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Abstract

Purpose of Review Future electricity grids will be characterized by the high penetration of renewables to support the
decarbonization process. Yet, this transition will further expose grids to a broad spectrum of geophysical forces, such as
weather and climate or the availability of land and minerals. Here, we synthesize the current body of knowledge on the
relationship between geophysical constraints and electricity grid planning.

Recent Findings We show that there have been promising advances in the data, methods, and modelling tools needed to
incorporate the effect of geophysical constraints on demand, resource availability, and grid operations. However, current
research efforts are typically focused on the effect of a single constraint, thereby lacking a broader view of the problem.
Summary More system-specific and finer-scale analyses are necessary to better understand how spatio-temporal variabil-
ity in geophysical forces affects grid planning. Moreover, we need a broader focus on the multi-sectoral implications of
decarbonization efforts, including the societal consequences of grid management decisions. Importantly, all these efforts are
challenged by the computational requirements of existing power system models, which often limit our ability to characterize
uncertainty and scale analyses across larger domains.

Keywords Geophysical constraints - Power grid - Decarbonization - Weather and climate - Land and space - Minerals and
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Introduction

Decarbonizing the electricity sector is one of the most impor-
tant strategies in achieving a carbon-free economy, because
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of not only its present contribution to carbon emissions,
but also its potential for providing the low-carbon ‘fuel’
needed to decarbonize several end-use sectors (e.g., build-
ings, industry, and transportation). The specific pathways to
grid decarbonization are many; yet, they are all punctuated
by major challenges. First, electricity demand is expected to
grow significantly over the next few decades as a result of
the electrification of end-use sectors, as well as the increas-
ing electricity access and standards of living brought about
by socio-economic development [1-4]. Second, the evolu-
tion of the electricity grid faces a range of geophysical,
techno-economic, socio-cultural, institutional, and ecolog-
ical constraints, which in turn limit our ability to integrate
clean energy resources without significantly impacting other
domains of interest, such as the conservation of land and
water resources, protection of terrestrial and aquatic ecosys-
tems, and preservation of cultural sites [5-8]. The timing
and extent of grid-decarbonization efforts will therefore be
shaped by these challenges, to which one must add the imple-
mentation of global and national pledges [9-11]. Here, we
focus on a specific element of these challenges, namely the
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constraints imposed by geophysical forces: weather, climate,
land, and the availability of minerals significantly affect grid
planning and operations [12], so their presence requires care-
ful considerations to support a timely and just transition to
low-carbon grids.

Scientific and policy analyses, largely based on compu-
tational models, provide useful insights into future decar-
bonization pathways. Although these analyses and models
have come a long way to adequately represent the pro-
cesses and constraints related to grid-decarbonization [13—
16], many of them still struggle with the representation of
geophysical constraints, in turn limiting the value of the
decarbonization scenarios, or pathways, so identified [17,
18]. Indeed, the relevant literature generally presents a par-
tial view of how such constraints should be accounted for.
Some studies, for instance, focused on the effects of geo-
physical forces on specific clean energy technologies (e.g.,
wind [19], solar [20], or both [21, 22]), while others focused
on the response of electricity systems to changes in a single,
specific, force (e.g., climate change impacts on renewable
resources [12, 23]). In this article, we synthesize the cur-
rent state-of-the-art with the aim of first presenting a more
holistic view of the geophysical forces constraining grid
decarbonization efforts (“An Overview of Key Geophysical
Constraints”), and then identifying the most pressing issues
and opportunities for energy systems modelling (“Repre-
sentation of Geophysical Constraints into Grid Planning
Models” - “Opportunities to Alleviate Geophysical Con-
straints”’). We finally conclude with a call for action that will
ideally span across multiple communities (‘“‘Call for Action”).

An Overview of Key Geophysical Constraints

Multiple geophysical processes influence electricity systems
at both resource potential and operational levels (Fig. 1).
Resource potential generally refers to the annual energy
availability of a renewable resource. The exploitable limits
of the major renewable resources—hydro, wind, solar, and
bioenergy—are largely constrained by climatic processes
(e.g., hydropower predominantly depends on precipitation,
solar power on solar radiation) and land (e.g., availability
and suitability of land for the construction of dams or solar
farms), whereas other renewables (e.g., geothermal, tidal)
are mostly limited by the availability of economically fea-
sible resources. Accordingly, the exploitable potential could
vary under different climate change impacts as well as dif-
ferent levels of socio-ecological conservation criteria (e.g.,
protection of sites with high biodiversity value or cultural
importance) [23, 24].

