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Abstract: The Brownian loop soup is a conformally invariant statistical ensemble of
random loops in two dimensions characterized by an intensity λ > 0, with central charge
c = 2λ. Recent progress resulted in an analytic form for the four-point function of a class
of scalar conformal primary “layering vertex operators” Oβ with dimensions (�,�),
with � = λ

10 (1 − cosβ), that compute certain statistical properties of the model. The
Virasoro conformal block expansion of the four-point function revealed the existence of
a new set of operators with dimensions (�+k/3,�+k′/3), for all non-negative integers
k, k′ satisfying |k − k′| = 0 mod 3. In this paper we introduce the edge counting
field E(z) that counts the number of loop boundaries that pass close to the point z. We
rigorously prove that the n-point functions of E are well defined and behave as expected
for a conformal primary field with dimensions (1/3, 1/3). We analytically compute
the four-point function

〈Oβ(z1)O−β(z2)E(z3)E(z4)
〉
and analyze its conformal block

expansion. The operator product expansions of E × E and E ×Oβ contain higher-order
edge operators with “charge” β and dimensions (� + k/3,� + k/3). Hence, we have
explicitly identified all scalar primary operators among the new set mentioned above.
We also re-compute the central charge by an independent method based on the operator
product expansion and find agreement with previous methods.

1. Introduction

This article is concerned with a new family of conformal field theories that arise from
the Brownian loop soup. In this section we provide some background, introduce some
terminology, discuss the structure of the paper and present the main results.

1.1. The Brownian loop soup. The Brownian loop soup (BLS) [1] is an ideal gas of
Brownian loops with a distribution chosen so that it is invariant under local conformal
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transformations. The BLS is implicit in the work of Symanzik [2] on Euclidean quantum
field theory, more precisely, in the representation of correlation functions of Euclidean
fields in terms of random paths that are locally statistically equivalent to Brownian
motion. This representation can be made precise for the Gaussian free field, in which
case the random paths are independent of each other and can be generated as a Poisson
process.

TheBLS is closely related not only toBrownianmotion and theGaussian free field but
also to the Schramm-Loewner Evolution (SLE) andConformal LoopEnsembles (CLEs).
It provides an interesting and useful link between Brownian motion, field theory, and
statistical mechanics. Partly motivated by these connections, as well as by a potential
application to cosmology in the form of a conformal field theory for eternal inflation
[3], three of the present authors introduced a set of operators that compute properties
of the BLS and discovered new families of conformal primary fields depending on a
real parameter β [4]. One such family are the fields Oβ . These operators have scaling
dimensions �(β) = λ

10 (1 − cosβ) and are periodic under β → β + 2π , with O0 ≡
O2π = 1 (the identity operator). Their n-point function

〈Oβ1(z1) . . .Oβn (zn)
〉
C
in the

full plane is identically zero unless
∑n

j=1 β j = 0 mod 2π , which is reminiscent of the
“charge neutrality” or “charge conservation” condition that applies to vertex operators of
the free boson [5]. The existence of the operatorsOβ as generalized random fields (i.e.,
random distributions in the sense of Schwartz) was proved in [6] when �(β) < 1/2.

These operators were further studied in [7], where it is shown that the operator
product expansion (OPE) Oβi × Oβ j predicts the existence of operators of dimensions

(�i j + k
3 ,�i j + k′

3 ) for all non-negative integers k, k′ satisfying |k − k′| = 0 mod 3,
where �i j = λ

10 (1 − cos(βi + β j )). The simplest case is k = k′ = 1 and βi + β j = 0
mod 2π so that �i j = 0 and the dimensions are (1/3, 1/3). These results were derived
by exploiting a connection between the BLS and the O(n) model in the limit n → 0.
Further generalizations of the layering operators were explored in [8].

While the analysis in [7] demonstrated that new operators must exist and allowed us
to compute their dimensions and three-point function coefficients with Oβ , it did not
provide a clue as to how they are defined in terms of loops of the BLS loop ensemble.
In this paper we introduce a new field E(z) that counts the number of outer bound-
aries of BLS loops that pass close to z and rigorously prove that its n-point functions
are well defined and behave as expected for a primary field. We identify E with the
operator of dimensions (1/3, 1/3) discovered in [7], compute the four-point function〈Oβ(z1)O−β(z2)E(z3)E(z4)

〉
C
, and perform its Virasoro conformal block expansion.

This provides further information about three-point function coefficients and the spec-
trum of primary operators. We further define higher order (k = k′ > 1) and charged
(β �= 0) generalizations of this operator that can be identified with the operators of
dimensions (�i j + k

3 ,�i j + k
3 ). In other words, we identify and explicitly define in terms

of the loops all spin-zero primary fields emerging from the Virasoro conformal block
expansion derived in [7].

This corpus of results establishes the BLS as a novel conformal field theory (CFT),
or class of conformal field theories, with certain unique features (such as the periodicity
of the operator dimensions in the charge β). Nevertheless, many aspects of this CFT
remain mysterious — among other things, the nature of the operators with non-zero
spin, |k − k′| �= 0. The relation of this CFT to other better-known CFTs and its possible
role as a model for physical phenomena also remains unclear.
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1.2. Conformal field theory. Conformal field theory (CFT) is the study of a special class
of Euclidean quantum field theories endowed with conformal symmetry. For decades,
CFT has attracted a great deal of attention in both the physics and mathematics commu-
nities because of its central role in the description of critical phenomena (second-order
phase transitions) and in string theory, and as a playground to study interacting quantum
field theories. CFT has also had a big impact on various aspects of modern mathematics,
for example with the introduction of the concept of vertex algebra by Borcherds [9,10].

In two dimensions, the conformal symmetry is so powerful that it allows to provide
a general framework [11] that leads to very strong predictions. Indeed, two-dimensional
conformal field theories represent a rare example of quantum field theories that can be
exactly solved, and the physics literature contains a wealth of results on two-dimensional
conformal field theories (see, for example, [5,12–14] and Part II of [15]).

The mathematics literature on CFT is also vast. Rigorous approaches to CFT can
be broadly divided in three different groups: a geometrical approach initiated by Segal
[16]; an algebraic approach, initially due toBorcherds [9,10] and Frenkel, Lepowsky and
Meurman [17], and developed further by Frenkel, Huang and Lepowsky [18] and Kac
[19]; a functional analytic approach, pioneered by Wassermann [20] and Gabbiani and
Fröhlich [21], in which techniques from algebraic quantum field theory are employed.

In this paper, we don’t attempt to give a precise definition of a general CFT, instead
we deal with a specific class of models derived from the BLS. Practically speaking,
for us a CFT is essentially a collection of (limiting) correlation functions satisfying
a conformal covariance property (see, e.g., Theorem 2.3 below.) These are obtained
from the n-point correlation functions of local observable fields, defined with the help
of ultraviolet cutoffs, when the cutoffs are sent to zero. Heuristically, these limiting
functions are interpreted as then-point correlation functions ofEuclidean quantumfields.
When their n-point functions satisfy conformal covariance, in the sense of Lemma 2.2
and Theorem 2.3, the fields are called conformal primary fields, primary operators
or simply (conformal) primaries. These are the fundamental building blocks of any
conformal field theory.

We point out that in this paper we do not deal we the question of the existence of the
fields themselves, beyond their correlation functions. For some results in this direction,
the interested reader is referred to [6] for results on the fields Oβ , to [22] for results on
related fields, and to [23] for results on the Ising spin (magnetization) field.

An important tool in CFT, and one that will appear often in the rest of this paper, is
the operator product expansion (OPE),

A(z1) × B(z2) =
∑

k

CPk
A,B(z1, z2)Pk(z2), (1)

a formal expansion of the product of two fields, A and B, at different points, z1 and z2,
as a (possibly infinite) sum of local fields Pi . Since the fields involved in an OPE are
typically not defined pointwise, the expression (1) is only defined in expectation, that is,

〈A(z1)B(z2)G〉 =
∑

k

CPk
A,B(z1, z2) 〈Pk(z2)G〉 , (2)

where G is any product of local fields at points different from z1, z2. This expansion is
useful because it allows to probe the spectrum of the theory, i.e., the collection {Pi }i of
all local fields of the CFT.

The functional form of the coefficient CPk
A,B of the OPE is determined by the require-

ment of conformal covariance up to certain constants, which are called the structure
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constants of the theory. In a certain sense, “solving” a CFT is essentially equivalent to
identifying its central charge, spectrum, and structure constants [5]. In this paper, using
a combination of rigorous and theoretical-physics methods, we achieve progress in these
directions for a particular family of CFTs obtained from the BLS.

1.3. Preliminary definitions. If A is a set of loops in a domain D, the partition function
of the BLS restricted to loops from A can be written as

ZA =
∞∑

n=0

λn

n!
(
μ
loop
D (A)

)n
, (3)

where λ > 0 is a constant and μloop is a measure on planar loops in D called Brownian
loop measure and defined as

μ
loop
D :=

∫

D

∫ ∞

0

1

2π t2
μbr
D,z,t dt dA(z), (4)

where A denotes area and μbr
D,z,t is the restriction of the complex Brownian bridge

measure with starting point z and duration t to loops that stay in D.1 ZA can be thought
of as the grand canonical partition function of a system of loops with fugacity λ, and the
BLS can be shown to be conformally invariant and to have central charge c = 2λ (see
[1,4]).

In this paper we will only be concerned with the outer boundaries of Brownian loops.
More precisely, given a planar loop γ in C, its outer boundary or “edge” � = �(γ ) is the
boundary of the unique infinite component of C \ γ .2 Note that, for any planar loop γ ,
�(γ ) is a simple closed curve, i.e., a closed loop without self-intersections, unless γ has
cut points. Since the complex Brownian bridge assigns probability zero to loops γ with
one or more cut points, in this paper, we will work with collections L of simple loops �

which are the outer boundaries of the loops from a BLS and for us, with a slight abuse
of terminology, a BLS will be a collection of simple loops. With this understanding,
the λ → 0 limit (interpreted appropriately) reduces to the case of a single self-avoiding
loop. There is a unique (up to an overall multiplicative constant) conformally invariant
measure on such loops [25], which is also believed to describe the n → 0 limit of the
critical O(n) model. Exploiting this conjectural connection allowed us to obtain exact
results for certain correlation functions here and in our previous work [7].

Given a simple loop �, let �̄ denote its interior, i.e. the unique bounded simply
connected component of C \ �. In other words, a point z belongs to �̄ if � disconnects
z from infinity, in which case we write z ∈ �̄. In [4], the authors studied the correlation
functions of the layering operator or field3 Vβ(z) = exp(iβ

∑
�:z∈�̄ σ�(z)), where σ� are

independent, symmetric, (±1)-valued Boolean variables associated to the loops. One
difficulty arises immediately due to the scale invariance of the BLS, which implies that
the sum at the exponent is infinite with probability one. This difficulty can be overcome
by imposing a short-distance cutoff δ > 0 on the diameter of loops (essentially removing

1 We note that the Brownian loop measure should be interpreted as a measure on “unrooted” loops, that is,
loops without a specified starting point. Unrooted loops are equivalence classes of rooted loops. The interested
reader is referred to [1] for more details.

2 Models that consider loops in their entirety are also interesting and are studied in [22,24].
3 In this paper we use the terms field and operator interchangeably.
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z1

z2
ε

Fig. 1. A Brownian loop (thin NYU violet line) and its boundary (thick violet line; the interior is shaded).
Such a loop would contribute to the two-point function of edge operators inserted at z1 and z2 because the
loop comes within ε of both. It would contribute to a layering operator inserted at z1 (but not z2) because z1
(but not z2) is in the interior of the loop (that is, the loop separates z1 from infinity, but not z2)

from the loop soup all loops with diameter smaller than δ.4) As shown in [4], the cutoff δ
can be removed by rescaling the cutoff version V δ

β of Vβ by δ−2�(β) and sending δ → 0.

When δ → 0, the n-point correlation functions of δ−2�(β)V δ
β converge to conformally

covariant quantities [4], showing that the limiting field is a scalar conformal primary field
with real and positive scaling dimension varying continuously as a periodic function of
β, namely as �(β) = �̄(β) = λ

10 (1 − cosβ). This limiting field is further studied in
[7], where its canonically normalized version is denoted by Oβ .5

The edge field E(z) studied in this paper counts the number of loops � passing within
a short-distance ε of the point z. The cutoff and renormalization procedure described in
Sect. 2 shows that E has well defined n-point functions which are conformally covariant,
and that it behaves like a scalar conformal primary with scaling dimension (1/3, 1/3).
This scaling dimension can be understood qualitatively as follows. It is known that the
fractal dimension of the boundary of a Brownian loop is 4/3 [26]. Fattening the loop’s
boundary into a strip6 of width ε, a fractal dimension of 4/3 means that the area of the
strip is proportional to ε2/3. Hence the probability for a loop to come within ε of a given
point scales as ε2/3. Loops that contribute to the two-point function of the edge operator
with itself must come close to both points (Fig. 1). Therefore the two-point function
must be proportional to the ratio |ε/z12|4/3, where ε4/3 is proportional to the square of
the probability mentioned above and the power of z12 := z1−z2 follows from invariance
under an overall scale transformation (ε, z) → (λε, λz). This dependence on |z12| is
that of a scalar operator with dimension (1/3, 1/3).

In Sect. 6.1 we identify additional scalar fields resulting from combinations of the
edge field E with itself that we denote by E (k) and call higher-order edge operators.

4 An additional infrared cutoff or a “charge neutrality” or “charge conservation” conditionmay be necessary
in some circumstances — we refer the interested reader to [4] for more details.

5 By canonically normalized we mean that the full-plane two-point function
〈Oβ(z)O−β(z′)

〉
C

=
|z − z′|−2�(β), where 〈·〉C denotes expectation with respect to the BLS on the full plane.

6 Recipes for Wiener sausages in Brownian soups are available on special request.
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These fields have holomorphic and anti-holomorphic dimension k/3 for all non-negative
integers k. In Sect. 6.2we discuss “charged” versions of the (higher-order) edge operators
resulting from combinations of the edge field with itself and with the layering field
Oβ ; we denote these by E (k)

β and call them charged edge operators. These fields have

holomorphic and anti-holomorphic dimension �(β) + k
3 , with non-negative integer k.

