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ABSTRACT 

Significant negative impacts are observed in productivity, economy, and social wellbeing because of the 

reduced human activity due to extreme events. Community resilience is an important and widely used 

concept to understand the impacts of an extreme event to population activity. Resilience is generally defined 

as the ability of a system to manage shocks and return to a steady state in response to an extreme event. In 

this study, aggregate location data from Facebook in response to Hurricane Ida are analyzed. Using changes 

in the number of Facebook users before, during, and after the disaster, community resilience is quantified 

as a function of the magnitude of impact and the time to recover from the extreme situation. Based on the 

resilience function, the transient loss of resilience in population activity is measured for the affected 

communities in Louisiana. The loss in resilience of the affected communities are explained by three types 

of factors, including disruption in physical infrastructures, disaster conditions due to hurricanes, and a 

community’s socio-economic characteristics. A greater loss in community resilience is associated with 

factors such as disruptions in power and transportation services and disaster conditions. Socioeconomic 

disparities in loss of resilience are found with respect to a community’s median income. Understanding 

community resilience using decreased population activity levels due to a disaster and the factors associated 

with losses in resilience will enable us improve hazard preparedness, enhance disaster management 

practices, and create better recovery policies towards strengthening infrastructure and community 

resilience. 
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1. INTRODUCTION 

Many countries in the world are now facing major disasters such as wildfire, tornado, hurricane, 

tropical storm, and flooding. In the USA, total cost of the damages due to weather and climate disasters 

exceeded $2.295 trillion since 1980 (1). From 2000 to 2021, there are a total of 28 major hurricanes in the 

USA (2) and the induced damages have significantly increased due to major landfalls in recent years (3). 

For instance, Hurricane Irma caused a damage of about $50 billion in Florida (4). Damages by such extreme 

events cause a change in regular human activities. Compared to regular periods, human activities in disaster 

periods go through a significant amount of perturbation. People are less likely to work or move the same 

way in disaster situations as they do in normal conditions. Since a decrease in human activity is an indication 

of drop in business, recreation, and health services (5) (Fig. 1), understanding the changes in human 

activities is a key factor to analyze the hardships to the daily life of disaster affected communities.  

In general, resilience indicates the ability of a system to return to its normal state or situation after 

a disruption due to an extreme event (6, 7). At the onset of a hurricane, human activities start to decrease in 

the affected area, reach maximum drop after a certain time, and then start to recover. Since human activities 

are not at usual level, the amount of decrease in activities compared to regular periods can be termed as the 

loss of resilience for the disaster affected community. To quantify community resilience in human activity, 

different types of location data (Twitter and mobile phone location data) have been used previously (7, 8). 

Technological advancements provide researchers the access to high-fidelity location data. Such high-

resolution location data including taxi data (9, 10), GPS data (11, 12), cell phone call recordings (13), Wi-

Fi (14), and mobile phone datasets (15, 16) were used previously to understand human mobility and activity 

following an extreme event. However, these datasets are not always available; they are often proprietary, 

and sometimes confined to some specific point of interests (POIs) only (e.g., shopping mall, restaurants, 

etc.). To effectively quantify community resilience, data must be easily accessible and usable (17). These 

data unavailability issues can be avoided if location data from a widely used service are made accessible. 

Some studies have utilized post-disaster survey data to understand population activity due to natural 

disasters (18–23). However, such survey data are not reliable because they cannot capture the dynamic 

patterns of recovery and respondents may not remember everything. So, it is challenging to collect 

longitudinal data from disaster-affected regions through post-disaster surveys (15, 24).  

To this end, Facebook Data for Good (now ‘Data for Good at Meta’) platform is sharing aggregate 

data on where people are located before, during, and after a crisis event following a crisis event to help 

humanitarian organizations (25). Data from ‘Facebook Data for Good’ platform are free and easily 

available. This platform shares the counts of Facebook users who enable location services on their mobile 

device (25). Whenever there is a disaster, such data of Facebook users are globally available from the 
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affected regions. Facebook population data is a great source to identify crisis events over a certain time 

window and investigate the impacts of these events to population activity. Worldwide, 2.9 billion monthly 

active Facebook users are reported in 2022. About 240 million users were found in the USA in 2021 (26). 

According to Pew Research Center’s national survey (2019), Facebook usage rates are high in the USA 

(27). For example, 69% of U.S. adults use Facebook as a social media platform (27), indicating the 

applicability and reliability of Facebook data in research. 

This study investigates community resilience in population activity against a hurricane utilizing 

Facebook data before, during and after Hurricane Ida. We define community resilience as the ability of an 

affected community to return to its regular activity (in terms of social activity). So, the loss of resilience is 

equivalent to the amount of disruption in population activity. A resilient community can withstand an 

extreme situation while a non-resilient or vulnerable community undergoes a significant and prolonged 

disruption. Therefore, a resilient community loses a small amount of resilience and a vulnerable community 

on the other hand loses a significant amount of resilience due to disasters. In general, resilience indicates a 

community's long-term property in reaction to all potential crisis events. Resilience loss is referred in this 

paper as the “transient loss of resilience” because it is determined in reaction to a single disaster (7).  

This paper is a first step towards developing methodologies to determine the loss in community 

resilience from Facebook data with the following specific contributions: 

1. This study demonstrates the use of a large-scale macroscopic location dataset collected from 

Facebook to quantify community resilience. While data from this source have been used in the field of 

ubiquitous computing and research on migration and evacuation, we add a new dimension to this type of 

data by quantifying resilience for an affected community due to an extreme event such as a hurricane. 

2. It further develops a statistical model to investigate the association between multiple types of 

infrastructure disruptions (transportation and electricity services) and the transient loss of resilience in 

population activity due to hurricanes, while accounting for hazard characteristics. While previous studies 

investigated disparities in community resilience over varying socioeconomic and demographic attributes, 

we add a new perspective by studying the impacts of multiple types of infrastructure disruptions and disaster 

conditions on community resilience. 

When a disaster occurs, the socio-infrastructure systems of a community might be significantly 

disrupted such as disruptions in electricity services, transportation networks’ functionality, business 

activities, delayed and inequal assistances from Govt. and non-Govt. organizations. Such disruptions 

preclude population activity from coming back to normal state and prevent communities from being 

resilient to disasters (Fig. 2). It is important to investigate which factors are associated with the transient 

loss of resilience of an affected community. Fig. 2 shows a conceptual framework of the factors that are 
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likely to be associated with a community’s loss of resilience. This study assesses the combined effects of 

physical infrastructure damage, disaster condition, and socio-economic characteristics on loss of resilience 

at county-subdivision level (see Fig. 2). Understanding the drop in population activity levels due to a 

disaster, its gradual recovery processes, and the factors associated to such processes will allow us to improve 

hazard preparedness, enhance disaster management practices, reduce economic losses, and create better 

recovery policies. The findings of this study provide insight into effective identification of less resilient 

communities to hurricanes from large-scale, real-time, free, and easily accessible Facebook data, as well as 

the correlates of transient loss of community resilience. This study shows how disaster condition and 

disruption in multiple physical infrastructures are associated with the transient loss of community resilience 

and highlights that disparities in recovery patterns are associated with socioeconomic attributes. 