On the other hand, the production of many renew-
able resources—particularly hydropower, wind, and solar—
significantly varies at seasonal to sub-hourly scales, with
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substantial effects on grid operations. Since hydropower,
wind, and solar are widely anticipated to contribute a large
share of future electricity generation [25, 26], such tem-
poral variability could significantly affect grid reliability
and costs. Hence, the operation of grids characterized by
high penetration of renewables will likely require mas-
sive deployment of utility-scale battery storage, which is
in turn constrained by the availability of critical minerals
(i.e., lithium, cobalt, nickel, and manganese [27-29]). In fact,
the large deployment of renewable generation infrastructure
(e.g., solar modules, wind turbines, and associated transmis-
sion expansion) will also require a major supply of various
minerals and materials, such as iron, copper, and aluminum
[28-31].

The constraints imposed by geophysical forces affect low-
carbon thermo-electric plants as well, including biomass and
nuclear plants. There are at least two constraints worth con-
sidering here. First, the need for cooling water links the
output of these plants to variability in hydro-climatological
processes, including limited water availability and intake
water temperature that reduce efficiency of thermal plants
[32-35]. Second, the cooling process affects the temperature
of downstream water bodies and aquatic ecosystems, and is
indeed subject to regulations that, while seldom enforced, can
constrain operations [36—38]. Importantly, higher air temper-
atures and heatwaves will also constrain the performance of
thermo-electric plants relying on fossil fuels, including coal
and gas [39, 40]. While relatively less discussed in the litera-
ture, we note that the water consumption of certain renewable
technologies (e.g., storage hydropower or concentrating solar
power) could also be critical for decarbonized grids [41]; on
the other hand, floating solar PV could have water-saving
effects [42].

The electricity demand, finally, largely depends on tem-
perature patterns [43,44], which could vary significantly with
climate change conditions [45, 46]—although it is worth
noting that future demand growth will also be affected by
socio-economic changes and end-use electrification [1, 4].
Looking forward, all linkages mentioned here will largely
shape our ability to decarbonize the power grid, although
their influence on both supply and demand will vary signifi-
cantly from region to region. In the next sections, we will go
deeper into these linkages, explore the latest scientific and
policy advances, and identify the main gaps that will drive
future research efforts.

Representation of Geophysical Constraints
into Grid Planning Models

Both policy and scientific analyses of future grid planning
are mostly based on computational models. While there
have been promising advances in open and non-proprietary
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data and tools [47—49], there is still a compelling need for
additional steps on the representation of geophysical con-
straints in computational models. In particular, we discuss
the constraints and their representation in three main areas,
namely electricity demand, generation resources, and grid
operations. Note that, while geophysical constraints are our
key focus, we also discuss other constraints (e.g.,
environmental) that could have significant influences on
certain components of future decarbonized grids. Moreover,
by grid planning models, we refer to the electricity system
models that consider both the development (e.g., capacity
expansion) and operations of future grids.

socio-

Electricity Demand

Temperature is the key geophysical variable that influences
electricity demand [43, 44], with humidity playing a more
marginal role [50]. Existing electricity system models gen-
erally use statistical methods (e.g., binning method [51],
polynomial fit [52]), machine learning [43]) to take into
account the effects of temperature on electricity demand.
While the methods for modelling the temperature-demand
relationships are quite well-established, electricity system
models are often unable to incorporate the full range of

demand variability, mainly due to computational limita-
tions. In particular, capacity expansion models for long-term
planning generally consider electricity demand for only a
few representative hours (peak and off-peak hours) and
days (e.g., one or two days for each month), thus neglect-
ing the full range of demand variability that might unfold
over one or multiple years [53, 54]. Also, models often
operate with lumped electricity demand over large spatial
domains (regional to national scales) with simplified repre-
sentation of grid infrastructure, and, thus, may not properly
incorporate the effects of finer-scale spatial variability of
temperature (e.g., urban heat islands) on electricity demand
and transmission-distribution [55, 56]. This is indeed an
important gap: we lack a complete understanding of how
such assumptions for demand modelling (e.g., choice of rep-
resentative days or meteorological conditions) will impact
future grid planning. Literature has mainly focused on how a
simplified spatio-temporal representation of electricity gen-
eration resources, particularly the variable renewable energy
resources, could affect the outputs (e.g., generation mix,
costs) of capacity expansion models [57, 58]. Moreover, the
literature provides a shallow characterization of the com-
pound effects of climate extremes on both demand and
supply sides [59]**; this is yet another critical issue, par-

@ Springer



Current Sustainable/Renewable Energy Reports

ticularly in future decarbonized grids with high penetration
of renewables and end-use electrification. This matter is well
exemplified by Texas’ 2021 blackout, when the cold weather
conditions amplified demand and limited the ability to supply
electricity [51].

