which implies that attenuation may be frequency-dependent. Ide and Beroza (2001) has indicated that the source 
spectrum at frequencies higher than 10 times the corner frequency only accounts for less than 10% of the total 
energy. Hence, we separate the integration in Equation 8 in two parts: observed spectra integrated below 1 Hz and 
modeled spectra integrated over 1–4 Hz.

Similar to (Boatwright & Choy, 1986; Convers & Newman, 2011; Denolle & Shearer, 2016; Poli & Prieto, 2016), 
we scale the S energy using the ratio 𝐴𝐴 𝐴𝐴𝑆𝑆 = 3𝑉𝑉

5

𝑃𝑃
∕2𝑉𝑉

5

𝑆𝑆
𝐸𝐸𝑃𝑃 . Several assumptions are required to apply this ratio. 

First, S waves are assumed to have the same spectral shape as P waves. Second, we assume that the focal mecha-
nism of the source is strictly a double couple, which is questionable for deep earthquakes (Frohlich, 1989; Green 
& Houston, 1995; Knopoff & Randall, 1970), and that we are sampling the whole focal sphere. Third, we assume 
the ratio between P and S waves found in the PREM velocity model.

We find that radiated energy also scales strongly with the seismic moment, with an exponent of 1.24. Figures 9a 
and  9b show the moment scaled energy ER/M0 as a function of moment. By performing linear regression 

𝐴𝐴 log
10
(𝐸𝐸𝑅𝑅∕𝑀𝑀0) ∼ 𝑎𝑎 log

10
𝑀𝑀0 , we obtain the exponent a = 0.24 ± 0.04. Such scaling is expected from the scaling of 

corner frequency with earthquake magnitude because of the abnormally higher corner frequency of larger earth-
quakes, within which seismic energy concentrates. Typical self-similar concepts of earthquake scaling promote 
the idea that scaled energy, ER/M0 is constant (Baltay et al., 2010; Convers & Newman, 2011; Venkataraman & 
Kanamori, 2004), though Denolle and Shearer (2016) found the scaled energy tended to be constant regardless 
of the fault geometry.

We show the scaling relationships between radiated energy and depth derived from the noisy and denoised P 
waves in Figures 10a and 10b, respectively. Similar to the moment dependence, denoising reduces the variability 
of the radiated energy measurements but does not alter the general trend of the scaling.

4.7.  Radiation Efficiency

Considering the simplified slip-weakening model of fault strength, we also calculate the apparent radiation effi-
ciency introduced by Venkataraman and Kanamori (2004), also well explained and discussed in Abercrombie and 
Rice (2005), Noda and Lapusta (2013), and Lambert et al. (2021). We use the definition of radiation efficiency:

𝜂𝜂𝑅𝑅 =
2𝜇𝜇𝜇𝜇𝑅𝑅

Δ𝜎𝜎𝜎𝜎0

,� (10)

where the shear modulus μ is calculated with the shear-wave velocity of the PREM model, seismic moment M0 is 
calculated from moment-magnitude, radiated energy ER and stress drop Δσ are measured above.
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We find low radiation efficiency at about 0.05, similar to other studies on deep earthquakes (Poli & Prieto, 2016; 
Prieto et al., 2013; Wiens, 2001). These values are typically much lower than those reported for crustal earth-
quakes (Lambert et al., 2021; Prieto et al., 2017; Singh et al., 2004; Venkataraman & Kanamori, 2004; Zollo 
et al., 2014). Noda and Lapusta (2013) and Lambert et al. (2021) suggested that radiation efficiency inferred from 
seismic observations tends to be overestimated as the seismological stress drop estimate is likely to be underesti-
mated (Noda & Lapusta, 2013). Together with these potential biases, our results suggest deep earthquakes have 
much lower radiation efficiency than crustal ones.

We observe a weak moment-dependence of radiation efficiency (Figure 9f), with a slope of 0.05 ± 0.02 by a 
linear regression of the results obtained from the denoised data. This is also implied by the slight difference in 
scaling found for radiated energy and stress drop. Visually, there is greater variability of radiation efficiency for 
smaller magnitude earthquakes, which can be attributed to greater variability in corner frequency.