 

2. LITERATURE REVIEW 

 Previous research analyzed location-based data to understand recovery patterns and quantify the 

losses to the lifestyle of an affected community due to disasters. Analyzing large-scale location-based 

datasets (cell phone call recordings and social media posts), studies found that recovery patterns are not 

random, they follow some specific patterns  (10, 11, 16, 28, 29). Different types of high-resolution location 

datasets were used previously to understand human mobility and activity following an extreme event (9–

16). We can now measure the recovery trajectories using big data at previously unheard-of high frequency, 

granularity, and scale. Such big data enables us to further quantify the fundamental resilience features of 

communities utilizing data driven complex systems modeling (30). For a more effective, inclusive, and 

responsive disaster response and recovery; mobile phone location data holds enormous potential (31). 

Through the use of mobile phones, it is now possible to collect spatio-temporally detailed observations of 

individual mobility throughout a vast region (32, 33) and it was discovered that human trajectories exhibit 

a high degree of temporal and spatial regularity. Guan et al. (34) developed methods to track changes in 

social interaction using Twitter data and in two transportation networks (subway and taxi) using subway 

ridership and taxi data on daily basis due to a major disaster. Juhasz et al. (35) investigated the effect of 

Hurricane Irma on visitation numbers in Florida considering six different point of interest (POI) provided 

by SafeGraph platform. They identified factors associated with increased or decreased distance between 

home and a specific POI category. Sudo et al. (12) proposed a particle filter method to predict human 

mobility several hours ahead of an event using real-time location data. Yabe et al. (16) focused on 

population recovery patterns during post-disaster periods, by observing human mobility trajectories of 

mobile phone users. They explained the heterogeneity in displacement rates and the speed of recovery 

across communities at local government units (LGU) level (LGUs correspond to counties in the USA).  
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Overall, previous studies focused on recovery trajectories, human mobility and activity patterns, 

displacement rate/systemic impact (e.g., percentage of population impacted by a disaster) and recovery time 

of the affected community from different types of location datasets. Despite such progress, the current body 

of literature needs a general term for understanding population displacement rate and recovery patterns after 

disasters with easily accessible, free, and representative longitudinal data. For example, displacement rate 

or recovery speed separately may not reveal the extent of disruptions to the activities of a community by a 

disaster since despite having small rate of displacement, it may take longer time for them to recover or vice-

versa. To better understand the impacts of a disaster to an affected community, we need to consider 

‘resilience’ which involves both systemic impact and duration of impacts (7, 8, 15, 36, 37). In general, 

resilience indicates the ability of a system to return to its normal state after a disruption (6, 7). For 

community resilience, it is usually defined as the ability of a disaster affected community to come back to 

the normal life. Hong et al. (8) and Roy et al. (7) quantified community resilience in population activity and 

mobility using geo-located mobile device and social media data, respectively. However, these studies are 

limited to only quantifying community resilience. They did not investigate the factors associated with the 

loss of resilience of a community and how recovery patterns vary across affected communities despite 

facing similar levels of shocks.  

 Several studies investigated the disparities in disaster response and recovery patterns associated 

with varying socioeconomic, demographic, and geophysical attributes (8, 38, 39). However, few studies 

focused on the effects of multiple infrastructure disruptions and disaster conditions on community resilience 

in population activity. Yabe et al. (16) considered the effects of median income, population size, 

connectedness to cities, and durations of power outage on recovery speed and displacement rates after 

hurricanes. Sadri et al. (40) focused on the effects of physical infrastructure damage, social capital, 

household characteristics, and recovery assistance on recovery time of a household due to tornados using 

traditional survey data in southern Indiana. The importance of transportation networks’ recovery and 

disaster conditions of the regions were understudied in the current literature, despite they have significant 

implications on policymaking for disaster affected communities. Podesta et al. (15) showed the relationship 

between inundation with hazard impact and the restoration time for community to get back to their regular 

activity in Houston, Texas due to Hurricane Harvey. Again, these studies focused either on recovery time 

or percentage of population impacted due to disaster instead of considering a general single term (e.g., the 

loss in community resilience). Moreover, the impact of major infrastructure systems (e.g., transportation 

network) and the severity of hazard (e.g., wind speed) on community resilience were not investigated in 

these studies. After an extreme event, infrastructure systems are critical to recover to maintain the well-

being of a community (41). As such, how infrastructure disruptions are associated with community 
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resilience needs to be understood to enhance recovery policies. For instance, Yabe et al. (42) found that 

expanded centralized infrastructure systems of cities can enhance the recovery efficiency of critical services 

from the study on Hurricane Maria. Resilience increases when facilities are distributed more fairly (43), 

and soft and local policy toolkits are adopted (44). 

Besides understanding recovery trajectories after disasters, location datasets were used to study 

migration, evacuation and disease spreading. Mobile phone datasets were used for inferring migration 

patterns (45–47), and disease spread (48–50). Similarly, Facebook data was used to study migration (51) 

and evacuation (52). Acosta et al. (51) estimated population changes due to migration over the course of a 

year after Hurricane Maria in Puerto Rico using Facebook data and found a 17% decrease in population in 

2017. Fraser (52) used trajectories of Facebook users’ movement to analyze evacuation pattern at county 

subdivision level due to Hurricane Dorian in Florida. He found that linking social capital and soft 

community-focused preparation strategies increased evacuation across cities. By comparing evacuation 

patterns from 10 different hazards in the US and Japan from 2019 to 2020, Fraser (53) showed that some 

disasters have more similar evacuation patterns than others. After analyzing mobile phone users' positions 

from four major earthquakes, Yabe et al. (54) discovered that an individual's evacuation likelihood is 

strongly associated with the seismic intensity they experience.  

Previous literature suggests several challenges in quantifying community resilience. First, it is 

challenging to collect longitudinal data from disaster-affected regions through post-disaster surveys. 

Although location data can be used as an alternative to surveys, most of the location datasets are proprietary 

(e.g., mobile phone data) or have small sample sizes (e.g., social media posts). To effectively quantify 

community resilience, data must be easily accessible and usable (17) by decision makers and emergency 

officials. These data-related challenges limit a wider adoption of previous approaches quantifying 

resilience.  Second, previous studies mainly focused on resilience quantification without answering why 

some communities were less resilient compared to others. Some studies focused on socio-economic 

inequality in hurricane impact analysis. Besides socio-economic perspectives, other factors such as 

hurricane characteristics and infrastructure disruptions can affect population activity. For example, the 

importance of transportation networks in the recovery from a disaster were understudied in the literature. 

Third, previous studies considered either recovery time or maximum drop in population activity as a 

dimension of interest in the developed statistical models. However, measuring the loss of resilience gives 

more information of hurricane impact since it considers both recovery time and maximum drop (7, 8, 15, 

36, 37). More specifically, the following research questions are yet to be answered: 
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RQ 1. How to quantify the loss of community resilience from an easily accessible, free, and 

representative longitudinal dataset? 

RQ 2. How can the heterogeneity in loss of community resilience be explained using different 

types of infrastructure disruptions, disaster condition while accounting for socioeconomic attributes? 