Looking forward, we foresee two other important research
directions regarding the impact of geophysical constraints
on electricity demand. First, despite considerable studies
to understand climate change’s impact on future electricity
demand (see [44] and references therein), additional efforts
are necessary to narrow the uncertainty in peak demand
associated with future temperature projections. Second, the
effects of geophysical constraints, especially temperature
extremes, need to be further evaluated under enhanced
growth in electricity demand due to socio-economic devel-
opment as well as end-use electrification. Air-conditioning
demand in regions with hotter climates will increasingly
stress electricity grids, both with increasing affordability of
air conditioners and increasing temperatures. At the same
time, demand due to electrification of heating loads in colder
climates may experience interactions in opposite directions,
i.e., electrification of heating systems could make a future
grid more vulnerable during cold seasons but less vulnerable
as winter temperatures become milder with global climate
change (e.g., post 2050). The existing literature, apparently,
has a limited understanding of how future decarbonized grids
with enhanced electricity demand could behave under tem-
perature extremes [60].

Generation Resources

The decarbonization of future electricity grids will largely
depend on the integration of renewable energy resources,
whose availability is constrained by geophysical forces,
such as climate, land, and minerals (Fig. 1). Future pro-
jections of the electricity generation mix generally consider
exploitable limits of renewable resources [61-63] or spe-
cific candidate projects [64, 65] to identify the extent of
renewable integration under different constraints (technical,
economic, policy, and climatic conditions). The estimation of
the resource availability substantially varies with the methods
adopted for representing geophysical, techno-economic, and
socio-environmental constraints, as well as future climate
projections. Despite the recent advances, the current litera-
ture still lacks comprehensive databases on the exploitable,
or projected, renewable resources under different constraints,
which is in turn a major limitation for adequately represent-
ing them in future grid planning.

Hydropower

Hydropower resources are mainly constrained by water avail-
ability, suitable topographic conditions, and availability of
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land for the construction of dams and reservoirs. While these
constraints shape the techno-economically feasible limits of
the hydro-resources, the exploitable limits are determined by
further considerations on the socio-environmental impacts of
dams and reservoirs, which could substantially vary depend-
ing on the adopted conservation criteria [24, 66, 67]. The
future hydropower potential in a region could also signifi-
cantly reduce or increase under climate change conditions
[23], as well as changes in land cover (e.g., forestation) [68].
Several studies (see [69] and references therein) evaluated the
effects of climate change on hydropower availability and its
role in future electricity systems; yet, further analysis is nec-
essary given the large uncertainties associated with climate
change projections.

While exploitable hydropower potentials are useful for
long-term planning (e.g., system evolution until the end of the
century) that generally considers maximum resource poten-
tial, short-term decision-making (e.g., capacity expansion for
few decades) requires project-level details, a type of data
that is still very rare in the public domain. One of the few
comprehensive global datasets of future hydropower projects
(under construction and planning) was compiled by Zarfl et
al. [70], while Zhang and Gu [71] recently compiled a dataset
of potential dam sites across the globe. Other efforts to com-
pile similar datasets for specific river basins have also been
made [72, 73]. These datasets generally include projected
capacity with dam locations, but do not include other techno-
economic (e.g., capital and O&M costs) and physical (type
of dam, reservoir area, hydraulic head) characteristics of the
dams that are critically important to model and analyze future
operational conditions, and, thus, their role in the power
grid.