To further study the relationship between the radiation efficiency and source depth, we calculate the average 
radiation efficiency within each small depth interval (see Figures  10e and  10f). The shallowest earthquakes 
(100–250 km) have average radiation efficiencies about 30% higher than those of the events at greater depth. 
We can rule out attenuation effects: we have assumed a unique attenuation correction. Thus, it is possible that 
we over-corrected the deeper earthquake signals relative to shallower earthquake signals, which would give an 
apparently higher radiated energy. Because radiation efficiency as calculated in Equation 10 is effectively propor-
tional to 1/𝐴𝐴 𝐴𝐴

5

𝑃𝑃
 , uncertainties from this ratio due to our choice of velocity depth profile can explain a portion of 

the depth-dependence. Nevertheless, our conclusions remain unchanged when using the AK135-f velocity model 
(Kennett et al., 1995; Montagner & Kennett, 1996). See Figures 10f and 10h; Figure S10 in Supporting Informa-
tion S1 for comparison.

4.8.  Fracture Energy

Fracture energy is the energy spent to create a fracture surface. We use the definition of the energy budget in 
Kanamori and Rivera (2006) for slip-weakening models of earthquakes to estimate the fracture energy from our 
seismic observables, stress drop, and scaled energy:

𝐺𝐺
′

=
1

2
(Δ𝜎𝜎 − 2𝜎𝜎𝑎𝑎)𝑆𝑆𝑆� (11)

where σa is referred to as apparent stress and S is the average slip of the ruptured area that is calculated in an ellip-
tical or circular model as 𝐴𝐴 𝐴𝐴 = 𝑀𝑀0∕

[

𝜇𝜇𝜇𝜇(0.35𝑉𝑉𝑆𝑆𝜏𝜏)
2
]

 . In this example, we use τ as our time-domain duration esti-
mate. The spectral parameter 0.35 is obtained from Wang and Day (2017) assuming an expanding crack. It should 
be noted that the fracture energy can be underestimated in the case of undershoot, where the fault is weakened to 
a low friction level dynamically and recovers to higher friction when the slip stops (Viesca & Garagash, 2015). 
We show the estimated values in Figures 9g and 9h.

In general, visual inspection Figures  9h–9h suggests that deeper earthquakes exhibit slightly higher fracture 
energy, discussed earlier, with a slightly lower radiation efficiency relative to intermediate-depth earthquakes. 
Overall, both intermediate-depth and deep earthquakes share a similar relation between fracture energy and 
slip.  This further suggests that their energy budget are similar despite the possible and diverse mechanisms 
discussed in Zhan (2020).

Typical scaling between observed fracture energy and average slip is G′ ∼ S 2, which is overall satisfied with our 
observations. By performing linear regression 𝐴𝐴 log

10
(𝐺𝐺

′
) ∼ 𝑎𝑎 log

10
𝑆𝑆 , we obtain the exponent a = 2.12 ± 0.08 

using the results obtained form the denoised data (Figure 9h). A similar scaling relationship is derived from the 
raw data (Figure 9g). This is consistent with the inference from Abercrombie and Rice (2005). For shallower 
earthquakes, Viesca and Garagash (2015) found a change in scaling for larger earthquakes that could be modeled 
using dynamic weakening mechanisms such as flash heating (Rice, 2006) and thermo-pressurization of fluids 
(Marguin & Simpson, 2023; Noda & Lapusta, 2013). In contrast to the inferred behavior of shallower earthquakes 
(Viesca & Garagash, 2015), our results suggest no strong dynamic weakening mechanisms.

