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Abstract
We study quantum decoherence numerically in a system consisting of a relativ-
istic quantum field theory coupled to a measuring device that is itself coupled
to an environment. The measuring device and environment are treated as
quantum, non-relativistic particles. We solve the Schrödinger equation for the
wave function of this tripartite system using exact diagonalization. Although
computational limitations on the size of the Hilbert space prevent us from
exploring the regime where the device and environment consist of a truly mac-
roscopic number of degrees of freedom, we nevertheless see clear evidence
of decoherence: after tracing out the environment, the density matrix describ-
ing the system and measuring device evolves quickly towards a matrix that is
close to diagonal in a subspace of pointer states. We measure the speed with
which decoherence spreads in the relativistic quantum field theory for a range
of parameters. We find that it is less than the speed of light but faster than the
speed of the massive charges in the initial state.

Keywords: decoherence, relativistic quantum field theory,
environment-induced superselection,
spread of decoherence in a relativistic theory

(Some figures may appear in colour only in the online journal)

1. Introduction

Quantum mechanics is the most successful theory in the history of science. It explains phe-
nomena as disparate as fluorescent lights, nuclear reactions and the origin of structure in the

∗
Author to whom any correspondence should be addressed.

1751-8121/23/085301+15$33.00 © 2023 IOP Publishing Ltd Printed in the UK 1

https://doi.org/10.1088/1751-8121/acb977
https://orcid.org/0000-0001-7911-9992
mailto:ojanssen@ictp.it
http://crossmark.crossref.org/dialog/?doi=10.1088/1751-8121/acb977&domain=pdf&date_stamp=2023-2-16


J. Phys. A: Math. Theor. 56 (2023) 085301 C Nagele et al

Universe, and is precise enough to calculate the magnetic moment of the electron to 12 sig-
nificant figures. Despite these extraordinary successes, certain fundamental features of the
theory remain obscure. Chief among them is the question of how quantum mechanics relates
to the classical world—how (or if) the Born rule for calculating the probabilities of meas-
urement results from the quantum wave function should be understood, why classical (rather
than quantum) physics accurately describes the macroscopic world and how to understand the
apparent collapse of the wave function following a measurement.

A widely-accepted idea that bears on these mysteries is decoherence [1–7] (for reviews see
[8–10]). The idea is that the interaction of a microscopic quantum system with a macroscopic
measuring device (or ‘apparatus’) and an environment should, via Schrödinger time evolu-
tion, cause the wave function to evolve towards a specific form. Suppose the initial quantum
state of the system was a superposition of eigenstates of the operator being measured that
is unentangled with the environment and apparatus. The measurement process should gen-
erate entanglement such that after tracing out the environment, the final wave function will
approximate a mixed state that is a sum over eigenstates times appropriate states of the appar-
atus, weighted by the Born-rule probabilities. For all observables restricted to the system-
apparatus subspace, this mixed state gives predictions that are precisely identical to a classical
probabilistic mixture of these pure quantum eigenstates with the Born-rule probabilities (see
section 2)—just what traditional interpretations predict following the interaction of the system
with a measuring device [11]. Hence, if this evolution takes place it can be regarded as at least
a partial explanation for wave function collapse with the correct probabilities. Unfortunately,
the difficulties inherent in solving for the time evolution of the quantum state of macroscopic
systems make it very difficult to establish whether this is the case.

In this paper we make two novel contributions. First, we define a metric that quantifies the
degree of decoherence. Our metric can be applied to any tripartite quantum system (system,
measuring apparatus and environment) that can be interpreted as making a measurement on
some initial state. The metric is the distance between two density matrices. The first matrix
ρ is the state resulting from tracing over the environment after the measurement has taken
place. The second matrix ρD is a sum of individual density matrices weighted by normalized
probabilities, where each individual matrix is the result of time evolution and tracing over
the environment for a specific initial state in the pointer basis. (We take the pointer basis to
denote the collection of product states of the system and the measuring apparatus which persist
despite the interaction with the environment. These apparatus states can be viewed as records
of the corresponding state of the system. Usually only the apparatus part of these states is
referred to as the pointer basis, but we choose not to do this.) For example, if the apparatus is
designed to measure the spin along z of a qubit, ρD is the weighted sum of the density matrices
corresponding to initial states that are spin z eigenstates times the corresponding apparatus
states, with weights that are the squared amplitudes of the actual initial state expanded in
this basis. The idea is that ρD corresponds to a projective measurement in the Copenhagen
interpretation (because there is no interference between the terms in the sum). The closer ρ is
to ρD, the more decoherence due to the environment has removed off-diagonal terms (in the
pointer basis).