With widespread concerns over potential negative impacts
of hydropower dams on riverine biodiversity and ecosys-
tem services [74—79], a great deal of recent focus has been
directed to strategic planning [80]** and optimized reser-
voir operations [81] as opportunities to more efficiently
achieve objectives (e.g., energy production) with the fewest
environmental impacts. Yet, we still have a limited quanti-
tative understanding of how different levels of hydropower
development will affect riverine biodiversity and ecosystem
services. This knowledge gap exists for two reasons. First,
previous literature [74—76] mostly relied on implicit metrics
(e.g., loss of river connectivity, degree of flow regulation)
to quantify the negative impacts; only a few studies [78,
79] have so far attempted to explicitly quantify the socio-
ecological impacts of dams most directly related to human
well-being (e.g., population displacement, loss of income,
change in terrestrial and aquatic species). Second, dam plan-
ning studies typically neglect the role that dams play within
the power grid, and so they are likely to propose dam expan-
sion plans that are less harmful to the environment but not
necessarily feasible from a power system perspective.
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Moreover, while hydropower is generally considered as
a low-carbon resource, recent studies [82, 83] showed that
greenhouse gas emissions from hydropower reservoirs are
not negligible, particularly in the tropics. Recent dam plan-
ning studies have attempted to explicitly optimize dam
locations to minimize the emission from reservoirs [84],
although additional research may be needed to reduce the
uncertainty associated with emission estimates [85] and
thus include this important aspect into grid expansion mod-
els. Despite these growing concerns, hydropower could
still expand substantially in many regions under different
energy-economic conditions, including multi-sector decar-
bonization efforts [86, 87]. Continuous development of the
data related to future hydropower resources could thus sup-
port the integration of this renewable into future decarbonized
grids. Accordingly, continuous improvement is necessary for
hydropower simulation models as well, although this field has
substantially advanced in recent years to incorporate weather
and climate-driven influences on hydropower for grid opera-
tions and planning at both global to sub-national scales [35,
88].

Hydropower’s role in decarbonized electricity systems
needs to be evaluated by considering its multi-sectoral inter-
action with other water and land uses [89, 90]. While grid
decarbonization could require substantial deployment of
hydropower, little is known about its potential influence
on water demand for agriculture and urban supply, as well
as the effects of new reservoirs on land use. For example,
Zeng et al. [91] showed that only 8% of global installed
hydropower complements irrigation water supply, with more
than half of them affecting water availability for irrigation.
A similar analysis for future hydropower is not available.
Our understanding of how future dams will impact sedi-
ment flows and water systems is also limited [92-94]. On
the other hand, while hydropower could provide important
flexibility in operations of future decarbonized grids with
a high share of variable renewable energy [95, 96], the
cost-competitiveness of hydropower could increasingly be
challenged by a rapid decline in the costs of other renew-
ables and battery storage in at least some regions [87, 97,
98]. In turn, this requires further understanding of the trade-
offs between the land-water implications of hydropower vs
the land implications of other renewables (wind, solar, and
bioenergy). Hydropower’s interaction with other water and
land uses could have far-reaching socio-environmental con-
sequences and potential conflicts. Electricity system models,
so far, have had limited ability to adequately represent the
multi-sectoral interactions of hydropower, and associated
water and land constraints. Multi-sectoral models, such as
integrated assessment models, could play an important role
in incorporating such dynamics into the planning of future
decarbonized grids [86], although the representation of water
and land dynamics in these models is still under development.

Moreover, multi-sector models generally operate at coarser
spatio-temporal scales (e.g., global-to-regional and annual),
and, hence, potential coupling of multi-sector models with
finer-scale (e.g., grid and hourly) electricity system models
will require careful harmonization of spatio-temporal data.

Wind, Solar, and Battery Storage

Wind and solar power are predominantly dependent on
wind speed and solar radiation, respectively, whereas their
availability in aregion is generally constrained by topograph-
ical conditions and availability of land and water areas [6,
21, 99]. Most decarbonization studies suggest a large-scale
build-out of wind and solar technologies because of their
declining costs and large potential, often greater than future
expected electricity demand [26, 100, 101]. Because their
spatial footprint is generally greater than most conventional
technologies, wind and solar-dominated future electricity
systems are expected to require a substantial amount of land
and water areas [6, 102, 103]. Moreover, in many regions, sig-
nificant solar PV and wind resources are typically located on
agricultural lands, and the concentrating solar power (CSP)
resources in water-stressed areas, which could limit their
future deployments, especially if best practices of co-use
and revenue sharing are not followed [20, 104, 105]. For
example, different levels of siting ordinances on land avail-
ability can reduce wind and solar resources by up to 87%
and 38% in the US [106]. Societal acceptance and potential
socio-environmetal impacts of wind and solar deployments
also need to be carefully incorporated in future grid planning
to ensure a just and equitable low-carbon transition [107-
109], which could further constrain available wind and solar
resources. In addition, topographic suitability, land availabil-
ity, and economic feasibility of new transmission facilities to
access wind and solar resources—especially those farther
from existing grid infrastructure—could significantly affect
their future deployment in some regions [110, 111]. Because
only a few studies [5, 6, 112] focused on identifying strate-
gic and low-impact siting of wind and solar to minimize their
land, space, and socio-environmental impacts, more region-
specific analyses are necessary. Future research could also
explore the extent and feasibility of relevant alternative tech-
niques and technologies for better space utilization, such as
agri-voltaic [20] and floating solar PV systems [42, 113],
respectively.