 

To answer these questions, this study shows how aggregate location data from Facebook can be 

used to measure and understand community resilience after a disaster. We apply the concept of resilience 

for understanding population activity under Hurricane Ida at a county-subdivision level. This study 

develops a statistical model to explain the heterogeneity in loss of community resilience. Since this study 

analyzes the data at a finer geographical level (in Louisiana 64 parishes are divided into 579 county 

subdivisions), the findings ensure better understanding of community resilience and the association between 

loss of community resilience and physical infrastructure disruptions, disaster condition and socio-economic 

aspects. The findings from this study can aid policy makers and emergency officers to identify and 

strengthen less resilient communities to hurricanes and thus to support their disaster preparedness activities. 

 

3. DATA DESCRIPTION 

3.1 Facebook Population Data 
For this study, Facebook population data was used at an administrative region level collected from 

Facebook’s Data for Good platform (dataforgood.facebook.com/dfg/about) (currently known as Data for 

Good at Meta). Facebook Population data shares the aggregate number of Facebook mobile app users who 

enable location services in their mobile devices (25). It is to be noted that this dataset does not depend on 

Facebook usage by the users. That is, even if people do not use Facebook after coming back to the original 

home location after the hurricane, as they will be distressed and burdened with all kinds of recovery 

activities, Facebook can still record users’ location. This dataset provides the average number of users 

present in a region during the baseline period (90 days before the day the data was generated), the number 

of users during a crisis event, and the difference between these two quantities. Additionally, a z score is 

provided to highlight the areas with the most significant differences between regular and crisis periods. The 

z score is calculated by [(users during crisis – mean baseline users)/ variance of baseline users] with values 

ranging between -4 and 4.  

For our considered time window (from 25th August 2021 to 30th September 2021), data was 

collected at administrative region level 4 which is equivalent to county-subdivisions. This platform provides 

data at 8-hour intervals (00:00 UTC, 08:00 UTC and 16:00 UTC) (25). We considered only 16:00 UTC to 

00:00 UTC; 16:00 UTC indicates 11 a.m. local time in Louisiana. The period from 11 a.m. to 7 p.m. local 

time corresponds to the peak activity hours for many people. This includes work hours, lunch breaks, and 

https://dataforgood.facebook.com/dfg/about
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post-work leisure time. Analyzing data during this period can provide insights on how the hurricane 

impacted population activity in one the most active periods of the day. 

Facebook population data provides only the names of the county-subdivisions (if administrative 

region level is 4) without the names of the counties associated with each county-subdivision. For Louisiana, 

it is not possible to identify a unique county-subdivision because several county subdivisions under 

different parishes (equivalent to a county in other states) have the same names. For example, East Baton 

Rouge, Acadia, Jefferson all these counties have county-subdivision named District 1. To identify the 

county that a county-subdivision belongs to, Facebook user movement data at an administrative region level 

4 was collected from the same platform. This dataset has the latitude and longitude of the center of the 

boundary polygon shape (e.g., county subdivisions) which is not available in the Facebook population 

datasets. Using the censusgeocode package in Python, the corresponding county of a county-subdivision 

was determined from the latitude and longitude of the center of a county-subdivision. Then, the county 

names were merged with the Facebook population datasets based on polygon ID and obtained the unique 

county subdivisions. A polygon ID is a unique identifier for a county subdivision provided in these datasets 

(since the polygon ID is same for a county subdivision in both datasets).  

The collected dataset for Hurricane Ida had data for 442 county subdivisions from 73 different 

counties across Alabama, Mississippi, and Louisiana states. This study focused only on Louisiana state 

because decreased population activity was observed mostly in Louisiana. People might have evacuated to 

Alabama and Mississippi and increased activity was observed. Since this study focused on decreased 

activity, which causes loss of community resilience; data from Alabama and Mississippi was not 

considered. The final dataset included observations for 327 county subdivisions from 39 parishes in 

Louisiana where a parish is equivalent to a county of other states in the USA. 

Representativeness of Facebook population data 

In this study, Facebook users were used as a sample of the population. This requires validating 

whether the Facebook data represents the actual population. Pew Research Center’s national survey in 2019 

reported high Facebook usage rates in the USA. For example, 69% of U.S. adults use Facebook as a 

platform or messenger app and 74% of the Facebook users visit it once a day. Facebook usage is also high 

among men (63%) and women (75%), among White, Black, and Hispanic population (each 69–70%) (27). 

To further validate this, the correlations between the number of Facebook users and population 

were calculated; a similar approach was adopted for macroscopic/aggregate location data in previous study 

(16). Pearson’s correlations (Fig. 3) between the number of Facebook users and population for 39 parishes 

and for 327 county (parish) subdivisions of Louisiana were found as 0.98 and 0.96, respectively.  Fig. 3 

also indicates that the number of Facebook users is linearly proportional to the population both at county 
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subdivision level and parish level. As such, Facebook users can be used as a sample of total population in 

this study. Facebook population dataset was found to have an average penetration rate of 7.5% to actual 

population in Louisiana. 

3.2 Physical Infrastructure Data 

This study considered electricity services, transportation network, housing damage and age from 

physical infrastructure disruption of Fig.2. 

Disruption on roads 

Road disruptions data was collected from Regional Integrated Transportation Information System 

(RITIS) and included in hours for each county subdivision within analysis period (from 25th August to 30th 

September 2021). RITIS provides event data from three different agencies with each agency having their 

own definitions of categorizing different events. This study mainly considered weather hazard, weather 

closures, road closed, closures and obstruction agency-specific event types. For a disruptive event on roads, 

the dataset had only the latitude and longitude information, which were used to identify the corresponding 

county subdivision of the event. 

Power service restoration time 

To investigate how disruptions in power services are impacting community resilience, this study 

included restoration time from power outage of the parishes. Power outage data was collected from Bluefire 

Studios LLC. for Hurricane Ida. This dataset reported the total number of electricity customers in a parish 

of Louisiana and the number of customers having power outages during Hurricane Ida in 1-hour intervals 

from 20th August to 30th September 2021. We used the duration between the time when 10% of customers 

or more of a particular county first lost their electricity services and the time when 10% of customers or 

less were yet to restore their power services (Fig. 4). It was observed that the counties where less than 10% 

of customers lost power services, did not take long time to get their electricity services back. Due to data 

unavailability, it was assumed that restoration time of power outages for all the county subdivisions under 

a parish is same. On average, it took same time for all the county subdivisions under a parish to restore the 

power services. Previous studies found significant Moran’s I value (55), Lagrange Multiplier (LM) and the 

Robust Lagrange Multiplier (RLM) test statistics (56) for percentage of customers without power and 

restoration time, respectively due to hurricanes, indicating that power outage in neighborhood areas have 

similarity. Significant values of these test statistics indicate the presence of spatial correlation (clustering) 

in power outage restoration. This means that areas with longer restoration time are close to each other, and 

similarly areas with shorter restoration time are close to each other. Previous studies (57, 58) also considered 

restoration strategies from power outages due to a hurricane at county-levels. Thus, it can be reasonably 
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assumed that the variation in restoration times of the county subdivisions of a particular county should be 

small. 

Property damage data 

To explore if property damages have an impact on community resilience, this study included 

property damage in terms of average inspected damage (based on Federal Emergency Management 

(FEMA)'s inspection guidelines). It is available for valid registrations from households within the state, 

county, zip that had a complete inspection, collected from FEMA’s housing assistance datasets for 

Hurricane Ida. The corresponding county subdivision of an observation was based on city, zip code, parish, 

and state. For some county subdivisions no damage data was found in the FEMA dataset; we assumed that 

there was no FEMA inspected damages in those subdivisions. 