The higher-order and charged edge operators complete the list of all scalar primary fields
in the conformal block expansion derived in [7].

1.4. Structure of the paper. This paper contains both rigorous results and “physics-
style” arguments and is written with a mixed audience of mathematicians and physicists
in mind. The rigorous results are generally presented as lemmas or theorems in the text;
they include explicit expressions for certain correlation functions and the proof that
the n-point correlation functions of the edge operator E and of the higher-order edge
operators E (k) are conformally covariant. The proofs of some of the rigorous results are
collected in the appendix to avoid breaking the flow of the paper.

More precisely, the main rigorous results are presented in Sects. 2, 3, 5 and 6.1 and,
for the sake of clarity, they are stated as lemmas and theorems. Equations (6.19) of [7]
and (52) of [27], used in Sects. 3 and 5, respectively, are not rigorous, as well as the
identification in (95) of Sect. 5. The calculations in Sect. 4 are rigorous up to equation
(74). The definitions and results of Sects. 6.2, 7 and 8 rely on various assumptions and
physics-style theoretical arguments.

Objects denoted with script letters, such as E and Oβ (which we call either fields or
operators, following standard physics terminology), require a regularization and are not
defined pointwise. They may exist as generalized functions (distributions in the sense
of Schwartz), but we do not investigate this issue in this paper. (For some results in
this direction, see [6,22].) Expectation values of such objects represent the limits of the
corresponding expectation values of the regularized objects, which are defined pointwise
(almost everywhere).We stress that, while the fields/operators we introduce in this paper
may only be defined formally, their n-point functions, which are the objects we work
with, are well defined (pointwise) as limits of the n-point functions of the corresponding
regularized fields.

The edge operator E is introduced in Sect. 2, where its correlation functions are dis-
cussed. Section 3 contains the computation of

〈Oβ(z1)O−β(z2)E(z3)
〉
C
, including the

structure constant CE
OβO−β

. Section 4 contains a derivation of the OPE of Oβ × O−β

and the identification of the edge operator E with the primary operator of dimension
(1/3, 1/3) discovered in [7]. Section 5 contains the calculation of the full-plane four-
point function

〈Oβ(z1)O−β(z2)E(z3)E(z4)
〉
C
. Higher-order and charged edge operators

are introduced in Sects. 6.1 and 6.2, respectively, where their correlation functions are
discussed. The Virasoro conformal block expansion resulting from the four-point func-
tion

〈Oβ(z1)O−β(z2)E(z3)E(z4)
〉
C
is developed in Sect. 7.1, while Sect. 7.2 contains

a direct derivation of the full-plane three-point function 〈E(z1)E(z2)E(z3)〉C, including
the structure constantCE

EE . Section 8 contains a new derivation of the fact that the central
charge of the BLS with intensity λ is c = 2λ.

1.5. Summary of the main results. The domains D considered in this paper are the full
(complex) plane C, the upper-half plane H or any domain conformally equivalent to H.
In this section and in the rest of the paper, we use 〈·〉D to denote expectation with respect
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to the BLS in D. The domain will be explicitly present in our notation when we want to
emphasize its role; if the domain is not denoted in a particular expression (for example,
if we use 〈·〉 instead of 〈·〉D or μloop instead of μ

loop
D ), it means that that expression is

valid for any of the domains mentioned above.
The first group ofmain results concerns the Brownian loopmeasureμ

loop
D in a domain

D, the n-point functions of the edge operator E , which can be expressed in terms ofμloop
D ,

and the relation between E andOβ .7 To formulate the results, we letϑε denote the scaling
limit of the probability that, in critical site percolation on the triangular lattice, there are
one open and two closed paths crossing the annulus with inner radius ε and outer radius
1, known as a three-arm event. The existence of the limit is guaranteed by the existence
of the full scaling limit of critical percolation [24], and it is known that ϑε ∼ ε2/3 (see
Lemma A.2 for a precise statement).

• In Sect. 2 we prove that, for any collection of distinct points z1, . . . , zk ∈ D with
k ≥ 2, letting Bε(z j ) denote the disk of radius ε centered at z j , the following limit
exists:

α
z1,...,zk
D := lim

ε→0
ϑ−k

ε μ
loop
D (� ∩ Bε(z j ) �= ∅ ∀ j = 1, . . . , k). (5)

Moreover, α
z1,...,zk
D is conformally covariant in the sense that, if D′ is a domain

conformally equivalent to D and f : D → D′ is a conformal map, then

α
f (z1),..., f (zk)
D′ =

⎛

⎝
k∏

j=1

| f ′(z j )|−2/3

⎞

⎠α
z1,...,zk
D . (6)

• The field E formally defined by

E(z) := ĉ√
λ
lim
ε→0

ϑ−1
ε

(Nε(z) − 〈Nε(z)〉
)
, (7)

whereNε(z) counts the number of loops � that come to distance ε of z,8 behaves like
a conformal primary field with scaling dimension 2/3. The constant ĉ can be chosen
so that E is canonically normalized, i.e.

〈E(z1)E(z2)〉C = |z1 − z2|−4/3. (8)

• More precisely, we prove that, if D′ is a domain conformally equivalent to D and
f : D → D′ is a conformal map, then

〈E( f (z1)) . . . E( f (zn))〉D′ =
⎛

⎝
n∏

j=1

| f ′(z j )|−2/3

⎞

⎠ 〈E(z1) . . . E(zn)〉D . (9)

• Letting z jk := z j − zk , in Sect. 3 we prove that

〈Oβ(z1)O−β(z2)E(z3)
〉
C

= CE
OβO−β

1

|z12|4�(β)

∣∣∣∣
z12

z13z23

∣∣∣∣

2/3

. (10)

7 The edge operator is properly defined in Sect. 2 below.
8 We note that Nε(z) is infinite with probability one because of the scale invariance of the BLS, but its

centered version Eε(z) := Nε(z) − 〈Nε(z)〉 has well defined n-point functions — see Lemma 2.1.
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Using the non-rigorous equation (6.19) of [7], we obtain the three-point structure
constant

CE
OβO−β

= −√
λ(1 − cosβ)

27/6π

31/4
√
5
(1/6)
(4/3)

. (11)

• In Sect. 4 we argue that the OPE of Oβ × O−β takes the form

Oβ(z) × O−β(z′)

= |z − z′|−4�(β)
(
1 + CE

OβO−β
|z − z′|2/3E(z) + CE (2)

OβO−β
|z − z′|4/3E (2)(z)

+ o
(|z − z′|4/3)

)
, (12)

where 1 is the identity operator and
(
CE (2)

OβO−β

)2 = 1

2

(
CE
OβO−β

)4
. (13)

• In Sect. 5 we prove that the mixed full-plane four-point function
〈
Oβ(z1)O−β(z2)

E(z3)E(z4)
〉

C

exists and is conformally covariant. Using a non-rigorous result of

Simmons and Cardy [27], we argue that it has the following explicit expression:
〈Oβ(z1)O−β(z2)E(z3)E(z4)

〉
C

= |z12|−4�(β)

·
[
1 + cosβ

2
|z34|−4/3 +

1 − cosβ

2
Z twist + λ(1 − cosβ)2α̂

z3
z1|z2 α̂

z4
z1|z2

]
, (14)

where

α̂
zl
z j |zk ;C = 27/6π

31/4
√
5
(1/6)
(4/3)

∣∣∣∣
z jk
z jl zkl

∣∣∣∣

2/3

(15)

and

Z twist =
∣∣∣∣∣

z13z24
z234z23z14

∣∣∣∣∣

2/3 [ ∣∣∣∣2F1

(
−2

3
,
1

3
; 2
3
,
z12z34
z13z24

)∣∣∣∣

2

− 4

( 2
3

)6



( 4
3

)2


( 1
3

)4

∣∣∣∣
z12z34
z13z24

∣∣∣∣

2/3 ∣∣∣∣2F1

(
−1

3
,
2

3
; 4
3
,
z12z34
z13z24

)∣∣∣∣

2 ]
. (16)

• In Sect. 6.1 we prove that the higher-order edge operators E (k) behave like canoni-
cally normalized primary fields. More precisely, for each k ∈ N,

〈
E (k)(z1)E (k)(z2)

〉

C

= |z1 − z2|−4k/3. (17)

Moreover, if D′ is a domain conformally equivalent to D and f : D → D′ is a
conformal map, then

〈
E (k1)( f (z1)) . . . E (kn)( f (zn))

〉

D′

=
⎛

⎝
n∏

j=1

| f ′(z j )|−2k j /3

⎞

⎠
〈
E (k1)(z1) . . . E (kn)(zn)

〉

D
. (18)
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• In Sect. 6.2 we further generalize the edge operators E (k) mixing them with the
layering operator Vβ .

• In Sect. 7.1 we argue that the OPE of Oβ × E takes the form

Oβ(z) × E(z′) = C
Oβ

OβE |z − z′|−2/3Oβ(z) + C
Eβ

OβEEβ(z) +R (19)

where C
Oβ

OβE = CE
OβO−β

,

(
C
Eβ

OβE
)2 = 1 + cosβ

2
(20)

and, here and below, R represents the remaining terms in the expansion.
• In Sect. 7.2 we argue that the OPE of E × E contains the terms

E(z) × E(z′)

= |z − z′|−4/3
(
1 + CE

EE |z − z′|2/3E(z) + CE (2)

EE |z − z′|4/3E (2)(z) +R
)

,
(21)

where the three-point structure constants are

CE
EE = 1√

λ

213/6 31/4
√
5π3/2 


( 2
3

)



( 1
6

)3


( 7
6

) (22)

CE (2)

EE = √
2. (23)

• In Sect. 8we show that the central charge of theBLS can be independently re-derived
to be c = 2λ by computing the two-point function of the stress-tensor,

〈T (z1)T (z2)〉C = c/2

z412
, (24)

from (14) by applying the OPEs of E × E and Oβ × O−β .

2. The Edge Counting Operator

For a domain D ⊆ C, a point z ∈ C, a real number ε > 0, and a collection L of simple
loops in D, let nε

z(L) denote the number of loops � ∈ L such that � ∩ Bε(z) �= ∅,
where Bε(z) denotes the disk of radius ε centered at z. We define formally the “random
variable” Nε(z) = nε

z(L) where L is distributed like the collection of outer boundaries
� = �(γ ) of the loops γ of a Brownian loop soup in D with intensity λ (see Sect. 1.3).

Nε(z) counts the number of loops γ of a Brownian loop soup whose “edge” � (the
outer boundary) comes ε−close to z; it is only formally defined because it is infinite
with probability one. Nevertheless, we will be interested in the fluctuations of Nε(z)
around its infinite mean, which can be formally written as

Eε(z) := Nε(z) − 〈Nε(z)〉D
= Nε(z) − λμ

loop
D (� ∩ Bε(z) �= ∅), (25)

where 〈·〉D denotes expectation with respect to the Brownian loop soup in D (of fixed
intensity λ) and μ

loop
D is the Brownian loop measure restricted to D, i.e. the unique (up

to a multiplicative constant) conformally invariant measure on simple planar loops [25].
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To make precise sense of (25), we define N δ
ε (z) := nε

z(Lδ) and Eδ
ε (z) := N δ

ε (z) −〈
N δ

ε (z)
〉
, where Lδ is a Brownian loop soup with cutoff δ > 0, obtained by taking the

usual Brownian loop soup and removing all loops with diameter9 smaller than δ. The
random variables N δ

ε (z) and Eδ
ε (z) are well defined because of the cutoffs ε and δ and

due to the fact that the BLS is thin in the sense of [28]. In LemmaA.1 of the appendix we
show that, while Eε(z) is only formally defined, its n-point functions, defined as limits
of the n-point functions of the corresponding regularized quantities, i.e.,

〈Eε(z1) . . . Eε(zn)〉D := lim
δ→0

〈
Eδ

ε (z1) . . . Eδ
ε (zn)

〉
D , (26)

exist for all collections of points z1, . . . , zn at distance greater than 2ε from each other,
with n ≥ 2. In fact,

〈Eε(z1) . . . Eε(zn)〉D = 〈
Eδ

ε (z1) . . . Eδ
ε (zn)

〉
D (27)

for all ε, δ > 0 sufficiently small (depending on the points z1, . . . , zn), so that the limit
in (26) can be dropped.10

There is a closed-form expression for the n-point functions defined in (26) in terms
of the Brownian loop measure μ

loop
D , as stated in the following lemma, whose proof is

presented in the appendix.

Lemma 2.1. For any ε > 0 and any collection of distinct points z1, . . . , zn ∈ D at
distance greater than 2ε from each other, with n ≥ 2, let� denote the set of all partitions
of {1, . . . , n} such that each element Il of {I1, . . . , Ir } ∈ � has cardinality |Il | ≥ 2;
then

〈Eε(z1) . . . Eε(zn)〉D =
∑

{I1,...,Ir }∈�

λr
r∏

l=1

μ
loop
D (� ∩ Bε(z j ) �= ∅ ∀ j ∈ Il). (28)

We remind the reader that ϑε denotes the scaling limit of the probability that, in
critical site percolation on the triangular lattice, there are one open and two closed paths
crossing the annulus with inner radius ε and outer radius 1, known as a three-arm event,
and that ϑε ∼ ε2/3. A central result of this paper is the fact that the field formally defined
by

E(z) := ĉ√
λ
lim
ε→0

ϑ−1
ε Eε(z) (29)

behaves like a conformal primary, where the constant ĉ is chosen to ensure that E is
canonically normalized, i.e.,

〈E(z1)E(z2)〉C = |z1 − z2|−4/3. (30)

As wementioned in Sect. 1.4, E(z) is actually defined in terms of limits of correlation
functions, i.e.,

〈E(z1) . . . E(zn)〉D :=
(

ĉ√
λ

)n

lim
ε→0

ϑ−n
ε 〈Eε(z1) . . . Eε(zn)〉D . (31)

9 The diameter of a loop is defined as the largest distance between any two points on the loop.
10 This happens because, when ε and δ are small, in the calculation of

〈
Eδ

ε (z1) . . . Eδ
ε (zn)

〉

D
, due to the

centering of Eδ
ε (z j ), the only terms that do not vanish become independent of δ (see the proof of Lemma A.1

in the appendix).
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The existence of the limit in the right hand side of (31) relies crucially on the following
lemma, which is interesting in its own right, and whose proof is given at the end of this
section.