Our second contribution is to define and measure the ‘speed of decoherence’—the speed
with which decoherence spreads across a relativistic system. This requires a system with a
sufficiently large size, which in turn necessitates a large Hilbert space. Because we use exact
diagonalization (a numerical technique that evolves the system exactly but requires compu-
tational resources that scale exponentially with Hilbert space dimension), this forces us to
sharply restrict the size of the Hilbert spaces of the apparatus and environment. Nevertheless,
our metric shows that the system still decoheres substantially. (We note that our metric on
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decoherence could be applied to a more traditional setup where the system is much smaller
than the apparatus and environment.)

The systemwe study is an interacting, relativistic quantum field theory (QFT)—themassive
Schwinger model, or quantum electrodynamics (QED) defined in one space and one time
dimension. The QFT is coupled to a measuring device or ‘apparatus’ (modeled as a heavy
quantum particle) via a von Neumann-type interaction. The apparatus reacts to the presence
of charges at a particular location in the Schwinger system. The apparatus is in turn coupled
to an environment. We take the environment to be a light particle that interacts with the appar-
atus via a local (in position) interaction potential. We think of this light particle as a molecule
of gas that the experimenter failed to evacuate from the tube containing the apparatus. After
solving the Schrödinger equation for the full tripartite system, we trace over the environment
to produce a density matrix for the system plus apparatus, and compare the resulting mixed
state to the one predicted by decoherence.

There are several limitations to our study. Our system, apparatus, and environment are over-
simplified. A real apparatus might interact with∼1024 air molecules; our study includes 100 air
molecules. The continuum Schwinger system is relativistic and local; our discretized version
only has these properties at large number of lattice sites N. We investigate the convergence as
N→∞, but due to numerical limitations are unable to extrapolate very far.

The advantage of our approach is that we make no approximations apart from numerical
discretization, nor dowe assume anything about the interpretation of quantummechanics or the
Born rule. Instead, we simply evolve the wave function and compare it to the one predicted by
the theory of decoherence. Furthermore (in contrast to the toy examples usually studied in this
context) the system being measured is a causal, relativistic QFT that is similar in many ways
to the QFTs believed to describe the fundamental physics of our world. This opens the door to
investigating causal aspects of decoherence, such as how localized measures of decoherence
spread in spacetime.

2. Background and previous work

The basic formalism of decoherence (see e.g. [9]) takes place in a tripartite Hilbert space
H consisting of the subsystems S (the system), A (the apparatus) and E (the environment):
H=HS ⊗HA ⊗HE . An idealized version of decoherence would be a pure state |ψ⟩ ∈ H that
evolves from a separable to an entangled form in the following way under the Schrödinger
equation as the system interacts with the apparatus:

|ψ(0)⟩=

(∑
n

cn|sn⟩

)
|a0⟩|e0⟩

(1)−→

(∑
n

cn|sn⟩|an(t1)⟩

)
|e0⟩

(2)−→

(∑
n

cn|sn⟩|an(t)⟩|en(t)⟩

)
= |ψ(t)⟩ (1)

where 0< t1 < t. The arrows represent an idealized evolution in the time intervals [0, t1] and
[t1, t], respectively. To achieve such a dynamics we must assume, firstly, that the interaction
Hamiltonian dominates the time evolution of |ψ⟩. Then, we assume the part of the interaction
Hamiltonian that couples S with A, and the S states |sn⟩, are such that the |sn⟩ are left invari-
ant up to a multiplicative factor (similarly for the apparatus-environment interaction Hamilto-
nian and the apparatus states |an(t)⟩). We also assume there are two time scales, one for the
interaction between the system and the apparatus and another for the interaction between the
apparatus and the environment, and that these interactions may be thought of as happening
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successively. In a realistic setup all of these assumptions will be broken to some extent. As
reviewed below in general one searches for apparatus states which best retain correlations with
the system over time.

