
1

Low-Latency Preprocessing Architecture for
Residue Number System via Flexible Barrett

Reduction for Homomorphic Encryption
Sin-Wei Chiu, Graduate Student Member, IEEE; and Keshab K. Parhi, Fellow, IEEE

Abstract—Data privacy has become a significant concern
due to the rapid development of cloud services, Internet of
Things, edge devices, and other applications. Homomorphic
encryption (HE) addresses the issue by enabling computations to
be performed without the decryption of the encrypted message.
However, the bottleneck of designing homomorphic encryption
hardware is the complexity of computation. To tackle the long
integer arithmetic, the residue number system based on the Chi-
nese remainder theorem is used. In this paper, we propose a novel
modular reduction architecture that computes the mapping of
residual polynomials in parallel with high speed and low latency.
We implement our proposed design in the Xilinx Ultrascale+
FPGA board (VCU118). When the input sizes are 360-bit (1440-
bit), the frequency is 180MHz (168MHz) with 4 pipelining stages.
Also, the area delay product (ADP) of DSP blocks of our design
is reduced by 23 and 31 percent, respectively, for 360 and 1440
bits, compared to prior work.

Index Terms—Homomorphic encryption, Residue number
system, Chinese remainder theorem, Modular reduction, Barrett
reduction, Hardware accelerator

I. INTRODUCTION

Homomorphic encryption (HE) allows operations on
plaintexts in the encrypted domain and preserves the privacy
of user data [1]. Polynomial modular multiplication is an
important building block in all HE schemes. The degree of
polynomials, n, and the dynamic range of the coefficients,
also referred as the ciphertext modulus, q, in FHE schemes
are very large. For example, to achieve at least 80-bit security,
we require n and q to be 4096 and 180 bits, respectively [2].
To efficiently compute the long word-length operations, the
residue number system (RNS) representation is used [2]–[7].
RNS decomposes a long word-length number into multiple
shorter word-length numbers. Although parallelism can reduce
the latency of the operations, it also increases the cost of the
design. Designing an architecture that can exploit parallelism
without significantly increasing the cost is non-trivial.

Traditionally, the computation of modular reduction can
be carried out in several ways. It can be computed using
integer division (finding the quotient), Montgomery reduction
[8], Will and Ko [9], or Barrett reduction [10]. However, the
cost of computing the residue using these methods drastically
increases when the input word-length increases due to the long

This research was supported in parts by the Semiconductor Research
Corporation under contract number 2020-HW-2998, and by the National
Science Foundation under grant number CCF-2243053.

Sin-Wei Chiu and Keshab K. Parhi are with Department of Electrical and
Computer Engineering, University of Minnesota, Minneapolis, MN 55455,
USA, E-mail: {chiu0091, parhi}@umn.edu

integer multiplication or division operations. The approaches
in this paper reduce the area cost of the parallel low-latency
residual polynomials computation unit for a very long input
word-length (i.e., ⌈log2 q⌉ ≥ 360), as compared to prior
works [11], [12]. The contributions of the paper are two-fold.
First, a flexible special prime selection method is proposed
that can significantly increase the number of feasible moduli
for HE. Second, we propose a novel architecture to achieve
high-speed parallel computation with low latency and lower
cost compared to prior designs. The key to the proposed
architecture is the proposed novel flexible Barrett reduction
where the input word-length is not constrained to be less
than or equal to two times the word-length of the ciphertext
modulus q.

This paper is organized as follows. Section II provides the
background including RNS representation, polynomial ring,
and Barrett reduction. Section III introduces the implementa-
tions of the prior works. Section IV presents our novel parallel
architecture of residual polynomial computation unit. Section
V presents the experimental results of our proposed design.