Lemma 2.2. Let D ⊆ C be either the complex planeC or the upper-half planeH or any
domain conformally equivalent toH. For any collection of distinct points z1, . . . , zk ∈ D
with k ≥ 2, the following limit exists:

α
z1,...,zk
D := lim

ε→0
ϑ−k

ε μ
loop
D (� ∩ Bε(z j ) �= ∅ ∀ j = 1, . . . , k). (32)

Moreover, αz1,...,zk
D is conformally covariant in the sense that, if D′ is a domain confor-

mally equivalent to D and f : D → D′ is a conformal map, then

α
f (z1),..., f (zk )
D′ =

⎛

⎝
k∏

j=1

| f ′(z j )|−2/3

⎞

⎠α
z1,...,zk
D . (33)

For any collection of points z1, . . . , zn ∈ D and any subset S = {z j1, . . . , z jk } of
{z1, . . . , zn}, let αS

D := α
z j1 ,...,z jk
D . The existence and the conformal covariance of the

limit in (31) is the content of the next theorem, which is one of the main results of this
paper.

Theorem 2.3. Let D ⊆ C be either the complex planeC or the upper-half planeH or any
domain conformally equivalent toH. For any collection of distinct points z1, . . . , zn ∈ D
with n ≥ 2, the following limit exists:

gD(z1, . . . , zn) := lim
ε→0

ϑ−n
ε 〈Eε(z1) . . . Eε(zn)〉D . (34)

Moreover, if S = S(z1, . . . , zn) denotes the set of all partitions of {z1, . . . , zn} such that
each element Sl of (S1, . . . , Sr ) ∈ S has cardinality |Sl | ≥ 2, then

gD(z1, . . . , zn) =
∑

(S1,...,Sr )∈S
λrα

S1
D . . . α

Sr
D . (35)

Furthermore, gD(z1, . . . , zn) is conformally covariant in the sense that, if D′ is a
domain conformally equivalent to D and f : D → D′ is a conformal map, then

gD′( f (z1), . . . , f (zn)) =
(

n∏

k=1

| f ′(zk)|−2/3

)

gD(z1, . . . , zn). (36)

Proof. The existence of the limit in (34) follows from (28) combined with the existence
of the limit in (32). The expression in (35) follows directly from (28) and the definition
of αz1,...,zk (D) in (32). The conformal covariance expressed in (36) is an immediate
consequence of (35) and (33). ��

Using the notation introduced in (29), we will write

〈E(z1) . . . E(zn)〉D := ĉn

λn/2 gD(z1, . . . , zn), (37)

despite the fact that E is only formally defined. To simplify the notation, we define

α̂
z1,...,zk
D := ĉk α

z1,...,zk
D . (38)
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In particular, using this notation, the two-, three- and four-point functions are

〈E(z1)E(z2)〉D = α̂
z1,z2
D (39a)

〈E(z1)E(z2)E(z3)〉D = 1√
λ

α̂
z1,z2,z3
D (39b)

〈E(z1)E(z2)E(z3)E(z4)〉D = 1

λ
α̂
z1,z2,z3,z4
D

+ α̂
z1,z2
D α̂

z3,z4
D + α̂

z1,z3
D α̂

z2,z4
D + α̂

z1,z4
D α̂

z2,z3
D . (39c)

We note that, combining (31) with (26), one can see that the definition of
〈E(z1) . . . E(zn)〉D requires a double limit. In our presentation, we have first taken the
limit δ → 0 and then the limit ε → 0.However, the validity of (27) for all ε, δ sufficiently
small shows that the order of the limits is immaterial.

We conclude this section with the proof of Lemma 2.2.

Proof of Lemma 2.2. Consider the full scaling limit of critical percolation in D con-
structed in [24] and denote it by FD . FD is a collection of non-simple, non-crossing
loops distributed like CLE6 in D [29]. As explained in Section 8 of [25], the “outer
perimeters” of loops from FD are (almost surely) simple loops distributed like the outer
boundaries of Brownian loops. Hence, there is a close connection between the Brownian
loop measure μ

loop
D and the collection of loops constructed in [24].

More precisely, let P denote the distribution of FD and E denote expectation with
respect to P. SinceFD is conformally invariant, if A is a measurable set of self-avoiding
loops andNA is the number of loops
 fromFD such that their outer perimeters �(
) are
in A, E(NA) defines a conformally invariant measure on self-avoiding loops. Moreover,
since the measure μ

loop
D is unique, up to a multiplicative constant, we must have

μ
loop
D (A) = �E(NA), (40)

where 0 < � < ∞ is a constant.
Now consider the set of simple loops Sε = {� ∈ D : �∩ Bε(z j ) �= ∅ ∀ j = 1, . . . , k}.

Thanks to the scale invariance ofμloop
D andFD , we can assumewithout loss of generality

that the points z1, . . . , zk are at distance much larger than 1 from each other and from
∂D. We write FD ∈ Sε to indicate the event that a configuration from FD contains at
least one loop 
 such that �(
) ∈ Sε.

For each j = 1, . . . , k, consider the annulus Aε,1(z j ) := B1(z j ) \ Bε(z j ) centered
at z j with outer radius 1 and inner radius ε. Because of our assumption on the distances
between the points z j , j = 1, . . . , k, the annuli do not overlap. The configurations from
FD for whichNSε > 0 (i.e., such that FD ∈ Sε) are those that contain at least one loop

 whose outer perimeter �(
) intersects Bε(z j ) for each j = 1, . . . , k. They can be split
in two groups as described below, where a three-arm event inside Aε,1(z j ) refers to the
presence of a loop 
 such that the annulus Aε,1(z j ) is crossed from the inside of Bε(z j )
to the outside of B1(z j ) by two disjoint outer perimeter paths belonging to �(
) and by
one path within the complement of the unique unbounded component of C \ 
.

(i) Configurations that induce a three-arm event inside Aε,1(z j ) for each j = 1, . . . , k,
for which NSε = 1.

(ii) Configuration that induce more than three arms in Aε,1(z j ) for at least one j =
1, . . . , k, for which NSε ≥ 1.
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The probability of a three-arm event in Aε,1(z j ) is ϑε ∼ ε2/3 as ε → 0, while the
probability to have four or more arms in Aε,1(z j ) is o(ϑε) as ε → 0 [30]; therefore

ϑ−k
ε E(NSε ) = ϑ−k

ε P(FD ∈ Sε and there is a three-arm event in each Aε,1(z j )) + O(ε).

(41)

It follows from the construction of FD in [24], which uses the locality of SLE6, that
a configuration in group (i) can be constructed by first generating independent config-
urations inside B1(z j ) for each j = 1, . . . , k, requiring that each induces a three-arm
event in Aε,1(z j ), and then generating a “matching” configuration in D \ ∪k

j=1B1(z j ).
A configuration inside B1(z j ) contains loops and arcs starting and ending on ∂B1(z j ).
Moreover, since Aε,1(z j ) contains a three-arm event, exactly one outer perimeter arc
starting and ending on ∂B1(z j ) intersects Bε(z j ). Each arc in B1(z j ) has a pair of end-
points on ∂B1(z j ). We let I j denote the collection of endpoints on ∂B1(z j ), together
with the information regarding which endpoints are connected to each other, and we de-
note by νε

j the distribution of I j , conditioned on the occurrence of a three-arm event. An
important observation is that, conditioned on I j for each j = 1, . . . , k, the configuration
in D \ ∪k

j=1B1(z j ) is independent of the configurations inside B1(z j ) for j = 1, . . . , k.

If we let G denote the event that endpoints on ∂B1(z j ) are connected in D \∪k
j=1B1(z j )

in such a way that overall the resulting configuration in D is in Sε, this observation
allows us to write

P(FD ∈ Sε and there is a three-arm event in Aε,1(z j )∀ j = 1, . . . , k)

= P(FD ∈ Sε| there is a three-arm event in Aε,1(z j )∀ j = 1, . . . , k)

P(there is a three-arm event in Aε,1(z j )∀ j = 1, . . . , k)

= ϑk
ε

∫
P(G|I1, . . . , Ik)

k∏

j=1

dνε
j (I j ). (42)

Combining this with (41), we obtain

lim
ε→0

ϑ−k
ε E(NSε ) = lim

ε→0

∫
P(G|I1, . . . , Ik)

k∏

j=1

dνε
j (I j ), (43)

where P(G|I1, . . . , Ik) does not depend on ε and νε
j is the distribution of endpoints on

∂B1(z j ) conditioned on the occurrence of a three-arm event in Aε,1(z j ), or equivalently
on the existence of a single outer perimeter arc starting and ending on ∂B1(z j ) and
intersecting Bε(z j ).

Now observe that requiring the existence of a single outer perimeter arc that intersects
Bε(z j ) and sending ε → 0 is equivalent to centering the disk B1(z j ) at a typical point11

z j on the outer perimeter of a loop from FD which exits B1(z j ) and therefore has
diameter greater than 1. Therefore, the weak limit limε→0 νε

j exists: it is given by the
distribution of endpoints of arcs for a disk of radius 1 centered at a typical point on
the outer perimeter of a loop from FD of diameter larger than 1. Equivalently, by scale
invariance, it is the distribution of endpoints of arcs on ∂Br (z) for a disk Br (z) centered

11 Here typical means that it is not a pivotal point, i.e., a point on the outer perimeter of two loops. Pivotal
points have a lower fractal dimension.
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at a typical point z on the outer perimeter of a loop from FD , with diameter r smaller
than the diameter of the loop. Therefore, if we call ν this distribution, from (40) and (43)
we have

lim
ε→0

ϑ−k
ε μ

loop
D (Sε) = � lim

ε→0
ϑ−k

ε E(NSε )

= �

∫
P(G|I1, . . . , Ik)

k∏

j=1

dν(I j ), (44)

proving the existence of the limit in (32).
In order to prove (33), consider a domain D′ conformally equivalent to D and a

conformal map f : D → D′, and let z′j = f (z j ), s j = | f ′(z j )| for each j = 1, . . . , k,
and S′

ε = {� ∈ D′ : � ∩ Bε(z′j ) �= ∅ ∀ j = 1, . . . , k}. We are interested in the behavior
of

α
z′1,...,z′k
D′ = lim

ε→0
ϑ−k

ε μD′(S′
ε) = lim

ε→0
ϑ−k

ε μD(� ∩ f −1(Bε(z
′
j )) �= ∅ ∀ j = 1, . . . , k).

(45)

To evaluate this limit, we will use the fact that

ϑ−k
ε [μD(� ∩ f −1(Bε(z

′
j )) �=∅ ∀ j =1, . . . , k) − μD(� ∩ Bε/s j (z j ) �=∅ ∀ j =1, . . . , k)]

= o(1) as ε → 0.
(46)

To see this, let Ar j ,R j (z j ) = BRj (z j ) \ Br j (z j ) denote the thinnest annulus centered
at z j containing the symmetric difference of f −1(Bε(z′j )) and Bε/s j (z j ) and note that

|μD(� ∩ f −1(Bε(z
′
j )) �= ∅ ∀ j = 1, . . . , k) − μD(� ∩ Bε/s j (z j ) �= ∅ ∀ j = 1, . . . , k)|

≤ μD(� ∩ BRj (z j ) �= ∅ ∀ j = 1, . . . , k and � ∩ Brl (zl) = ∅ for some l = 1, . . . , k).
(47)

Since f −1 is analytic and ( f −1(z′j ))′ = 1/s j , for everyw ∈ ∂Bε(z′j ), |z j − f −1(w)| =
| f −1(z′j ) − f −1(w)| = ε/s j + O(ε2), which implies that R j − r j = O(ε2) and R j =
O(ε). The second line of (47) can be bounded above by a constant times ϑk

ε ×o(1), as we
now explain. The factorϑk

ε comes from the requirement that � intersect BRz j
(z j ) for each

j = 1, . . . , k and the factor o(1) comes from the requirement that � intersect ∂BRl (zl)
but not ∂Brl (zl) for at least one l = 1, . . . , k. More precisely, one can consider disks
Dj of radius Nε centered at z1, . . . , zk , for some N large but fixed, and first explore the
region outside these disks. Using percolation arguments similar to those in the first part
of the proof, one gets a factor ϑk

Nε = O
(
ϑk

ε

)
from the requirement that � intersect each

Dj . Inside each disk {Dj } j=1,...,k , one has a Brownian excursion of linear size Nε that

gets to distance O(ε2) of ∂Br j (z j ) without intersecting it. The μ
loop
D -measure of loops

producing such excursions can be shown to be of order o(1), as ε → 0, by arguments
similar to those in the proof of Lemma 6.5 of [31], which provides an upper bound for
the probability that a Brownian loop gets close to a deterministic loop without touching
it. The upper bound implies that the probability in question goes to zero when the ratio
between the linear size of the deterministic loop and the minimal distance between the
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loops diverges, provided that the Brownian loop has linear size comparable to that of
the deterministic loop. In the present case, that ratio is of order 1/ε and the Brownian
excursion has diameter of order Nε, comparable to the diameter of ∂Br j (z j ).

Hence, from (45), (46) and (32), using Lemma A.2 from the appendix, we obtain

α
z′1,...,z′k
D′

= lim
ε→0

(
ϑ−k

ε μD(� ∩ Bε/s j (z j )) �= ∅ ∀ j = 1, . . . , k) + o(1)
)

=
⎛

⎝
k∏

j=1

s−2/3
j

⎞

⎠ lim
ε→0

⎛

⎝
k∏

j=1

(
ϑε/ϑε/s j

s2/3j

)−1

ϑ−1
ε/s j

⎞

⎠

μD(� ∩ Bε/s j (z j )) �= ∅ ∀ j = 1, . . . , k)

=
⎛

⎝
k∏

j=1

s−2/3
j

⎞

⎠α
z1,...,zk
D , (48)

which concludes the proof. ��

3. Correlation Functions with a “Twist”

In this section we present a simple method to compute certain types of correlation
functions involving two vertex layering operators. Later, as an application, we will use
this method to show how the edge operator E emerges from the OPE of Oβ × O−β .