By definition, we do not measure properties of the environment and so it should be traced
out. This leads to the following reduced density matrix for the SA subsystem:

ρSA(t) = TrE |ψ(t)⟩⟨ψ(t)| (2)

=
∑
n,m

cnc
∗
m⟨em(t)|en(t)⟩ |sn⟩|an(t)⟩⟨sm|⟨am(t)| .

A key mathematical claim of decoherence is that the environment states {|en(t)⟩} will rapidly
become orthogonal to each other so that ⟨em(t)|en(t)⟩ → δm,n. Then

ρSA(t)→
∑
n

|cn|2|sn⟩|an(t)⟩⟨sn|⟨an(t)| . (3)

We call the collection of states {|sn⟩|an(t)⟩} ⊂ HS ⊗HA ‘pointer states’: they retain their
correlation despite an interaction with the environment5. Equation (3) indicates that ρSA(t)
becomes diagonal in (a subset of) pointer states6. The interaction with the environment has
suppressed interference terms of the type |sn⟩|an(t)⟩⟨sm|⟨am(t)|,m ̸= n, that would have been
present in the SA density matrix had A not been coupled to E .

However, in realistic systems all states become entangled with the environment at some
level. This means no state will remain pure after tracing over E . Given this, one way to char-
acterize pointer states is the ‘predictability sieve’ [13]. Given an initial state |χ0⟩= |s⟩|a⟩ ∈
HS ⊗HA and a typical environment state |er⟩, we can consider the entropy of the reduced
density matrix ρSA(t) = TrE |ψ(t)⟩⟨ψ(t)|,S(t) =−TrSA (ρSA logρSA), where |ψ(t)⟩ is the
time evolution of the initial state |χ0⟩|er⟩. Pointer states are those |χ0⟩ for which S(t) rises
slowly on timescales typical of the dynamics of S and A.

Experiments conducted on the system and apparatus only cannot distinguish the mixed
state (3) from a classical statistical ensemble of quantum states {|sn⟩|an(t)⟩}with probabilities
|cn|2 [14]. To see this, note that for any observable O, using (3) we have

⟨O⟩= TrSA [OρSA(t)]

=
∑
n

|cn|2⟨sn|⟨an(t)|O|sn⟩|an(t)⟩ , (4)

which is manifestly identical to ⟨O⟩ computed in the classical ensemble of quantum states
mentioned above. This holds regardless of whether the states |sn⟩|an(t)⟩ are orthogonal. Sim-
ilarly, the convex combination of mixed states

ρD(t) =
∑
n

|cn|2ρn(t) (5)

is equivalent in the same sense to a classical statistical ensemble of mixed states ρn with prob-
abilities |cn|2. If the ρn(t) are time-evolved pointer states (which, as just mentioned, will not
in general remain pure), then ρD(t) can be thought of as the state predicted by decoherence: a
classical statistical ensemble of time-evolved pointer states.

5 As mentioned in the Introduction, we call the product states |sn⟩|an(t)⟩ ‘pointer states’ in this paper, while in the
literature this term usually refers to just the |an(t)⟩ states.
6 The pointer states do not form a basis—generally they form an overcomplete set. E.g. in the case of a harmonic
oscillator S coupled to a heat bath E , the pointer states are the coherent states of the harmonic oscillator, provided the
friction constant of the environment is much smaller than the oscillator’s frequency [12].
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Despite the crucial role attributed to decoherence in understanding the relation of quantum
mechanics to the classical world (see e.g. [7, 15–18]), analytical studies of it have been lim-
ited to specific interactions and toy models (see e.g. [19–21], and the review [10] and refer-
ences therein), while the few numerical studies to date are limited by the computational cost
of simulating exponentially large Hilbert spaces. One numerical study [22] considers two non-
relativistic particles interacting on an interval. The heavier of the two particles is taken as S
while the lighter is E ; there is no A. The authors consider the time evolution of an initial
product state consisting of two Gaussian lumps in position space for the heavy particle that
move towards each other, times a single Gaussian lump for the lighter particle. With no inter-
action, the position space probability density of the heavier particle S (obtained by tracing out
the lighter particle E) develops an interference pattern as the two lumps approach one another
and overlap. With an appropriate interaction between the particles this inference pattern is
destroyed: the heavy particle position space density is well-approximated by the sum of the
two respective heavy particle densities even after they overlap. This is an example of the gen-
eral decoherence mechanism described above applied to the specific observable O = xheavy
in equation (4), with the pointer states being the independent free time evolutions of the two
heavy particle lumps.