Energy generation from wind and solar varies across time
and space, and the spatio-temporal representation of existing
and future deployments can significantly affect the outputs of
energy system models (e.g., generation mix, storage require-
ments, costs, emissions). Capacity expansion or planning
models that cost-optimally select generation, storage, and
transmission assets across several future investment years
often simplify the spatio-temporal representation of wind
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and solar due to computational limitations [57, 58]. Some
studies consider hourly wind and solar data for representa-
tive days to account for diurnal variability of wind and solar
power, whereas others consider hourly data averaged over a
month or year—a choice that could result in under- or over-
estimation of the reliability of wind and solar resources in
future grid planning [114]. Further research is thus neces-
sary to understand how these spatio-temporal simplifications
could affect the planning of future electricity grids, espe-
cially in under-studied regions across the world. Combining
capacity planning studies with probabilistic/stochastic anal-
ysis could help design more resilient electricity systems,
especially against climatic extremes [115, 116]. Importantly,
such analyses require detailed multi-year datasets.

Global datasets of wind and solar potentials at high
spatial resolution (e.g., global atlases for wind: https://
globalwindatlas.info/en, and solar: https://globalsolaratlas.
info/map), some available through web-based interactive
platforms (e.g., REZoning: https://rezoning.energydata.info/
about [112, 117], reV: https://www.nrel.gov/gis/renewable-
energy-potential.html [118]), are helping identify candidate
wind and solar sites for future deployment. Hourly data sets
for wind and solar energy production with global coverage
have been useful for multi-year analysis of future elec-
tricity systems (Renewbles.ninja: https://www.renewables.
ninja/about [119, 120]). At the same time, uncertainties intro-
duced by land-use and other parameter assumptions need to
be accounted for in long-term energy systems models [63].
Lastly, uncertainties from climate change effects on variable
renewable energy, which are larger for wind power availabil-
ity than solar [23, 121], need to be adequately represented
in energy planning models to ensure electricity system reli-
ability. While previous studies have incorporated data from
global and regional climate models to explore the impacts of
long-term variability in wind and solar generation [23, 122],
climate datasets with historical and future meteorological
conditions tailored for energy systems models [122] and con-
sistent modeling frameworks [ 12] are essential for adequately
assessing climate change impacts on future energy systems.
Enhancing modeling initiatives to address these challenges
could critically help understand geophysical constraints on
the future decarbonized grids with high penetration of renew-
ables.

A relatively less-discussed geophysical constraint is the
availability of certain minerals for renewable technolo-
gies and grid infrastructure. Particularly, the availability of
lithium, cobalt, nickel, and manganese is critical for battery
storage [27-29], one of the widely anticipated measures for
grid-reliability in future decarbonized grids with high pen-
etration of variable renewable energy. Moreover, the future
availability of solar PV and wind turbines could also be sub-
stantially constrained by the availability of iron, copper, and
aluminum [28-31]. Because these minerals and materials are
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available in only a few countries and regions, their availability
in the global market could be largely influenced by geopo-
litical decisions [123—125], whose implications are still not
well-understood in future grid planning.