From now on, we will drop the subscript D from the expectation 〈·〉D , μ
loop
D , α

z1,...,zk
D

and similar expressions when D can be any domain.
To explain the method mentioned above, in the next paragraph we use {·} to denote

an unnormalized sum, where {·} is formally defined by the relation

〈·〉 := {·}
Z

(49)

and Z := {1} denotes the partition function.12 If we define
{·}∗z1,z2 ≡ {·}∗z1,z2;β := {· Oβ(z1)O−β(z2)} (50)

and

〈·〉∗z1,z2 ≡ 〈·〉∗z1,z2;β := {·}∗z1,z2
{1}∗z1,z2

, (51)

then we can write

〈AOβ(z1)O−β(z2)
〉 = {AOβ(z1)O−β(z2)}

{1}
= {1}∗z1,z2

{1}
{A}∗z1,z2
{1}∗z1,z2

12 We note that, while 〈·〉 is a well defined expectation (with respect to the BLS), {·} and Z do not in general
exist separately.
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= 〈Oβ(z1)O−β(z2)
〉 〈A〉∗z1,z2 , (52)

where A can be any combination of edge operators.
This simple formula will be very useful in the rest of the paper thanks to the observa-

tion that 〈·〉∗z1,z2 is the expectation with respect to the measure μ∗
z1,z2;β ≡ μ∗

z1,z2 defined

by13

μ∗
z1,z2(�) :=

⎧
⎪⎨

⎪⎩

μloop(�) if � does not separate z1, z2
eiβσ�μloop(�) if z1 ∈ �̄, z2 /∈ �̄

e−iβσ�μloop(�) if z1 /∈ �̄, z2 ∈ �̄,

(53)

where σ� = ±1 is a symmetric Boolean variable assigned to �. In other words, 〈·〉∗z1,z2
is the expectation with respect to the measure μ∗

z1,z2 , whose Radon-Nikodym derivative
with respect to μloop is given by

dμ∗
z1,z2

dμloop
(�) = Oβ(z1)O−β(z2)〈Oβ(z1)O−β(z2)

〉 (�) :=

⎧
⎪⎨

⎪⎩

1 if � does not separate z1, z2
eiβσ� if z1 ∈ �̄, z2 /∈ �̄

e−iβσ� if z1 /∈ �̄, z2 ∈ �̄.

(54)

As a first example, we use the method in the proof of the following theorem.

Theorem 3.1. Using the notation introduced in (29) and (38), we have that

〈Oβ(z1)O−β(z2)E(z3)
〉 := ĉ√

λ
lim
ε→0

ϑ−1
ε

〈Oβ(z1)O−β(z2)Eε(z3)
〉

= −√
λ(1 − cosβ) α̂

z3
z1|z2

〈Oβ(z1)O−β(z2)
〉
, (55)

where
α̂
z3
z1|z2 := ĉ α

z3
z1|z2 (56)

and
α
z3
z1|z2 ≡ α

z3
z2|z1 := lim

ε→0
ϑ−1

ε μloop(� ∩ Bε(z3) �= ∅, � separates z1, z2). (57)

α
z3
z1|z2 and consequently

〈Oβ(z1)O−β(z2)E(z3)
〉
are conformally covariant in the sense

of Lemma 2.2 and Theorem 2.3.

Proof. Consider the regularized fields N δ
ε (z) := nε

z(Lδ) and Eδ
ε (z) := N δ

ε (z)− 〈
N δ

ε (z)
〉
,

introduced earlier, as well as the regularized layering field Oδ
β(z) obtained from Lδ

(i.e., the “canonically normalized” version of the layering field V δ
β (z) of [4]). With this

notation and using (52), we have

〈Oβ(z1)O−β(z2)Eε(z3)
〉 := lim

δ→0
δ−4�(β)

〈
Oδ

β(z1)O
δ−β(z2)E

δ
ε (z3)

〉

= lim
δ→0

δ−4�(β)
〈
Oδ

β(z1)O
δ−β(z2)

〉 〈Eδ
ε (z3)

〉∗
z1,z2

. (58)

Now note that, according to (53)–(54), the contributions to
〈
N δ

ε (z3)
〉∗
z1,z2

and
〈
N δ

ε (z3)
〉

from loops that do not separate z1 and z2 are the same, while the contribution to

13 This is analogous to what is discussed in Sect. 2 of [32].
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〈
N δ

ε (z3)
〉∗
z1,z2

from loops that do separate z1 and z2 comes with a factor cosβ because
of the averaging over σ� = ±1 (recall that {σ�}�∈L is distributed like a collection of
independent, (±1)−valued, symmetric random variables). Therefore, we have

lim
δ→0

〈
Eδ

ε (z3)
〉∗
z1,z2

= lim
δ→0

[ 〈
N δ

ε (z3)
〉∗
z1,z2

− 〈
N δ

ε (z3)
〉 ]

= lim
δ→0

[
(cosβ − 1)λμloop(diam(�) > δ, � ∩ Bε(z3) �= ∅, � separates z1, z2)

]

= −λ(1 − cosβ)μloop(� ∩ Bε(z3) �= ∅, � separates z1, z2).
(59)

Combining (59) with (58), and using the convergence of the two-point function of
the layering operator from [4], gives

〈Oβ(z1)O−β(z2)Eε(z3)
〉

= −λ(1 − cosβ)μloop(� ∩ Bε(z3) �= ∅, � separates z1, z2)
〈Oβ(z1)O−β(z2)

〉
.

(60)

To conclude the proof, it suffices to show the existence and conformal covariance of

α̂
z3
z1|z2 ≡ α̂

z3
z2|z1 := ĉ lim

ε→0
ϑ−1

ε μloop(� ∩ Bε(z3) �= ∅, � separates z1, z2). (61)

These follow from the proof of Lemma 2.2 applied to the ensemble of loops that separate
z1 and z2. ��

So far our discussion has been completely general and independent of the domain D.
If we now specify that D = C and note that the operators Oβ,O−β are normalized so
that

〈Oβ(z1)O−β(z2)
〉
C

= |z1 − z2|−4�(β), (62)

we get, from (55),
〈Oβ(z1)O−β(z2)E(z3)

〉
C

= −√
λ(1 − cosβ) α̂

z3
z1|z2;C|z1 − z2|−4�(β). (63)

The conformal covariance of (63), obtained in Theorem 3.1, implies that its form is
fixed up to a multiplicative constant (see, for example, the proof of Theorem 4.5 of [4]).
Therefore, letting z jk := z j − zk , we have

〈Oβ(z1)O−β(z2)E(z3)
〉
C

= CE
OβO−β

1

|z12|4�(β)

∣∣∣∣
z12

z13z23

∣∣∣∣

2/3

, (64)

where CE
OβO−β

is a numerical coefficient.
Until now, our discussion has been rigorous; we are now going to use a nonrigorous

ingredient, namely, the determination of the coefficient CE
OβO−β

for β1 = β2 = π ,

obtained using nonrigorous methods in [7], where it is called C (1,1). Comparing (63)
with (64) and using the expression for C (1,1) from Eq. (6.19) of [7] gives

α̂
z3
z1|z2;C = 27/6π

31/4
√
5
(1/6)
(4/3)

∣∣∣∣
z12

z13z23

∣∣∣∣

2/3

. (65)
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Together with (63), this leads to the following expression for the three-point function
coefficient for general values of β:

CE
OβO−β

= −√
λ(1 − cosβ)

27/6π

31/4
√
5
(1/6)
(4/3)

. (66)

4. OPE and the Edge Operator

In this section, applying the method presented in the previous section, we show how the
edge operator E emerges from the Operator Product Expansion (OPE) of Oβ × O−β .
It is shown in [7] that the OPE of the product of two vertex operators, Oβi × Oβ j ,

contains operators of dimensions (�i j+ k
3 ,�i j+ k′

3 ) for non-negative integers k, k′, where
�i j = λ

10 (1 − cos(βi + β j )). In what follows, we identify the operator of dimensions
(1/3, 1/3) with the edge operator E .

The calculationswe present in this section are rigorous until equation (74). To proceed
beyond that, we need an assumption, expressed by (75), which we believe to be correct,
as we argue below.

If N δ(z) denotes the number of loops of diameter larger than δ that contain z in their
interior, it was shown in [4] that the two-point function

〈Oβ(z)O−β(z′)
〉 ∝ lim

δ→0
δ−2�(β)

〈
eiβN

δ(z)e−iβN δ(z′)
〉

= lim
δ→0

δ−2�(β) exp
( − λ(1 − cosβ)μloop(� separates z, z′, diam(�) > δ

))

(67)

exists.
We are interested in the sub-leading behavior ofOβ(z)×O−β(z′)when z′ → z. The

two-point function
〈Oβ(z)O−β(z′)

〉
diverges when z′ → z (see (62)), so we normalize

Oβ(z)O−β(z′) by its expectation. Taking two distinct points z1, z2 �= z, z′ and using
(52), we can write

〈
Oβ(z)O−β(z′)
〈Oβ(z)O−β(z′)

〉Oβ ′(z1)O−β ′(z2)

〉

= 〈Oβ ′(z1)O−β ′(z2)
〉
〈Oβ(z)O−β(z′)

〉∗
z1,z2;β ′

〈Oβ(z)O−β(z′)
〉 . (68)

To compute the right hand side of the equation above, we note that the loops that do
not separate z1 and z2 contribute equally to

〈Oβ(z)O−β(z′)
〉∗
z1,z2

and
〈Oβ(z)O−β(z′)

〉
,

so their contributions cancel out in the ratio on the right-hand side. The loops that do
separate z1, z2 contribute differently, as we have already seen in the computation leading
to (55). An analogous computation using (67) gives

〈Oβ(z)O−β(z′)
〉∗
z1,z2;β ′

〈Oβ(z)O−β(z′)
〉

= exp
[
(1 − cosβ ′)λ(1 − cosβ)μloop(� separates z from z′ and z1 from z2)

]
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= 1 + (1 − cosβ ′)λ(1 − cosβ)μloop(� separates z from z′ and z1 from z2)

+ O(μloop(� separates z from z′ and z1 from z2)
2), (69)

as |z − z′| → 0. We now let ε = |z − z′| and observe that

μloop(� separates z, z′ and z1, z2) = μloop(� ∩ Bε(z) �= ∅ and � separates z1, z2)

− μloop(� ∩ Bε(z) �= ∅, � does not separate z, z′ and � separates z1, z2)

= μloop(� ∩ Bε(z) �= ∅ and � separates z1, z2)

·
[
1 − μloop(� ∩ Bε(z) �= ∅, � does not separate z, z′ and � separates z1, z2)

μloop(� ∩ Bε(z) �= ∅ and � separates z1, z2)

]
,

(70)

where

μloop(� ∩ Bε(z) �= ∅ and � separates z1, z2) = O
(
ϑε

)
as ε → 0, (71)

which follows from the proof of Lemma 2.2. Letting

c̃ε ≡ c̃ε(z, z
′; z1, z2)

:= 1 − μloop(� ∩ Bε(z) �= ∅, � does not separate z, z′ and � separates z1, z2)

μloop(� ∩ Bε(z) �= ∅ and � separates z1, z2)

(72)

and using (69)–(72), (59), and the fact that ϑε ∼ ε2/3, we can write
〈Oβ(z)O−β(z′)

〉∗
z1,z2;β ′

〈Oβ(z)O−β(z′)
〉 = 1 − (1 − cosβ) c̃ε 〈Eε(z)〉∗z1,z2;β ′ + o

(
ε2/3

)
as ε → 0.

(73)

Combining this with (68), we obtain
〈
Oβ(z)O−β(z′)
〈Oβ(z)O−β(z′)

〉Oβ ′(z1)O−β ′(z2)

〉

= 〈Oβ ′(z1)O−β ′(z2)
〉 − (1 − cosβ) c̃ε

〈Oβ ′(z1)O−β ′(z2)Eε(z)
〉
+ o

(
ε2/3

)

(74)

as ε → 0.
At this point we make the natural conjecture that, as long as the points z, z1, z2 are

distinct, the limit

c̃ := lim
z′→z

c̃ε ≡ lim
z′→z

c̃ε(z, z
′; z1, z2) (75)

exists and is independent of the domain and of z, z1, z2. To see why this conjecture is
justified, one can use arguments analogous to those in the proof of Lemma 2.2. Think-
ing in terms of the full scaling limit of critical percolation, as described in the proof
of Lemma 2.2, one can split the loops separating z1, z2 and intersecting Bε(z) into ex-
cursions from ∂Bε(z) either inside or outside the disk. As explained in the proof of
Lemma 2.2, the excursions inside and outside Bε(z) are independent of each other, con-
ditioned on the location on ∂Bε(z) of their starting and ending points. Since the limit
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in (75) is determined only by the behavior of the excursions inside Bε(z), it should not
depend on the domain and on z1, z2.

Using the conjecture expressed by (75) and the formal definition (29) of the edge
operator, we are lead to conjecture the following behavior:

Oβ(z)O−β(z′)
〈Oβ(z)O−β(z′)

〉 = 1 − (1 − cosβ)
c̃

ĉ

√
λ|z − z′|2/3E(z) +R (76)

as z′ → z, where 1 denotes the identity operator and R represent additional terms in
the expansion responsible for the term o

(
ε2/3

)
in (74). For z away from any boundary

and in the limit z′ → z, using (62), we can assume that

Oβ(z) × O−β(z′)

= |z − z′|−4�(β)

(
1 − √

λ(1 − cosβ)
c̃

ĉ
|z − z′|2/3E(z) + o

(|z − z′|2/3)
)

,

(77)

which shows how the edge operator emerges from the OPE of two layering vertex
operators.

In order to check for internal consistency, we determine c̃/ĉ. To do this we insert the
OPE (77) in the three-point function

〈Oβ(z1)O−β(z2)E(z3)
〉
C

= |z12|−4�(β)

(
−√

λ(1 − cosβ)
c̃

ĉ
〈E(z1)E(z3)〉C |z12|2/3 + o

(|z12|2/3
))

.