In this work, we make no approximations (apart from those inherent in discretizing the
system). For instance, the coupling between the apparatus and the environment is a realistic
short-range interaction that would be difficult to analyze analytically, and our system S is
an interacting relativistic QFT. Furthermore, we do not assume that the pointer states remain
unentangled with the environment, and in fact all pointer states will become entangled—but
more slowly than a typical state would (this is the predictability sieve criterion for pointer
states described above). As a result, the sum over pure states in (4) must be replaced by
the corresponding convex combination of density matrices (5) where the ρn(t)≡ ρSA(t) for
cn = 1,cm̸=n = 0 (in other words, ρn(t) is the density matrix resulting from tracing over the
environment when the initial state is the single pointer state |sn⟩|an(t)⟩). In the rest of this
work, our primary measure of decoherence will be the distance between the density matrix
ρD(t) defined in (5) and the exact mixed state ρSA(t) defined in (2).

There have been other studies of decoherence in relativistic QFT and quantum mechan-
ics, e.g. [23–26]. To our knowledge, none have investigated the question of how fast deco-
herence spreads in the relativistic system after an interaction with the measuring device and
environment.

3. Numerical methods and system

The quantum theory we study consists of three parts: an interacting relativistic QFT in one
spatial dimension (S)—the massive Schwinger model—coupled via a von Neumann [27] type
interaction to a massive, non-relativistic particle (the measuring device or apparatusA) that is
in turn coupled to a much lighter non-relativistic particle (the environment E) via a local inter-
action in position space. We regard this light particle as an air molecule that our experimenter
has failed to evacuate from the apparatus’ cavity. This is the classic tripartite system-apparatus-
environment theory considered in discussions of decoherence and reviewed in section 2.

Themassive Schwingermodel is QED in one space and one time dimension and is described
by the Hamiltonian (in natural units)

H=

ˆ
dy

[
− iψ̄γ1

( d
dy

+ igA1

)
]ψ+ ψ̄ψ+

E2

2

]

5
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Table 1. Numerical values of the model parameters we chose, whose dynamics are
shown in figures 2–4. From top to bottom in the first column, we have the ratio of the
Schwinger mass to charge, the Schwinger parameter x= 1/(ga)2, the mass of the appar-
atus and environment particles, the coupling between the Schwinger subsystem and the
apparatus, the coupling between the apparatus and the air molecule, and the width of the
interaction between the apparatus and the environment. The second column shows the
fiducial values. These have been chosen to optimize the decoherence measures we will
discuss in section 4. The third column shows an order of magnitude range over which
each fiducial value can be varied, while the others are held fixed, such that the Bures dis-
tance dB(ρ,ρD) still decreases by at least 0.1 within 500 units of time t/a. Three orders
of magnitude on either side of each fiducial value were investigated. For parameters
which can take on negative values, such as the couplings, the range is shown only for
positive values, but a similar range applies to negative values.

Parameter Fiducial value Range

m/g 50 10−2 — 104

x 50 10−2 — 102

mA 400 101 — 105

mE 15 10−2 — 104

gSA 0.1 10−2 — 100

gAE −0.1 10−1 — 102

σ 1/NS 10−3 — 100

where the electrons have mass m and charge g and interact via the electric fields E they pro-
duce, with vector potential A1. In contrast to QED in higher dimensions the electric field is
non-dynamical, being determined entirely by the configuration of charges, and there are no
magnetic fields. The theory is characterized by the dimensionless parameter m/g. For a fidu-
cial value we choosem/g= 50 that is in the weakly interacting regime of the theory, but deco-
herence occurs for a wide range (including the strongly coupled regime m/g≪ 1, cf table 1).