The overall low radiation efficiency of moderate- to large-size deep earthquakes implies that the fault weakening 
is likely to be persistent during the slip growth so that fracture energy remains at a high level.
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5.  Discussion on the Properties of Deep Earthquakes
The weak directivity is a distinct feature of deep earthquakes, implying the relatively homogeneous stress states 
in the mantle or more diffusive rupture mechanisms. On average, we find Doppler ratios of 0.1–0.4 for Mw > 7 
deep earthquakes, corresponding to 0.5–2.2 km/s apparent unilateral rupture speed, assuming an average S-wave 
velocity of 4.5–5.5 km/s. This is consistent with the slow rupture speed observed for large, deep earthquakes. 
Beck et al. (1995) derived a slow rupture speed (1–2 km/s, 636 km) for the 1994 Mw8.3 Bolivian earthquake. 
Park and Ishii (2015) derived the average rupture speed for the 2012 Mw7.7 (2.7 km/s, 583 km) and 2013 Mw8.3 
(1.4 km/s, 602 km) earthquakes in the Sea of Okhotsk region. Warren and Shearer  (2006) studied the global 
deep moderate-to-large earthquakes during 1988–2000 and found slow rupture speed in most earthquakes. Prieto 
et  al.  (2017) obtained a best-fit slow unilateral and sub-horizontal rupture directivity (1.3 km/s) of the 2013 
Mw4.8 Wyoming earthquake (75 km). Díaz-Mojica et al. (2014) used an elliptical patch approach to study the 
2011 Mw6.5 Guerrero, Mexico earthquake (62 km) and found a slow rupture (0.5 km/s). Mirwald et al. (2019) 
also found a slow rupture (0.34 km/s) during the 2017 Mw7.1 earthquake (57 km) in the Cocos plate beneath 
central Mexico. In contrast, Zhan, Helmberger, et al. (2014) used the duration after EGF correction and obtained 
a rupture speed above the local VS for the Mw6.7 Sea of Okhotsk earthquake (642 km), implying a very different 
rupture process relative to the nearby 2013 Mw8.3 Okhotsk Earthquake. This may be confirmed by the larger 
variability of Doppler ratios we find for Mw5.0–6.9 earthquakes.

The moderate-magnitude earthquakes (10 16 < M0 < 10 19 Nm) have source dimensions comparable to the width of 
the subduction zone slab core. Within the core, frictional conditions may be more favorable for dynamic rupture, 
given the potentially elevated pore pressure due to mineral phase transformation (dehydration or compaction) or 
pre-existing slab faults. The larger-magnitude earthquakes have a greater spatial extent and, therefore, can further 
propagate into the surrounding mantle, which could have a less heterogeneous structure than the slab and consid-
erably less water content. The distinct environments where these earthquakes reside may lead to scale-dependent 
Doppler ratios. The colder slab core may provide favorable conditions for small but faster rupture growth, while 
the surrounding warm material may be involved with a more dissipative and slower rupture.

Deep earthquakes have shorter source duration and thus higher corner frequencies than shallow earthquakes 
due to increased rigidity with depth (Vallée, 2013). The magnitude-duration scaling M0 ∼ τ 4 that we measured 
from the denoised P waves is consistent with previous studies (Poli & Prieto, 2014). The corner frequency of 
deep earthquake displacement seismograms of direct P waves obtained from fitting Brune's models follows the 
same scaling with seismic moment 𝐴𝐴

(

𝑀𝑀0 ∼ 𝑓𝑓
−4
𝑐𝑐

)

 , which are consistent with the time-domain measurements. The 
difference between this scaling and that found for shallow earthquakes (Allmann & Shearer, 2009) suggests that 
the rupture area and slip scaling are not self-similar.

Given the moment-duration scaling, we infer that stress drop increases with seismic moment. Early studies on 
the topic reported weak stress drop scaling (Frohlich, 2006), while some recent studies based on a larger number 
of stations and wider frequency band have found evident scaling (Poli & Prieto, 2016; Prieto et al., 2013). We 
obtain a similar moment-scaling of stress drop 𝐴𝐴 Δ𝜎𝜎 ∼ 𝑀𝑀

0.21

0
 for Mw5.0+ earthquakes at a 100–700 km depth 

range. The signature of self-similar behaviors is rather complex for shallow earthquakes and is subject to great 
debate. It is either claimed by observations/inference of source duration and moment (Allmann & Shearer, 2009; 
Courboulex et al., 2016), or re-interpreted as non-circular faults Denolle and Shearer  (2016), or not found at 
all (Bindi et  al.,  2023; Trugman & Shearer, 2017). Cocco et  al.  (2016) compared stress drop estimates from 
different tectonic settings and using different methodologies to confirm the large variability up to three orders 
of magnitude (0.1–100 MPa, similar to the range in Figures 9c and 9d) for a broad range of seismic moment 
(−8 < Mw < 9), and reported no evident scaling of stress drop with earthquake size. While we cannot speculate 
on the scaling of stress drop with magnitude outside of our observational range, previous studies have found weak 
to no scaling of stress drop with smaller earthquakes in regional studies (Tian et al., 2022). What mechanism 
would change the  scaling, whether it is geometrical or rheological, remains to be explored.