II. BACKGROUND
A. RNS Representation

The RNS Representation is based on the Chinese re-
mainder theorem (CRT). The CRT algorithm can be stated
as follows: If q1, q2, . . . , qt are pairwise coprime, where q =∏t

i=1 qi, the map a mod q 7→ (a mod q1, a mod q2, . . . , a
mod qt) defines a ring isomorphism Z/qZ ∼= Z/q1Z ×
Z/q2Z × · · · × Z/qtZ, that is between the ring of integer
modulo q and the direct product of the ring of integer modulo
qi. In other words, we can perform a sequence of arithmetic
operations independently and in parallel in each Z/qtZ and
then map them back in Z/qZ. This is more efficient than
performing a sequence of arithmetic operations in Z/qZ,
because the word-length in Z/qtZ is significantly smaller than
Z/qZ.

B. Polynomial Ring

Consider the operations over a polynomial ring Rn,q =
Zq[x]/(x

n + 1), There are two major constraints. First, the
coefficients of the polynomial ring have to be modulo q (i.e.,
the coefficients are integers and lie in the range [0, q − 1]).
Second, the degree of the polynomial is less than n, where
n is a power-of-two integer. It is important to note that n, q
should satisfy q mod 2n ≡ 1. We can represent a polynomial
over the ring Rn,q by the equation:



2

aq(x) =
n−1∑
j=0

aj,qx
j (1)

where aj,q is an integer that is in the range [0, q − 1].

C. Barrett Reduction

Barrett reduction is a reduction algorithm introduced by
Barrett. It computes the modular reduction of a by q:

r = a mod q (2)

where r is the remainder. Barrett reduction is designed to
optimize modular reduction by replacing the divisions with
multiplications. We can rewrite Equation (2) as:

a mod q = a− (
am

2k
) · q

= a− ((am)≫ k) · q (3)

where m = ⌊ 2
k

q ⌋. Notice that the division in Equation (3) is
replaced by a multiplication and a right shift. Since m

2k
≤ 1

q ,
the value of the remainder r can end up being too small, and
thus r is only guaranteed to be within [0, 2q) instead of [0, q)
as is generally required. A conditional subtraction can be used
to correct this.

To ensure r is within [0, 2q), a has to be smaller than 2k.
The proof is presented in the Supplementary Information.

The traditional block diagram of Barrett reduction is
shown in Figure 1. The partially reduced value, pr, is the
value before the conditional subtraction.

Fig. 1. Block diagram for a traditional Barrett reduction.

D. Flexible Barrett Reduction

Conventionally, when Barrett reduction is used in modu-
lar multiplier, k is set to be 2·⌈log2 qi⌉ to satisfy the constraint.
However, in our proposed design, k is set to be the same as
the word-length of the input dynamic range qa, i.e., input a
lies in the range [0, qa). This means k can be smaller or larger
than 2 · ⌈log2 qi⌉ to increase flexibility. Figure 2 shows the
block diagram of the proposed flexible Barrett reduction unit.
When k is set to be the same as the word-length of the input
dynamic range qa, the hardware cost of the block is fully
dependent on and proportional to the input dynamic range. It
is easy to see that when qa increases, the cost of the entire
block also increases.

Fig. 2. Block diagram for a flexible Barrett reduction.

III. PRIOR WORKS ON RESIDUAL POLYNOMIAL
COMPUTATION

The goal of the residual polynomial computation unit
is to compute the residual polynomial aqi(x) from the input
polynomial aq(x) by the equation:

aj,qi = aj,q mod qi for j = 0, 1, . . . , n− 1 (4)

In the literature, prior works have addressed dedicated
modular reduction implementations using Barrett reduction
[11], [12]. In [11], a 1228-bit input is reduced using a 30-
bit coprime with two stages of partial reduction and one
Barrett reduction block. The design in [11] utilizes only one
computational unit to compute the modular reduction with
many cycles. However, to achieve low latency, the design can
be implemented in a parallel fashion. The parallel implemen-
tation duplicates the computation units in the first step of the
algorithm. The block diagram of the architecture is presented
in the Supplementary Information. This design decomposes a
long word-length input a into t segments of word-length v.
It requires t − 1 multipliers and one Barrett reduction block
when implemented in parallel. This will not be ideal when the
input word-length is long.