Bioenergy

While the role of bioenergy in future decarbonized grids
could largely depend on techno-economic and policy con-
ditions, their availability is directly related to terrestrial
vegetation, which, in turn, is linked with the availability of
land and water. Moreover, the uncertainty in future availabil-
ity of bioenergy is associated with a phenomenon called the
CO,-fertilization effect, which refers to increased photosyn-
thesis due to elevated atmospheric CO; concentrations [23].
The persistent increase in greening over a large fraction of the
global vegetated area over the last few decades has predomi-
nantly been driven by the CO,-fertilization effect [126—128].
However, increased ambient temperature and droughts under
changed climate could largely reduce the future effects of
CO;-fertilization in many regions [129]. Yet, the future effect
of the phenomenon on global vegetation productivity remains
quite uncertain, largely due to the inability of existing data
and models to quantify how plant ecosystems may adapt
to the carbon, nitrogen, and phosphorus cycles as climate
changes [130].

Electricity system models, and the policies derived from
them, have varied approaches to account for the emissions
from bioenergy generators, particularly from the ones with-
out carbon capture and storage (CCS). Many countries con-
sider bioenergy (e.g., burning wood) as a carbon-neutral fuel
and subsidize it to replace coal in meeting their renewable
energy targets [131]. However, the carbon emission intensity
of bioenergy generators is generally higher than most of the
fossil-fuel-based generators, including coal, whereas neutral-
ization of the emissions through forest regrowth is uncertain
and could take decades to centuries [131, 132]. Bioenergy
with CCS (BECCS), on the other hand, could have nega-
tive global warming potential [133, 134]. Although BECCS
plants are included in many modeling studies in order to meet
deep decarbonization targets, commercial BECCS projects
are still not common. Hence, further research is necessary
to better understand the role of bioenergy (with or without
CCS) in future decarbonized grids.

Grid Operations

The operations of future decarbonized grids could be sub-
stantially constrained by weather and climatic forces. Here,
a positive aspect is that natural hydro-climatic variability
(from inter-annual to hourly) is increasingly getting better
represented in production cost models (see reviews by [14,
15]); the most recent advances even include the incorporation


https://globalwindatlas.info/en
https://globalwindatlas.info/en
https://globalsolaratlas.info/map
https://globalsolaratlas.info/map
https://rezoning.energydata.info/about
https://rezoning.energydata.info/about
https://www.nrel.gov/gis/renewable-energy-potential.html
https://www.nrel.gov/gis/renewable-energy-potential.html
https://www.renewables.ninja/about
https://www.renewables.ninja/about

Current Sustainable/Renewable Energy Reports

of seasonal to sub-seasonal climate forecasts into grid oper-
ations [135]. While substantial attention has so far been paid
to understanding the effect of geophysical constraints on the
operations of specific grid components (e.g., hydropower), a
growing body of literature has started assessing these effects
more holistically at the grid scale (e.g., [136—138]). Typically,
this is accomplished by soft-coupling electricity system mod-
els with separate models simulating the impact of climate
variability on hydropower, wind, solar, and other climate-
dependent generators. Only a few recent studies have started
evaluating the benefits of multi-model hard-coupling [139],
which could be further evaluated for decarbonized grids.
Going forward, further research is necessary to better under-
stand the resilience and reliability of decarbonized grids
under multi-sectoral electricity demands for net-zero transi-
tions. Continuous scientific and policy focus is also necessary
for the effects of geophysical forces on transmission facili-
ties. On one hand, coordinated investment in transmission is
critical to harness the maximum benefit of climate-dependent
generators (e.g., hydropower), whose production could sub-
stantially vary at seasonal to sub-seasonal scales [140]. On
the other hand, the resilience of transmission and distribution
systems against weather and climatic extreme events (e.g.,
flood, snow, heatwave, wildfire) could be a growing concern
in a changing climate [141-143].

Although some studies anticipated that the transition to
electricity systems 100%-based on renewables is feasible
[100, 144-146], the grid-decarbonization process of some
regions may still rely on thermal generators, including bioen-
ergy, nuclear, as well as fossil-based thermal generators with
carbon capture and storage technologies [147]. While the
future cost-effectiveness of these technologies will be lim-
ited by the availability and costs of the respective fuels (e.g.,
coal, gas, oil), the operational availability of these generators
could be substantially constrained by temperature extremes
and droughts, given that the cooling systems of fossil-based
generators depend on air and water. Importantly, the literature
on the water implications of global energy decarbonization
generally presents a ‘partial’ or ‘too wide’ view of future
uncertainties of the energy transition. As an example of the
‘partial” view, Lohmann et al. [33] focused only on the water
use by thermal power plants, and showed that associated
global water withdrawal and consumption could be decreased
by 95% and 98% (by 2050) in a ‘Best Policy Scenario’ with
100% renewable energy compatible to 1.5 °C targets. This
emphasized the water-saving potentials of renewable-based
energy transition, but overlooked the water consumption of
certain renewable resources, such as hydropower and solar
CSP [41]. On the other hand, Fricko et al. [32] showed that
the end-of-century global energy-related water withdrawal
and consumption could vary over quite a wide range (10-
611% and 146-747% relative to 2000 level, respectively)
in decarbonization scenarios under different demand growth