Age of the houses 

Since old houses are prone to be damaged by natural disasters, county subdivisions with a greater 

number of older houses might be less resilient to hurricane. To indicate this variable, the percentages of 

houses that are built before 2000 (more than 21 years old when Hurricane Ida occurred in 2021) in each 

county subdivision were collected from American Community Survey (ACS). 

3.3 Disaster Condition 

Distance to hurricane path 

Hurricane Ida’s path was collected from National Hurricane Center (NHC).  Haversine formula 

was used (Equation 1) to calculate the distance between the center of a county subdivision and hurricane 

path and the minimum distance from the center of county subdivision to hurricane path was considered. 

This formula is used to calculate geographic distance on earth between two different latitude – longitude 

values of two different points on earth, giving the shortest distance between two points on earth surface (7). 

We considered hurricane path from 26th August to 4th September because hurricane was dissipated after 4th 

September 2021. 

𝑑 = 2𝑟	𝑎𝑟𝑐𝑠𝑖𝑛	(,𝑠𝑖𝑛! -
𝜙! − 𝜙"

2 0 + 𝑐𝑜𝑠 𝜙" 𝑐𝑜𝑠 𝜙! 	𝑠𝑖𝑛! -
𝜆! − 𝜆"
2 0) (1) 

where, 𝜙!, 𝜙" are the latitude of point 1 and latitude of point 2, λ1, λ2 are the longitude of point 1 

and longitude of point 2, and r is the radius of earth. 

As disaster conditions, other variables such as the type of evacuation orders issued (mandatory and 

voluntary) and flood depth (Fig. 2) could be used. However, these variables are likely to be correlated with 

the distance from hurricane path because the regions close to the hurricane path are likely to issue a 
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mandatory or voluntary evacuation order for their residents. Besides, these variables are difficult to obtain 

at a county subdivision level. 

3.4 Socio-economic characteristics 

As socio-economic characteristics, this study included the median household income, the 

percentage of Black population, and the percentage of Hispanic population in each county subdivision. 

Percentage of Hispanic population and poverty information for the county subdivisions were collected from 

the demographic and economic characteristics of American Community Survey (ACS) 5-Year Data Profile 

for 2020.  About 33% of the populations in Louisiana were Black which was the 2nd highest population 

group and about 5.6% of the populations were Hispanic which was the 3rd highest population group (59).  

The list of candidate variables for the model and their descriptive statistics are provided in Table 

1. The correlations between these candidates were tested using Pearson correlation coefficient measure 

(Fig. 5). No highly correlated variables were identified, but moderate correlation between restoration time 

of power outage and distance to hurricane path was found (60). For the housing age variable, the variance 

inflation factor (VIF) was 11. For the remaining variables, VIF was less than 7. The multicollinearity 

condition number was 3.013 (which was below 30), indicating that collinearity should not be an issue with 

statistical models. 

 

4. METHODS 

4.1 Quantifying Community Resilience 

To quantify community resilience, transient loss of resilience was calculated using Equation 2. 

Bruneau et al. (36) proposed this equation in the context of infrastructure resilience due to an earthquake 

and it was later adopted by Roy et al. (7) for quantifying transient resilience loss (TRL) in human mobility. 

𝑇𝑅𝐿 = 	9 [1 − 𝑄	(𝑡)]𝑑𝑡
#!

#"
 (2) 

where TRL denotes transient resilience loss, 𝑄(𝑡) denotes a quality function of a system at time 𝑡, 

and (𝑡" − 𝑡$) is the recovery time. Fig. 6 shows a conceptual diagram to illustrate these terms.  The area 

between the horizontal dashed line (baseline value) and decreased quality function (solid line) from 𝑡$ to 

𝑡" is defined as transient loss of resilience of a system. The horizontal dashed line indicates that the 

performance of a system is supposed to follow this line if the system does not experience any disruption. 

The solid curved line within 𝑡$ to 𝑡" indicates system performance follows this trend due to the occurrence 

of an extreme event. So, the resilience is the area under the quality function curve from time 𝑡$ to 𝑡". It can 

be obtained by subtracting the transient loss of resilience from the area under horizontal line from 𝑡$ to 𝑡". 
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This study used Facebook population data to quantify community resilience against hurricanes. 

First, for each community, population activity rate available from Facebook data was assumed as a measure 

of its quality function 𝑄(𝑡). For a given day, population activity rate was defined as the rate of Facebook 

users who were found in a given county-subdivision out of all the affected users on that day. The population 

activity rate on a given day was calculated by dividing the number of users observed in a particular county-

subdivision on that day by the total number of typical users represented by the number of average Facebook 

users observed 90 days prior to that day (i.e., baseline population). 

We calculated Transient resilience loss (TRL) (Equation 2) by a numerical integration method. 

The analysis period was from 25th August 2021 to 30th September 2021 (37 days). This time window was 

selected because most of the activity fluctuation curves for the affected county subdivisions returned to the 

normal state within this time. Since this study was concerned with loss of community resilience, any 

increase in activities from the base period (if there was any within this time window) was not considered. 

Among the given 327 county subdivisions in this data source, we did not consider the county subdivisions 

that did not have any drop in population fluctuations curves. We did not consider the county subdivisions 

for which population activity rate did not fall below the 90% (100% means population activity did not 

decrease at all). In other words, we considered the county subdivisions where 10% or more Facebook users 

were missing at least for one day within 29th August to 5th September compared to the baseline Facebook 

users. Hurricane Ida had its landfall on 29th August 2021, and we considered county subdivisions where 

significant drop in Facebook users was observed within 7 days of landfall. In this way, observations for 166 

county subdivisions out of 327 were obtained. To validate that there was extreme situation in the selected 

166 county subdivisions, we further checked the Z- scores provided in Facebook population datasets and 

for all of them, the minimum Z-score was less than -1.82 (>45% of -4) for more than 1 day out of our 

considered 37 days. 

To obtain resilience of an affected community, we subtracted the transient loss of resilience from 

37 which is the area under the horizontal line (Fig. 6). If there was no disruptive event or if a county 

subdivision did not lose any resilience, population activity function would follow the horizontal line 

(baseline) in Figs, 6-8, resulting in no drop of activity with an activity ratio of 1. Since the considered study 

time is 37 days, the area under the population activity function (horizontal line) would be (1 × 37) = 37. 

Thus, the maximum possible resilience (MPR) value should be 37. We also calculated the percentage loss 

of resilience, dividing the estimated TRL values by MPR value (MPR = 37). So, if a county-subdivision’s 

TRL value is 12.88, the percentage loss of resilience will be 34.81% (12.88/37*100). 

4.2 Statistical modeling approach 

To determine the effects of different factors on the transient loss of community resilience, a 

Generalized Linear Mixed Model (GLMM) with Gamma family was developed. This study used GLMM 
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for two reasons: (i) it is likely that the observations used in this study are not independent since the transient 

loss of resilience values for the subdivisions under a county might be similar to each other; in GLMM, to 

account for the non-independence issue, a random effect is introduced into the linear predictor of a 

regression model (Equation 3 and 4); (ii) Fig. 11 shows that the transient loss of resilience is not normally 

distributed and it ranges between 0 and 37. So, community loss of resilience is skewed and always positive 

(TRL > 0). In GLMM, it is possible to account for any distribution (e.g., Gaussian, Beta, Poisson, Gamma 

etc.) of the dependent variable. 