The modular reduction implementation proposed in [12],
[13] performs the operation in parallel, and the design takes
advantage of the special coprime selection scheme, which
enables d blocks of partial reduction. The block diagram of
the architecture is presented in the Supplementary Information.
Although the design implements special coprime selection to
replace large integer multipliers, the word-length increase in-
troduced by the shift-and-add units will need Barrett reduction
blocks to bring the intermediate results back to shorter word-
length to contain the hardware cost. The design requires d−1
multipliers and d Barrett reduction blocks, where d = t/l, and
l is an integer. The main drawback of this design is that the
large number of Barrett reduction blocks require significant
increase in area.

IV. PROPOSED ARCHITECTURE OF THE RESIDUAL
POLYNOMIAL COMPUTATION UNIT

In this section, we first describe the high-level architec-
ture of our proposed design. Next, we introduce our proposed
flexible special coprime selection. This selection scheme en-
ables many hardware-friendly properties that are exploited in
our proposed design. Lastly, we describe the design of the
Barrett reduction block.

A. High-level Architecture

Figure 3 shows the high-level architecture of the residual
polynomial computation unit. The proposed design is based
on Algorithm 1. In line 1, the input coefficient is split into
d v-bit words, where v = ⌈log2 qi⌉. Each word is stored in
the array A with the least significant word stored in the index
position 0. Next in line 4, we first group the t words into
d = t

2 sets, where each set consists of two consecutive words.
We first combine each set into partially reduced words by
multiplying the most significant word in the set by βi and
then summing the two words. Note that based on our flexible
special coprime selection scheme, multiplication by βi can be



3

Fig. 3. High-level Architecture of the residual polynomial computation unit.

replaced with shift-and-add operations. Each partially reduced
word will then multiply with β2j

i mod qi to create a partially
reduced value. The word-length of the partially reduced value
is va = (2 ·v)+⌈log2 βi⌉+⌈log2 d⌉+1. ⌈log2 d⌉ is the height
of the adder tree. Next in line 7, we decompose the partially
reduced result into two segments. The first segment has word-
length ⌈vd⌉ and the second segment has word-length ⌊vd⌋−v,
where vd is defined as va+v

2 . The definition of vd ensures
minimum output word-length after line 7. The most significant
segment is multiplied by 2⌈vd⌉ mod qi and the result is added
with the least significant segment to get a partially reduced
value in R. The size of R will be ⌈vd⌉ + 1, which is the
minimum size possible. This value is further reduced by a
Barrett reduction block to get the final v-bit result mod qi.

Given any q and qi, where qi can be represented as a few
signed power-of-two terms, our proposed design can reduce
any coefficient a mod q by qi with d multipliers and one
Barrett reduction block.

Algorithm 1 Reduction of ⌈log2q⌉-bit coefficient by qi

Input: a mod q, ⌈log2 q⌉ = (t×v), t ≥ 2 and v = ⌈log2 qi⌉
Output: R = a mod qi

1: A← [a0, a1, . . . , at−1]
2: d← ⌈ t2⌉
3: βi ← 2v mod qi
4: R←

∑d−1
j=0 (A[2j] +A[2j + 1] · βi) ·

(
β2j
i mod qi

)
5: va ← (2 · v) + ⌈log2 βi⌉+ ⌈log2 d⌉+ 1
6: vd ← va+v

2

7: R← R [⌈vd⌉ − 1 : 0]+R [vr − 1 : ⌈vd⌉] ·
(
2⌈vd⌉ mod qi

)
8: R← BarrettReduction(R, qi)
9: return R

B. Flexible Special Coprime Selection

Instead of randomly selecting coprimes for the RNS
representation, we can carefully select coprimes with special
properties and exploit them.