(78)

Comparing this with (63), using (65) and the fact that E is assumed to be canonically
normalized, so that

〈E(z1)E(z3)〉C = |z13|−4/3, (79)

we get

c̃

ĉ
|z13|−4/3 |z12|2/3 + o

(|z12|2/3
) = α̂

z3
z1|z2;C

= 27/6π

31/4
√
5
(1/6)
(4/3)

∣∣∣∣
z12

z13z23

∣∣∣∣

2/3

. (80)

Dividing both sides of the equation above by |z12|2/3 and letting z2 → z1 gives

c̃

ĉ
= 27/6π

31/4
√
5
(1/6)
(4/3)

. (81)

Based on general principles and on the conformal block expansion performed in [7],
the OPE of Oβ × O−β should read

Oβ(z) × O−β(z′)

= |z − z′|−4�(β)
(
1 + C

φ1/3,1/3

OβO−β
|z − z′|2/3φ1/3,1/3(z) + o

(|z − z′|2/3)
)

, (82)
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where φ1/3,1/3 is an operator of dimension (1/3, 1/3). In order to identify φ1/3,1/3 with

the edge operator E , we need to identify Cφ1/3,1/3

OβO−β
with the coefficient CE

OβO−β
given in

(66). Comparing (82) with (77), and using (81), this gives

C
φ1/3,1/3

OβO−β
= −√

λ(1 − cosβ)
27/6π

31/4
√
5
(1/6)
(4/3)

, (83)

which indeed coincides with (66).

5. A Mixed Four-Point Function

The method introduced in Sect. 3 can be used to calculate the mixed four-point function
〈Oβ(z1)O−β(z2)E(z3)E(z4)

〉 = 〈Oβ(z1)O−β(z2)
〉 〈E(z3)E(z4)〉∗z1,z2

= λ−1ĉ2
〈Oβ(z1)O−β(z2)

〉
lim
ε→0

ϑ−2
ε 〈Eε(z3)Eε(z4)〉∗z1,z2 . (84)

The result is given in the following theorem.14

Theorem 5.1. We have that
〈Oβ(z1)O−β(z2)E(z3)E(z4)

〉

= 〈Oβ(z1)O−β(z2)
〉 [

α̂z3,z4 − (1 − cosβ)α̂
z3,z4
z1|z2 + λ(1 − cosβ)2α̂

z3
z1|z2 α̂

z4
z1|z2

]
,

(85)

where

α̂
z3,z4
z1|z2 := ĉ2 α

z3,z4
z1|z2 (86)

with

α
z3,z4
z1|z2 ≡ α

z3,z4
z2|z1 := lim

ε→0
ε−4/3μloop(� ∩ Bε(z j ) �= ∅ for j = 3, 4; � separates z1, z2).

(87)

α
z3,z4
z1|z2 and consequently

〈Oβ(z1)O−β(z2)E(z3)E(z4)
〉
are conformally covariant in the

sense of Lemma 2.2 and Theorem 2.3.

Proof. Using the random variables defined in the paragraph above (26), a bit of algebra
shows that

〈Eε(z3)Eε(z4)〉∗z1,z2 = lim
δ→0

〈
Eδ

ε (z3)E
δ
ε (z4)

〉∗
z1,z2

= lim
δ→0

〈[
N δ

ε (z3) − 〈
N δ

ε (z3)
〉 ][

N δ
ε (z4) − 〈

N δ
ε (z4)

〉 ]〉∗
z1,z2

= lim
δ→0

〈[
N δ

ε (z3) − 〈
N δ

ε (z3)
〉∗
z1,z2

][
N δ

ε (z4) − 〈
N δ

ε (z4)
〉∗
z1,z2

]〉∗
z1,z2

+ 〈Eε(z3)〉∗z1,z2 〈Eε(z4)〉∗z1,z2 . (88)

14 The terms α̂z3,z4 and α̂
z j
zk ,zl are defined in (32), (38) and (56), (57), respectively, and ĉ is introduced in

(29) and chosen so that E is canonically normalized (see (30)).
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Now note that

lim
δ→0

〈[
N δ

ε (z3) − 〈
N δ

ε (z3)
〉∗
z1,z2

][
N δ

ε (z4) − 〈
N δ

ε (z4)
〉∗
z1,z2

]〉∗
z1,z2

(89)

is exactly analogous to 〈Eε(z3)Eε(z3)〉, with the measure μloop replaced by μ∗
z1,z2 .

Therefore, combining Lemma 2.1 with (53), we have that

lim
δ→0

〈[
N δ

ε (z3) − 〈
N δ

ε (z3)
〉∗
z1,z2

][
N δ

ε (z4) − 〈
N δ

ε (z4)
〉∗
z1,z2

]〉∗
z1,z2

= λμ∗
z1,z2(� ∩ Bε(z j ) �= ∅ for j = 3, 4)

= λμloop(� ∩ Bε(z j ) �= ∅ for j = 3, 4; � does not separate z1, z2)

+ λ cosβμloop(� ∩ Bε(z j ) �= ∅ for j = 3, 4; � separates z1, z2)

= λμloop(� ∩ Bε(z j ) �= ∅ for j = 3, 4)

− λ(1 − cosβ)μloop(� ∩ Bε(z j ) �= ∅ for j = 3, 4; � separates z1, z2). (90)

Using this and (59), we obtain

〈Eε(z3)Eε(z4)〉∗z1,z2 = λμloop(� ∩ Bε(z j ) �= ∅ for j = 3, 4)

− λ(1 − cosβ)μloop(� ∩ Bε(z j ) �= ∅ for j = 3, 4; � separates z1, z2)

+ λ2(1 − cosβ)2μloop(� ∩ Bε(z3) �= ∅, � separates z1, z2)

· μloop(� ∩ Bε(z4) �= ∅, � separates z1, z2). (91)

Inserting this expression in (84) gives (85) with

α̂
z3,z4
z1|z2 := ĉ2 α

z3,z4
z1|z2 (92)

and

α
z3,z4
z1|z2 ≡ α

z3,z4
z2|z1 := lim

ε→0
ε−4/3μloop(� ∩ Bε(z j ) �= ∅ for j = 3, 4; � separates z1, z2),

(93)

where the existence of the limit its conformal covariance follow from the proof of
Lemma 2.2 applied to the ensemble of loops that separate z1 and z2. ��

Wenote thatαz3,z4
z1|z2 ≡ α

z3,z4
z1|z2;D depends on the domain D.When D = C, non-rigorous

arguments allow us to relate α
z3,z4
z1|z2 to the quantity

Z twist :=
∣∣∣∣∣

z13z24
z234z23z14

∣∣∣∣∣

2/3

·
[∣∣∣∣2F1

(
−2

3
,
1

3
; 2
3
, x

)∣∣∣∣

2

− 4

( 2
3

)6



( 4
3

)2


( 1
3

)4 |x |2/3
∣∣∣∣2F1

(
−1

3
,
2

3
; 4
3
, x

)∣∣∣∣

2
]

(94)

corresponding to equation (52) of [27], where x = z12z34
z13z24

.
In the language of [27], Z twist is the four-point function of a pair of “2-leg” operators

φ0,1 with a pair of “twist” operators φ2,1
15 in the O(n) model in the limit n → 0. The

15 The subscripts label the positions of the operators in the Kac table.
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“2-leg” operator φ0,1(z) forces a self-avoiding loop of the O(n) model to go through z,
while a pair of “twist” operators φ2,1(z1)φ2,1(z2) acts likeOπ (z1)O−π (z2) in the sense
that the weight of each loop that separates z1 and z2 is multiplied by −1. Simmons and
Cardy [27] compute this four-point function for the O(n)model for−2 < n < 2, which
in the case of n = 0 leads to (94). The n = 0 case of the O(n) model corresponds to a
self-avoiding loop whose properties are described by μloop, as we will now explain.

Strictly speaking, when n = 0 all loops are suppressed, but the inclusion of a pair
of 2-leg operators guarantees the presence of at least one loop. Sending n → 0 then
singles out the “one loop sector” described by μloop, since all other “sectors” produce a
contribution of higher order in n (see the discussion preceding Eq. (49) of [27]).

Something analogous happens in the case of the four-point function (85). As ex-
plained above, the pair of operators Oπ (z1)O−π (z2) acts like φ2,1(z1)φ2,1(z2), while
the presence of a pair of edge operators guarantees the existence of at least one loop.
Since the loop soup can be thought of as a gas of loops in the grand canonical ensemble
with fugacity λ, the four-point function can be written as a sum of contributions from
various “sectors” characterized by the number of loops. Because of the normalization
of the edge operator, which includes a factor of λ−1/2, the contribution of the “one loop
sector” is of order O(1), while all other contributions are of order O(λ), as one can
clearly see from (85). As a result, sending λ → 0 in (85) singles out the “one loop
sector” just like sending n → 0 in the case of the O(n) four-point function calculated by
Simmons and Cardy [27]. The two limits can be directly compared because all operators
involved are canonically normalized. We can therefore conjecture that

Z twist = lim
λ→0

〈Oπ (z1)O−π (z2)E(z3)E(z4)〉C
= α̂

z3,z4
C

− 2α̂z3,z4
z1|z2;C, (95)

where we used (62) and (85) to compute the limit.
This leads to

α̂
z3,z4
z1|z2;C = α̂

z3,z4
C

− Z twist

2
, (96)

with

α̂
z3,z4
C

= 1

|z3 − z4|4/3 , (97)

from (39a), (30). Combining (96) and (97) with (94), (85) and (65) provides an explicit
expression for the full-plane mixed four-point function

〈Oβ(z1)O−β(z2)E(z3)E(z4)
〉
C
.

6. Higher-Order and Charged Edge Operators

We will now extend the analysis of the edge operator E to all spin-zero operators that
have non-zero fusionwith the vertex operators.Wewill show that they have holomorphic
and anti-holomorphic conformal dimensions

(�(β) + k/3,�(β) + k/3), (98)

with �(β) = λ
10 (1 − cosβ), for any non-negative integer k. They correspond to the

operators indicated on the diagonal of Fig. 2b. We will first define the operators with
β = 0 and dimensions (k/3, k/3) for k ≥ 2,whichwill be denoted E (k) andwill be called
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higher-order edge operators. We will then see that the operators E (k)
β with dimensions

(�(β) + k/3,�(β) + k/3) with β �= 0 are a product of Oβ with a modified version of
E (k). These will be called charged edge operators.

6.1. Higher-order edge operators. Searching for new primary operators, we are guided
by their conformal dimensions. For the operatorswith dimensions (k/3, k/3), it is natural
to consider powers of edge operators. However, these are not well defined. Indeed, even
if we keep both ε and δ cutoffs, it is clear that

(
Eδ

ε (z)
)k is not the correct starting point

because its mean is not zero. A better choice, inspired by

E (1);δ
ε (z) := Eδ

ε (z) = N δ
ε (z) − λμloop(diam(�) > δ, � ∩ Bε(z) �= ∅)

=
(

∂

∂x
− λμloop(diam(�) > δ, � ∩ Bε(z) �= ∅)

)
xN

δ
ε (z)

∣∣∣∣
x=1

,

(99)

is given, for each integer k ≥ 2, by

E (k);δ
ε (z) :=

( ∂

∂x
− λμloop(diam(�) > δ, � ∩ Bε(z) �= ∅)

)k
x N

δ
ε (z)

∣∣∣∣
x=1

=
k−1∑

j=0

(−1) j
(
k

j

)
Nε(z) . . . (Nε(z) − (k − j) + 1)

·
(
λμloop(diam(�) > δ, � ∩ Bε(z) �= ∅)

) j

+ (−1)k
(
λμloop(diam(�) > δ, � ∩ Bε(z) �= ∅)

)k
. (100)

This definition is valid in any domain D. Since N δ
ε (z) = nε

z(Lδ) (see Sect. 3 above
(59) and Appendix A) is a Poisson random variable with parameter λμloop(diam(�) >

δ, � ∩ Bε(z) �= ∅), we have that
〈
N δ

ε (z)(N δ
ε (z) − 1) . . . (N δ

ε (z) − (k − j) + 1)
〉

=
(
λμloop(diam(�) > δ, � ∩ Bε(z) �= ∅)

)k− j
, (101)

which implies that
〈
E (k);δ

ε (z)
〉

C

= 0 for every δ > 0.

With this notation, for each k ≥ 1, we formally define the order k edge operator

E (k)(z) := ĉk√
k!λk/2 lim

δ,ε→0
ϑ−k

ε E (k);δ
ε (z). (102)

As we will see at the end of this section, the constant in front of the limit is chosen in
such a way that E (k) is canonically normalized, i.e.,

〈
E (k)(z1)E (k)(z2)

〉

C

= |z1 − z2|−4k/3. (103)

For k = 1, we recover the edge operator, i.e., E (1) ≡ E .
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Definition (102) is formal in the sense that E (k)(z) is only well defined within n-point
correlation functions. In order to show that E (k) has well-defined n-point functions, we
start with an intermediate result, for which we need the following notation. Given a
collection of points z1, . . . , zn and a vector k = (k1, . . . , kn), k j ∈ N, we denote by
M ≡ M(z1, . . . , zn; k1, . . . , kn) the collection of all multisets16 M such that

(1) the elements S of M are sets contained in {z1, . . . , zn} with |S| > 1,
(2) the multiplicities mM (S) are such that

∑
S∈M mM (S)I(z j ∈ S) = k j for each j =

1, . . . , n and each M ∈ M.

Condition (2) on the multiplicities essentially says that each point z j has multiplicity
exactly k j in each multiset M . Note that M can be empty since conditions (1) and (2)
cannot necessarily be satisfied simultaneously for generic choices of the vector k.

For a set S, let IS denote the set of indices such that j ∈ IS if and only if z j ∈ S.
Then we have the following lemma, proved in the appendix.

Lemma 6.1. For any n ≥ 2 and δ, ε > 0, for any collection of points z1, . . . , zn at
distance grater than 2ε from each other, with the notation introduced above, we have
that
〈 n∏

j=1

E
(k j )
ε (z j )

〉

:= lim
δ→0

〈 n∏

j=1

E
(k j );δ
ε (z j )

〉

=
⎛

⎝
n∏

j=1

k j !
⎞

⎠
∑

M∈M

∏

S∈M

1

mM (S)!
(
λμloop(� ∩ Bε(z j ) �= ∅ ∀z j ∈ S)

)mM (S)
I(M �= ∅),

(104)

where I(M �= ∅) denotes the indicator function of the event that M is not empty.