The Schwinger model can be discretized on a so-called staggered lattice with spacing a,
with electrons on even sites and positrons on odd sites. Using a Jordan–Wigner transformation,
the discretized Hamiltonian is mapped to a spin system [28]

HS =
1

g2a2

N−1∑
n=1

[σ+
n σ

−
n+1 +σ−

n σ
+
n+1] +

N2

8
+N

F
g

(F
g
− 1

2

)
+

1
4

N∑
n=1

[
n−N+(−1)n

( 4m
g2a

+
1
2

)
− 1

2

]
σzn

+
N−1∑
n=1

(N− n)

[
F
g
σzn+

1
2

∑
l<n

σzlσ
z
n

]

where N is the total number of Schwinger sites, σ± are the Pauli matrices, and F is the initial
electric field (for a more detailed description, see [29]).

The Hamiltonians for the apparatus and environment are those of massive free non-
relativistic particles:

HA =
p2A
2mA

, HE =
p2E
2mE

6
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Figure 1. Schematic showing the massive Schwinger quantum field theory (vertical
axis) and the charge density for a particle-anti particle pair (red). The horizontal axis
shows the position-space density of the apparatus (heavy particle, blue) and environment
(light particle, yellow). The apparatus is coupled to the charge density of the Schwinger
system at all but the bottom two sites 1 and 2, and the apparatus and environment are
coupled via a local (in position) interaction potential (cross-hatching indicates where the
initial state wave functions overlap). We choose a uniform initial state for the environ-
ment particle to mimic a generic state of many environment particles in a more realistic
setup.

where p is the momentum operator and m is the mass. The interaction Hamiltonian between
the Schwinger system and the apparatus takes the form

HSA = gSA

[(
Ctop −⟨Ω|SCtop|Ω⟩S1S

)
⊗ pA

]
(6)

where gSA is a (positive) coupling constant, |Ω⟩S is the ground state of the Schwinger Hamilto-
nian, and Ctop is the fermion density averaged over all but the bottom two Schwinger lattice
sites. This interaction will cause the apparatus to move to the right in figure 1 (towards larger
values of the apparatus position xA) when charges are present at any site except the bottom
two of the Schwinger system. We subtract ⟨Ω|SCtop|Ω⟩S1S so that the apparatus is calibrated
to react as little as possible in the ground state. A state with charges initially at sites 1 and 2
however will develop support on the higher sites after some time and start interacting with the
apparatus. This specific interaction is tailored to illustrate decoherence in the linear combina-
tion of (ground state)+(state with charges at sites 1 and 2), as we discuss in detail in section 4.

Lastly, the interaction between the apparatus and the environment is short-range and local
(in position space)

HAE = gAE V(xA ⊗1E −1A ⊗ xE)

where gAE is the coupling, xA, xE are the position operators for the apparatus and environment
particles, and V is the interaction potential that we take to be Gaussian,

V(x) =
1√
2πσ

exp

(
−x2

2σ2

)
,

where σ is the range of the interaction.
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For simplicity and because the interaction is local in position, the number of lattice sites
for the apparatus and environment are equal, NA = NE (taken between 11 and 23 in our sim-
ulations of the dynamics, cf figure 4). The number of Schwinger sites is NS (= 8 in our simu-
lations). The full Hamiltonian reads

H= (HS ⊗1A +HSA)⊗1E

+1S ⊗ (HA ⊗1E +1A ⊗HE +HAE) .

Once computed, the Hamiltonian is diagonalized using NUMPY’s eigh function which uses a
divide and conquer algorithm in LAPACK, and the state at arbitrary time can then be easily
calculated from any given initial state [29]. The numerical values of the parameters we chose
to simulate the dynamics are detailed in table 1, as is the range over which our results are
qualitatively unchanged.

4. Pointer states and numerical measures of decoherence

As mentioned above, decoherence is defined by the time evolution of the density matrix
describing the system or the system and apparatus, after tracing over the environment. It refers
to the tendency of the density matrix to become diagonal in a special basis of so-called ‘pointer
states’ that depend on the details of the system and its interactions with the environment.

Given the form of the interactions, we expect the pointer states to be localized in the posi-
tion basis for the apparatus, and to be (close to) charge eigenstates for the Schwinger system.
The wave function of true position eigenstates would spread out more rapidly than the charac-
teristic timescales of the system, so we will consider Gaussian wave functions with a standard
deviation that is small enough to distinguish between apparatus locations before and after a
measurement, but large enough to prevent the wave function from immediately spreading.