In the proposed architecture, there are three constraints
that each coprime has to satisfy. First, each coprime has to be
an NTT-compatible prime, that is, qi−1 has to be divisible by
2n, where n is the degree of the polynomials. Second, each

TABLE I
THE NUMBER OF COPRIMES WITH DIFFERENT PARAMETER SETS

(n, ⌈log2 q⌉) ⌈log2 qi⌉ c max (⌈log2 βi⌉) p # coprimes

(213, 360) 30 60 24 4 9

(213, 360) 30 62 28 4 24

(213, 360) 30 60 24 5 35

(213, 360) 30 62 28 5 120

(214, 720) 30 63 29 4 20

(214, 720) 30 63 29 5 121

(215, 1440) 30 63 28 4 14

(215, 1440) 30 63 28 5 70

TABLE II
TIMING RESULTS

Design (n, ⌈log2 q⌉) ⌈log2 qi⌉ Freq. (MHz) delay (ns) Pipe

Proposed (213, 360) 30 56 17.97 0

Roy [11] (213, 360) 30 53 18.82 0

Tan [12] (213, 360) 30 46 21.78 0

Proposed (213, 360) 30 180 5.57 4

Roy [11] (213, 360) 30 176 5.69 4

Tan [12] (213, 360) 30 135 7.4 4

Proposed (215, 1440) 30 50 19.85 0

Roy [11] (215, 1440) 30 46 21.72 0

Tan [12] (215, 1440) 30 39 25.68 0

Proposed (215, 1440) 30 168 5.95 4

Roy [11] (215, 1440) 30 152 6.59 4

Tan [12] (215, 1440) 30 128 7.81 4

coprime can only have a few signed power-of-two terms [14],
which is defined as:

qi = 2v − βi, βi = 2v1,i ± 2v2,i ± . . .± 2v(p−2),i − 1,

where p is the number of power-of-two terms of a coprime, v
is the word-length of qi, and v1,i > v2,i > . . . > vp−2,i.
Selecting coprimes with a few signed power-of-two terms
reduces the complexity of multiplication by qi as it can be
replaced by a few shift-and-add operations [15].



4

TABLE III
PERFORMANCE AND RESOURCE UTILIZATION RESULTS

Design (n, ⌈log2 q⌉) ⌈log2 qi⌉ Frequency (MHz) LUT/Util./ADP DSP/Util./ADP FF/Util./ADP

Proposed (213, 360) 30 180 1.6k/0.13%/8.85 38/0.56%/0.21 1k/0.04%/5.83

Roy [11] (213, 360) 30 176 1.4k/0.12%/7.90 48/0.7%/0.27 1.3k/0.05%/7.36

Tan [12] (213, 360) 30 135 2.4k/0.2%/17.41 44/0.64%/0.33 1.1k/0.05%/8.12

Proposed (215, 1440) 30 168 5.6k/0.48%/33.42 142/2.08%/0.84 3.6k/0.15%/21.54

Roy [11] (215, 1440) 30 152 4k/0.33%/26.04 186/2.72%/1.23 4.5k/0.19%/29.89

Tan [12] (215, 1440) 30 128 9.7k/0.82%/76.01 187/2.73%/1.46 4k/0.17%/31.36

Third, we want to minimize βi. This is because βi =
2v mod qi, we can replace multiplication by βi with shift-
and-add operations. However, it will introduce an increase in
word-length by ⌈log2 βi⌉ bits. This becomes a major drawback
in the architecture presented in [12]. Therefore, to limit the
word-length increase for each datapath, we need to minimize
the size of βi. The constraint can be set by limiting the input
word-length of the Barrett reduction block (line 8 in Algorithm
1). The main reason for applying the constraint to the input
word-length of the Barrett reduction block is that it is the
most hardware-expensive block in the system. Limiting the
input word-length directly translates to significant saving in
cost. From Figure 3, we set the maximum word-length to be
c ≥ ⌈vd⌉+ 1. We then have the inequality:⌈

(3 · v) + ⌈log2 βi⌉+ ⌈log2 d⌉+ 1

2

⌉
+ 1 ≤ c

Solving this inequality, we have:

⌈log2 βi⌉ ≤ (2 · c)− (3 · v)− ⌈log2 d⌉ − 3 (5)

Equation (5) becomes the constraint on βi. Therefore, given
n, c, p and the size of q and qi, we can find the number
of coprimes available. Based on the three constraints above,
we can select the appropriate moduli set using an exhaustive
search to find the coprime pool.