The next theorem shows that it is also possible to remove the ε cutoff and demonstrates
that the operators E (k) are primaries with dimensions (k/3, k/3) for all non-negative
integer k.

Theorem 6.2. Let D ⊆ C be either the complex planeC or the upper-half planeH or any
domain conformally equivalent to H. With the notation of the previous lemma, for any
collection of distinct points z1, . . . , zn ∈ D with n ≥ 2 and any vector k = (k1, . . . , kn)
with k j ∈ N such that M is not empty, we have that

GD(z1, . . . , zn; k1, . . . , kn) := lim
ε→0

ϑ
−∑n

j=1 k j
ε

〈
E (k1)

ε (z1) . . . E (kn)
ε (zn)

〉

D

=
⎛

⎝
n∏

j=1

k j !
⎞

⎠
∑

M∈M

∏

S∈M

1

mM (S)!
(
λαS)mM (S)

. (105)

Moreover, GD(z1, . . . , zn; k1, . . . , kn) is conformally invariant in the sense that, if
D′ is a domain conformally equivalent to D and f : D → D′ is a conformal map, then

GD′( f (z1), . . . , f (zn); k1, . . . , kn)

=
⎛

⎝
n∏

j=1

| f ′(z j )|−2k j /3

⎞

⎠GD(z1, . . . , zn; k1, . . . , kn). (106)

16 A multiset is a set whose elements have multiplicity ≥ 1.
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Proof. From the expression for the n-point function in Lemma 6.1, using the fact that∑
S∈M mM (S)I(z j ∈ S) = k j , for each j = 1, . . . , n and each M ∈ M, we see that

lim
ε→0

ϑ
−∑n

j=1 k j
ε

〈
n∏

j=1

E
(k j )
β j ;ε(z j )

〉

=
⎛

⎝
n∏

j=1

k j !
⎞

⎠
∑

M∈M

∏

S∈M

1

mM (S)!
(
λ lim

ε→0
ϑ−|S|

ε μloop(� ∩ Bε(z j ) �= ∅ ∀z j ∈ S)
)mM (S)

=
⎛

⎝
n∏

j=1

k j !
⎞

⎠
∑

M∈M

∏

S∈M

1

mM (S)!
(
λαS)mM (S)

, (107)

where the last equality follows from Lemma 2.2. Equation (106) now follows immedi-
ately from the last expression and Lemma 2.2. ��

Using (105) and the definition of order k edge operator (102), we can now write the
correlation of n higher-order edge operators as

〈
E (k1)(z1) . . . E (kn)(zn)

〉

D

=
⎛

⎝
n∏

j=1

ĉk j

k j !λk j /2

⎞

⎠GD(z1, . . . , zn; k1, . . . , kn)

=
⎛

⎝
n∏

j=1

λ−k j /2

⎞

⎠
∑

M∈M

∏

S∈M

1

mM (S)!
(
λα̂S)mM (S)

. (108)

In view of (106), these n-point functions aremanifestly conformally covariant, show-
ing that the higher-order edge operators are conformal primaries.

If n = 2 and k1 = k2 = k, it is easy to see that the set M contains a single multiset
with only one element S = {z1, z2} with multiplicity k. Therefore, specializing (108) to
this case with D = C gives

〈
E (k)(z1)E (k)(z2)

〉

C

= (
α̂z1,z2

)k = (〈E(z1)E(z2)〉C)k = |z1 − z2|−4k/3, (109)

which shows that E (k) is canonically normalized.

6.2. Charged edge operators. We now apply a “twist” to the (higher-order) edge oper-
ators and introduce a new set of operators. A charged edge operator is essentially an
edge operator “seen from” the perspective of a measure μ∗

z;β ≡ μ∗
z defined by

μ∗
z (�) :=

{
μloop(�) if z /∈ �̄

eiβσ�μloop(�) if z ∈ �̄
(110)

where σ� = ±1 is a symmetric Boolean variable assigned to �. The measure μ∗
z is

constructed from μloop by assigning an additional phase eiβσ� to each loop covering z.
The construction is similar to that of μ∗

z1,z2 , introduced in Sect. 3, to which we refer the
reader.
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We note that, when taking expectations, one sums over the two possible values of
σ� with equal probability, so that loops � that do not cover z get weight μloop(�), while
loops � that cover z get weight cosβ μloop(�).

With this in mind, for any β ∈ [0, 2π), the simplest charged edge operator with
cutoffs δ, ε > 0, corresponding to the “twisted” or “charged” version of (99), is defined
as

E (1);δ
β;ε (z) ≡ Eδ

β;ε(z)

:= V δ
β (z)

(
N δ

ε (z) − λ
(
μloop(diam(�) > δ, � ∩ Bε(z) �= ∅, z /∈ �)

+ μloop(diam(�) > δ, � ∩ Bε(z) �= ∅, z ∈ �) cosβ
))

, (111)

where

V δ
β (z) := exp

(
iβ

∑

�∈Lδ

z∈�̄

σ�

)
, (112)

the layering operator with cutoff δ > 0 introduced in [4], induces a phase eiβσ� for each
loop � such that z ∈ �̄, and

λ
(
μloop(diam(�) > δ, � ∩ Bε(z) �= ∅, z /∈ �)

+ μloop(diam(�) > δ, � ∩ Bε(z) �= ∅, z ∈ �) cosβ
)

(113)

is the expectation of N δ
ε (z) under the measure μ∗

z .
Generalizing this to any k ∈ N, the “twisted” or “charged” version of (102) is given

by

E (k);δ
β;ε (z) := V δ

β (z)

[ k−1∑

j=0

(−1) j
(
k

j

)
N δ

ε (z) . . . (N δ
ε (z) − (k − j) + 1)

·
(
λ
(
μloop(diam(�) > δ, � ∩ Bε(z) �= ∅, z /∈ �)

+ μloop(diam(�) > δ, � ∩ Bε(z) �= ∅, z ∈ �) cosβ
) j

+ (−1)k
(
λ
(
μloop(diam(�) > δ, � ∩ Bε(z) �= ∅, z /∈ �)

+ μloop(diam(�) > δ, � ∩ Bε(z) �= ∅, z ∈ �) cosβ
))k]

. (114)

We now formally define the charged (order k) edge operator

E (k)
β (z) := lim

δ,ε→0
(c′δ)−2�(β) ĉk

k!λk/2ϑ−k
ε E (k);δ

β;ε (z), (115)

where c′ is a normalization constant needed to obtain the canonically normalized operator
Oβ from V δ

β , which depends on the domain (see [7]). For completeness, we also define

E (0)
β ≡ Oβ . Unlike their uncharged counterparts, the charged operators E (k)

β are not
canonically normalized for general β �= 0.
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As an example, we compute the two-point function of the simplest charged edge
operators, with charge conservation. To that end, we write Eδ

β;ε(z) as

Eδ
β;ε(z) = V δ

β (z)
(
N δ

ε (z) − λμloop(diam(�) > δ, � ∩ Bε(z) �= ∅)

+ (1 − cosβ)λμloop(diam(�) > δ, � ∩ Bε(z) �= ∅, z ∈ �)
)

= V δ
β (z)Eδ

ε (z) + (1 − cosβ)λμloop(diam(�) > δ, � ∩ Bε(z) �= ∅, z ∈ �)V δ
β (z).

(116)

Using this expression and the method introduced in Sect. 3, we have
〈
Eδ

β;ε(z1)Eδ−β;ε(z2)
〉
=
〈
V δ

β (z1)V
δ−β(z2)E

δ
ε (z1)E

δ
ε (z2)

〉

+ (1 − cosβ)λμloop(diam(�) > δ, � ∩ Bε(z2) �= ∅, z2 ∈ �)
〈
V δ

β (z1)E
δ
ε (z1)V

δ−β(z2)
〉

+ (1 − cosβ)λμloop(diam(�) > δ, � ∩ Bε(z1) �= ∅, z1 ∈ �)
〈
V δ−β(z2)E

δ
ε (z2)V

δ
β (z1)

〉

+ (1 − cosβ)2λ2μloop(diam(�) > δ, � ∩ Bε(z1) �= ∅, z1 ∈ �)

μloop(diam(�) > δ, � ∩ Bε(z2) �= ∅, z2 ∈ �)
〈
V δ

β (z1)V
δ−β(z2)

〉

=
〈
V δ

β (z1)V
δ−β(z2)

〉 [ 〈
Eδ

ε (z1)E
δ
ε (z2)

〉∗
z1,z2

+ (1 − cosβ)λμloop(diam(�) > δ, � ∩ Bε(z2) �= ∅, z2 ∈ �)
〈
Eδ

ε (z1)
〉∗
z1,z2

+ (1 − cosβ)λμloop(diam(�) > δ, � ∩ Bε(z1) �= ∅, z1 ∈ �)
〈
Eδ

ε (z2)
〉∗
z1,z2

+ (1 − cosβ)2λ2μloop(diam(�) > δ, � ∩ Bε(z1) �= ∅, z1 ∈ �)

μloop(diam(�) > δ, � ∩ Bε(z2) �= ∅, z2 ∈ �)
]
. (117)

After identifying z3 with z1 and z4 with z2, we can use (59) and (91) to simplify the
above expression. A simple calculation shows that, for any δ < |z1 − z2|,

〈
Eδ

β;ε(z1)E
δ
−β;ε(z2)

〉
=
〈
V δ

β (z1)V
δ−β(z2)

〉 [
λμloop(� ∩ Bε(z j ) �= ∅, j = 1, 2)

− (1 − cosβ)λμloop(� ∩ Bε(z j ) �= ∅, j = 1, 2; � separates z1, z2)

+ λ2(1 − cosβ)2μloop(� ∩ Bε(z1) �= ∅, z2 ∈ �̄, z1 /∈ �̄)

μloop(diam(�) > δ, � ∩ Bε(z2) �= ∅, z1 ∈ �̄, z2 /∈ �̄)
]
. (118)

Using definition (115), we obtain

〈Eβ(z1)E−β(z2)
〉 = lim

δ→0
(ĉ′δ)−4�(β)

〈
V δ

β (z1)V
δ−β(z2)

〉

ĉ2 lim
ε→0

ϑ−2
ε

[
μloop(� ∩ Bε(z j ) �= ∅, j = 1, 2)

− (1 − cosβ)μloop(� ∩ Bε(z j ) �= ∅, j = 1, 2; � separates z1, z2)

+ λ(1 − cosβ)2μloop(� ∩ Bε(z1) �= ∅, z2 ∈ �̄, z1 /∈ �̄)

μloop(� ∩ Bε(z2) �= ∅, z1 ∈ �̄, z2 /∈ �̄)
]



Scalar Conformal Primary Fields 1005

= 〈Oβ(z1)O−β(z2)
〉 [

α̂z1,z2 − (1 − cosβ)α̂
z1,z2
z1|z2

+ λ(1 − cosβ)2ĉ2 lim
ε→0

ϑ−2
ε μloop(� ∩ Bε(z1) �= ∅, z2 ∈ �̄, z1 /∈ �̄)

μloop(� ∩ Bε(z2) �= ∅, z1 ∈ �̄, z2 /∈ �̄)
]
. (119)

At this point, we should note that unfortunately the existence of the limits

α
z1,z2
z1|z2 = lim

ε→0
ϑ−2

ε μloop(� ∩ Bε(z j ) �= ∅, j = 1, 2; � separates z1, z2),

lim
ε→0

ϑ−1
ε μloop(� ∩ Bε(z j ) �= ∅, zk ∈ �̄, z j /∈ �̄) (120)

does not follow from Lemma 2.2. It is, however, reasonable to assume that they exist.
Indeed, in the case of the first limit, observing that

lim
z3→z1
z4→z2

Z twist = 0 (121)

and using (96) suggests that, in the full plane,

α̂
z1,z2
z1|z2;C = 1

2
α̂
z1,z2
C

. (122)

The second limit in (120) should also exist; moreover, if

α̂
z j
C

(zk; z j ) := ĉ lim
ε→0

ϑ−1
ε μ

loop
C

(� ∩ Bε(z j ) �= ∅, zk ∈ �̄, z j /∈ �̄) (123)

does exist, arguments like those used in the second part of the proof of Lemma 2.2
imply that, for any s > 0, α̂sz

C
(0; z) = s−2/3α̂z

C
(0; z). Since α̂

z j
C

(zk; z j ) only de-

pends on |z j − zk |, this would in turn imply that α̂
z j
C

(zk; z j ) must take the form const ·
|z j − zk |−2/3.

If the considerations above are correct, then it follows from (119) that
〈Eβ(z1)E−β(z2)

〉
C

behaves like the correlation function between two conformal primaries of scaling dimen-
sion 2�(β)+2/3, as desired. Indeed,we conjecture that, similarly to (122), α̂

z j
C

(zk; z j ) =
1
2 α̂

z j
zk ;C, which would lead to

〈Eβ(z1)E−β(z2)
〉
C

= 〈Oβ(z1)O−β(z2)
〉
C

(
1

2
(1 + cosβ)α̂

z1,z2
C

+
λ

4
α̂
z1
z2;Cα̂

z2
z1;C

)

∼ |z1 − z2|−4�(β)−4/3, (124)

where the existence and the scaling behavior of

α̂
z j
zk ;C := ĉ lim

ε→0
ϑ−1

ε μ
loop
C

(� ∩ Bε(z j ) �= ∅, zk ∈ �̄) (125)

follow from the proof of Lemma 2.2.
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7. The Primary Operator Spectrum

The four-point function of a conformal field theory contains information about the three-
point function coefficients, as well as the spectrum of primary operators. In the following
two sections, we perform the Virasoro conformal block expansion of the new four-point
function (85) in the full plane, and derive the three-point coefficient involving three edge
operators through the OPE of the edge operator as an illustration of the conformal block
expansion.