Therefore we will consider an initial state of the form

|ψ(t= 0)⟩= 2−1/2(|Ω⟩S + |C⟩S) ⊗ |0⟩A ⊗ |e⟩E (7)

where |Ω⟩S is the Schwinger ground state, |C⟩S is the Schwinger state with charges at sites 1
and 2 (for details see [29]), |0⟩A is a Gaussian in position for the apparatus. We choose |e⟩E
to be an environment state that is completely de-localized in position space, so that the air
molecule is equally likely to be found anywhere on the interval7. For simplicity we focus just
on these two pointer states and their equally weighted linear combination (7).

Due to the boundary conditions the charges in the Schwinger state |C⟩S have an upward
momentum initially, so after some time they move out of the bottom two sites and enter the
region where the coupling to the apparatus is active8. In figure 2 we plot the evolution of the
charge density and positions of the apparatus and environment.

We define ρ(t) = ρSA(t) to be the mixed state resulting from the partial trace over E of this
initial state:

ρ(t)≡ TrE |ψ(t)⟩⟨ψ(t)|, (8)

and ρΩ(t),ρC(t) to be the mixed states when we choose the initial state of the system to be
|Ω⟩S ⊗ |0⟩A ⊗ |e⟩E , |C⟩S ⊗ |0⟩A ⊗ |e⟩E respectively and trace over E at time t.

7 We also experimented with random initial states for the air molecule and found little difference in the results.
8 We consider a state with two equal and opposite charges to avoid a background electric field that would exert a net
force on the charges.

8
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Figure 2. The expectation value of the charge density for the Schwinger model, the
position of the apparatus, and the position of the environment (top, middle, and bottom
rows) for three initial Schwinger states |Ω⟩S , |C⟩S , and 2−1/2 (|Ω⟩S + |C⟩S) (cf (7))
(left, middle, and right columns).

As described above, the predictability sieve criterion for identifying pointer states quantit-
atively relies on the behavior of the entropy of entanglement with the environment. In a deco-
hering system, the entropy of a pointer state should remain small (relative to a random state)
for some time. To check whether we have indeed identified some pointer states correctly, we
plot the von Neumann entanglement entropy of two such states vs. time and compare it to
the entropy of a random state (see figure 3). The entropy indeed grows more slowly for our
putative pointer states than for a random state.

As mentioned previously, our quantitative measure of decoherence will be the distance
between the density matrix ρ(t) (cf (8)) and

ρD(t)≡
1
2
ρΩ(t)+

1
2
ρC(t) . (9)

If ρ and ρD are identical this would correspond to perfect decoherence, because it would mean
that the system has evolved to a state that can be interpreted as a classical statistical ensemble
of the two states it would have evolved to in each pointer state separately. Conversely, if they
remain nearly as far apart as they are initially before the interaction, it would indicate that the
system is not decohering.

9
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Figure 3. Left panel: time evolution of the von Neumann entropy of the mixed
system+apparatus states ρΩ(t) and ρC(t) obtained by the tracing over the environment
of two putative initial pointer states |Ω⟩S ⊗ |0⟩A and |C⟩S ⊗ |0⟩A (see (7) and (8)),
compared to several randomly chosen states. Right panel: numerical stability of the left
panel when increasing the size of the apparatus/environment Hilbert space.

There are several inequivalent definitions of distance between density matrices. We will use
the Bures distance [30, 31]:

dB(ρ1,ρ2)≡
√

1−
√

Fid(ρ1,ρ2)≡
√

1−Tr
√√

ρ1 ρ2
√
ρ1 .

When ρ1,ρ2 are pure states |ϕ1⟩⟨ϕ1|, |ϕ2⟩⟨ϕ2| the Bures distance reduces to the Fubini–Study
distance

√
1− |⟨ϕ1,ϕ2⟩|. In general [31, 32]

Fid(ρ1,ρ2) = max
|ψ1⟩,|ψ2⟩

|⟨ψ1,ψ2⟩|2 ,

where the maximum is taken over the set of all (independent) purifications |ψ1,2⟩ of ρ1,2.
The Bures distance is natural here since it involves the notion of purification, where dens-
ity matrices are viewed as pure states of a larger Hilbert space. Note that we have normalized
the Bures distance so that the maximal distance between two density matrices is dB = 1 when
the two density matrices have support on orthogonal subspaces, and dB = 0 iff. ρ1 = ρ2.