Fig. 4. Proposed Barrett reduction block diagram.

C. Barrett Reduction

The design of the Barrett reduction block follows the
architecture presented in Section II-D. Also, it utilizes the
hardware-friendly property of our selected coprime [16]. From
Equation 3, it is easy to see that qi only has a few signed
power-of-two terms, and multiplication by qi can be replaced
by a simple shift-and-add unit (SAU). This can reduce the
number of integer multipliers. Hence, the cost of implementing
the Barrett reduction blocks is reduced. Figure 4 shows the
block diagram of the proposed Barrett reduction block. Inside
this block, we have one integer multiplication. It is used to
multiply a precomputed constant m that is determined by qi
and k, where k is equal to ⌈log2 qa⌉ in our flexible Barrett

design. After the integer multiplication, the result is right-
shifted by ⌈log2 qa⌉-bits and then multiplied by qi using shift-
and-add operations. The input will then be subtracted by this
value and a conditional subtraction by qi will ensure that the
output r will be in the range [0, qi).

It is important to point out that based on the proof in the
supplementary information, no matter the size of the input, as
long as it is smaller than 2⌈log2 qa⌉, the output r is guaranteed
to be smaller than qi. However, increasing the size of the input
will increase ⌈log2 qa⌉, which will increase the size of m.
Hence, it will also increase the cost of the integer multiplier
inside the Barrett reduction block.

V. EXPERIMENTAL RESULTS

A. Flexible Coprime Selection Reults

Based on the flexible coprime selection scheme discussed
in Section IV-B, we can obtain the coprime selection pool via
an exhaustive search. Table I shows the number of coprimes
available with different parameter sets. It is generated by a
Python program based on the previously discussed constraints.
When (n, ⌈log2 q⌉) = (213, 360), and the number of power-of-
two terms is 4, c = 60 only gives 9 available coprimes. Since
this number is smaller than what is required (360/30 = 12),
we can expand the selection pool by increasing c or p. Increas-
ing c by 2 gives us 24 available coprimes, and increasing p by
1 gives us 35 available coprimes. To find the optimal parameter
set, start with a strict parameter set and loosen them one by one
until the required number of coprimes are available. The same
procedure can be applied when (n, ⌈log2 q⌉) are (214, 720)
and (215, 1440). The results are also shown in Table I.
B. Timing Results

We describe our design in SystemVerilog HDL and
implemented our proposed design using the Xilinx Ultrascale+
FPGA board (VCU118). We consider two different parameter
sets. The first parameter set is (n, ⌈log2 q⌉) = (213, 360)
and qi = 1073692673, and the second parameter set is
(n, ⌈log2 q⌉) = (215, 1440) and qi = 1073479681. We imple-
ment our design with and without additional pipelining [15].
The cycle count of our proposed design is equivalent to the
number of pipelining stages. The placement of the pipelining
cutsets is shown in red dashed lines. For the first parameter set,
without pipelining, the frequency is 56MHz. After inserting 4
pipelining cutsets, the frequency increases to 180MHz. For
the second parameter set, without pipelining, the frequency
is 50MHz. After inserting 4 pipelining cutsets, the frequency
increases to 168MHz. The full timing results are shown in
Table II. Also, the pipeline efficiency is summarized in Table
1 of the Supplementary Information.