In general, the GLMM can be given by the following equations (61):  

𝑀𝑖𝑥𝑒𝑑	𝑚𝑜𝑑𝑒𝑙 = 𝐹𝑖𝑥𝑒𝑑	𝑒𝑓𝑓𝑒𝑐𝑡 + 𝑅𝑎𝑛𝑑𝑜𝑚	𝑒𝑓𝑓𝑒𝑐𝑡 (3) 

𝑦 = 𝑋𝛽 + 𝑍𝑏 + 𝜖 (4) 

where, 𝑦 is a 𝑁 × 1 column vector of continuous dependent variable, 𝑋 is a 𝑁 × 𝑝 matrix of 

the 𝑝 predictor variables; 𝛽 is a 𝑝 × 1 column vector of the fixed-effects regression coefficients; 𝑍 is 

the 𝑁 × 𝑞 matrix for the 𝑞  random effects; 𝑏 is a 𝑞 × 1 vector of the random effects (the random 

complement to the fixed 𝛽); and 𝜖 is a 𝑁 × 1 column vector of the residuals. Here, the dependent variable 

𝑦 can follow any distribution. Also, 𝑏 is not actually estimated; instead, 𝑏 is assumed as normally distributed 

with a zero mean and variance 𝐺 [i.e., 𝑏~	𝑁(0, 𝐺)]. Since the fixed effects are directly estimated, including 

the intercept, random effect complements are modeled as deviations from the fixed effect, so they have zero 

means. The random effects are just deviations around the value in 𝛽.  

In this study, there were 166 observations (𝑁 =166) from 36 parishes over 37 days. Since the 

dependent variable, transient loss of community resilience was continuous, always positive, and not 

normally distributed, the Gamma family of distribution was used with a log link function (62). Further, the 

model was specified with 8 fixed effects as predictor variables shown in Table 1 and a random intercept 

for every county (parish). A parish had a random effect in the model since it was expected that due to spatial 

proximity the loss of resilience values of the county subdivisions in a parish would be correlated with each 

other. The model was estimated in R software and all the variables were standardized before fitting the 

model. 

 

5. RESULTS 

This section presents the results in two parts. First, it shows the visualization of our datasets and the 

quantified resilience and transient loss of resilience. Second, it presents the results of the Generalized Linear 

Mixed model (GLMM). 
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5.1 Population Activity Trajectories 

 Fig. 7 shows how population activity (in terms of activity on Facebook) fluctuated due to 

Hurricane Ida for 11 county subdivisions under 11 different parishes. It shows that the population activity 

rate started to decrease from 25th August 2021. The highest decrease in population activity was observed 

on 29th and 30th August 2021 (the day and the next day when the landfall occurred). The red vertical line in 

Fig. 7 indicates the day when the landfall of Hurricane Ida occurred. By 30th September, all the county 

subdivisions (apart from county subdivision under Terrebonne) recovered. However, recovery times varied 

across county subdivisions. Some county subdivisions recovered fast (e.g., District 9 of East Baton Rouge 

parish). On the other hand, some county subdivisions had a longer time to return to a typical level of 

population activity (e.g., New Orleans). Similarly, maximum impact varied across county subdivisions. For 

example, in District 9 of Plaquemines parish, the population activity rate dropped below 0.2; on the other 

hand, in District 9 of East Baton Rouge, it dropped to 0.8 only. 

 Fig. 8 shows the population activity rates at county subdivision level for Jefferson, Lafourche, 

Assumption and Plaquemines parishes. Population activity pattern under Hurricane Ida was homogeneous 

for Jefferson Parish. Population activity fluctuation curves in subdivisions under Jefferson parish followed 

very closely to each other. On the other hand, population activity fluctuation curves for subdivisions under 

Lafourche, Assumption and Plaquemines parishes were not exactly same but subdivisions under a parish 

followed a certain pattern most of the time. Similar to Fig. 7, the highest decrease in population activity 

was observed on 29th and 30th August 2021 in subdivisions under these parishes. Recovery time and 

maximum impact varied across subdivisions. Despite the differences in recovery time and maximum 

impact, the common property of the population activity fluctuation curves (Fig. 7 and 8) was: at the starting 

of a hurricane, population activities started to decrease in the affected area, had the maximum drop after a 

certain time (mostly on the landfall day and the next day), and then started to recover. 

5.2 Power Outage Trajectories 

Fig. 9 shows the percentage of customers in different parishes who faced power outages due to 

Hurricane Ida. It shows that customers started to lose electricity supply after 28th August 2021. Most of the 

customers lost electricity services on 29th and 30th August 2021, the day, and the next day when landfall 

occurred. Similar to Fig. 7, the red vertical line in Fig. 9 indicates the landfall day.  In some counties (for 

example, Jefferson, St. Charles, Lafourche, Plaquemines, Terrebonne, St. John the Baptist, Orleans), about 

100% customers lost power services. On the contrary, few customers from Iberia and Cameron lost their 

power services. It took long time for the customers in Terrebonne (28 days), Lafourche (29 days), and St. 

John the Baptist parishes (27 days) to restore the power services. Restoration time was shorter for the 

customers in St. Mary (3 days). 
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5.3 Community Resilience 

Tables 2 and 3 present the least resilient and most resilient county (parish) subdivisions in 

Louisiana due to Hurricane Ida giving the transient loss of resilience and resilience values, estimated from 

Equation 2 (for more details see section 4.1). The transient loss of resilience indicates the area between 

population activity function Q (t) and baseline in Figs. 6, 7 and 8. Resilience is the area below the population 

activity function Q (t) of the same Figs. (section 4.1). The highest transient loss of resilience was found 

12.88 for District 8 in Plaquemines parish. A higher value of transient loss of resilience indicates that people 

living in a county subdivision have lost much resilience in terms of their activity during Hurricane Ida. On 

the other hand, a higher value of resilience indicates that people living in a county subdivision were resilient 

to the hurricane. The TRL/MPR values are presented in the last columns of Tables 2 and 3. 

During Hurricane Ida, among the 36 parishes in Louisiana considered here, the county subdivisions 

of Plaquemines suffered the highest transient loss of resilience followed by the county subdivisions of St. 

John the Baptist, Terrebonne, Lafourche, St. Charles, and Orleans (Table 2). These county subdivisions 

lost significant percentage of their resilience as indicated by TRL/MPR ranging from about 18% to 35% 

(Table 2). On the contrary, the county subdivisions under East Baton Rouge parish had the highest 

community resilience followed by the county subdivisions under Vermilion, Iberville, Iberia, and Lafayette 

parishes (Table 3). All transient loss of resilience values are very small (less than 1), and all the percentage 

loss of resilience values are less than 1.5% (Table 3) for these county subdivisions, indicating people living 

in these county subdivisions were resilient to the hurricane. Thus, these metrics could measure the extent 

of disruptions in population activity after Hurricane Ida. 