(low, mid, high), development of transportation fleets (con-
ventional vs electric/hydrogen vehicles), portfolios of supply
technologies (varying CCS, RE, etc.), and cooling technolo-
gies (baseline vs phase-out once-through). While this is an
important contribution, the ranges of uncertainties may still
be ‘too broad’ to fully support decision-making processes.
Future studies could focus on narrowing these uncertain-
ties by incorporating dynamics that are critically important
for electricity systems and excluding relatively less likely
factors. Involving different stakeholders, including policy-
makers, in designing model scenarios could be a way of
identifying the ‘important’ and ‘less likely’ factors.

Opportunities to Alleviate Geophysical
Constraints

The geophysical constraints we identified above are a direct
consequence of the systemic interconnections that exist
between power supply systems, hydro-climatic variability,
and availability of natural resources. Given the depth and
breadth of these interconnections, it is perhaps unrealistic to
depict a future in which these systems will be fully decou-
pled. Instead, we ought to imagine a future in which the
effects of geophysical constraints are alleviated through the
implementation of complementary de-risking strategies.

Investment Diversification

Investment diversification is typically seen as a manage-
ment strategy to limit dependence-related problems—the
overall risk to energy supply is smaller if there is a diversi-
fied portfolio of suppliers [111, 148]. This concept is well
exemplified by REPowerEU, the plan envisioned by the
European Commission to make the EU energy and power
supply less dependent on Russia [149]. Investment diversi-
fication is, however, less adopted in relation to geophysical
constraints. Yet, the risks associated with the effect of geo-
physical constraints on poorly diversified power systems are
non-negligible, as demonstrated, for instance, by the impact
of the 2003 heat wave on France’s nuclear sector, which at
the time supplied ~85% of the country’s electricity demand
[150]. Investment diversification is, therefore, a necessary
aspect of grid planning: by promoting a diverse power gener-
ation mix, we acknowledge the presence of hazards and curb
the associated vulnerabilities, ultimately reducing the risks
of power shortfalls—or other negative effects of geophysi-
cal hazards on grid operations. We note that such ‘paradigm
shift” will likely be a result of decarbonization policies that
heavily rely on renewables and, in particular, on solar, wind,
and hydropower. Most countries will indeed require com-
bining all these resources as they progress towards net-zero
energy systems (e.g., [100, 151-153]). Importantly, diver-
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sification must go beyond generation capacity and include
regional to intercontinental trade, which is facilitated by
high-voltage transmission lines. Expanding the transmission
capacity is not only a means to facilitate the integration of
renewables [64, 98, 154, 155]; it also allows us to tap external
resources during extreme conditions [156]. Finally, given that
the demand for critical minerals for clean energy technolo-
gies is set to increase rapidly, the diversification of supply
sources requires more attention. The activities for the explo-
ration of known minerals, as well as identifications of new
alternative minerals, could also be accelerated [28, 29].