5

C. Performance and Resource Utilization Results

Table III shows the performance and resource utilization
results per coefficient when implemented on Xilinx Ultra-
scale+ FPGA board (VCU118). The results shown in the
table all have 4 pipelining cutsets. The area delay product
(ADP) of each component is calculated by the product of
LUTs/DSPs/FFs and delay (µs).
D. Comparison with Related Works

We first compare our work with [11]. In order to provide
a better comparison, we implement the design in a parallel
form, i.e., we duplicate the computation units in the first
step of the algorithm. The design requires t − 1 multipliers
when implemented in parallel. Our proposed design replaces
half of the multipliers in the first stage by shift-and-add
units. Additionally, our design does not require more Barrett
reduction blocks. In Table III, when ⌈log2 q⌉ is 360, although
the ADP of LUT in our design is increased by 12%, the ADP
of DSP is reduced by 23% per coefficient. When ⌈log2 q⌉ is
1440, the ADP of LUT in our design is increased by 28%, and
the ADP of DSP is reduced by 31% per coefficient. Our design
has higher LUT utilization because the shift-and-add units in
our design introduce a word-length increase. Nevertheless, the
shift-and-add units reduce the number of multipliers, which are
usually implemented using DSP. Our proposed design aims to
minimize the usage of DSP due to the fact that DSP has a
higher cost and is relatively scarce in FPGA boards compared
to LUT. Our design also has a higher frequency; this is because
the height of the adder tree is shorter. Hence, the critical path
is reduced.

Next, we compare our design with [12]. This design
implements d Barrett reduction blocks to deal with the word-
length increase introduced by the shift-and-add units. Our
proposed design addresses this issue by implementing fewer
shift-and-add units on each data path. As a result, our design
only requires one Barrett reduction block. Since Our proposed
design incorporates both a special coprime selection scheme
and low Barrett reduction block utilization, it has significant
improvements in terms of timing and resource utilization.
When ⌈log2 q⌉ is 360, the ADP of LUT/DSP is reduced by
49%/35% per coefficient, and when ⌈log2 q⌉ is 1440, the ADP
of LUT/DSP is reduced by 56%/42% per coefficient. The
design also has a lower frequency compared to ours; This is
due to the fact that the input word-length of the final Barrett
reduction is long.

VI. CONCLUSION

This paper presents a novel design for the preprocessing
architecture for the residue number system. Our work utilizes
a special coprime selection scheme and a highly parallel
architecture to achieve low latency and cost. It is important to
point out that the special coprime selection scheme proposed in
this paper can be further extended to the entire homomorphic
encryption scheme as coprimes with special properties can
reduce the cost of a hardware accelerator for homomorphic
encryption [12], [17]–[20]. Future research should be directed
toward exploring the impact of different modular reduction
methods on the performance of different homomorphic en-
cryption schemes.

REFERENCES

[1] C. Gentry, A fully homomorphic encryption scheme. Stanford university,
2009.

[2] F. Turan, S. S. Roy, and I. Verbauwhede, “HEAWS: An accelerator for
homomorphic encryption on the amazon aws fpga,” IEEE Transactions
on Computers, vol. 69, no. 8, pp. 1185–1196, 2020.

[3] S. Kim, K. Lee, W. Cho, J. H. Cheon, and R. A. Rutenbar, “Fpga-
based accelerators of fully pipelined modular multipliers for homomor-
phic encryption,” in 2019 International Conference on ReConFigurable
Computing and FPGAs (ReConFig). IEEE, 2019, pp. 1–8.

[4] J. Cathébras, A. Carbon, P. Milder, R. Sirdey, and N. Ventroux, “Data
flow oriented hardware design of rns-based polynomial multiplication
for she acceleration,” IACR Transactions on Cryptographic Hardware
and Embedded Systems, pp. 69–88, 2018.

[5] Y. Su, B.-L. Yang, C. Yang, and S.-Y. Zhao, “Remca: A reconfigurable
multi-core architecture for full rns variant of bfv homomorphic evalu-
ation,” IEEE Transactions on Circuits and Systems I: Regular Papers,
vol. 69, no. 7, pp. 2857–2870, 2022.