7.1. Virasoro conformal blocks. By a global conformal transformation, one can always
map three of the four points of a four-point function 〈A1(z1)A2(z2)A3(z3)A4(z4)〉C to
fixed values, whereA j (z j ) here denotes a generic primary operator evaluated at z j . The
remaining dependence is only on the cross-ratio x = z12z34

z13z24
and its complex conjugate x̄ ,

which are invariant under global conformal transformations. The following discussion
parallels Sect. 6 of [7]. Following the notation of Section 6.6.4 of [5], it is customary to
set z1 = ∞, z2 = 1, z3 = x and z4 = 0. The resulting function

G21
34(x) := lim

z1→∞ z2�1
1 z̄2�̄1

1 〈A1(z1)A2(1)A3(x)A4(0)〉C (126)

can be decomposed into Virasoro conformal blocks according to

G21
34(x) =

∑

P
CP
34C

P
12F21

34 (P|x)F̄21
34 (P|x̄). (127)

The sum over P runs over all primary operators in the theory, and the CP
l j are the

three-point function coefficients of the operators labeled by l, j,P , that is,

〈Al(z1)A j (z2)P(z3)
〉
C

= CP
l j z

−(�l+� j−�P )

12 z
−(�l+�P−� j )

13 z
−(� j+�P−�l )

23

z̄
−(�̄l+�̄ j−�̄P )

12 z̄
−(�̄l+�̄P−�̄ j )

13 z̄
−(�̄ j+�̄P−�̄l )

23 , (128)

where � j , �̄ j are the scaling dimensions of the corresponding fields.
The functionsF , F̄ are called Virasoro conformal blocks and are fixed by conformal

invariance. Each conformal block can be written as a power series

F21
34 (P|x) = x�P−�3−�4

∞∑

K=0

FK x
K , (129)

where coefficientsFK can be fully determined by the central charge c, and the conformal
dimensions � j ,�P of the five operators involved. F̄ is determined analogously.

In the case of (85), we obtain

G21
34(x) = lim

z1→∞|z1|4�(β)
〈Oβ(z1)O−β(1)E(x)E(0)

〉
C

= λ
4 · 21/3π2

5
√
3


( 1
6

)2


( 4
3

)2
(1 − cosβ)2

|1 − x |2/3 +
1 + cosβ

2|x |4/3 +
1 − cosβ

2|x |4/3|1 − x |2/3

·
[∣∣∣∣2F1

(
−2

3
,
1

3
; 2
3
; x
)∣∣∣∣

2

− 4

( 2
3

)6



( 4
3

)2


( 1
3

)4 |x |2/3
∣∣∣∣2F1

(
−1

3
,
2

3
; 4
3
; x
)∣∣∣∣

2
]

. (130)
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Fig. 2. The non-zero three-point function coefficients are shown. Rows and columns label (p, p′). Left:
between two edge operators. Right: between two vertex operators

The expansion around x = x̄ = 0 allows us to obtain information about the primary
operator spectrum and fusion rules of the operators that appear in both the Oβ × O−β

and E×E expansions. The hypergeometric functions appearing above are regular around
x = 0. The expansion of (130) around zero can thus be written

G21
34(x) = |x |−4/3

∞∑

m,n=0

am,nx
m/3 x̄n/3. (131)

Using (129), this expansion is of the form |x |−4�E x�P+k x̄�̄P+k̄ , where k, k̄ are non-
negative integers. Since �E = 1/3 we see that �P , �̄P can only be multiples of 1/3.
This must be equal to (127), which can now be written as

G21
34(x) = |x |−4/3

∞∑

p,p′,
m,n=0

C (p,p′)
EE C (p,p′)

OβO−β
F (p)
m F (p′)

n xm/3 x̄n/3. (132)

By comparing the last two equations, we determine the products of three-point func-
tion coefficients at any desired order. Together with the three-point coefficients deter-
mined in [7], using [33], we can uniquely determine the coefficients involving edge
operators which also fuse onto vertex operators. Figure 2 shows the non-zero three-

point coefficients C (p,p′)
EE which appear in the Virasoro block expansion. The operators

appearing in Fig. 2a are a subset of those in Fig. 2b, and only the operators which fuse
onto both sets of operators can be discovered from (130).

The correct normalization of our operators and four-point function is ensured by

C (0,0)
EE ≡ C1

EE = 1

C (0,0)
OβO−β

≡ C1
OβO−β

= 1. (133)
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Furthermore, we obtain the coefficients

C (1,1)
EE ≡ CE

EE = 1√
λ

4 · 21/6 · 31/4 · √
5π3/2


( 2
3

)



( 1
6

)3


( 7
6

) (134)

C (2,2)
EE ≡ CE (2)

EE = √
2. (135)

The complexity of these coefficients grows rapidly for larger (p, p′). The opera-
tor E (2) can be identified with the higher order edge operator of conformal and anti-
conformal dimensions 2/3 defined in (102).

By rearranging the operators in the four-point function (130), one can easily show that
the resulting four-point functions are crossing-symmetric. In particular, by exchanging
operators 2 and 4, one may obtain information about the OPE ofOβ ×E . The expansion
in the cross-ratio in this channel shows logarithmic terms, which indicate the existence
of degenerate operators in a logarithmic CFT. The logarithmic properties of the related
O(n)model have been studied, for example, in [34].We do not investigate their relations
to the BLS at this point.

Nevertheless, one can use G41
32(x) = G21

34(1 − x) to compute the fusion rules for
Oβ × E , and in particular, the squares of three-point function coefficients CP

OβE of all

primaries P . The expansion of G21
34(1 − x) analogous to (132) allows us to obtain the

following operators in the OPE

Oβ(z) × E(z′) = C
Oβ

OβE |z − z′|−2/3Oβ(z) + C
Eβ

OβEEβ(z) +R, (136)

where R contains all the remaining terms in the expansion, C
Oβ

OβE = CE
OβO−β

and

(
C
Eβ

OβE
)2 = 1 + cosβ

2
. (137)

The operator Eβ is the k = 1 case of the charged edge operators defined in (115),
with conformal and anti-conformal dimension �(β) + 1/3.

7.2. The three-point function of the edge operator. In this section, we show how to
compute the three-point function coefficient C (1,1)

EE ≡ CE
EE , which was derived in the

previous section from the conformal block expansion, by applying the OPE of two edge
operators. This computation is a special case of the general expansion (132), and shows
the inner workings of the general method.

Using the general expression for the three-point function of a conformal primary
operator and (79), we have

〈E(z1)E(z2)E(z3)〉C = CE
EE |z12|−2/3 |z13|−2/3 |z23|−2/3

= CE
EE |z12|−4/3 |z23|−2/3 (1 + O

(|z23|
))

= CE
EE 〈E(z1)E(z2)〉C |z23|−2/3 (1 + O

(|z23|
))

=
〈
E(z1)

[
CE
EE |z23|−2/3 E(z2) + O

(|z23|1/3
)]〉

C

. (138)

Additionally, using (85) and (96) we see that, for β = π ,

〈Oπ (z1)O−π (z2)E(z3)E(z4)〉C
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= |z12|−4λ/5Z twist + 4λ |z12|−4λ/5 α̂
z3
z1|z2;Cα̂

z4
z1|z2;C. (139)

The second term on the right-hand side is not divergent as z4 → z3, while we see from
(94) that limz4→z3 |z34|4/3Z twist = 1, so that

lim
z4→z3

|z34|4/3 〈Oπ (z1)O−π (z2)E(z3)E(z4)〉C = |z12|−4λ/5 = 〈Oπ (z1)O−π (z2)〉C .

(140)

Combining these observations gives the OPE

E(z) × E(z′) = |z − z′|−4/3 1 + CE
EE |z − z′|−2/3 E(z) +R, (141)

where R contains all the remaining terms in the expansion.
Plugging this OPE into

〈Oβ(z1)O−β(z2)E(z3)E(z4)
〉
C
and using (64) gives

〈Oβ(z1)O−β(z2)E(z3)E(z4)
〉
C

= 〈Oβ(z1)O−β(z2)
〉
C

|z34|−4/3 + CE
EE

〈Oβ(z1)O−β(z2)E(z3)
〉
C

|z34|−2/3

+
〈Oβ(z1)O−β(z2)R

〉
C

= |z12|−4�(β)|z34|−4/3 + CE
EE CE

OβO−β
|z12|−4�(β)

∣∣∣∣
z12

z13z23

∣∣∣∣

2/3

|z34|−2/3

+
〈Oβ(z1)O−β(z2)R

〉
C

. (142)

For β = π , comparing with (139) gives

|z12|−4λ/5|z34|−4/3 + CE
EE CE

OπO−π
|z12|−4λ/5

∣∣∣∣
z12

z13z23

∣∣∣∣

2/3

|z34|−2/3

+
〈Oβ(z1)O−β(z2)R

〉
C

= |z12|−4λ/5Z twist + 4λ |z12|−4λ/5 α̂
z3
z1|z2;Cα̂

z4
z1|z2;C. (143)

Using the expression (94) for Z twist, we can write

Z twist =
∣∣∣∣
z13z24
z23z14

∣∣∣∣

2/3 ∣∣∣∣2F1

(
−2

3
,
1

3
; 2
3
, x

)∣∣∣∣

2

|z34|−4/3

−
∣∣∣∣

z12
z23z14

∣∣∣∣

2/3 4

( 2
3

)6



( 4
3

)2


( 1
3

)4

∣∣∣∣2F1

(
−1

3
,
2

3
; 4
3
, x

)∣∣∣∣

2

|z34|−2/3. (144)

Plugging this into (143) and observing that

lim
z4→z3

∣∣∣∣
z13z24
z23z14

∣∣∣∣

2/3 ∣∣∣∣2F1

(
−2

3
,
1

3
; 2
3
, x

)∣∣∣∣

2

= 1, (145)

shows that

CE
EE CE

OπO−π
= − 4


( 2
3

)6



( 4
3

)2


( 1
3

)4 lim
z3→z4

∣∣∣∣2F1

(
−1

3
,
2

3
; 4
3
, x

)∣∣∣∣

2

= − 4

( 2
3

)6



( 4
3

)2


( 1
3

)4 . (146)
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Finally, using (66), after some simplification we obtain

CE
EE = 1√

λ

4 · 21/6 · 31/4 · √
5π3/2


( 2
3

)



( 1
6

)3


( 7
6

) , (147)

which indeed coincides with (134).

8. Central Charge

Given an explicit form of a four-point function of a two dimensional CFT, together with
sufficient knowledge of the operator spectrum, one can determine the central charge c
of the theory. We will now use the previous result (85) for the case of the full plane to
confirm that c = 2λ in the BLS, as was derived, for instance, in [4].

In every two dimensional CFT, the two-point function of the energy-momentum
tensor to leading order is fixed by conformal invariance to be

〈T (z1)T (z2)〉C = c/2

z412
. (148)

The energy-momentum tensor can be understood as the level-2 Virasoro descendant of
the identity operator

(L−21)(z) = 1

2π i

∮

z
dw

1

w − z
T (w) = T (z), (149)

where the integral is along any contour around the point z, and Ln are the generators of
the Virasoro algebra. Its anti-holomorphic counterpart is analogously given by T̄ (z̄) =
(L̄−21)(z̄).

Additionally, the OPE of two primary operators is generally given by (cf. [5], Sect.
6.6.3)

A1(z + ε) × A2(z) =
∑

P

∑

{k,k̄}
CP
12β

P{k}
12 β̄

P{k̄}
12 ε�P−�1−�2+K ε̄�̄P−�̄1−�̄2+K̄

· L−k1 . . . L−kN L̄−k̄1 . . . L̄−k̄ N̄
P(z), (150)

where CP
l j are three-point function coefficients, K = ∑

k j∈{k} k j with k j ∈ N is the

descendant level, and β
P{k}
l j , β̄

P{k̄}
l j are numerical coefficients that depend on the central

charge and the conformal dimensions of the involved operators and are fully determined
by the Virasoro algebra. The outer sum runs over all primary operators P , and the inner
sum is over all subsets {k}, {k̄} of the natural numbers. (This was the basis of the analysis
of Sect. 7.)

Since the identity operator has non-zeroOPEcoefficient for bothOβ×O−β andE×E ,
we can use (85) to obtain the central charge c by identifying the level-2 descendant of
the identity.

We achieve this by applying the OPE twice to (85) and evaluating it in two equivalent
ways. First, we expand the expression

〈Oβ(z + ε)O−β(z)E(z′ + ε′)E(z′)
〉
C

(151)
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analytically aroundzero for ε, ε̄, ε′, ε̄′.We then identify the termof order (εε′)−�(β)−1/3+2

with the contribution from the algebraic expansion (150) at the same order in ε, ε′, which
is

(εε′)−�(β)−1/3+2C1
OβO−β

C1
EEβ

1{2}
OβO−β

β
1{2}
EE

〈
(L−21)(z)(L−21)(z′)

〉
C

. (152)

Generically, one expects contributions like (L−1A(3,0))(L−1A(3,0)) and A(6,0)A(6,0)

to appear, where A(p,p′) are primary operators of conformal dimensions (p/3, p′/3).
However, the previous analysis has shown their relevant three-point coefficients vanish
(see e.g. Fig. 2a).

If the conformal dimensions of a pair of operators are equal, it can be shown that
β
1{2}
A1A2

= 2�A1/c, where �A1 = �A2 is the conformal dimension of the operators [5].

We also note that C1
A1A2

denotes the normalization of non-zero two-point functions,
which is canonically chosen to be 1. Every quantity in (152) has thus been determined.

The analytic expansion of (151) yields (at the desired order)

(εε′)−�(β)−1/3+2 1

30

1 − cosβ

(z − z′)4
. (153)

Using (148) and (149), (152) becomes (dropping the powers of ε and ε′)

2�(β)

c

2�E
c

〈
T (z)T (z′)

〉 = 2

3c

λ

10

1 − cosβ

(z − z′)4
, (154)

where we used �(β) = λ
10 (1 − cosβ),�E = 1/3. Comparing (153) to (154) confirms

the result that the BLS with intensity λ has central charge c = 2λ.

9. Conclusions and Future Work

In this work we identified all scalar operators that couple to the layering vertex operators
Oβ . This leaves open the question of the nature of the operators with non-zero spin.
Perhaps the most interesting is the operator with k = 3, k′ = 0 and zero charge, which
has dimensions (1, 0). This is a (component of a) spin-1 current that should satisfy a
conservation law and generate a conserved charge. Understanding the nature and role
of this current may greatly clarify the structure of the spectrum of the CFT associated
to the BLS.