5.4 Spatial Distribution of Community Resilience 

Fig. 10 shows the spatial distribution of transient loss of resilience over county subdivisions. It 

shows that county subdivisions in South-East Louisiana suffered higher transient loss of resilience. 

Transient losses of resilience were higher in the county subdivisions under Terrebonne, St. John the Baptist, 

Plaquemines, Lafourche, and St. Charles. At the time of landfall (29th August 2021), these places were close 

to the hurricane path. Since wind speed of hurricane path fell to 65 mph from 130 mph when it was over 

Livingston, some of the county subdivisions under this parish did not have higher transient loss of 

resilience, despite being close to hurricane path. Most of the county subdivisions from North (e.g., county 

subdivisions under St. Helena and Washington parish) and North-Western (e.g., county subdivisions from 

East Baton Rouge to far north Calcasieu parish) side of hurricane path resulted in lower loss of resilience 

(between 0 to 1). Although district 4 of Vernon parish and some of the county subdivisions from Cameron 

parish are far from hurricane path, they had moderate transient loss of resilience (between 4 and 6). 
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Fig. 11 shows the distribution of the values of transient loss of resilience. Among 166 county 

subdivisions, about 60 county subdivisions had transient loss of resilience value between 0.1 to 1 and for 

46 county subdivisions, the value was 4.  

5.5 Result from the GLMM Model 

Table 4 presents the results of the GLMM model. Among multiple types of physical infrastructure 

disruption related predictor variables, disruption to transportation systems and power outage were found to 

be significant and positively associated with transient loss of resilience. A positive association means that 

an increase in a predictor variable will increase the loss in resilience and a negative association indicates 

the opposite. The exponentiated coefficient of duration of disruptions on roads (e^ {0.141} = 1.1514) is the 

factor by which the mean transient loss of resilience increases by 1.15 times with one hour increase in 

duration of disruptions to transportation network. One day increase in restoration time for power outage (e^ 

{0.632} = 1.88) increases the mean transient loss of resilience by 1.88 times. Housing damages had positive 

association with transient loss of community resilience too, but this predictor variable was not found to be 

significant.  

Distance to hurricane path was found to be significant and positively associated with loss of 

community resilience. In addition, median household income was found to be significant among the socio-

economic characteristics of the communities. The percentage of Black and Hispanic population and the 

percentage of houses built before 2000 had negative association with loss of resilience, but those were not 

found to be statistically significant. 

 The variance for parishes (random effects) was found to be 0.1185 and 0.325 for residuals. The 

random effects are important as they explain a significant amount of variation. We can take the variance 

for the parishes and divide it by the total variance: [0.1185/ (0.1185 + 0.3250)] = 27%. So, the differences 

between parishes explain ~27% of the variance that has been left after explained by the fixed effects. The 

R2 (marginal), representing the proportion of variance explained by the fixed effects, has a value of 0.44. 

The R2 (conditional), representing as the proportion of variance explained by the entire model, including 

both fixed and random effects, has a value of 0.61. Therefore, due to introducing parishes as random effects, 

the proportion of variance explained by the model increased.  

 

6. DISCUSSIONS 

This study used large-scale Facebook population data for Hurricane Ida occurred at Louisiana, to 

explore how population activity before, during and after a disaster can quantify the resilience and transient 

loss of resilience of the affected communities. Since Facebook population dataset provides data at county 

subdivision level, this work quantifies the loss of community resilience at a higher resolution, whereas 

previous studies mainly focused on county level macroscopic analysis. It was found that subdivisions under 
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Plaquemines, Lafourche, St. John the Baptist, Orleans, Terrebonne, St. Charles, and Jefferson parishes were 

more negatively impacted by Hurricane Ida. 

This paper also studied how the transient loss of community resilience is associated with the 

disruptions in multiple physical infrastructure systems, disaster condition, and socio-economic 

characteristics from a Generalized Linear Mixed Model (GLMM).  A positive coefficient for duration of 

disruption on roads indicates that the transient loss of resilience was higher in places having a longer 

duration of road blockage. This implies that people who evacuated could not immediately return to their 

homes; and as a result, their regular activities were not observed shortly after the hurricane. The importance 

of transportation networks on the recovery of disaster affected regions was understudied, despite having 

significant implications on policymaking for community resilience. This study suggests that performance 

of transportation systems should be enhanced before and after hurricanes to ensure fast evacuation and 

recovery of a region. Similar to duration of disruption on roads, the positive coefficient for the restoration 

time of power outage indicates that a longer restoration time in power services causes a higher loss of 

resilience. This implies that people might have connectivity issue in their area that prevented their normal 

social activity which resulted in a higher loss of resilience. Therefore, to enhance community resilience 

against an extreme event, faster restoration from power outages should be a necessary recovery effort. 

Power service restoration time is associated with recovery speed of population activity as found in disasters 

including Hurricanes Irma and Maria (16).   

This study found a positive coefficient between the distance to hurricane path and the transient loss 

of resilience. This may appear counterintuitive as it indicates that regions farther from the hurricane path 

would suffer a higher loss of resilience. However, this is probably because of the presence of the variable 

indicating the power outage restoration time in the model. The positive coefficient for the distance to 

hurricane path implies that if two regions faced same restoration time of power outage but located at 

different distances from hurricane path, the region which is located far away from the hurricane path, suffers 

a higher transient loss of resilience (63). A possible reason for this could be that places which were close to 

hurricane path were given priority including financial and logistical support during recovery process from 

different humanitarian and relief organizations or those communities might have better disaster 

preparedness because those places are prone to hurricanes. To further investigate this issue, we explored 

data from Community Emergency Response Team (CERT) Dataset (64). This Program educates people 

about disaster preparedness for hazards that may impact their area and trains them in basic disaster response 

skills. Among the considered 36 parishes for Hurricane Ida, CERT has programs in only 12 parishes in 

Louisiana and majority of those parishes (10 out of 12) are located close to the Hurricane Ida’s path. This 

implies that disaster preparedness programs can be expanded among communities who live far away from 

the hurricane path to educate and train them about the basic disaster response skills about team organization, 
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and medical operations. This also indicates that “disaster preparedness training” component of Fig. 2 

contributes to strengthen the community resilience. 

Median household income had negative effects on transient loss of community resilience, implying 

that communities with a lower median income had a higher loss in resilience. In other words, communities 

with lower economic resources faced greater challenges in recovering and adapting to the impact of the 

hurricane. This could be since low-income communities experienced difficulties in their regular activity for 

a longer time as regions with poorer communities might have less robust infrastructure systems for post-

disaster recovery (16). Low-income communities might have weaker governmental support and fewer 

financial and material resources to respond effectively to a disaster. This could hinder their ability to access 

emergency services, repair infrastructure, and provide necessary support to residents. Low-income 

communities might also face greater social vulnerabilities, such as lack of access to healthcare, limited 

transportation options, and inadequate housing due to property damage. These factors can amplify the 

negative effects of a disaster and prevent fast recovery (16, 40, 65, 66). 