[6] S. Halevi, Y. Polyakov, and V. Shoup, “An improved rns variant of the
bfv homomorphic encryption scheme,” in Topics in Cryptology–CT-RSA
2019: The Cryptographers’ Track at the RSA Conference 2019, San
Francisco, CA, USA, March 4–8, 2019, Proceedings. Springer, 2019,
pp. 83–105.

[7] J. H. Cheon, K. Han, A. Kim, M. Kim, and Y. Song, “A full rns
variant of approximate homomorphic encryption,” in Selected Areas in
Cryptography–SAC 2018: 25th International Conference, Calgary, AB,
Canada, August 15–17, 2018, Revised Selected Papers 25. Springer,
2019, pp. 347–368.

[8] P. L. Montgomery, “Modular multiplication without trial division,”
Mathematics of computation, vol. 44, no. 170, pp. 519–521, 1985.

[9] M. A. Will and R. K. Ko, “Computing mod without mod,” Cryptology
ePrint Archive, 2014.

[10] P. Barrett, “Implementing the Rivest Shamir and Adleman public key
encryption algorithm on a standard digital signal processor,” in Con-
ference on the Theory and Application of Cryptographic Techniques.
Springer, 1986, pp. 311–323.

[11] S. S. Roy, K. Järvinen, J. Vliegen, F. Vercauteren, and I. Verbauwhede,
“HEPCloud: An FPGA-based multicore processor for FV somewhat
homomorphic function evaluation,” IEEE Transactions on Computers,
vol. 67, no. 11, pp. 1637–1650, 2018.

[12] W. Tan, S.-W. Chiu, A. Wang, Y. Lao, and K. K. Parhi, “PaReNTT:
Low-latency parallel residue number system and NTT-based long poly-
nomial modular multiplication for homomorphic encryption,” IEEE
Transactions on Information Forensics and Security, vol. 19, 2024, doi:
10.1109/TIFS.2023.3338553.

[13] K. K. Parhi, W. Tan, S.-W. Chiu, A. Wang, and Y. Lao, “Parallel
polynomial modular multiplication using NTT and inverse NTT,” U.S.
Patent Application 18/500,670, Nov. 2, 2023.

[14] W. Tan, B. M. Case, A. Wang, S. Gao, and Y. Lao, “High-speed
modular multiplier for lattice-based cryptosystems,” IEEE Transactions
on Circuits and Systems II: Express Briefs, vol. 68, no. 8, pp. 2927–
2931, 2021.

[15] K. K. Parhi, VLSI digital signal processing systems: design and imple-
mentation. John Wiley & Sons, 2007.

[16] W. Tan, A. Wang, Y. Lao, X. Zhang, and K. K. Parhi, “Pipelined high-
throughput NTT architecture for lattice-based cryptography,” in 2021
Asian Hardware Oriented Security and Trust Symposium (AsianHOST).
IEEE, 2021, pp. 1–4.

[17] A. C. Mert, E. Öztürk, and E. Savaş, “Design and implementation of
encryption/decryption architectures for BFV homomorphic encryption
scheme,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 28, no. 2, pp. 353–362, 2019.

[18] A. C. Mert, S. Kwon, Y. Shin, D. Yoo, Y. Lee, S. S. Roy et al., “Medha:
Microcoded hardware accelerator for computing on encrypted data,”
arXiv preprint arXiv:2210.05476, 2022.

[19] N. Samardzic, A. Feldmann, A. Krastev, S. Devadas, R. Dreslinski,
C. Peikert, and D. Sanchez, “F1: A fast and programmable acceler-
ator for fully homomorphic encryption,” in MICRO-54: 54th Annual
IEEE/ACM International Symposium on Microarchitecture, 2021, pp.
238–252.

[20] R. Geelen, M. Van Beirendonck, H. V. Pereira, B. Huffman, T. McAuley,
B. Selfridge, D. Wagner, G. Dimou, I. Verbauwhede, F. Vercauteren
et al., “Basalisc: Programmable asynchronous hardware accelerator for
BGV fully homomorphic encryption,” Cryptology ePrint Archive, 2022.