5. Results

As we will now illustrate, the exact Schrödinger time evolution of the tripartite Schwinger-
apparatus-environment quantum system indeed exhibits decoherence. Specifically, the dis-
tance dB(ρ(t),ρD(t)) between the mixed state ρ obtained from tracing over the environment
and the ideal decohered mixed state ρD evolves from its initial value to a substantially smaller
value (we believe this minimum value would be even smaller if we were to increase the size
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Figure 4. Left panel: Bures distance between the density matrix ρ(t) obtained by tra-
cing over the environment (8) and the fully decohered mixed state ρD(t) (9) (blue). For
comparison we plot the distance between ρ(t) and a random state (green), the distance
between two random states (red), the distance between ρ(t) and ρ(0) (magenta), and
the distance between ρ̃(t) and ρ̃D(t) (yellow), where ρ̃, ρ̃D are defined in the same way
as ρ,ρD but relative to randomly chosen system-apparatus states (rather than pointer
states). Left lower panel: average charge density of the top six Schwinger sites. Right
panel: Bures distance dB(ρ,ρD) at a specific time (t/a= 350) as a function of the size
of the apparatus and environment Hilbert spaces.

of the Hilbert space). As expected, this decrease begins when the system starts to interact with
the apparatus (and the apparatus in turn interacts with the environment).

As a check, we also plot the distance between ρ(t) and ρ(0), between the analog of ρ(t) and
ρD(t) where we replace the pointer states |Ω⟩S ⊗ |0⟩A and |C⟩S ⊗ |0⟩A with random states,
the distance between ρ(t) and a random density matrix, and the distance between two ran-
dom density matrices9. None of these distances decrease with time, which establishes that the
behavior we are observing is indeed consistent with the predictions of decoherence. These
behaviors are illustrated in figures 2 and 4. The yellow line in 4—the Bures distance between
ρ̃(t) and ρ̃(t)D, which are density matrices defined identically to ρ,ρD but relative to randomly
chosen states rather than pointer states—exhibits no decrease over time. This illustrates that
the system plus apparatus decoheres in the pointer basis selected by the interaction with the
environment, but not in an arbitrary basis.

While we do not illustrate it in a figure, setting the apparatus-environment coupling gAE
to zero also makes the Bures distance independent of time: dB(ρ(t),ρD(t)) = dB(ρ(0),ρD(0)).
This is as expected from the theory of decoherence, because it is the time evolution of the
environment states entangled with the system and apparatus that causes decoherence, and with
gAE = 0 no such entanglement is generated.

9 A random density matrix in HS ⊗HA is chosen by acting with a random unitary (chosen according to the Haar
measure) on a reference state in HS ⊗HA ⊗HE and tracing over HE .
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Our study is limited by the computational power of classical computers, which constrains
us to consider far smaller Hilbert spaces than those that describe truly macroscopic measuring
devices or environments (see e.g. [7]). This limitation is likely responsible for the fact that
decoherence is only partially effective in our simulations (i.e. for the fact that the distance
between the exact state ρ and the ideal decohered state ρD does not decrease to a value very
close to zero). As an indication of what would happen with a larger Hilbert space, we invest-
igated both the behavior of the von Neumann entropy of our putative pointer states after some
time and the Bures distance between ρ and ρD as we increased the size of the apparatus and
environment Hilbert spaces. Both results appear to show an increasing level of decoherence
(figure 3).

6. Lorentz invariance and the speed of decoherence

An intriguing question that arises in thinking about decoherence and the ‘splitting’ of the wave
function into classical branches is the question of when and where in spacetime these splits
occur (see also [33]). This question is particularly interesting when the system under study
is Lorentz invariant so that the spread of causal influences is limited by the speed of light.
The Schwinger system we study is (in the continuum limit) invariant under 1+1-dimensional
Lorentz transformations acting on time and the spatial direction it extends in. In our analysis
the measuring apparatus and environment are represented by non-relativistic Hamiltonians.
At first glance one might think that this will spoil the Lorentz invariance. However, if the
interaction of the measuring device and apparatus with the Schwinger system is confined to
a single location (or a small number of lattice sites) in the spatial direction of the Schwinger
system, a measurement constitutes a local perturbation or source in the relativistic Schwinger
system at this specific location. Therefore, in the continuum limit relativistic causality limits
how rapidly the decoherence effects of a measurement can spread in the Schwinger direction.