The radiation efficiency of deep earthquakes mainly ranges between 1% and 10%, much lower than that of shal-
low large events (25% by Kanamori and Brodsky (2004)). The low radiation efficiency and high-stress drop of 
these deep earthquakes could also be explained by substantial shear heating, similar to the interpretation of Prieto 
et al. (2013). We have ignored 3D velocity and attenuation models, which significantly impact the high-frequency 
content of the P-wave displacement, which should be incorporated in future work. We note that recent studies 
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have found much greater radiation efficiency (Turner et al., 2022). Therefore, our global study does not always 
represent the entire breadth of earthquake behavior.

Despite the argument that different mechanisms may enable intermediate-depth earthquakes and deep-focus 
(Zhan, 2020), they show similar characteristics in terms of magnitude scaling with duration, static stress drop, 
and radiated energy. The lack of depth variations in these parameters may also indicate that similar mechanisms 
govern the earthquakes in the two depth ranges. We note that the stress drop-magnitude scaling (power law of 
exponent 0.21) and the low median radiation efficiency (0.05) of both intermediate-depth and deep-focus earth-
quakes are similar to the result of Prieto et al. (2013). This indicates that the source processes of deep earthquakes 
could be dissipative and translate a small portion of static stress drop into high-frequency radiation. Hence, this 
study further extends the possibility of thermal runaway mechanism from the intermediate-depth earthquakes to 
the deep-focus events.

The study based on data from shallow earthquakes (Abercrombie & Rice, 2005) suggests the frictional strength 
decreases more rapidly in the initial stage of rapid slip and then decreases more slowly at larger cumulated slip 
(σf(S) ∝ −S 0.28). Deep earthquakes show a more uniform decay rate of friction over slip distance (σf(S) ∝ −S 1). 
Based on the scaling of fracture energy and average slip, deep earthquakes may not favor the dynamic weakening 
mechanism of thermal pressurization mechanism, Viesca and Garagash (2015) proposed to dominate for shallow 
events (Figures 9g and 9h). Alternative mechanisms may include flash heating and even melting, which require 
persistently high fracture energy for larger earthquakes. On the other hand, thermal pressurization may be greatly 
limited for deep earthquakes because of the depleted water or fluid at the depth range, especially if the earth-
quakes propagate in the mantle. Nonetheless, other mechanisms, such as shear heating, may be invoked to explain 
the large fracture energy and slow rupture propagation.

It appears difficult to invoke single mechanisms proposed for deep earthquakes (phase transformation, dehydra-
tion embrittlement, shear heating) to explain whole event dynamics. Our measurements of source dynamics favor 
the interpretation of dissipative shear heating as a dominant mechanism at the source, though dissipative mecha-
nisms do not favor nucleation. Instead, the dual mechanism proposed by Zhan (2020) is practical and may explain 
the combination of dynamic nucleation and dissipative propagation. Besides, two nucleation mechanisms can 
be invoked to differentiate between intermediate-depth and deep-focused earthquakes. The intermediate-depth 
earthquakes may be initiated by dehydration embrittlement, and the deep-focus earthquake may be triggered by 
transformational faulting. As the rupture grows in size, thermal runaway takes over, leading to a large portion of 
stress drop being dissipated near the source. Due to the diffusive nature of heat transmission, shear heating allows 
for dynamic rupture, even if it's inefficient at radiating waves.

Deep earthquakes generally have relatively simple rupture processes compared to crustal earthquakes because of 
the fewer subevents identified from their source time functions. This feature may favor the fact that deep earth-
quakes tend to start on the faults with preferred orientation (e.g., along the metastable olivine wedge or along 
the pre-existing intra-plate faults) and develop with smooth propagation. This starting phase may be related to a 
relatively faster unilateral rupture speed (Zhan, Helmberger, et al., 2014). As the rupture is growing to a certain 
extent, the smooth propagation with the preferred fault orientation could be replaced with a slower and dissipative 
phase, which probably has a complex fault orientation (e.g., the 1994 Bolivia earthquake interpreted by Zhan, 
Kanamori, et al. (2014)).