This study found that percentage of Hispanic and Black population in different county subdivisions 

had a negative impact on loss of community resilience. However, these variables were not found to be 

statistically significant, indicating a lack of evidence to reject the hypothesis that ethnicity is not associated 

with loss of community resilience during Hurricane Ida in Louisiana.  However, previous studies found 

evidence of inequality in community resilience and experienced hardship in Texas during Hurricane Harvey 

(8, 23) as poor and minority communities were less prioritized in recovery efforts. Areas with less 

vulnerable people (in terms of ethnicity, income, age, gender, employment status) recovered faster than 

areas with more vulnerable populations in New Orleans (39). Also, applicants and beneficiaries in South 

Carolina for the 2015 floods and 2016 Hurricane Matthew were among the most socially vulnerable within 

a census tract (67). Cutter et al. (68) found that socially vulnerable population, despite not residing in the 

highest areas of disaster risks, can undergo long-term recovery from disasters. Besides recovery after 

landfall, migration (69) and evacuation tendency (70) were found to be negatively associated with median 

income during Hurricane Katrina and Rita. 

Similarly, this study also found disparity issues in Louisiana due to Hurricane Ida. The negative 

relationship between median household income and loss of community resilience indicates an inequality 

issue. Accelerated recovery efforts and better infrastructure systems are needed in low-income communities 

to make them resilient to hurricanes, highlighting the need for targeted policies and interventions that can 

address their specific challenges during disaster recovery. It underscores the importance of considering 

socioeconomic factors when planning for disaster preparedness and response as vulnerable communities 

are more likely to experience prolonged recovery periods. Disaster management agencies should ensure 
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that resources are allocated equitably to communities with varying income levels to minimize disparities in 

resilience outcomes. 

The described approaches and findings of the study can benefit policy making and disaster 

management in several ways. First, the proposed method to quantify ‘transient loss of resilience’ using 

Facebook data can be used to better understand the negative impacts of a disaster to an affected community 

since it involves both systemic impact (e.g., percentage of population impacted by a disaster) and time to 

recover. Second, since Facebook data is globally available for the affected region, it can be widely used by 

policy makers and disaster management agencies to understand the negative impact on the affected 

community by quantifying the loss of community resilience. Third, since this study analyzed the data at a 

higher resolution (county subdivision level) compared to a county level analysis, the findings ensure better 

understanding of community resilience as well as the association between loss of community resilience and 

physical infrastructure disruptions, disaster condition and economic aspects. Fourth, the findings of this 

study suggest that the association between social and physical systems should be considered to strengthen 

community resilience. Due to the association between community resilience in terms of population activity 

and physical infrastructure systems, infrastructure disruptions caused by disasters can exacerbate the 

hardship experienced by the affected population. Lastly, the findings also suggest that better and fast 

recovery policies, and better infrastructure systems should be given emphasis by the policy makers in less 

wealthier communities to make them resilient to hurricanes. 

Since this study proposes methodology to use Facebook data, we mention the strengths and limitations of 

using this data as follows:  

Strengths of Facebook data 

Previously used high-resolution location data including taxi data (9, 10), GPS data (11, 12), Wi-Fi 

(14), and mobile phone datasets (13, 15, 16) are often proprietary or accessible to only few researchers. To 

effectively quantify community resilience, data must be easily accessible and usable (17). These data 

unavailability issues can be avoided if location data from a widely used service is made accessible. 

Facebook population data provides aggregate information of Facebook users following a crisis event to 

help humanitarian organizations (25). Data from this platform are free and easily available to researchers 

and policymakers; whenever there is a disaster, such aggregate data is globally available from the affected 

regions. As such, this dataset is a great source for decision makers to identify crisis events over a certain 

time window and investigate the impacts of these events on population activity. 

Previous research on social media data analyzed mainly social media posts (text data) or check-in 

data. However, few people post or check-in on social media (Facebook and Twitter) during a disaster; and 
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among the posted tweets and Facebook status on average 1-2% data has specific location information (71). 

Thus, social media posts or check-in data may result in a small penetration rate of actual population. 

Facebook data does not require users to post or check-in, ensuring a higher percentage of sample 

size/penetration to actual population. Another limitation of using social media data is that different studies 

estimated location data metrics such as baseline population in different ways; no universal assumption 

exists to extract such metrics from the raw data so that disaster officials can widely use social media data 

for crisis management. Facebook data gives such a metric by setting fixed assumptions to be used by all 

data users; this also minimizes required data processing steps to be performed by disaster officials. As such, 

this dataset is available with a reasonable sample size and useful location information in a usable format 

that requires less data processing efforts and assumptions. 

Limitations of Facebook data 

Facebook data may have limits due to self-selection. Older population may have less interest in 

using social media or younger persons may use other social media platforms such as TikTok, Twitter, or 

Instagram more than Facebook. In such cases, Facebook data may have smaller sample size for some 

population groups. Ribeiro et al. (72) found a higher percentage of Facebook users among different races 

in data from Facebook Marketing API platform. However, Facebook population data from ‘Facebook Data 

for Good’ platform gives aggregate statistics without any personal information of Facebook users to protect 

user privacy. As such, it is not possible to estimate the penetration rate to population of a particular 

demographic (e.g., age, gender, race, income) in an affected area. Facebook data can have overall larger 

sample size but smaller penetration from a particular group of people, potentially introducing biases in 

analysis results. 

Overall, emergency officials and decision-makers can rely on Facebook population data from 

‘Facebook Data for Good’ platform due to its open accessibility, larger sample size, higher correlation 

between sample size and actual population, and universal assumption to interpret location data metrics. 

 

7. CONCLUSIONS 

This study quantified transient loss in community resilience and used it effectively to identify less 

resilient (more negatively impacted) communities to hurricanes from large-scale, real-time, free, and easily 

accessible Facebook data. The use of large-scale location data enables proactive monitoring of population 

activity before, during, and after a disaster such that the impact to affected community can be evaluated in 

real-time. This study can be used as a reference for local governments and policymakers to decide equitable 

spatio-temporal allocation of resources and services like food, utilities, and optimized shelter locations by 

rapid impact assessment based on observed loss of resilience shortly after a disaster. This study also 
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investigated why some communities are more impacted. Transient loss in community resilience was 

examined for Hurricane Ida using generalized linear mixed models at county subdivision level. Using 

models, descriptive statistics, and geospatial analytics, this study identified consistent relationships between 

transient loss of community resilience and key factors: multiple types of physical infrastructure disruptions, 

disaster condition, and socioeconomic characteristics. This study found a disparity issue in recovering after 

a hurricane suggesting that communities with lower income were more impacted. This emphasizes 

accelerated recovery efforts and better infrastructure systems in low income communities. 

Loss in community resilience indicates drop in regular population activity.  A decline in population 

activity has a ripple effect on many aspects of society, from banking and finance to education and 

healthcare. Thus, policy makers and disaster management officials should effectively identify impacted 

communities in real-time and accelerate the recovery process in transportation and power infrastructures, 

provide equal recovery services and pre-disaster preparedness trainings across all communities without 

considering the economic characteristics. As a result, this will help make communities more resilient to 

hurricanes. 

The study has some limitations: (i) this study assumed that all county subdivisions under a parish 

had the same power outage restoration time as electricity companies do not reveal the postal code and city 

name in the provided datasets. Depending on data availability, future studies can consider power outage 

data at county subdivision level. (ii) If a specific community doesn't access to Facebook (such as older 

people, people in rural areas, or use other social media rather than Facebook), this dataset may result in 

small sample size (small penetration rate to actual population) and may not have uniformly distributed users 

from all demographics. Data should be carefully used in such cases and maybe some other data platform 

can be used in combination with Facebook Data for Good platform.  