To investigate this spread we studied an interaction Hamiltonian that is modified slightly
relative to the rest of the paper: the Schwinger operator Ctop (cf equation (6)) in this section
is the fermion density averaged over only the top two lattice sites of the Schwinger system
(as opposed to all but the bottom two). This makes the interaction more local (but does not
qualitatively alter the results obtained in the rest of the paper).

To measure the spread of decoherence we define mixed states that are localized at some
site x in the Schwinger space by tracing over the environment, the apparatus, and all the states
associated with the Schwinger lattice sites except x:

ρx ≡ TrA,S sitesy̸=x(ρ) , ρx,D ≡ TrA,S sitesy̸=x(ρD) .

These localized mixed states are related to ρ,ρD (cf (8) and (9)) by the additional trace over
all Schwinger sites y ̸= x.

In figure 5 we plot the Bures distance between ρx and ρx,D. The difference is initially local-
ized at the site of the charge. This is as expected: both the states |Ω⟩S and |C⟩S are initially very
close to the vacuum at the lattice sites away from the position of the charges, and hence are
nearly identical. However, as the charges interact with the apparatus (and the apparatus with
the environment) we see that the state ρx approaches the decohered state ρx,D everywhere. In
figure 6 we illustrate that for all the values of m/g we investigated, this decoherence spread
happens at a speed that exceeds the speed of the charges, but that is slower than the speed of
light (which is 1 site/unit time in figure 5). We leave further investigation of this phenomenon
to future work.
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Figure 5. Top row: Bures distance between the local density matrix ρx and the fully
decohered local matrix ρx,D, shown for zero and non-zero Schwinger-apparatus coup-
ling. Bottom row: difference and log difference between the two plots in the top row.
The speed of the charges vcharges is measured as they move upwards during the initial
time period by two different methods, distance from the bottom to the top sites divided
by the time the charge takes to traverse this distance, and a linear fit to spacetime points
where the probability to observe a charge reaches a certain threshold. The speed of the
spread of decoherence vsignal is determined by a fit to the points where the Bures distance
between the decohered and un-decohered (non-interacting) states reaches a threshold
and compared to c and the speed of the charges for reference.

Figure 6. The speed of the charges and the speed of spread of decoherence as a function
of m g−1 (see the caption of figure 5 for an explanation of how the speeds are measured).

7. Conclusions

Our results illustrate that the exact quantum state of our model ρ, evolving in time according to
the Schrödinger equation and with the environment traced over, indeed approaches the mixed
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state ρD predicted by the theory of decoherence. In the sense that all expectation values are
identical, ρD can be regarded as representing a classical statistical ensemble of quantum states
with the probabilities predicted to follow a measurement in the conventional interpretations
of quantum mechanics. In this sense our results bear directly on some of the central questions
in the interpretation of the quantum wave function and the issue of measurement. Our study
differs from previous work in that it is numerical, while most studies of decoherence have been
analytic, and that we study an interacting relativistic QFT.

What we are testing is precise and quantitative: that the density matrix describing the system
plus apparatus after tracing out the environment evolves towards a specific form that is defined
relative to a specific set of pointer states. This is clearly a non-trivial claim that does not always
hold. For instance—as we demonstrated explicitly—it does not hold if we choose a random
set of pointer states rather than those that are selected out by the form of the interactions. This
demonstrates that there cannot exist a general theorem or principle which imply our results
for the collection of subsystems (which include a relativistic quantum field theory) that we are
considering.

Perhaps the most intriguing result we have obtained is a measurement of the speed with
which decoherence spreads in our relativistic system. It would be very interesting to investigate
this speed further both numerically and analytically, and possibly connect it to studies of the
speed of spread of entanglement (such as [34, 35]).
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