Deeper Integration of Renewables

Future grids will be dominated by large shares of renew-
ables, so designing planning and management solutions that
integrate their variable, non-dispatchable production is a
means to limit the effect of geophysical constraints and thus
ensure a more reliable supply of electricity. Here, there are at
least three technological solutions deserving our attention.
First, we need to keep developing energy storage tech-
nologies, whose role in large and interconnected grids will
become pivotal in the next two or three decades [157]. In
this regard, energy storage should be seen as a portfolio
of technologies that includes not only the rapidly growing
utility-scale (short-duration or diurnal scale Lithium Ion) bat-
tery technologies to drive their costs down, but also other
solutions such as flywheels, flow batteries, and hydrogen
energy storage [158]. Compared to Lithium Ion battery tech-
nologies, flow batteries and power-to-gas hydrogen storage
technologies have the potential to provide multi-day to sea-
sonal long-duration storage more cost-effectively because
of their ability to decouple energy and power capacity
[159]. Hydrogen generation technologies can also enable
coupling with the transportation, industry, and heating sec-
tors. Another important long-duration storage technology is
pumped-hydro energy storage (PHES), which has a mas-
sive, and largely unexploited, capacity [160]. In this case,
though, major barriers to the implementation of PHES are
not technological limits or costs, but rather the environmen-
tal impact of dams [161]—yet another form of geophysical
and societal constraint. A second strategy for the integra-
tion of renewables banks on the fact that renewables are
characterized by different peak operating times, so one
could exploit their complementarity. This can be achieved
by combining two or multiple energy sources into a sin-
gle power station (hybridization, see [162]) or by devising
hydropower operational plans that explicitly account for the
variability of solar and wind resources [139, 163]. Finally,
we need to focus not only on utility-scale renewables, but
also on distributed energy resources, including distributed
generation, demand response, and distributed energy stor-
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age. Their increased presence could further facilitate the
decarbonization of the power grid while limiting land-use
impacts [164]. Further technological breakthroughs across
the energy-economic sectors could also accelerate the tran-
sition to low-carbon grids [165-167].

Call for Action

Our analysis of geophysical constraints on decarbonized
power systems leads to the identification of a few key gaps
that could serve as focal points for future research.

Computational Requirements of Power System Models The
current class of planning and operational models may not
be able to fully characterize the impact of geophysical con-
straints on power grids. Setting aside the specific technical
challenges on which we elaborated in “Representation of
Geophysical Constraints into Grid Planning Models”, an
important point worth stressing here is the conflict between
the computational requirements of power system models and
the number of runs needed to study the effect of geophysi-
cal constraints—determining the impact of hydro-climatic
variability on grid reliability, for instance, easily requires
thousands of model evaluations [59, 168]. This problem
exacerbates in studies spanning across large spatio-temporal
domains or adopting a high-resolution representation of the
power grid. The solutions to this problem are, potentially,
many; examples include the re-formulation of the mathemat-
ical programs underpinning the models, the development of
faster solvers [169], or the identification of fast model sur-
rogates [170]. We therefore need to fully investigate these
solutions, generalize them, and adopt the most promising
ones.

Multi-sector Impacts The problem of decarbonizing the
grid—while limiting the impact of geophysical constraints—
is an important guiding principle that may, however, have a
myopic nature: if we focus on one (e.g., decarbonization)
or a few macro objectives, we may accidentally overlook
the unintended consequences of our decisions. The construc-
tion of dams, for instance, helps reduce CO; emissions (at
least in non-tropical locations; see “Hydropower”) and bet-
ter integrate other forms of renewables, but carries several
externalities that have been the subject of harsh criticisms on
dam development [171]. Adopting a perspective that goes
beyond the (still) central role of power systems is there-
fore paramount, as demonstrated by the growing interest
in multi-sector studies [172]. We therefore need to expand
the capability of the existing class of computational mod-
els, which should account not only for the presence of
geophysical constraints, but also for the main multi-sector
consequences caused by grid management decisions.
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Justice and Equity A focal point for future research that
relates to both geophysical constraints and multi-sector
impacts are the concepts of justice and equity. Could geo-
physical constraints impede a just transition to carbon-neutral
power systems? Which communities are affected by adverse
air quality, land use changes, and mineral extraction, and to
what extent? The vast majority of grid modelling frameworks
is unable, to date, to answer these questions. Yet, very recent
research has shown that inequities in exposure to pollution
are common in a variety of situations, such as the increased
emissions from power plants during droughts or the phasing
out of nuclear plants [173, 174]. Going forward, we therefore
call for the development of frameworks that explicitly link
grid management decisions to their societal consequences,
such as changes in air quality standards, changes in land use,
or affected communities.

Closure

In this review, we synthesized the current body of knowl-
edge on the relationship between geophysical forces and
grid decarbonization efforts. We show that present and
future grids are, and will be, exposed to a variety of con-
straints, ranging from changes in electricity demand and
resource availability (driven by global warming) to the lim-
ited availability of land for wind, solar, and transmission
lines. The current class of data, methodological approaches,
and modelling tools are not fully equipped to address
these challenges. Substantial research efforts are therefore
necessary to improve the representation of geophysical con-
straints in computational models, enable faster analyses, and
expand the focus of grid decarbonization studies to include
multi-sector impacts as well as elements of justice and
equity.
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