Another question open to investigation is the torus partition function. By further
exploiting the connection to the O(n)model it seems possible that this can be computed.
If so it would reveal the complete spectrum and degeneracies of the theory (modulo
complications resulting from the lack of unitarity of the theory).

The theory as we have presented it has a continuous spectrum because the operator
dimensions depend on the continuous parameters β. This is reminiscent of the vertex
operators of the free boson. There, one can compactify the boson and obtain a discrete
spectrum. An analogous procedure seems available here too, where we identify the
layering number with itself modulo an integer. If this is indeed self-consistent it would
render the spectrum discrete, which has a number of interesting implications that we
intend to explore in future work.

The largest question is what place this Brownian loop soup conformal field theory
has in the spectrum of previously known conformally invariant models. It appears to be
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a novel, self-consistent, and rich theory in its own right, but its connections with the free
field and the O(n) model suggest that it may have ties to other theories that could be
exploited to greatly advance our understanding of it.
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Appendix A: Additional Lemmas and Proofs

In this section we collect all the proofs that do not appear in the main body of the paper.
We first show that the correlations functions 〈Eε(z1) . . . Eε(zn)〉D are well defined, a
necessary step to state Lemma 2.1, proved next in this appendix, and Theorem 2.3. We
refer to Sect. 2 for the notation used here, the statements of Lemma 2.1, as well as the
statement and proof of Theorem 2.3. Additionally, we remind the reader of the following
definitions from Sect. 3.

For any δ > 0, let Lδ denote a Brownian loop soup in D with intensity λ and cutoff
δ > 0, obtained by taking the usual Brownian loop soup and removing all loops with
diameter smaller than δ. We define N δ

ε (z) ≡ nε
z(Lδ) and Eδ

ε (z) ≡ N δ
ε (z) − 〈N δ

ε (z)〉D .
Note that the random variables N δ

ε (z) and Eδ
ε (z) are well defined because of the cutoffs

ε > 0 and δ > 0. The next lemma shows that, if we consider n-point functions of Eδ
ε

for n ≥ 2, the δ cutoff can be removed without the need to renormalize the n-point
functions.

Lemma A.1. For any collection of points z1, . . . , zn ∈ D at distance greater than 2ε
from each other, with n ≥ 2, the following limit exists:

〈Eε(z1) . . . Eε(zn)〉D := lim
δ→0

〈Eδ
ε (z1) . . . Eδ

ε (zn)〉D. (A1)

Moreover, for all ε, δ > 0 sufficiently small,

〈
Eδ

ε (z1) . . . Eδ
ε (zn)

〉
D = 〈Eε(z1) . . . Eε(zn)〉D. (A2)

Proof. For each j = 1, . . . , n, we can write

N δ
ε (z j ) = Mδ

ε (z j ) + Rδ
ε(z j ), (A3)
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where

Mδ
ε (z j ) :=

∑

�∈Lδ

I(� ∩ Bε(z j ) �= ∅, � ∩ Bε(zk) = ∅ ∀k �= j), (A4)

Rδ
ε(z j ) :=

∑

�∈Lδ

I(� ∩ Bε(z j ) �= ∅ and � ∩ Bε(zk) �= ∅ for at least one k �= j), (A5)

where I(·) denotes the indicator function.
Now consider values of δ < mink,m(|zk − zm |−2ε)with k,m = 1, . . . , n andm �= k,

then all the loops from L that intersect Bε(z j ) and at least one other disk Bε(zk) must
have diameter larger than δ. Therefore, for δ sufficiently small, Rδ

ε(z j ) does not depend
on δ and we can drop the superscript and write Rε(z j ) instead.
Defining mδ

ε(z j ) := 〈Mδ
ε (z j )〉D and rε(z j ) := 〈Rε(z j )〉D , for values of δ sufficiently

small we can write

〈
Eδ

ε (z1) . . . Eδ
ε (zn)

〉
D = 〈[

Mδ
ε (z1) − mδ

ε(z1) + Rε(z1) − rε(z1)
]
Eδ

ε (z2) . . . Eδ
ε (zn)

〉
D

= 〈[
Mδ

ε (z1) − mδ
ε(z1)

]
Eδ

ε (z2) . . . Eδ
ε (zn)

〉
D

+
〈
[Rε(z1) − rε(z1)] E

δ
ε (z2) . . . Eδ

ε (zn)
〉
D .

(A6)

Mδ
ε (z1) is independent of Eδ

ε (z j ) for all j �= 1, so

〈[
Mδ

ε (z1) − mδ
ε(z1)

]
Eδ

ε (z2) . . . Eδ
ε (zn)

〉
D = 0 (A7)

and

〈
Eδ

ε (z1) . . . Eδ
ε (zn)

〉
D = 〈

[Rε(z1) − rε(z1)] E
δ
ε (z2) . . . Eδ

ε (zn)
〉
D . (A8)

Proceeding in the same way for all values of j = 2, . . . , n, we obtain

〈
Eδ

ε (z1) . . . Eδ
ε (zn)

〉
D = 〈[Rε(z1) − rε(z1)] . . . [Rε(zn) − rε(zn)]〉D , (A9)

which is independent of δ. ��
Proof of Lemma 2.1. The random variables (N δ

ε (z1), . . . , N δ
ε (zn)) are jointly Poisson.

If we let v = (v1, . . . , vn) be an n-dimensional vector with components v j = 0 or 1,
following [35] we see that their joint distribution is captured by
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N δ
ε (v) := |{� : diam(�) > δ, � ∩ Bε(z j ) �= ∅ ∀ j : v j = 1, � ∩ Bε(z j ) = ∅ ∀ j : v j = 0}|,

(A10)

where N δ
ε (v) is itself a Poisson random variable with parameter λμloop(diam(�) >

δ, � ∩ Bε(z j ) �= ∅ ∀ j : v j = 1, � ∩ Bε(z j ) = ∅∀ j : v j = 0). More precisely,
using Theorem 2 of [35], we can write the joint probability generating function of
(N δ

ε (z1), . . . , N δ
ε (zn)) as

h(x1, . . . , xn) :=
〈
x
N δ

ε (z1)
1 , . . . , x

N δ
ε (zn)

n

〉

= exp

⎡

⎢⎢
⎣λ

∑

I subset {1,...,n}
|I |≥1

μloop(diam(�) > δ, � ∩ Bε(z j ) �= ∅ ∀ j ∈ I, � ∩ Bε(z j ) = ∅ ∀ j /∈ I
)

·
⎛

⎝
∏

j∈I
x j − 1

⎞

⎠

⎤

⎥⎥
⎦ . (A11)

Letting Dk := ∂
∂xk

− λμloop(diam(�) > δ, � ∩ Bε(zk) �= ∅), using (99) we have

〈
Eδ

ε (z1) . . . Eδ
ε (zn)

〉
D =

n∏

k=1

Dk h(x1, . . . , xn)

∣∣∣∣∣
xk=1

. (A12)

Using an induction argument, one can show that
∑

I subset {1,...,n}
|I |≥1

μloop(diam(�) > δ, � ∩ Bε(z j ) �= ∅ ∀ j ∈ I, � ∩ Bε(z j ) (A13)

= ∅∀ j /∈ I
)
⎛

⎝
∏

j∈I
x j − 1

⎞

⎠

=
∑

I subset {1,...,n}
|I |≥1

μloop(diam(�) > δ, � ∩ Bε(z j ) �= ∅ ∀ j ∈ I
)∏

j∈I
(x j − 1). (A14)

Hence,

h(x1, . . . , xn)

= exp
[
λ

∑

I subset {1,...,n}
|I |≥1

μloop(diam(�) > δ, � ∩ Bε(z j ) �= ∅ ∀ j ∈ I
)∏

j∈I
(x j − 1)

]

= 1 +
∞∑

r=1

λr
∑

I1,...,Ir
subsets of {1,...,n}

r∏

l=1

1

m(Il)!

·
⎛

⎝μloop(diam(�) > δ, � ∩ Bε(z j ) �= ∅ ∀ j ∈ Il
) ∏

j∈Il
(x j − 1)

⎞

⎠ , (A15)
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where the second sum is over all unordered collections of subsets of {1, . . . , n} not
necessarily distinct (i.e., over multiset), and we have used the fact that the number of
ways in which an unordered collection of r elements can be ordered is

r !
∏r

l=1 m(Il)! , (A16)

where m(Il) is the multiplicity of Il in the multiset.
Considering the structure of the last expression, the definition of the differential op-

erator Dk , and the fact that in (A12) all derivatives ∂
∂xk

are evaluated at xk = 1, we
can differentiate term by term. It is clear that in the right-hand side of (A12) the only
terms that survive are those for which the derivatives saturate the variables xk . More-
over, Lemma A.1 implies that terms of the type μloop(diam(�) > δ, � ∩ Bε(zk)) cannot
be present in the right-hand side of (A12) because otherwise the limit δ → 0 would
not exist. (One can reach the same conclusion by looking at (A15) and observing that
terms containing subsets that are single points, i.e. Il = {zk}, disappear when applying
Dk .) These considerations single out all partitions � of {1, . . . , n} whose elements have
cardinality at least 2.
Therefore, we obtain

〈Eε(z1) . . . Eε(zn)〉D = lim
δ→0

n∏

k=1

Dkh(x1, . . . , xn)

∣∣∣∣∣
xk≡1

=
∑

{I1,...,Ir }∈�

λr
r∏

l=1

μ
loop
D (� ∩ Bε(z j ) �= ∅ ∀ j ∈ Il), (A17)

which concludes the proof. ��
We conclude this appendix with two lemmas, the first one used in the proof of

Lemma 2.2, the second one used in the proof of Theorem 6.2.

Lemma A.2. For any s > 0 we have

lim
ε→0

ϑε

ϑε/s
= s2/3. (A18)

Proof. If (A18) holds for s < 1, for s > 1, letting r = 1/s, by scale invariance we have

lim
ε→0

ϑε

ϑε/s
= lim

ε→0

ϑε/r

ϑε

= r−2/3 = s2/3. (A19)

Hence, it is enough to prove (A18) for s < 1 and so in the rest of the proof we assume
that s < 1. We use the notation introduced in the proof of Lemma 2.2 and further let
ϑ(ε, s) denote the probability of a three-arm event in an annulus with inner radius ε and
outer radius s. (In particular, ϑ(ε, 1) ≡ ϑε.) We will show that

lim
ε→0

ϑ(ε, 1)

ϑ(ε, s)
= s2/3. (A20)

By scale invariance, this implies that

lim
ε→0

ϑ(ε, 1)

ϑ(ε/s, 1)
= s2/3, (A21)
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as desired. For any ε < s < 1, wewill let ϑ(ε, 1 | ε, s) denote the conditional probability
of a three-arm event in Aε,1(0), given the existence of a three-arm event in Aε,s(0). The
existence of the limit in (A20) follows from the scale invariance of the scaling limit of
percolation.Using the notation introduced in the proof ofLemma2.2, the scale invariance
of the percolation scaling limit implies the scale invariance of νε, which allows us to
write

lim
ε→0

ϑ(ε, 1)

ϑ(ε, s)
= lim

ε→0
ϑ(ε, 1 | ε, s)

= lim
ε→0

∫
P(H |I)dνε/s(I)

=
∫

P(H |I)dν(I) =: L , (A22)

where H is the event that a loop responsible for a three-arm event in Aε/s,1(0) reaches
∂B1/s(0), thus producing a three-armevent in Aε/s,1/s(0), which has the sameprobability
as a three-arm event in Aε,1(0). Now that we know that the limit exists, (A20) can be
obtained as in the proof of the second limit in Equation (4.28) of Proposition 4.9 of [36].
We repeat the argument here for the reader’s convenience. It is known thatϑε = ε2/3+o(1),
where o(1) goes to zero as ε → 0, so that

lim
n→∞

logϑ(sn, 1)

n
= log s2/3. (A23)

Now note that ϑ(sn, 1) can be written as

ϑ(sn, 1) = ϑ(sn, 1)

ϑ(sn, s)

ϑ(sn−1, 1)

ϑ(sn−1, s)
. . .

ϑ(s, 1)

1
, (A24)

which implies that

logϑ(sn, 1)

n
= 1

n

n∑

j=1

log
ϑ(s j , 1)

ϑ(s j , s)
. (A25)

Since s < 1, using (A22), we have

lim
j→∞ log

ϑ(s j , 1)

ϑ(s j , s)
= log L . (A26)

By convergence of the Cesàro mean, the right-hand side of (A25) converges to log L ,
so (A25) and (A23) imply log L = log s2/3, which concludes the proof. ��
Proof of Lemma 6.1. This proof is similar to that of Lemma 2.1. With the notation
introduced in the proof of Lemma 2.1, we have that

〈
E (k1);δ

ε (z1) . . . E (kn);δ
ε (zn)

〉

D
=

n∏

j=1

Dk j
j h(x1, . . . , xn)

∣∣∣∣∣∣
x j≡1

. (A27)

Considering the structure of (A15), the definition of the differential operator D j , and
the fact that in (A27) all derivatives ∂

∂x j
are evaluated at x j = 1, it is clear that in the
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right-hand side of (A27) the only terms that survive are those for which the derivatives
saturate the variables x j . Moreover, the structure of (A15) implies that all terms con-
taining subsets that are single points, i.e. Il = {z j }, disappear when applying Dj . These
considerations imply that the only non-zero terms are those corresponding to multisets
M ∈ M. Note also that, when ∂

∂x j
is applied k j times to h(x1, . . . , xn), as prescribed

by Dk j
j it produces a multiplicative factor k j ! for each j = 1, . . . , n.

Therefore, if the vector k = (k1, . . . , kn) is such that M = ∅, we obtain

〈Eε(z1) . . . Eε(zn)〉D = lim
δ→0

n∏

j=1

Dk j
j h(x1, . . . , xn)

∣∣∣∣∣∣
x j≡1

=
( n∏

j=1

k j !
) ∑

M∈M
λ
∑

S∈M mM (S)
∏

S∈M

1

mM (S)!
(
μ
loop
D (� ∩ Bε(z j ) �= ∅ ∀ j ∈ IS)

)mM (S)
,

(A28)

otherwise we get zero, as required. ��
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