Future studies can focus on the biases in social media based location data. Using Facebook data 

future studies can also focus on if community resilience can be identified by community usage of 

infrastructure services or how different is that from population activity revealed by Facebook data. Due to 

the interaction between infrastructure systems and population activity on social media, these anticipated 

post-disaster activity curves can be used by emergency personnel and policymakers as an indicator of the 

spatio-temporal pattern of electricity and other infrastructure disruptions. 
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FIGURE CAPTIONS 

Fig. 1. Influence of decreased human activity on daily life. 

Fig. 2.  Factors associated with decreased population activity. 

Fig. 3. Facebook users vs population in 327 parish subdivisions and 39 parishes of Louisiana. 

Fig. 4. Power outage for Livingston Parish due to Hurricane Ida and considered restoration time in this 
study. 

Fig. 5. Correlations among variables 

Fig. 6. Conceptual definition of resilience and transient loss of resilience for the affected communities. 

Fig. 7. Population activity curves from Facebook population datasets in Louisiana due to Hurricane Ida. 

Fig. 8. Population activity curves for subdivisions under four different parishes 

Fig. 9. Power outage curves due to Hurricane Ida. 

Fig. 10. Transient loss of resilience for 166 county subdivisions along with hurricane path. 

Fig. 11. Distribution plot of transient loss of community resilience. 
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TABLES 

Table 1. Descriptive Statistics 

Variables Mean Std Min Median Max 

Transient loss of resilience (activity 

ratio-day) 
3.19 2.81 0.101 2.278 12.882 

Physical infrastructure data 

Duration of disruption on roads (hr) 490.07 1202.94 0.5 76.55 11441.32 

Restoration time for power outage 

(Day) 
12.49 9.13 0 13 29 

Property damage 4051.81 7045.78 0 1539 45117.71 

% of Households built before 2000 72.5 17.95 0 75.45 96.4 

Disaster condition 

Distance to hurricane path (km) 67.6 55 5.734 49.067 287.38 

Socio-economic characteristics and social vulnerability 

Median household income (USD) 53791.48 19837.67 16583 52085 133056 

% of Black population 29.7 23.73 0 23.8 93.4 

% of Hispanic population 3.91 3.73 0 2.90 20.7 
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Table 2. Transient loss of resilience and resilience values of 20 least resilient county subdivisions 

Parish Name County (Parish) 

subdivision 

Transient loss of 

resilience (TRL) 

Remaining 

Resilience 

(TRL/ MPR) 

*100 % 

Plaquemines District 8 12.88 24.12 34.81 

District 9 12.22 24.72 33.03 

District 7 11.62 25.39 31.41 

District 6 9.61 27.39 25.97 

St. John the 

Baptist 

District 5 11.07 25.93 29.92 

District 7 8.63 28.37 23.32 

 

Terrebonne 

District 7 10.94 26.06 29.57 

District 1 9.72 27.28 26.27 

District 8 8.57 28.44 23.16 

District 9 8.52 28.48 23.03 

Lafourche District 9 10.07 26.93 27.22 

District 5 7.84 29.16 21.19 

St. Charles District 3 8.72 28.28 23.57 

District 2 7.72 29.28 20.86 

District 6 7.70 29.30 20.81 

Sabine District 1 8.28 28.72 22.38 

Orleans New Orleans 8.28 28.72 22.38 

Livingston District 8 6.87 30.13 18.57 

Cameron District 1 6.80 30.20 18.38 

Jefferson District 5 6.76 30.24 18.27 

MPR = Maximum Possible Resilience, which is 37 as described in section 4.1 
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Table 3. Transient loss of resilience and resilience values of 20 resilient county subdivisions 

Parish Name County (Parish) 

subdivision 

Transient loss of resilience 

(TRL) 

Remaining 

Resilience 

(TRL/ MPR) 

*100 % 

East Baton Rouge District 4 0.10 36.9 0.27 

District 3 0.15 36.85 0.41 

District 12 0.30 36.7 0.81 

District 7 0.49 36.51 1.32 

Vermilion District 13 0.26 36.74 0.70 

Ascension District 8 0.29 36.71 0.78 

District 10 0.36 36.64 0.97 

Iberville District 13 0.30 36.70 0.81 

District 10 0.30 36.70 0.81 

Iberia District 5 0.34 36.66 0.92 

District 13 0.52 36.48 1.41 

St. Tammany District 8 0.36 36.64 0.97 

District 9 0.50 36.50 1.35 

Washington District 3 0.39 36.41 1.05 

Livingston District 3 0.34 36.66 0.92 

District 5 0.40 36.60 1.08 

District 7 0.46 36.54 1.24 

Lafayette District F 0.43 36.57 1.16 

St. Martin District 6 0.45 36.55 1.22 

District 2 0.50 36.50 1.35 

MPR = Maximum Possible Resilience, which is 37 as described in section 4.1 
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Table 4. Results of the generalized linear mixed model 

Variables Estimate Std. Error t-statistics p-value 

Intercept 0.936 0.107 8.697 < 2e-16*** 

Physical infrastructure 

Duration of disruption on 

roads  
0.141 0.066 2.140 0.032** 

Restoration time for power 

outage 
0.632 0.139 4.539 5.65e-06 *** 

Property damage 0.090 0.066 1.355 0.176 

% of houses built before 

2000 
-0.092 0.070 -1.316 0.188 

Disaster condition 

Distance to hurricane path 0.322 0.110 2.920 0.004 ** 

Socio-economic characteristics 

Median household income -0.111 0.061 -1.842 0.065 * 

% of Black population -0.006 0.070 -0.086 0.932 

% of Hispanic population -0.029 0.0515 -0.555 0.579 

R2 (marginal)   0.44 

R2 (conditional)   0.61 

AIC    612 

BIC    646 

Log-likelihood   -295 

Variance (parishes)  0.1185 

Residual variance  0.3250 

Significance level:  <0.0001-‘***’, 0.001-‘**’, 0.05-‘*’, 0.1-‘’, 1 
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FIGURES 

 

Fig. 1. Influence of decreased human activity on daily life. 

 

 



  

34 
 

Fig. 2.  Factors associated with decreased population activity. 

 

  

Fig. 3. Facebook users vs. population in 327 parish subdivisions and 39 parishes of Louisiana. 

 

Fig. 4. Power outage for Livingston Parish due to Hurricane Ida and considered restoration time in this 

study. 

Pearson Correlation 0.96 Pearson Correlation 0.98 
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Fig. 5. Correlations among variables 
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Fig. 6. Conceptual definition of resilience and transient loss of resilience for the affected communities. 

 

Fig. 7. Population activity curves from Facebook population datasets in Louisiana due to Hurricane Ida. 
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Fig. 8. Population activity curves for subdivisions under four parishes. 
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Fig. 9. Power outage curves due to Hurricane Ida. 
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Fig. 10. Transient loss of resilience for 166 county subdivisions along with hurricane path. 
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Fig. 11. Distribution plot of transient loss of community resilience. 

 

 

 

 


