LOCAL EXTENSION ESTIMATES FOR THE HYPERBOLIC
HYPERBOLOID IN THREE DIMENSIONS

BENJAMIN B. BRUCE

ABSTRACT. We establish Fourier extension estimates for compact subsets of the hyper-
bolic hyperboloid in three dimensions via polynomial partitioning.

1. INTRODUCTION

In this article, we establish Fourier extension estimates for compact subsets of the hy-
perbolic, or one-sheeted, hyperboloid in three dimensions. This surface may be defined
as the set of points (7,€) € R x R? satisfying the relation 72 = 1 + &2 — £2. Setting

H(€) = /1+ & — &3 and Q:={£ € R? : 1 + &7 — &3 > 0}, we may restrict our attention to
the graph

Ei={(¢(),6) : £ € .

We aim to adapt the polynomial partitioning method of Guth [5] to obtain extension esti-
mates for a bounded subset of ¥ near (1,0), which we denote by ;. Use of the parabolic
scalings P,(7,¢&) := (r~27,r71¢) in Guth’s argument presents an immediate obstacle here, as
hyperboloids are not invariant under such transformations. To overcome this minor issue, we
will simultaneously prove extension estimates for all parabolic rescalings of 31 with constants
uniform in the scaling parameter. Toward that end, let U := {¢ : |[¢] < §p/10}, where §p > 0
is a small constant to be chosen later, and for each r € (0,1], let ¢,.(&) := r2(p(ré) — 1)
and

X = {(¢r(§)7£) 1§ € U}

Each %, is the image of ¥1 N {(7,€) : £ € rU} under the parabolic scaling P,, and the ‘=1’
in ¢, just makes ¥, converge to the hyperbolic paraboloid ¥g := {(%(f% —€2),6):¢eU}
as r — 0. We associate to ¥, the extension operator

& fta) = [ 00O f(e)as

Theorem 1.1. If ¢ > 13/4 and p > (q/2)', then &, : LP(U) — L4(R3) with operator norm
bounded uniformly in r.

Remark 1.2. The bilinear and bilinear-to-linear theories for £ appear in a separate article
[1] of Stovall, Oliveira e Silva, and the author. Using the bilinear machinery and Theorem
boundedness of &, on the parabolic scaling line p = (¢/2)’ (for ¢ > 13/4) can also be
proved. See [1, Remark 5.2], as well as [§], [9], and [6] for arguments of this type.
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Theorem Can be compared to several recent developments in the restriction/extension
theory for hyperbolic surfaces in three dimensions. Cho and Lee [3] generalized Guth’s ar-
gument in [5] to the hyperbolic paraboloid, proving strong type (p,q) extension estimates
in the range ¢ > 13/4, p > q. Later work of Kim [6] and Stovall [8] brought those esti-
mates to the scaling line p = (¢/2)". (Letting r — 0 and applying Fatou’s lemma, Theorem
reproves the off-scaling extension estimates for the hyperbolic paraboloid.) Recently,
Buschenhenke—Miiller—Vargas [2] and Guo—Oh [4] independently obtained extension esti-
mates for all smooth compact surfaces in R® with negative Gaussian curvature using poly-
nomial partitioning. In particular, Theorem is now (essentially) a special case of their
results, which were announced after the completion of the arXiv preprint version of the
present article.

The rest of the article is organized as follows: In Section 2, we adapt the notion of ‘broad
points’ in [5] to the hyperbolic hyperboloid, motivating our definition through the geometry
of the surface. In Section 3, we use Kim’s argument in [6] to reduce Theorem|[L.1]to Theorem
an estimate on the contribution to &, from broad points. Finally, in Section 4, the heart
of the article, we prove Theorem using polynomial partitioning as in [5].

Notation and terminology. As is standard, we write A < B or A = O(B) if there
exists a constant C' > 0 such that A < CB. Generally, an implicit constant is not allowed to
depend on any parameters present in the article. In particular, constants never depend on
the parabolic scaling parameter r. There are exceptions: In Section 4, constants may depend
on the exponent € from Theorems and To highlight dependence on a parameter
s, we will sometimes write <, in place of <. Likewise, we write ