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Abstract. We establish Fourier extension estimates for compact subsets of the hyper-
bolic hyperboloid in three dimensions via polynomial partitioning.

1. Introduction

In this article, we establish Fourier extension estimates for compact subsets of the hy-
perbolic, or one-sheeted, hyperboloid in three dimensions. This surface may be defined
as the set of points (⌧, ⇠) 2 R ⇥ R2 satisfying the relation ⌧2 = 1 + ⇠21 � ⇠22 . Setting
�(⇠) :=

p
1 + ⇠21 � ⇠22 and ⌦ := {⇠ 2 R2 : 1 + ⇠21 � ⇠22 � 0}, we may restrict our attention to

the graph

⌃ := {(�(⇠), ⇠) : ⇠ 2 ⌦}.

We aim to adapt the polynomial partitioning method of Guth [5] to obtain extension esti-
mates for a bounded subset of ⌃ near (1, 0), which we denote by ⌃1. Use of the parabolic
scalings Pr(⌧, ⇠) := (r�2⌧, r�1⇠) in Guth’s argument presents an immediate obstacle here, as
hyperboloids are not invariant under such transformations. To overcome this minor issue, we
will simultaneously prove extension estimates for all parabolic rescalings of ⌃1 with constants
uniform in the scaling parameter. Toward that end, let U := {⇠ : |⇠|  �0/10}, where �0 > 0
is a small constant to be chosen later, and for each r 2 (0, 1], let �r(⇠) := r�2(�(r⇠) � 1)
and

⌃r := {(�r(⇠), ⇠) : ⇠ 2 U}.

Each ⌃r is the image of ⌃1 \ {(⌧, ⇠) : ⇠ 2 rU} under the parabolic scaling Pr, and the ‘�1’
in �r just makes ⌃r converge to the hyperbolic paraboloid ⌃0 := {( 12 (⇠

2
1 � ⇠22), ⇠) : ⇠ 2 U}

as r ! 0. We associate to ⌃r the extension operator

Erf(t, x) :=
Z

U

e2⇡i(t,x)·(�r(⇠),⇠)f(⇠)d⇠.

Theorem 1.1. If q > 13/4 and p > (q/2)0, then Er : Lp(U) ! Lq(R3) with operator norm
bounded uniformly in r.

Remark 1.2. The bilinear and bilinear-to-linear theories for E1 appear in a separate article
[1] of Stovall, Oliveira e Silva, and the author. Using the bilinear machinery and Theorem
1.1, boundedness of Er on the parabolic scaling line p = (q/2)0 (for q > 13/4) can also be
proved. See [1, Remark 5.2], as well as [8], [9], and [6] for arguments of this type.
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Theorem 1.1 can be compared to several recent developments in the restriction/extension
theory for hyperbolic surfaces in three dimensions. Cho and Lee [3] generalized Guth’s ar-
gument in [5] to the hyperbolic paraboloid, proving strong type (p, q) extension estimates
in the range q > 13/4, p � q. Later work of Kim [6] and Stovall [8] brought those esti-
mates to the scaling line p = (q/2)0. (Letting r ! 0 and applying Fatou’s lemma, Theorem
1.1 reproves the o↵-scaling extension estimates for the hyperbolic paraboloid.) Recently,
Buschenhenke–Müller–Vargas [2] and Guo–Oh [4] independently obtained extension esti-
mates for all smooth compact surfaces in R3 with negative Gaussian curvature using poly-
nomial partitioning. In particular, Theorem 1.1 is now (essentially) a special case of their
results, which were announced after the completion of the arXiv preprint version of the
present article.

The rest of the article is organized as follows: In Section 2, we adapt the notion of ‘broad
points’ in [5] to the hyperbolic hyperboloid, motivating our definition through the geometry
of the surface. In Section 3, we use Kim’s argument in [6] to reduce Theorem 1.1 to Theorem
2.1, an estimate on the contribution to Er from broad points. Finally, in Section 4, the heart
of the article, we prove Theorem 2.1 using polynomial partitioning as in [5].

Notation and terminology. As is standard, we write A . B or A = O(B) if there
exists a constant C > 0 such that A  CB. Generally, an implicit constant is not allowed to
depend on any parameters present in the article. In particular, constants never depend on
the parabolic scaling parameter r. There are exceptions: In Section 4, constants may depend
on the exponent " from Theorems 2.1 and 4.1. To highlight dependence on a parameter
s, we will sometimes write .s in place of .. Likewise, we write c ⌧ 1 to mean that c is
su�ciently small, and we use subscripts to indicate dependence on parameters. A number
� is ‘dyadic’ if � = 2j for some j 2 Z, and an interval I is ‘dyadic’ if I = [k2j , (k + 1)2j) for
some j, k 2 Z. If u, v are geometric objects that form an angle, such as two lines or a vector
and a plane, then \(u, v) denotes the measure of their angle. Finally, ‘hyperboloid’ always
means the hyperbolic (one-sheeted) hyperboloid.

Acknowledgments. The author is very grateful to Betsy Stovall for her advice. This
project was suggested by Stovall and grew out of joint work with Stovall and Diogo Oliveira
e Silva. The 2019 MSRI Summer Graduate School on the Polynomial Method provided
useful discussions during the earliest stage of this project. The author was supported by
NSF grant DMS-1653264.

2. Broad points and the geometry of the hyperboloid

In this section, we adapt the notion of ‘broad points’ to the hyperboloid. Informally, given
a function f 2 L1(U), a point (t, x) 2 R ⇥ R2 is ‘broad’ for Erf if there exist small, well-
separated squares ⌧1, ⌧2 ✓ U such that f�⌧1 and f�⌧2 contribute significantly to Erf(t, x);
otherwise (t, x) is ‘narrow’. To estimate Erf , it su�ces to bound the contributions from
broad and narrow points separately. The narrow contribution will be handled by a parabolic
rescaling argument, since (morally) its Fourier transform is supported in a small rectangular
cap in ⌃r. The broad contribution will be handled by polynomial partitioning, using, in
particular, some techniques from bilinear restriction theory. In the latter argument, the
precise separation condition imposed on the squares ⌧1, ⌧2 will be crucial for ensuring that
their lifts to ⌃r are appropriately transverse. Our choice of this condition will be motivated
by the geometry of the hyperboloid, which we now describe.

First, the basic symmetries of the hyperboloid are the Lorentz transformations, linear
maps on R ⇥ R2 that preserve the quadratic form (⌧, ⇠) 7! ⌧2 � ⇠21 + ⇠22 . Concretely, the
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spatial rotations

R!(⌧, ⇠) := (�!2⇠2 + !1⌧, ⇠1,!1⇠2 + !2⌧), ! 2 S1, (2.1)

boosts

B⌫(⌧, ⇠) :=
�
� ⌫⇠1 +

p
1 + ⌫2⌧,

p
1 + ⌫2⇠1 � ⌫⌧, ⇠2

�
, ⌫ 2 R, (2.2)

and dilations

D�(⌧, ⇠) :=

✓
⌧,
�+ ��1

2
⇠1 +

�� ��1

2
⇠2,

�� ��1

2
⇠1 +

�+ ��1

2
⇠2

◆
, � 2 R, (2.3)

will be of particular use to us. We define a measure dµ on ⌃ by setting
Z

⌃
gdµ :=

Z

⌦
g(�(⇠), ⇠)

d⇠

�(⇠)
(2.4)

for g continuous and compactly supported. This measure is Lorentz invariant in the following
sense: If L is a Lorentz transformation and supp g ✓ ⌃ and L�1(supp g) ✓ ⌃, then

Z

⌃
(g � L)dµ =

Z

⌃
gdµ.

We also record the following notation for later use. Given a Lorentz transformation L and
⇠ 2 ⌦, let

L(⇠) := ⇡(L(�(⇠), ⇠)), (2.5)

where ⇡(⌧, ⇠) := ⇠ is the projection to the spatial coordinates. If L(�(⇠), ⇠) 2 ⌃ (equivalently,
if e1 · L(�(⇠), ⇠) � 0), then ML(⇠) = M(L(⇠)) for any other Lorentz transformation M .
In particular, if V ✓ ⌦ and L(�(⇠), ⇠) 2 ⌃ for ⇠ 2 V , then L is invertible on V with

L
�1

(⇣) = L�1(⇣) for ⇣ 2 L(V ).
Second, the (hyperbolic) hyperboloid is doubly ruled. The aforementioned separation

condition will be adapted to this structure: Informally, two small squares ⌧1, ⌧2 ✓ U will be
‘separated’ if their lifts to the hyperboloid do not intersect a common line contained in the
surface. While the precise version of this condition will be stated in Section 4, we record a
few preparatory details here. The Lorentz norm of (⌧, ⇠) 2 R⇥ R2 is defined as

J(⌧, ⇠)K :=
q
|⌧2 � ⇠21 + ⇠22 |.

It is clearly Lorentz invariant, and if (⌧, ⇠), (⌧ 0, ⇠0) 2 ⌃, then J(⌧, ⇠) � (⌧ 0, ⇠0)K = 0 if and
only if (⌧, ⇠) and (⌧ 0, ⇠0) belong to a common line contained ⌃. The latter property can be
checked by using the formulae

`±(⌧,⇠)(t) := (⌧, ⇠) + t(⇠1⌧ ⌥ ⇠2, 1 + ⇠21 , ⇠1⇠2 ± ⌧), (2.6)

which parametrize the lines `±(⌧,⇠) ⇢ ⌃ that intersect at (⌧, ⇠) 2 ⌃. We also define the Lorentz
separation of ⇠, ⇣ 2 ⌦ as the quantity

distL(⇠, ⇣) := J(�(⇠), ⇠)� (�(⇣), ⇣)K,

which can be viewed as the ‘distance’ between (�(⇠), ⇠) and (�(⇣), ⇣) modulo the rulings of
⌃. Given this definition, a more accurate rendering of our separation requirement would be
that distL(⇠, ⇣) & 1 for all ⇠ 2 ⌧1 and ⇣ 2 ⌧2. Near the end of this section, we will prove
Lemma 2.2, which relates distL to some other geometric quantities.
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Having described the geometry of the hyperboloid, we turn to defining broad points. Our
first step is to divide each surface ⌃r into caps that lie above special sets which we call tiles.
Consider the map � : R2 ! R2 given by

�(⇠) :=
(⇠1

p
1 + ⇠22 + ⇠2

p
1 + ⇠21 , ⇠2 � ⇠1)p

1 + ⇠21 +
p

1 + ⇠22

and, for each r 2 (0, 1], let �r(⇠) := r�1�(r⇠). Recall the constant �0 used to define U , and
assume henceforth that �0 is dyadic. Given two dyadic numbers �, �0 2 (0, �0], a (�, �0, r)-tile
is any nonempty set of the form

⇢ := �r(I� ⇥ I�0) \ U,

where I� and I�0 are dyadic intervals contained in [��0, �0) of length � and �0, respectively.
We denote the set of (�, �0, r)-tiles by T�,�0,r. Observe that � is a di↵eomorphism near the
origin. (Indeed, � can be viewed as a perturbation of the map ⇠ 7! 1

2 (⇠1 + ⇠2, ⇠2 � ⇠1) for
⇠ small.) Taking �0 su�ciently small, it is straightforward to check that k��1

r
kC1(U) . 1

uniformly in r, and consequently that U ✓ �r([��0, �0)2) for every r. We also note that for
fixed �, �0, r, the (�, �0, r)-tiles are pairwise disjoint and satisfy

U =
[

⇢2T�,�0,r

⇢.

Let us briefly mention the geometry underlying these definitions. The map � was created
with the following property in mind: If ` ⇢ R2 is a vertical or horizontal line that intersects
��1

r
(U), then �r(`) is a line that lifts to a line contained in ⌃r. Thus, each tile lifts to a

quadrilateral (in fact, nearly rectangular) cap bounded by four lines. We can think of the
collection {T�,�0,r}�,�0 as a dyadic grid adapted to ⌃r. A more precise geometric description
of � will appear in Lemma 2.3 at the end of this section.

Now, let K � ��1
0 be a large dyadic constant. As suggested above, we will analyze

contributions to Er from square-like sets ⌧ . The (K�1,K�1, r)-tiles will function as these
basic pieces. However, controlling contributions from longer rectangle-like sets will also be
essential. (As we will see, a collection of non-separated squares ⌧ must cluster around a
line.) For each dyadic number � 2 [K�1, �0], let

R�,r := TK�1,�,r [ T�,K�1,r

and also set

Rr :=
[

�2[K�1,�0]

R�,r.

Elements of R�,r resemble rectangles of dimensions K�1 ⇥ � and slope approximately 1 or
�1. We are now ready to define broad points. Given f 2 L1(U) and ↵ 2 (0, 1], we say that
(t, x) 2 R⇥ R2 is ↵-broad for Erf if

max
⇢2Rr

|Erf⇢(t, x)|  ↵|Erf(t, x)|,

where f⇢ := f�⇢. The ↵-broad part of Erf is defined as

Br↵ Erf(t, x) :=
(
Erf(t, x) if (t, x) is ↵-broad for Erf,
0 otherwise.

In the next section, we will reduce Theorem 1.1 to the following estimate on the broad part:
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Theorem 2.1. For every 0 < "⌧ 1, there exists a constant C", depending only on ", such
that if K = 2d"

�10e, then

kBrK�" ErfkL13/4(BR)  C"R
"kfk12/132 kfk1/131

for all r 2 (0, 1], R � 1, and balls BR of radius R.

To conclude this section, we present two geometric lemmas. We will need the following
notation: For ⇠ 2 ⌦, let `±

⇠
denote the lines in R2 parametrized by

`±
⇠
(t) := ⇠ + t(1 + ⇠21 , ⇠1⇠2 ± �(⇠)). (2.7)

Geometrically, `±
⇠
are the projections to the spatial coordinates of the lines `±(�(⇠),⇠) defined

in (2.6).

Lemma 2.2. For all ⇠, ⇣ 2 U , we have

(a) dist(⇠, `+
⇣
[ `�

⇣
) . distL(⇠, ⇣) . |⇠ � ⇣|;

(b) distL(⇠, ⇣)2 ⇠ |h(r2�(⇠))�1(r�(⇠)�r�(⇣)),r�(⇠)�r�(⇣)i|.

Proof. (a) Let ⇠0 be the intersection of `�
⇠
and `+

⇣
. An easy calculation shows that \(`+

⌘
, `�

⌘0) &
1 for all ⌘, ⌘0 2 U . (In fact, the lines are nearly orthogonal.) In particular, the law of sines
implies that ⇠0 2 CU for some constant C. Let L := B⌫R!, as defined in (2.1) and (2.2),
with

⌫ := ⇣1,

! :=

✓
�(⇣)p
1 + ⇣21

,� ⇣2p
1 + ⇣21

◆
.

Then L(�(⇣), ⇣) = (1, 0). Let ⌘ := L(⇠) and ⌘0 := L(⇠0), using the notation from (2.5). Since
⌫ and !2 are very small, L is essentially a perturbation of the identity. It is easy to check
that L(�(⇠), ⇠) 2 ⌃ for all ⇠ 2 CU , provided �0 is su�ciently small, and thus L is invertible

on CU . Additionally, we have the bound kL�1k
C1(L(CU)) . 1. Combining these facts, we

see that

dist(⇠, `+
⇣
)  |⇠ � ⇠0| . |⌘ � ⌘0|. (2.8)

Since L preserves the hyperboloid and is linear, it must permute the lines contained in the
surface. Therefore, since L is close to the identity,

L(`+
⇣
) = `+0 = R(1, 1),

L(`�
⇠
) = `�

⌘
,

which implies that {⌘0} = R(1, 1)\ `�
⌘
. Then, since ⌘ 2 `�

⌘
and \(R(1, 1), `�

⌘
) & 1, it follows

that |⌘ � ⌘0| . dist(⌘,R(1, 1)). Thus, by (2.8), we have dist(⇠, `+
⇣
) . dist(⌘,R(1, 1)) 

|⌘1 � ⌘2|. A similar argument shows that dist(⇠, `�
⇣
) . |⌘1 + ⌘2|. Hence,

dist(⇠, `+
⇣
[ `�

⇣
) = min{dist(⇠, `+

⇣
), dist(⇠, `�

⇣
)}


q

|⌘21 � ⌘22 |

.
p

|1� �(⌘)|
⇠ J(�(⌘), ⌘)� (1, 0)K
= distL(⇠, ⇣),
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where the last step used the Lorentz invariance of the Lorentz norm. The second inequality
in (a) can be proved in a similar (but easier) fashion. (It also follows from part (b), using
the Cauchy–Schwarz inequality and bounds on the derivatives of �.)

(b) A straightforward computation shows that the right-hand side of (b) is equal to

1

�(⇠)�(⇣)2
|(1 + ⇠21)(⇠1�(⇣)� ⇣1�(⇠))

2 + 2⇠1⇠2(�⇠2�(⇣) + ⇣2�(⇠))(⇠1�(⇣)� ⇣1�(⇠))

+ (�1 + ⇠22)(�⇠2�(⇣) + ⇣2�(⇠))
2|.

The expression inside absolute value signs is equal to

�(⇠)2[(1 + ⇠21)⇣
2
1 � 2⇠1⇠2⇣1⇣2 + (�1 + ⇠22)⇣

2
2 ]

+ �(⇠)�(⇣)[�2(1 + ⇠21)⇠1⇣1 + 2⇠1⇠2(⇠2⇣1 + ⇠1⇣2)� 2(�1 + ⇠22)⇠2⇣2]

+ �(⇣)2[(1 + ⇠21)⇠
2
1 � 2⇠21⇠

2
2 + (�1 + ⇠22)⇠

2
2 ],

which, by the relations �(⇠)2 = 1 + ⇠21 � ⇠22 and �(⇣)2 = 1 + ⇣21 � ⇣22 , simplifies to

�(⇠)2[(⇠1⇣1 � ⇠2⇣2)
2 + �(⇣)2 � 1] + 2�(⇠)�(⇣)[�⇠1⇣1 + ⇠2⇣2] + �(⇣)2�(⇠)2[�(⇠)2 � 1].

Thus, by a bit more algebra, the right-hand side of (b) factors as

�(⇠)

�(⇣)2
|1 + ⇠1⇣1 � ⇠2⇣2 � �(⇠)�(⇣)||⇠1⇣1 � ⇠2⇣2 � �(⇠)�(⇣)� 1|.

We also compute that

distL(⇠, ⇣)
2 = 2|1 + ⇠1⇣1 � ⇠2⇣2 � �(⇠)�(⇣)|,

and (b) follows. ⇤

Let us briefly interpret Lemma 2.2. Part (a) says that points with small Lorentz sep-
aration lie near a common line, while points with large Lorentz separation are genuinely
separated. Part (b) relates Lorentz distance to a measure of ‘transversality’ that naturally
arises in bilinear restriction theory (see [7, Theorem 1.1]). Crucially, whenever ⇠ and ⇣
belong to separated squares (as discussed above), the right-hand side of (b) will be bounded
below.

Lemma 2.3. If ⇠ 2 U and ⇣ = ��1(⇠), then `+
⇠
\ 2U = �({⇣1}⇥ R) \ 2U and `�

⇠
\ 2U =

�(R⇥ {⇣2}) \ 2U .

Proof. We will only prove the first equality; the second follows in a similar manner. The
proof rests on two claims.

Claim 1. If |⇠|, |⇠0|  1/2 and ⇠0 2 `+
⇠
, then `+

⇠0 = `+
⇠
. Consider the lines `+

⇠
, `+

⇠0 , and `
�
⇠0 .

Each one contains ⇠0 and lifts to a line contained in ⌃. By elementary geometry, no three
lines in the hyperboloid intersect at a common point. Thus, two of `+

⇠
, `+

⇠0 , and `
�
⇠0 must be

identical. Since `+
⇠0 6= `�

⇠0 and `
+
⇠
6= `�

⇠0 , as is easy to check, we conclude that `+
⇠0 = `+

⇠
.

Claim 2. For every ⇠ 2 R2, we have {�(⇠)} = `+(⇠1,0)\`
�
(⇠2,0)

. This relation can be checked

directly, using (2.7). It is helpful to reparametrize (2.7) so that the second coordinates of
`+(⇠1,0)(t) and `

�
(⇠2,0)

(t) are identically t and �t, respectively.

Now, fix ⇠ 2 U and let ⇣ := ��1(⇠). Let ⇠0 2 `+
⇠
\ 2U and ⇣ 0 := ��1(⇠0). Claim 2 implies

that ⇠ 2 `+(⇣1,0) and ⇠
0 2 `+(⇣0

1,0)
. Hence, by claim 1, we have `+(⇣1,0) = `+

⇠
= `+

⇠0 = `+(⇣0
1,0)

, and

it follows that ⇣1 = ⇣ 01. Since ⇠
0 was arbitrary, we conclude that `+

⇠
\ 2U ✓ �({⇣1}⇥R)\U .

The other direction is similar: Let ⇠0 2 �({⇣1} ⇥ R) \ 2U , so that ⇠0 = �(⇣1, t) with
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(⇣1, t) 2 ��1(2U) ✓ ⌦. Claim 2 implies that ⇠, ⇠0 2 `+(⇣1,0). Hence, ⇠0 2 `+
⇠

by claim 1, and

it follows that �({⇣1}⇥ R) \ 2U ✓ `+
⇠
\ 2U . ⇤

3. Reduction to Theorem 2.1

In this section, we adapt the argument of Kim in [6] to show that Theorem 2.1 implies
Theorem 1.1. The following parabolic rescaling lemma is the main tool required for this
reduction.

Lemma 3.1. Let r 2 (0, 1] be dyadic and let ✓ 2 [0, 1]. If kEsgkLq(BR/2)  Mkgk1�✓

2 kgk✓1
for all s 2 (0, 1], balls BR/2 of radius R/2, and g 2 L1(U), then there exists an absolute

constant C such that kErhkLq(BR)  CM(��0)
1+✓
2 � 2

q khk1�✓

2 khk✓1 for all bounded h supported
in ⇢ 2 T�,�0,r, provided �, �0 are su�ciently small.

Proof. Fix h 2 L1(U) supported in ⇢ 2 T�,�0,r. There exists ⇢1 2 Tr�,r�0,1 such that r⇢ ✓ ⇢1.
By parabolic rescaling, we have

kErhkLq(BR) = r
4
q�2kE1h⇢1kLq(Pr(BR)),

where h⇢1 := h(r�1·) is supported in ⇢1. We assume without loss of generality that �  �0

and fix ⌘ 2 ⇢1. We claim that ⇢1 lies in the intersection of an O(r�)-neighborhood of `+
⌘
and

an O(r�0)-neighborhood of `�
⌘
. Indeed, let ⌘0 2 ⇢1 and set ⇣ = ��1(⌘) and ⇣ 0 = ��1(⌘0).

By the definition of (r�, r�0, 1)-tile, we have

dist(⇣ 0, ({⇣1}⇥ R) \ ��1(U))  r�,

dist(⇣ 0, (R⇥ {⇣2}) \ ��1(U))  r�0.

Thus, by Lemma 2.3 and the boundedness of kr�k near the origin, it follows that

dist(⌘0, `+
⌘
) . r�,

dist(⌘0, `�
⌘
) . r�0,

proving the claim.
Now, let L := (D�B⌫R!)�1 with

� :=

r
�

�0
,

⌫ := ⌘1,

! :=

✓
�(⌘)p
1 + ⌘21

,� ⌘2p
1 + ⌘21

◆
,

using the notation from (2.1)–(2.3). As in the proof of Lemma 2.2, the map B⌫R! sends
⌘ to the origin and `±

⌘
to `±0 = R(1,±1) and satisfies kB⌫R!kC1(U) . 1. Thus, by the

claim, B⌫R!(⇢1) lies in an O(r�)⇥O(r�0) rectangle with slope 1 centered at the origin, and
consequently D�(B⌫R!(⇢1)) is contained in sU for some s . r

p
��0. It is easy to check that

B⌫R!(�(⇠), ⇠) 2 ⌃ for all ⇠ 2 U , and thus by the discussion following (2.5),

L�1(⇢1) = D�(B⌫R!(⇢1)) ✓ sU. (3.1)

We claim that

L
�1

(⇢1) := {⇠ 2 ⌦ : L(⇠) 2 ⇢1} = L�1(⇢1). (3.2)



8 BENJAMIN B. BRUCE

Indeed, given a set V ✓ ⌦, let V ± := {(±�(⇠), ⇠) : ⇠ 2 V }. Then

L
�1

(⇢1) = {⇠ 2 ⌦ : L(�(⇠), ⇠) 2 ⇢+1 [ ⇢�1 }
= {⇠ 2 ⌦ : (�(⇠), ⇠) 2 L�1(⇢+1 ) [ �L�1((�⇢1)+)}.

It is easy to check that e1 · L�1(�(⇣), ⇣) > 0 for every ⇣ 2 U . Thus, since �⇢1 ✓ U and
� � 0, we have (�(⇠), ⇠) /2 �L�1((�⇢1)+) for every ⇠. Hence,

L
�1

(⇢1) = {⇠ 2 ⌦ : (�(⇠), ⇠) 2 L�1(⇢+1 )} = L�1(⇢1),

proving the claim.
Now, define F : ⌃ ! C by F (⌧, ⇠) := h⇢1(⇠)�(⇠) and assume that �, �0 are small enough

that s  1. Then, using (3.2) and (3.1), it is straightforward to check that L�1(suppF ) ✓ ⌃.
Thus,

E1h⇢1(t, x) = e�2⇡it

Z

⌃
e2⇡i(t,x)·(⌧,⇠)F (⌧, ⇠)dµ(⌧, ⇠)

= e�2⇡it

Z

⌃
e2⇡i(t,x)·L(⌧,⇠)F (L(⌧, ⇠))dµ(⌧, ⇠),

where dµ is the Lorentz-invariant measure given by (2.4). Hence, forH(⇠) := h⇢1(L(⇠))
�(L(⇠))
�(⇠) ,

we have

|E1h⇢1(t, x)| = |E1H(L⇤(t, x))|.

Noting that | detL| = 1, we obtain the relation

kErhkLq(BR) = r
4
q�2kE1HkLq(L⇤Pr(BR)),

and parabolic rescaling then gives

kErhkLq(BR) ⇠ (��0)1�
2
q kEs[H(s·)]kLq(Ps�1L

⇤Pr(BR)),

where H(s·) is supported in U by (3.2) and (3.1).
We claim that Ps�1L⇤Pr(BR) is covered by a bounded number of balls of radius R/2.

Assuming the claim is true, the hypothesis of the lemma implies that

kErhkLq(BR) . M(��0)1�
2
q kH(s·)k1�✓

2 kH(s·)k✓1. (3.3)

To prove the claim, we may assume by translation invariance that BR is centered at the
origin. Let Q(a, b, c) denote any rectangular box centered at zero with sides of length
O(a), O(b), O(c) parallel to (1, 0, 0), (0, 1, 1), (0, 1,�1), respectively. Thus, for example,
BR ✓ Q(R,R,R) and

Pr(BR) ✓ Q

✓
R

r2
,
R

r
,
R

r

◆
.

We have L⇤ = D�⇤
�

B�⇤
⌫

R�⇤
!

, where S�⇤ := (S�1)⇤. Since R�⇤
!

and B�⇤
⌫

have bounded
norm, we can ignore their contribution. Thus, from the definition of D�, we have

L⇤Pr(BR) ✓ Q

✓
R

r2
,

p
�0Rp
�r

,

p
�Rp
�0r

◆
.

The definition of s then implies that

Ps�1L⇤Pr(BR) ✓ Q(��0R, �0R, �R),

which proves claim.
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Finally, to finish the proof, we need to undo the changes of variable we have used. Using

(3.2) and (3.1), we have L(�(⇠), ⇠) 2 ⌃ for all ⇠ 2 L
�1

(⇢1). Thus, L is invertible on suppH

with L
�1

(⇣) = L�1(⇣) for ⇣ 2 L(suppH) ✓ U . Moreover, L�1 = D� � B⌫ � R! on U , so a

straightforward calculation shows that | detrL
�1| . 1 on U . Using these observations, we

find that

kH(s·)k2 . 1p
��0

khk2,

kH(s·)k1 . khk1.

Plugging these bounds into (3.3) completes the proof. ⇤

Proposition 3.2. Assume that Theorem 2.1 holds. Then for every ✓ 2 (3/13, 1] and
0 < "⌧✓ 1, there exists a constant C",✓, depending only on " and ✓, such that

kErfkL13/4(BR)  C",✓R
"kfk1�✓

2 kfk✓1
for all r 2 (0, 1], R � 1, and balls BR of radius R.

Proof. We will induct on R. The base case, that R ⇠ 1, holds trivially. We assume as
our induction hypothesis that the proposition holds with R/2 in place of R. Additionally,

we may assume that 2C13/4
"  C13/4

",✓
, where C" is the constant from Theorem 2.1. The

definition of K�"-broad implies that

|Erf(t, x)|  max{|BrK�" Erf(t, x)|,K" max
⇢2Rr

|Erf⇢(t, x)|}

for every (t, x) 2 R⇥ R2. It follows that
Z

BR

|Erf |13/4 
Z

BR

|BrK�" Erf |13/4 +K
13
4 "

X

⇢2Rr

Z

BR

|Erf⇢|13/4 =: I + II.

To bound the first term, we use Theorem 2.1 and Hölder’s inequality to get

I  (C"kfk12/132 kfk1/131 )13/4  (C"kfk1�✓

2 kfk✓1)13/4  1

2
(C",✓kfk1�✓

2 kfk✓1)13/4.

To bound the second term, we will use Lemma 3.1. We may assume that r is dyadic by par-
abolic rescaling, and the other hypothesis of the lemma holds by our inductive assumption.
Additionally, by Hölder’s inequality, we may assume that ✓ is close to 3/13; in particular,
that ✓  5/13. Then

II  K
13
4 "

X

�2[K�1,�0]

X

⇢2R�,r

(CC",✓R
"(�K�1)

1
2 (✓�

3
13 )kf⇢k1�✓

2 kf⇢k✓1)13/4

 K
13
4 "+ 13

8 ( 3
13�✓)C13/4

X

�2[K�1,�0]

�
13
8 (✓� 3

13 )(C",✓R
")13/4

X

⇢2R�,r

kf⇢k
13
4 (1�✓)
2 kfk

13
4 ✓

1



K

13
4 "+ 13

8 ( 3
13�✓)C13/4

✓ X

�2[K�1,�0]

�
13
8 (✓� 3

13 )

◆
2

13
8 (1�✓)

�
(C",✓R

"kfk1�✓

2 kfk✓1)13/4,

where the last step used the inclusion `2 ,! `
13
4 (1�✓) and that R�,r covers U with overlap of

multiplicity 2. Since ✓ > 3/13, the sum over � is bounded and the power of K is negative
for " su�ciently small. Thus, since K ! 1 as " ! 0 by the hypothesis of Theorem 2.1,
the expression in square brackets is at most 1/2 for " su�ciently small, and the induction
closes. ⇤



10 BENJAMIN B. BRUCE

Assuming Theorem 2.1 holds, Proposition 3.2 implies the restricted strong type bounds

kErfEkL13/4(BR) .",p R"|E|1/p.

for all p > 13/5, measurable sets E ✓ U , and |fE | . �E . Then, by real interpolation with
the trivial L1 ! L1 estimate, we obtain the strong type bounds

kErfkLq(BR) .",p,q R"kfkp

for all q > 13/4 and p > (q/2)0. Tao’s epsilon removal lemma, in the form of Theorem 5.3
in [6], consequently gives the global strong type bounds

kErfkq .p,q kfkp (3.4)

for the same range of p, q, completing the proof of Theorem 1.1.

4. Proof of Theorem 2.1

We are left to prove Theorem 2.1; this will occupy the rest of the article. To enable an
inductive argument, we will actually need to prove a slightly stronger theorem, as in [5].
In Section 2, we defined broad points by considering the contribution to Erf from each f⇢,
where f⇢ := f�⇢ and ⇢ 2 Rr. Soon we will work with wave packets of the form Erf⇢,T ,
where f⇢,T is supported not in ⇢ but in a slight enlargement of it. Thus, we need a more
general definition of broad points in which the functions f⇢ may have larger, overlapping
supports. Given ⇢ = �r(I� ⇥ I�0) \ U 2 T�,�0,r and m � 1, we define

m⇢ := �r(m(I� ⇥ I�0)) \ U,

where m(I� ⇥ I�0) is the m-fold dilate of the rectangle I� ⇥ I�0 with respect to its center. Let

Sr := RK�1,r;

elements of Sr are essentially K�1 ⇥ K�1 squares. Now, given f 2 L1(U), suppose that
f =

P
⌧2Sr

f⌧ , with each f⌧ supported in m⌧ , for some m � 1. In our modified definition,
(t, x) 2 R⇥ R2 is ↵-broad for Erf if

max
⇢2Rr

����
X

⌧2Sr:⌧✓⇢

Erf⌧ (t, x)
����  ↵|Erf(t, x)|.

We define the ↵-broad part of Erf , still denoted by Br↵ Erf , as in Section 2. These definitions
depend on the particular decomposition f =

P
⌧
f⌧ .

Theorem 4.1. For every 0 < "⌧ 1, there exists a constant C 0
"
, depending only on ", such

that if K = 2d"
�10e, then the following holds: If f =

P
⌧2Sr

f⌧ with each f⌧ supported in
m⌧ , for some m � 1, and if additionally f satisfies

�
Z

D(⇠,R�1/2)
|f⌧ |2  1 (4.1)

for all ⇠ 2 U and ⌧ 2 Sr, then
Z

BR

|Br↵ Erf |13/4  C 0
"
R"+"

6 log(K"
↵m

2)

✓ X

⌧2Sr

kf⌧k22
◆3/2+"

for all r 2 (0, 1], R �" 1, balls BR of radius R, and ↵ 2 [K�", 1].
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A couple of remarks may be helpful. Firstly, the dyadic structure of our tiles, as defined in
Section 2, implies that if ⌧ 2 Sr and ⇢ 2 Rr, then either ⌧ \⇢ = ; or ⌧ ✓ ⇢. More generally,
if ⇢1 2 T�1,�01,r and ⇢2 2 T�2,�02,r, then either ⇢1\⇢2 = ; or ⇢1\⇢2 2 Tmini �i,mini �

0
i,r
. Secondly,

Theorem 4.1 is indeed stronger than Theorem 2.1. We can derive the latter from the former
as follows: If R ⇠" 1, then the estimate in Theorem 2.1 is trivial, so we may assume that
R �" 1. By scaling, we also may assume that kfk1 = 1. Thus, the condition (4.1) holds
automatically. We now apply Theorem 4.1 with ↵ = K�" and m = 1 to get

Z

BR

|BrK�" Erf |13/4  C 0
"
R"kfk3+2"

2  |U |"C 0
"
R"kfk32,

and then raising both sides to the power 4/13 finishes the proof.

4.1. Preliminaries. Before beginning the proof of Theorem 4.1, we lay some groundwork.
For the remainder of the article, ", m, r, R, BR, and ↵ are fixed. Implicit constants will be
allowed to depend on ". The propositions and lemma we record in this subsection are by
now quite standard.

We begin with the wave packet decomposition. Let ⇥ be a collection of discs ✓ of radius
R�1/2 which cover U with bounded overlap. We denote by c✓ the center of ✓, and we let v✓
be the unit normal vector to ⌃r at (�r(c✓), c✓). We may assume that c✓ 2 U for every ✓. Let
� := "2, and for each ✓, let T(✓) be a collection of tubes parallel to v✓ with radius R�+1/2

and length R and which cover BR with bounded overlap. If T 2 T(✓), then v(T ) := v✓
denotes the direction of T . Finally, we set T :=

S
✓2⇥ T(✓). The following wave packet

decomposition resembles Proposition 2.6 in [5]:

Proposition 4.2. For each T 2 T, there exists a function fT 2 L2(R2) such that:

(i) If T 2 T(✓), then fT is supported in 3✓;
(ii) If (t, x) 2 BR \ T , then |ErfT (t, x)|  R�1000kfk2;
(iii) |Erf(t, x)�

P
T2T ErfT (t, x)|  R�1000kfk2 for every (t, x) 2 BR;

(iv) If T1, T2 2 T(✓) and T1 \ T2 = ;, then |
R
fT1fT2 |  R�1000kfk2

L2(✓);

(v)
P

T2T(✓) kfT k22 . kfk2
L2(✓).

Proof. Adapting Guth’s argument in [5] is straightforward. The fact that the derivatives
of �r are bounded in r (i.e. sup⇠2U |rk�r(⇠)| .k 1) ensures that all constants arising in
the argument can be made uniform in r. We note, in particular, that the crucial derivative
estimates appearing in line (17) of [5] hold uniformly in r when adapted to our setting. ⇤

Next, we record an orthogonality lemma from [5]. The special case N = 1 will be of
particular use.

Lemma 4.3. Let T1, . . . ,TN be subsets of T. Suppose that each tube in T belongs to at
most M of the Ti, and for each ⌧ 2 Sr, let

f⌧,i :=
X

T2Ti

f⌧,T ,

where the functions f⌧,T come from applying Proposition 4.2 to f⌧ . Then

NX

i=1

Z

3✓
|f⌧,i|2 . M

Z

10✓
|f⌧ |2
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for every ✓ 2 ⇥, and
NX

i=1

Z

U

|f⌧,i|2 . M

Z

U

|f⌧ |2.

Finally, we turn to polynomial partitioning. Let P be a polynomial on Rd. We denote the
zero set of P by Z(P ) and say that z 2 Z(P ) is nonsingular ifrP (z) 6= 0. If z is nonsingular,
then Z(P ) is a smooth hypersurface near z. If every point of Z(P ) is nonsingular, then we
say that P is nonsingular.

Proposition 4.4 (Guth [5]). Given g 2 L1(Rd) and D � 1, there exists a polynomial P of
degree at most D such that P is a product of nonsingular polynomials and each connected
component O of Rd \ Z(P ) satisfies

Z

O

|g| ⇠ 1

Dd

Z

Rd

|g|.

We note that a product of nonsingular polynomials may have singular points. However,
by a perturbation argument using Sard’s theorem, one can ensure that nonsingular points
are dense in the zero set of the partitioning polynomial.

4.2. Main proof. We are now ready to prove Theorem 4.1 in earnest. We will induct on
R and

P
⌧2Sr

kf⌧k22. The base cases, that R ⇠ 1 or
P

⌧
kf⌧k22  R�1000, are easy to check,

and our induction hypotheses are that Theorem 4.1 holds with: (i) R/2 in place of R, or (ii)
g in place of f whenever

P
⌧
kg⌧k22  1

2

P
⌧
kf⌧k22. Throughout the proof, we will assume

that " is su�ciently small and that R is su�ciently large in relation to ".
We begin by settingD := R"

4

and applying Proposition 4.4 to the function |Br↵ Erf |13/4�BR

to produce a polynomial P of degree at most D such that

R3 \ Z(P ) =
[

i2I

Oi,

where the ‘cells’ Oi are connected, pairwise disjoint, and satisfy
Z

BR\Oi

|Br↵ Erf |13/4 ⇠ 1

D3

Z

BR

|Br↵ Erf |13/4. (4.2)

In particular, the number of cells is #I ⇠ D3. We define the ‘wall’ W as the R1/2+�-
neighborhood of Z(P ), and we set O0

i
:= Oi \W . Thus,

Z

BR

|Br↵ Erf |13/4 =
X

i2I

Z

BR\O0
i

|Br↵ Erf |13/4 +
Z

BR\W

|Br↵ Erf |13/4. (4.3)

We now argue by cases, according to which term on the right-hand side of (4.3) dominates.

4.3. Cellular case. Suppose that the total contribution from the shrunken cells O0
i
domi-

nates. In this case, we have
Z

BR

|Br↵ Erf |13/4 .
X

i2I

Z

BR\O0
i

|Br↵ Erf |13/4.

Using (4.2), we then see that the contribution from any single O0
i
is controlled by the average

of all such contributions. Thus, ‘most’ cells should contribute close to the average, and it is
straightforward to show that there exists J ✓ I such that #J ⇠ D3 and

Z

BR\O0
i

|Br↵ Erf |13/4 ⇠ 1

D3

Z

BR

|Br↵ Erf |13/4 (4.4)
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for all i 2 J . The lower bound on #J will be the basis for a pigeonholing argument shortly.
First, some definitions are needed. For each i 2 I and ⌧ 2 Sr, we set

Ti := {T 2 T : T \O0
i
6= ;}

and

f⌧,i :=
X

T2Ti

f⌧,T ,

where the functions f⌧,T come from applying Proposition 4.2 to f⌧ . We also set

fi :=
X

⌧2Sr

f⌧,i.

Since f⌧ is supported in m⌧ , property (i) in Proposition 4.2 implies that f⌧,i is supported
in an O(R�1/2)-neighborhood of m⌧ . Let f i := �Ufi and f i,⌧ := �Ufi,⌧ . If R is su�ciently

large, then supp f⌧,i ✓ 2m⌧ . Consequently, f i has a well defined broad part with respect to

these larger squares. Soon we will apply our induction hypothesis to f i (for some special i)
with m replaced by 2m.

Lemma 4.5. If (t, x) 2 O0
i
and ↵  1/2, then

|Br↵ Erf(t, x)|  |Br2↵ Erf i(t, x)|+R�900
X

⌧2Sr

kf⌧k2.

Proof. First, we may assume that

|Erf(t, x)| � R�900
X

⌧

kf⌧k2; (4.5)

otherwise, the required inequality is trivial. Since (t, x) 2 O0
i
, properties (iii) and (ii) in

Proposition 4.2 imply that

Erf⌧ (t, x) =
X

T2Ti

Erf⌧,T (t, x) +O(R�990kf⌧k2)

for each ⌧ . Summing over ⌧ , we get

Erf(t, x) = Erfi(t, x) +O
⇣
R�990

X

⌧

kf⌧k2
⌘
. (4.6)

Now it su�ces to show that if (t, x) is ↵-broad for f , then (t, x) is 2↵-broad for f i. Assume
the former and fix ⇢ 2 Rr. Using Proposition 4.2 again, we have

����
X

⌧ :⌧✓⇢

Erf⌧,i(t, x)

���� =
����
X

⌧ :⌧✓⇢

Erf⌧,i(t, x)
����

=

����
X

⌧ :⌧✓⇢

Erf⌧ (t, x)
����+O

⇣
R�990

X

⌧

kf⌧k2
⌘

 ↵|Erf(t, x)|+O
⇣
R�990

X

⌧

kf⌧k2
⌘
.

Using (4.5), (4.6), and the fact that ↵ � K�", the right-hand side is at most 2↵|Erfi(t, x)| =
2↵|Erf i(t, x)| for R su�ciently large. ⇤
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If ↵ > 1/2, then the estimate in Theorem 4.1 holds trivially, since the power of R can then
be made at least 1000 by taking " su�ciently small. Thus, we may assume that ↵  1/2.

Applying Lemma 4.5 to (4.4) and recalling that D = R"
4

, we get
Z

BR

|Br↵ Erf |13/4 . D3

Z

BR\O0
i

|Br2↵ Erf i|13/4 +O
⇣
R�1000

⇣ X

⌧2Sr

kf⌧k2
⌘13/4⌘

(4.7)

for every i 2 J . We will now pick i0 2 J so that
P

⌧2Sr
kf⌧,i0

k22 is small, which will allow us

to apply our induction hypothesis to f i0
. Because Z(P ) is the zero set of a polynomial of

degree at most D, any line is either contained in Z(P ) or intersects Z(P ) at most D times.
Thus, each tube in T belongs to at most D + 1 of the sets Ti. Now, applying Lemma 4.3
and the bound #J & D3, we must have

1

#J

X

i2J

X

⌧

kf⌧,ik22  C

D2

X

⌧

kf⌧k22

for some constant C. Consequently, there exists i0 2 J such that
X

⌧

kf⌧,i0
k22 

X

⌧

kf⌧,i0k22  C

D2

X

⌧

kf⌧k22  1

2

X

⌧

kf⌧k22 (4.8)

for R su�ciently large. We can apply Theorem 4.1 to f i0
with 2m in place of m, provided

(4.1) holds. Since (4.1) holds for f , Lemma 4.3 gives

�
Z

D(⇠,R�1/2)
|f⌧,i0

|2  �
Z

D(⇠,R�1/2)
|f⌧,i0 |2 . �

Z

D(⇠,100R�1/2)
|f⌧ |2 . 1.

Thus, after multiplying f i0
by a constant, we can apply Theorem 4.1 to (4.7) with i = i0 to

get
Z

BR

|Br↵ Erf |13/4  CD3C 0
"
R"+"

6 log(8K"
↵m

2)
⇣ X

⌧2Sr

kf⌧,i0
k22
⌘3/2+"

+O
⇣
R�1000

⇣ X

⌧2Sr

kf⌧k2
⌘13/4⌘

for some C. If the big O term dominates, then the desired estimate follows easily. Assuming
it does not, then by (4.8) and the definition of D, we have altogether

Z

BR

|Br↵ Erf |13/4  2CR�2"5+"
6 log(8)C 0

"
R"+"

6 log(K"
↵m

2)
⇣ X

⌧2Sr

kf⌧k22
⌘3/2+"

,

and the induction closes if " is su�ciently small and R su�ciently large.

4.4. Algebraic case. Next, suppose that the contribution from W dominates in (4.3), so
that

Z

BR

|Br↵ Erf |13/4 .
Z

BR\W

|Br↵ Erf |13/4. (4.9)

Following Guth [5], we distinguish between tubes that intersect W transversely and those
essentially tangent to W . Let B be a collection of balls B of radius R1�� that cover BR

with bounded overlap.

Definition 4.6. Fix B 2 B. Let T[

B
be the set of tubes T satisfying T \W \ B 6= ; and

\(v(T ), TzZ(P ))  R2��1/2 for every nonsingular point z 2 Z(P ) \ 2B \ 10T . Let T]

B
be

the set of tubes T satisfying T \W \B 6= ; and T /2 T[

B
.
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Observe that if T intersects W \ B, then T belongs to exactly one of T[

B
and T]

B
. (The

definition of T[

B
would be vacuous if Z(P )\ 2B \ 10T contained only singular points; how-

ever, as noted above, we can arrange for nonsingular points to be dense in Z(P ).) Thus,
on W \ B, each Erf⌧ is well approximated by the sum of the ‘tangent’ and ‘transverse’
wave packets, {Erf⌧,T }T2T[

B
and {Erf⌧,B}T2T]

B
, respectively. Roughly speaking, our de-

sired bound for kBr↵ ErfkL13/4(B\W ) will soon be reduced to a broad part estimate on the
transverse contribution and a bilinear estimate on the tangent contribution. The following
geometric lemma, due to Guth [5], will be critical for establishing those bounds:

Lemma 4.7. (a) Each T 2 T belongs to T]

B
for at most DO(1) balls B 2 B. (b) For each

B 2 B, the number of discs ✓ 2 ⇥ such that T[

B
\ T(✓) 6= ; is at most RO(�)+1/2.

To carry out the bilinear argument, we need to define the separation condition mentioned
in Section 2. Recall how we defined the Lorentz separation distL(⇠, ⇣) of ⇠, ⇣ 2 ⌦. We say
that two squares ⌧1, ⌧2 2 Sr are separated if

distL(r⇠, r⇣) � C0rmK�1

for all ⇠ 2 2m⌧1 and ⇣ 2 2m⌧2, where C0 � 1 is a constant to be chosen later. Part (a)
of Lemma 2.2 implies that points having small Lorentz separation must lie near a common
line. The next lemma extends this property to collections of non-separated squares.

Lemma 4.8. Let I ✓ Sr be a collection of pairwise non-separated squares. Then there exist
�1,�2,�3,�4 2 T�,�0,r [ T�0,�,r, with K�1  � . mK�1, such that ⌧ ✓

S4
i=1 �i for every

⌧ 2 I.

Proof. For ⇠ 2 U , let ⇠ := ��1(r⇠) and also set

I :=
[

⌧2I

⌧,

I := {⇠ : ⇠ 2 I}.
Fix ⌧1, ⌧2 2 I. By part (a) of Lemma 2.2 and the definition of (non-)separated squares,
there exist ⇠⇤ 2 2m⌧1 and ⇣⇤ 2 2m⌧2 such that

dist(r⇠⇤, `+
r⇣⇤ [ `�

r⇣⇤) . rmK�1.

Let ⌘ be a point in `+
r⇣⇤ [ `�

r⇣⇤ closest to r⇠⇤. By elementary geometry, ⌘ lies in 2U . Thus,

from the bound k��1kC1(2U) . 1 and Lemma 2.3, we have

dist(⇠⇤, ({⇣⇤1}⇥ R) [ (R⇥ {⇣⇤2})) . |r⇠⇤ � ⌘| . rmK�1.

Since diam��1(r · 2m⌧) . rmK�1 for each ⌧ , it follows that

dist(⇠, ({⇣1}⇥ R) [ (R⇥ {⇣2}))  A (4.10)

for all ⇠, ⇣ 2 I and some A . rmK�1. Fix ⇣ 2 I and set

S := [⇣1 �A, ⇣1 +A]⇥ R,
T := R⇥ [⇣2 �A, ⇣2 +A],

so that I ✓ S [ T . Additionally, define

3S := [⇣1 � 3A, ⇣1 + 3A]⇥ R,
3T := R⇥ [⇣2 � 3A, ⇣2 + 3A].

We consider three exhaustive cases:
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(i) If I \ (S \ 3T ) 6= ;, then (4.10) implies that I \ (T \ 3S) = ;, and consequently
I ✓ 3S.

(ii) If I \ (T \ 3S) 6= ;, then (4.10) implies that I \ (S \ 3T ) = ;, and consequently
I ✓ 3T .

(iii) Otherwise, I ✓ 3S \ 3T .

Thus, by symmetry, we may assume that ��1
r

(I) = r�1I ✓ (r�1 · 3S) \ [��0, �0)2. The
interval

[r�1(⇣1 � 3A), r�1(⇣1 + 3A)] \ [��0, �0)

is covered by two dyadic intervals I1, I2 ✓ [��0, �0) of length � . r�1A . mK�1. Thus, if
we set

�1 := �r(I1 ⇥ [��0, 0)) \ U,

�2 := �r(I2 ⇥ [��0, 0)) \ U,

�3 := �r(I1 ⇥ [0, �0)) \ U,

�4 := �r(I2 ⇥ [0, �0)) \ U,

then I ✓
S4

i=1 �i and the proof is complete. ⇤

As mentioned above, estimating kBr↵ ErfkL13/4(B\W ) can be reduced to estimating cer-
tain contributions from transverse and tangent wave packets. The next lemma carries out
this reduction. First, some notation is needed. For ⌧ 2 Sr and B 2 B, we set

f [

⌧,B
:=

X

T2T[
B

f⌧,T and f ]

⌧,B
:=

X

T2T]
B

f⌧,T .

We also let

f [

B
:=

X

⌧2Sr

f [

⌧,B
and f ]

B
:=

X

⌧2Sr

f ]

⌧,B
.

Given I ✓ Sr, we set

f [

I,B :=
X

⌧2I
f [

⌧,B
and f ]

I,B :=
X

⌧2I
f ]

⌧,B
.

We note that f ]

I,B (analogously f [

I,B) has the natural decomposition f ]

I,B =
P

⌧2Sr
f ]

⌧,I,B ,
where

f ]

⌧,I,B :=

(
f ]

⌧,B
if ⌧ 2 I,

0 if ⌧ /2 I.

Let f
]

I,B := �Uf
]

I,B and f
]

⌧,B
:= �Uf

]

⌧,B
. Then supp f

]

⌧,B
✓ 2m⌧ , and thus f

]

I,B has a well
defined broad part. Finally, we define

Bil(Erf [

B
) :=

X

⌧1,⌧2 separated

|Erf [

⌧1,B
|1/2|Erf [

⌧2,B
|1/2.

Lemma 4.9. If (t, x) 2 B \W and ↵m is su�ciently small, then

|Br↵ Erf(t, x)| 
X

I✓Sr

|Br10↵ Erf
]

I,B(t, x)|+K100 Bil(Erf [

B
)(t, x) +R�900

X

⌧2Sr

kf⌧k2.
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Proof. We may assume that (t, x) is ↵-broad for Erf and that

|Erf(t, x)| � R�900
X

⌧

kf⌧k2. (4.11)

Let

I := {⌧ 2 Sr : |Erf(t, x)|  K100|Erf [

⌧,B
(t, x)|}.

If I contains a pair of separated squares, then the bound |Br↵ Erf(t, x)|  K100 Bil(Erf [

B
)(t, x)

follows immediately. Thus, we may assume that I contains no pair of separated squares.
By Lemma 4.8, there exist �1,�2,�3,�4 2 T�,�0,r [ T�0,�,r, with K�1  � . mK�1, such

that ⌧ ✓
S4

i=1 �i for every ⌧ 2 I. Let

J :=
n
⌧ 2 Sr : ⌧ ✓

4[

i=1

�i
o
.

Then

|Erf(t, x)| 
4X

i=1

����
X

⌧ :⌧✓�i

Erf⌧ (t, x)
����+

����
X

⌧2J c

Erf⌧ (t, x)
����.

Since � . mK�1, each �i is a union of at most Cm elements of R�0,r where C is a constant.
Thus, since (t, x) is ↵-broad for Erf and ↵m is su�ciently small, we have

4X

i=1

����
X

⌧ :⌧✓�i

Erf⌧ (t, x)
����  4Cm↵|Erf(t, x)| 

1

10
|Erf(t, x)|,

and consequently,

9

10
|Erf(t, x)| 

����
X

⌧2J c

Erf⌧ (t, x)
����.

Since (t, x) 2 B \W , properties (iii) and (ii) in Proposition 4.2 imply that

Erf⌧ (t, x) = Erf ]

⌧,B
(t, x) + Erf [

⌧,B
(t, x) +O(R�990kf⌧k2)

for every ⌧ 2 Sr. Summing over ⌧ 2 J c, we get
����
X

⌧2J c

Erf⌧ (t, x)
����  |Erf ]

J c,B
(t, x)|+ |Erf [

J c,B(t, x)|+O
⇣
R�990

X

⌧

kf⌧k2
⌘
.

Since J c ✓ Ic, we have

|Erf [

J c,B(t, x)|  #J cK�100|Erf(t, x)|  K�97|Erf(t, x)|.

Hence,

9

10
|Erf(t, x)|  |Erf ]

J c,B
(t, x)|+K�97|Erf(t, x)|+O

⇣
R990

X

⌧

kf⌧k2
⌘
.

Using (4.11), we see that

|Erf(t, x)| 
5

4
|Erf ]

J c,B
(t, x)| = 5

4
|Erf

]

J c,B(t, x)|,
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provided " is su�ciently small and R su�ciently large. To finish the proof, we will show

that (t, x) is 10↵-broad for Erf
]

J c,B . It su�ces to show that
����

X

⌧2J c:⌧✓⇢

Erf
]

⌧,B
(t, x)

����  8↵|Erf(t, x)| (4.12)

for every ⇢ 2 Rr. Fixing ⇢ 2 Rr, we have
����

X

⌧2J c:⌧✓⇢

Erf
]

⌧,B
(t, x)

���� =
����

X

⌧2J c:⌧✓⇢

Erf ]

⌧,B
(t, x)

����


����

X

⌧2J c:⌧✓⇢

Erf⌧ (t, x)
����+

����
X

⌧2J c:⌧✓⇢

Erf [

⌧,B
(t, x)

����+O
⇣
R�990

X

⌧

kf⌧k2
⌘
.

As above, J c ✓ Ic implies that
����

X

⌧2J c:⌧✓⇢

Erf [

⌧,B
(t, x)

����  K�97|Erf(t, x)|  ↵|Erf(t, x)|.

It is straightforward to check that �i \ ⇢ 2 Rr for each i = 1, . . . , 4. Thus, since (t, x) is
↵-broad for Erf , we have

����
X

⌧2J c:⌧✓⇢

Erf⌧ (t, x)
���� 

����
X

⌧ :⌧✓⇢

Erf⌧ (t, x)
����+

4X

i=1

����
X

⌧ :⌧✓�i\⇢

Erf⌧ (t, x)
����  5↵|Erf(t, x)|.

Using the preceding three estimates and (4.11), we arrive at (4.12). ⇤

If ↵m & 1 so that Lemma 4.9 does not apply, then the estimate in Theorem 4.1 holds
trivially, since the power of R can then be made at least 1000 by taking " su�ciently small.
Thus, we may assume that ↵m ⌧ 1. We now apply Lemma 4.9 to (4.9) to get
Z

BR

|Br↵ Erf |13/4 .
X

B2B

X

I✓Sr

Z

B\W

|Br10↵ Erf
]

I,B |13/4 +
X

B2B

Z

B\W

Bil(Erf [

B
)13/4

+R�1000
⇣ X

⌧2Sr

kf⌧k2
⌘13/4

; (4.13)

note that the implicit constant is allowed to depend on K, a function of ". If the last term
dominates in (4.13), then the estimate in Theorem 4.1 holds trivially.

4.4.1. Transverse subcase. Suppose that the first term dominates in (4.13), so that
Z

BR

|Br↵ Erf |13/4 .
X

B2B

X

I✓Sr

Z

B

|Br10↵ Erf
]

I,B |13/4. (4.14)

Each ball B 2 B has radius R1��, so by induction on R, we can apply Theorem 4.1 to each
summand in (4.14), whenever (4.1) holds. Since (4.1) holds for f , Lemma 4.3 gives

�
Z

D(⇠,R�1/2)
|f ]

⌧,B
|2  �

Z

D(⇠,R�1/2)
|f ]

⌧,B
|2 . �

Z

D(⇠,100R�1/2)
|f⌧ |2 . 1.

Thus, after multiplying by a constant, Theorem 4.1 implies that
Z

BR

|Br↵ Erf |13/4 .
X

B2B

X

I✓Sr

C 0
"
R(1��)"R"

6 log(40K"
↵m

2)
⇣ X

⌧2Sr

kf ]

⌧,B
k22
⌘3/2+"

.
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By Lemma 4.7, each T 2 T belongs to at most DO(1) sets T]

B
. Therefore, by Lemma 4.3,

we have
X

B2B

⇣ X

⌧2Sr

kf ]

⌧,B
k22
⌘3/2+"


⇣ X

⌧2Sr

X

B2B
kf ]

⌧,B
k22
⌘3/2+"

. DO(1)
⇣ X

⌧2Sr

kf⌧k22
⌘3/2+"

.

Since � = "2, D = R"
4

, and the number of subsets I ✓ Sr depends only on K, we have
altogether

Z

BR

|Br↵ Erf |13/4  CR�"
3+"

6 log(40)+O("4)C 0
"
R"+"

6 log(K"
↵m

2)
⇣ X

⌧2Sr

kf⌧k22
⌘3/2+"

for some C (depending on "). The power of the first R is negative for " su�ciently small,
and then the induction closes for R su�ciently large.

4.4.2. Tangent subcase. In the remaining case, the second term in (4.13) dominates, whence
Z

BR

|Br↵ Erf |13/4 .
X

B2B

Z

B\W

Bil(Erf [

B
)13/4.

We will bound the right-hand side directly (i.e. without induction) using basically standard
bilinear restriction techniques and Lemma 4.7. Since #B = RO(�)  R", it will su�ce to
prove the following:

Proposition 4.10. For every B 2 B, we have
Z

B\W

Bil(Erf [

B
)13/4 . RO(�)

⇣ X

⌧2Sr

kf⌧k22
⌘3/2

.

We will need a preliminary lemma. Fix B 2 B and let Q be a collection of cubes Q of
side length R1/2 that cover B \W with bounded overlap. For each Q 2 Q, let

T[

B,Q
:= {T 2 T[

B
: T \Q 6= ;}.

Henceforth, we will write ‘negligible’ in place of any quantity of size O(R�990
P

⌧2Sr
kf⌧k2).

In particular, if (t, x) 2 Q, then

Erf [

⌧,B
(t, x) =

X

T2T[
B,Q

Erf⌧,T (t, x) + negligible . (4.15)

It will su�ce to bound kBil(Erf [

B
)kL13/4(Q) for each Q 2 Q. Informally, the tubes in T[

B,Q

are tangent to W at Q and are thus coplanar. Dually, the wave packets {Erf⌧,T }T2T[
B,Q

have Fourier support near a curve formed by the intersection of ⌃r and a plane. Thus,
estimating kBil(Erf [

B
)kL13/4(Q) is essentially a two-dimensional bilinear restriction problem,

making the L4 argument a natural approach (as done in [5], of course).

Lemma 4.11. For all Q 2 Q and separated ⌧1, ⌧2 2 Sr, we have
Z

Q

|Erf [

⌧1,B
|2|Erf [

⌧2,B
|2 . RO(�)�1/2

✓ X

T12T[
B,Q

kf⌧1,T1k22
◆✓ X

T22T[
B,Q

kf⌧2,T2k22
◆
+ negligible .

Proof. Let  Q be a smooth function satisfying �Q   Q  �2Q and

| ̂Q(⌧, ⇠)| . R3/2(1 + |(⌧, ⇠)|R1/2)�106/�.
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By (4.15) and Plancherel’s theorem, we have
Z

Q

|Erf [

⌧1,B
|2|Erf [

⌧2,B
|2 =

X

T1,T 1,T2,T 22T[
B,Q

Z

Q

Erf⌧1,T1Erf⌧1,T 1
Erf⌧2,T2Erf⌧2,T 2

+ negligible


X

T1,T 1,T2,T 22T[
B,Q

Z

R3

( ̂Q ⇤ d�⌧1,T1 ⇤ d�⌧2,T2)(d�⌧1,T 1
⇤ d�

⌧2,T 2
) + negligible,

(4.16)

where d�⌧,T is the measure on ⌃r defined by
Z

⌃r

gd�⌧,T :=

Z

U

g(�r(⇠), ⇠)f⌧,T (⇠)d⇠. (4.17)

Fix T1, T 1, T2, T 2 2 T[

B,Q
and let ⇠, ⇠, ⇣, ⇣ denote the centers of ✓(T1), ✓(T 1), ✓(T2), ✓(T 2),

respectively. The rapid decay of  ̂Q and the fact that supp�Uf⌧,T ✓ 3
2m⌧ for every ⌧ 2 Sr

and T 2 T imply that the contribution of T1, T 1, T2, T 2 to (4.16) is negligible unless

⇠ + ⇣ = ⇠ + ⇣ +O(R��1/2),

�r(⇠) + �r(⇣) = �r(⇠) + �r(⇣) +O(R��1/2),

and ⇠, ⇠ 2 2m⌧1 and ⇣, ⇣ 2 2m⌧2. We need to estimate the number of non-negligible terms
in (4.16) involving given tubes T1, T2.

Toward that end, we adapt some techniques of Cho–Lee [3] and Lee [7]. Assuming
T1, T 1, T2, T 2 contribute non-negligibly, then

�r(⇠) + �r(⇣) = �r(⇠) + �r(⇠ + ⇣ � ⇠) +O(R��1/2). (4.18)

We define a function  : U ! R by

 (⌘) := �r(⌘) + �r(⇠ + ⇣ � ⌘)� �r(⇠)� �r(⇣)

and denote by Z :=  �1(0) its zero set. We claim that |r | & 1 on 2m⌧1. Indeed, if
⌘ 2 2m⌧1, then by the Cauchy–Schwarz inequality, boundedness of k(r2�)�1k on U , part
(b) of Lemma 2.2, and finally the separation of ⌧1 and ⌧2, we have

|r�r(⌘)�r�r(⇣)| = r�1|r�(r⌘)�r�(r⇣)|

& r�1|h(r2�(r⌘))�1(r�(r⌘)�r�(r⇣)),r�(r⌘)�r�(r⇣)i|1/2

⇠ r�1 distL(r⌘, r⇣)

� C0mK�1,

whence

| (⌘)| = |r�r(⌘)�r�r(⇠ + ⇣ � ⌘)| � |r�r(⇣)�r�r(⇣)|� k�kC1(U) diam(2m⌧1) & 1

if C0 is su�ciently large. By the claim, Z is a smooth curve near ⇠, and (4.18) and a Taylor
approximation argument imply that

dist(⇠, Z) . R��1/2 (4.19)

for R su�ciently large. As mentioned above, tubes in T[

B,Q
are nearly coplanar. Inspecting

the definition, it is straightforward to check that \(v(T ), TzZ(P ))  R2��1/2 for all T 2
T[

B,Q
and some (nonsingular) z 2 2R�Q\Z(P ). Thus, dually, there exists a plane ⇧ through

the origin such that dist((�1,r�r(⌘)),⇧) . R2��1/2 for each ⌘ 2 {⇠, ⇠, ⇣}. Consequently,
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there exists a line whose O(R2��1/2)-neighborhood contains r�r(⇠), r�r(⇠), and r�r(⇣).
Since |r�r(⇠)�r�r(⇣)| & 1 due to the separation of ⌧1 and ⌧2, it follows that r�r(⇠) lies in
an O(R2��1/2)-neighborhood of the line ` containing r�r(⇠) and r�r(⇣). We consider now
the smooth curve ˜̀ := (r�r)�1(` \ 3U), noting that r� (and thus r�r) is invertible near
the origin since detr2�(0) 6= 0. This curve contains ⇠ by construction, and the boundedness
of k(r2�)�1k implies that

dist(⇠, ˜̀) . R2��1/2. (4.20)

Crucially, ˜̀ and Z intersect transversely at ⇠. Indeed, parametrizing ˜̀ by

˜̀(t) := (r�r)�1((1� t)r�r(⇠) + tr�r(⇣)),

the tangent line to ˜̀ at ⇠ is parallel to

d

dt
˜̀(t)

����
t=0

= (r2�r(⇠))
�1(r�r(⇣)�r�r(⇠)),

and the normal line to Z at ⇠ is parallel to r (⇠) = r�r(⇠)�r�r(⇣). Thus, the bound

|h(r2�r(⇠))
�1(r�r(⇠)�r�r(⇣)),r�r(⇠)�r�r(⇣)i| & 1,

which follows from part (b) of Lemma 2.2 and the separation of ⌧1 and ⌧2, implies the claimed
transverse intersection. Consequently, by (4.19) and (4.20), we have |⇠ � ⇠| . R2��1/2. A
similar argument shows that |⇣ � ⇣| . R2��1/2. Since #(T[

B,Q
\ T(✓)) . 1 for every ✓ 2 ⇥,

it follows that for each T1, T2 2 T[

B,Q
, there are O(R8�) pairs T 1, T 2 2 T[

B,Q
such that

T1, T1, T2, T 2 contribute non-negligibly to (4.16).
Hence, by the Cauchy–Schwarz inequality (a few times) and Young’s inequality, (4.16) is

at most

RO(�)
X

T1,T22T[
B,Q

Z

R3

|d�⌧1,T1 ⇤ d�⌧2,T2 |2 + negligible . (4.21)

To estimate the convolution, we use Plancherel’s theorem and the familiar wave packet
approximation

|ErgT | ⇡ R�1/2kgT k2�T ; (4.22)

we will give a rigorous argument in Lemma 4.12, appearing at the end of the article. If
T1, T2 2 T are such that 3✓(Ti) \ ⌧i 6= ;, then the separation of ⌧1 and ⌧2 implies that the
directions v(T1) and v(T2) are transverse and consequently that |T1\T2| . R3�+3/2. Hence,
by Plancherel’s theorem and (4.22), we (essentially) have

Z

R3

|d�⌧1,T1 ⇤ d�⌧2,T2 |2 =

Z

R3

|Erf⌧1,T1Erf⌧2,T2 |2 . R3��1/2kf⌧1,T1k22kf⌧2,T2k22.

Plugging this estimate into (4.21), we obtain the lemma. ⇤

Given Lemma 4.11, the rest of the proof of Proposition 4.10 is identical to the corre-
sponding part of [5]. For the convenience of the reader, we repeat the details here. We
set

S[

⌧,B
:=

✓ X

T2T[
B

(R�1/2kf⌧,T k2�2T )
2

◆1/2
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(cf. (4.22)). Let ⌧1, ⌧2 2 Sr be separated squares. Lemma 4.11 implies that
Z

Q

|Erf [

⌧1,B
|2|Erf [

⌧2,B
|2 . RO(�)

Z

Q

(S[

⌧1,B
)2(S[

⌧2,B
)2 + negligible .

Summing over Q 2 Q and exploiting the separation of ⌧1 and ⌧2 (as above) leads to the
boundZ

B\W

|Erf [

⌧1,B
|2|Erf [

⌧2,B
|2 . RO(�)�1/2

✓ X

T12T[
B

kf⌧1,T1k22
◆✓ X

T22T[
B

kf⌧2,T2k22
◆
+ negligible .

By properties (i) and (iv) of Proposition 4.2, the functions f⌧,T are nearly orthogonal and
we have

X

T2T[
B

kf⌧,T k22 . kf [

⌧,B
k22 + negligible

for every ⌧ . Thus, altogether,
Z

B\W

|Erf [

⌧1,B
|2|Erf [

⌧2,B
|2 . RO(�)�1/2kf [

⌧1,B
k22kf [

⌧2,B
k22 + negligible,

and consequently by Hölder’s inequality,

kBil(Erf [

B
)kL4(B\W ) . RO(�)�1/8

✓ X

⌧2Sr

kf [

⌧,B
k22
◆1/2

+ negligible .

The well-known estimate

kErgkL2(BR) . R1/2kgk2
(which is a consequence of Plancherel’s theorem for the spatial Fourier transform), together
with Hölder’s inequality, implies that

kBil(Erf [

B
)kL2(B\W ) . R1/2

✓ X

⌧2Sr

kf [

⌧,B
k22
◆1/2

.

Hence, by interpolation,
Z

B\W

Bil(Erf [

B
)p . RO(�)+ 5

2�
3p
4

✓ X

⌧2Sr

kf [

⌧,B
k22
◆p/2

+ negligible (4.23)

for p 2 [2, 4]. Now, on one hand, kf [

⌧,B
k2 . kf⌧k2 by Lemma 4.3. On the other hand,

Lemma 4.7 gives a di↵erent bound: There are at most RO(�)+1/2 discs ✓ 2 ⇥ such that
T[

B
\ T(✓) 6= ;. By property (i) of Proposition 4.2, each f [

⌧,B
is therefore supported in

RO(�)+1/2 discs ✓, on each of which we have the bound
Z

✓

|f [

⌧,B
|2 .

Z

10✓
|f⌧ |2 . R�1,

by Lemma 4.3 and (4.1). Thus, kf [

⌧,B
k2 . RO(�)�1/4. Combining these two estimates gives

kf [

⌧,B
k2 . kf⌧k3/p2 RO(�)� 1

4 (1�
3
p ) for p � 3. Plugging this bound into (4.23) yields

Z

B\W

Bil(Erf [

B
)p . RO(�)+ 13

4 �p

✓ X

⌧2Sr

kf⌧k22
◆3/2

,

and then taking p = 13/4 completes the proof of Proposition 4.10.
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To conclude the article, we rigorously prove the convolution estimate used in the proof
of Lemma 4.11. This standard argument is sketched in [5]; we fill in the details here.

Lemma 4.12. If ⌧1, ⌧2 2 Sr are separated squares and T1, T2 2 T are such that 3✓(Ti)\⌧i 6=
;, then

Z

R3

|d�⌧1,T1 ⇤ d�⌧2,T2 |2 . R�1/2kf⌧1,T1k2kf⌧2,T2k2,

where d�⌧i,Ti is given by (4.17).

Proof. Let ✓i := ✓(Ti) and ci := c✓i . Since 3✓i\⌧i 6= ;, we have ci 2 2m⌧i, and consequently,
|r�r(c1) � r�r(c2)| & 1 by the separation of ⌧1 and ⌧2. Indeed, by the Cauchy–Schwarz
inequality, boundedness of k(r2�)�1k on U , and part (b) of Lemma 2.2,

|r�r(c1)�r�r(c2)| = r�1|r�(rc1)�r�(rc2)|

& r�1|h(r2�(rc1))
�1(r�(rc1)�r�(rc2)),r�(rc1)�r�(rc2)i|1/2

⇠ r�1 distL(rc1, rc2)

& 1.

It follows (from the law of sines, say) that the unit normal vectors n1 := v✓1 and n2 := v✓2
satisfy \(n1, n2) & 1. Using this angle bound, we will foliate 3✓1 by lines whose lifts to ⌃r

are transverse to the tangent plane T(�r(c2),c2)⌃r above c2. Define the direction set

V := {! 2 S2 : ! · n1 = 0 and |! · n2| � c},
where c > 0. If c is su�ciently small relative to \(n1, n2), then V is nonempty. Choose
! 2 V , let ! := (!2,!3), and let S be the rotation of R2 satisfying S(0, 1) = !/|!| (note
that ! 6= 0). Define the lines �s by

�s(t) := S(s, t) + c1,

and note that supp d�⌧1,T1 ✓ 3✓1 ✓ {�s(t) : (s, t) 2 I2}, where I := [�3R�1/2, 3R�1/2]. The
lift of �s to ⌃r is given by

�s(t) := (�r(�s(t)), �s(t))

for s, t small. For almost every s, the function t 7! f⌧1,T1(�s(t)) is measurable and
Z

�s

gd⌫s :=

Z

I

g(�s(t))f⌧1,T1(�s(t))dt

defines a measure d⌫s on �s. Using (4.17), an easy calculation shows that d�⌧1,T1 = d⌫s�Ids.
Now, to prove the required convolution estimate, it su�ces to show that

|hd�⌧1,T1 ⇤ d�⌧2,T2 , i| . R�1/4kf⌧1,T1k2kf⌧2,T2k2k k2
for all  2 C1

c
(R3); the brackets denote the pairing between distributions and test functions.

We compute that

|hd⌧1,T1 ⇤ d�⌧2,T2 , i| =
����
Z

⌃r

Z

⌃r

 (� + ⌧, ⇣ + ⇠)d�⌧2,T2(�, ⇣)d�⌧1,T1(⌧, ⇠)

����

=

����
Z

I

Z

�s

Z

⌃r

 (� + ⌧, ⇣ + ⇠)d�⌧2,T2(�, ⇣)d⌫s(⌧, ⇠)ds

����

. R�1/4

✓Z

I

����
Z

�s

Z

⌃r

 (� + ⌧, ⇣ + ⇠)d�⌧2,T2(�, ⇣)d⌫s(⌧, ⇠)

����
2

ds

◆1/2

.
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Using the definitions of d�⌧2,T2 and d⌫s and the Cauchy–Schwarz inequality, the quantity
between absolute value signs is at most

kf⌧2,T2k2
✓Z

I

Z

3✓2

| ((�r(⇣), ⇣) + �s(t))|2d⇣dt
◆1/2✓Z

I

|f⌧1,T1(�s(t))|2dt
◆1/2

.

Thus, if we can show that
Z

I

Z

3✓2

| ((�r(⇣), ⇣) + �s(t))|2d⇣dt . k k22,

then a simple change of variable, using the definition of �s, gives the required estimate.
Toward that end, let G(⇣, t) := (�r(⇣), ⇣)+�s(t). We claim that G is invertible on 3✓2⇥I,

provided R is su�ciently large. The definition of S implies that �0
s
(t) = !/|!| for every s, t.

Thus, the Jacobian of G at (c2, 0) is given by

rG(c2, 0) =

0

@
@1�r(c2) @2�r(c2) r�r(�s(0)) · !/|!|

1 0 !2/|!|
0 1 !3/|!|

1

A .

The first two columns of this matrix are orthogonal to n2. If we replace �s(0) by c1, then
the third column becomes !/|!|, since ! · n1 = 0. The angle between ! and the orthogonal
complement of n2 is bounded below, since |! · n2| � c. Combining these observations, we
see that

| detrG(c2, 0)| =
1

|!|

������
det

0

@
@1�r(c2) @2�r(c2) !1

1 0 !2

0 1 !3

1

A

������
+O(R�1/2) & 1.

Thus, the inverse function theorem implies that G is invertible on 3✓2 ⇥ I, if R is suf-
ficiently large. (The meaning of ‘su�ciently large’ does not depend on r or s, since the
bounds krG(c2, 0)k ⇠ 1 and k(rG(c2, 0))�1k ⇠ 1 hold uniformly in these parameters.)
Additionally, the bound | detrG(⇣, t)| & 1 holds on 3✓2 ⇥ I, so we obtain

Z

I

Z

3✓2

| ((�r(⇣), ⇣) + �s(t))|2d⇣dt =
ZZ

G(3✓2⇥I)
| (⌘)|2| detrG�1(⌘)|d⌘ . k k22,

completing the proof. ⇤
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