1

Supplementary Information: Low-Latency
Preprocessing Architecture for Residue Number

System via Flexible Barrett Reduction for
Homomorphic Encryption

Sin-Wei Chiu, Graduate Student Member, IEEE; and Keshab K. Parhi, Fellow, IEEE

I. BARRETT REDUCTION

To ensure the output of the Barrett reduction, r, is within
[0, 2q), the input a has to be smaller than 2k [1]. If a ≤ 2k,
then q > a

2k
· (2k mod q). We have:

q >
a · (2k mod q)

2k

q > a−
(
a− a · (2k mod q)

2k

)
q > a− aq

2k
·
(
2k − (2k mod q)

q

)
q > a− aq

2k
· ⌊2

k

q
⌋

since q · am mod 2k

2k
< q regardless of a, and m = ⌊ 2k

q ⌋:

2q > a− aqm

2k
+ q · am mod 2k

2k

2q > a−
(
am− (am mod 2k)

2k

)
· q

2q > a− ⌊am
2k

⌋ · q

2q > r

we can rewrite the modular reductions as:

a mod q =

{
r if r < q

r − q otherwise

In conclusion, for any given k, if a < 2k, only one condi-
tional subtraction is required at the end of Barrett reduction.

II. PRIOR WORKS

In this section of the supplementary information, we give
the block diagrams presented by the prior works discussed in
the paper. Figure 1 represents the block diagram of the parallel
implementation architecture presented in [2].

Figure 2 represents the block diagram of the architecture
presented in [3].

This research was supported in part by the Semiconductor Research
Corporation under contract number 2020-HW-2998.

Sin-Wei Chiu and Keshab K. Parhi are with Department of Electrical and
Computer Engineering, University of Minnesota, Minneapolis, MN 55455,
USA, E-mail: {chiu0091, wtan, parhi}@umn.edu

Fig. 1. Block diagram of the parallel implementation architecture presented
in [2].

Fig. 2. Block diagram of the architecture presented in [3].

III. PIPELINE EFFICIENCY

Table I shows the pipeline efficiency of the results presented
in this paper. The pipeline efficiency is calculated by the delay
of the design before pipelining (delay b.p.) divided by the
total delay of the design after pipelining (delay a.p.), which is
equivalent to delay after pipelining times the pipelining stages.

TABLE I
PIPELINE EFFICIENCY

Design (n, ⌈log2 q⌉) ⌈log2 qi⌉ Pipe
delay delay eff.

b.p. (ns) a.p. (ns) (%)

Proposed (213, 360) 30 4 17.97 22.78 81

Roy [2] (213, 360) 30 4 18.82 22.76 83

Tan [3] (213, 360) 30 4 21.78 29.6 74

Proposed (215, 1440) 30 4 19.85 23.8 83

Roy [2] (215, 1440) 30 4 21.72 26.36 82

Tan [3] (215, 1440) 30 4 25.68 31.24 82



2

REFERENCES

[1] P. Barrett, “Implementing the Rivest Shamir and Adleman public key en-
cryption algorithm on a standard digital signal processor,” in Conference
on the Theory and Application of Cryptographic Techniques. Springer,
1986, pp. 311–323.

[2] S. S. Roy, K. Järvinen, J. Vliegen, F. Vercauteren, and I. Verbauwhede,
“HEPCloud: An FPGA-based multicore processor for FV somewhat
homomorphic function evaluation,” IEEE Transactions on Computers,
vol. 67, no. 11, pp. 1637–1650, 2018.

[3] W. Tan, S.-W. Chiu, A. Wang, Y. Lao, and K. K. Parhi, “PaReNTT: Low-
latency parallel residue number system and NTT-based long polynomial
modular multiplication for homomorphic encryption,” IEEE Transactions
on Information Forensics and Security, vol. 19, 2024, doi: 10.1109/TIFS.
2023.3338553.


	TCAS_2_2023_Second_Revision_Clean-2
	TCSII3344604_Supplementary