Our neural networks can be easily generalized to other seismic waves with different window lengths and sampling 
rates. The fully connected layer between the shallow and deep kernels is adjustable, with higher learning capa-
bility for larger input sizes. Hence, the same architecture can be effectively applied to other seismic phases with 
minor modifications. Therefore, the general framework we developed in this study is of great potential to be 
applied to different types of research. An extension of this work could be extending the analysis for shallow 
earthquakes, which are still offshore and have coverage on island stations that are polluted with microseismic 
noise. The denoised waveform can provide Green's functions with better azimuthal coverages.

Another widely employed research is receiver function studies that rely on the data quality of the three-component 
teleseismic seismograms. With the P wave denoiser, the secondary phases can better stand out from the strong 
noise, so it provides many-fold more data recordings: 135,265 traces of Mw5.0–5.5 deep earthquakes were 
selected based on SNR > 8 after denoising, while only 3,118 of them could have been used with the same SNR 
criterion without denoising. We show the overall improvement for individual deep earthquakes in Figures 5e 
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and 5f. Furthermore, the application of our “DenoTe” to regional seismic networks would greatly benefit the real-
time phase picking for larger-scale earthquake monitoring and enhance the accuracy of both the travel-time-based 
and waveform-based tomography studies.

6.  Conclusion
This study demonstrates that machine learning can be included as data pre-processing to enhance our observation 
capabilities for earthquake source characterization. The demonstration uses deep earthquakes as an example 
because they already have relatively “clean” seismograms. Our ML denoising considerably improved the volume 
of data with a sufficiently good signal-to-noise ratio and an accurate wiggle-to-wiggle reconstruction over a 
broad range of frequencies, especially for smaller earthquakes. We doubled the number of events studied and 
considerably added independent observations (e.g., station waveforms) to each earthquake. We have demon-
strated that broadband signals can be recovered using time-domain ML processing.

Our analysis of deep earthquakes is an update from the Poli and Prieto (2016) analysis, whereby we include more 
events of smaller magnitudes and expand beyond the analysis of scaling, depth dependence, energy budget, and 
earthquake complexity. We confirm the results of other studies (Poli & Prieto, 2016) that have found a strong scal-
ing of stress drop and scaled energy with earthquake magnitude, which suggests weakening mechanisms stronger 
with earthquake size. It should be noted that this work has so far only validated the scaling relationships for deep 
earthquakes with Mw > 5.0. This result does not contrast much with the recent body of research published on 
shallow earthquakes (see references therein).

The lack of directivity effects and low complexity found for intermediate and deep earthquakes suggests that 
these events are rather crack-like and confined ruptures. We generally find that typical stress drops of 1–10 MPa 
and low scaled energy (10 −5 J/Nm) have relatively low directivity, yielding low radiation efficiency and high 
fracture energy. While dynamic mechanisms may be at play for larger earthquakes, the rupture propagation of 
intermediate and deep earthquakes is dissipative.

There remain limitations to this work. Our preliminary test on S wave data was inconclusive because generating 
the data set of “clean” S waves is tedious and because S waves are much more depleted in high frequency than can 
be corrected for by a frequency-constant t* model. There are clearly opportunities to incorporate ML denoising 
in other earthquake studies, such as receiver functions and finite source inversions.

Data Availability Statement
The software package for denoising is developed using PyTorch. It is named “DenoTe” and can be accessed from 
https://github.com/qibinshi/TeleseismicDenoiser and https://zenodo.org/record/7807794 (Shi,  2023). We use 
data from the 1078 networks of the FDSN archive. The digital object identifier (DOI) of all 1078 networks can be 
found in Table S1. The minimally pre-processed seismic data used for training the neural network can be accessed 
at https://dasway.ess.washington.edu/shared/qibins/Psnr25_lp4_2000-2021.hdf5 (Shi & Denolle, 2023), and the 
waveform data and metadata for the deep earthquake analysis can be accessed at https://dasway.ess.washing-
ton.edu/shared/qibins/deepquake_M5_6_data_metadata.zip (Shi & Denolle, 2023). The earthquake catalog for 
selecting the waveform data is downloaded from ISC http://www.isc.ac.uk/. The DOIs of the seismic network 
involved in this study are saved as a ZIP file. The facilities of IRIS Data Services, and specifically the IRIS Data 
Management Center, were used for access to waveforms and metadata (last accessed July 2022).
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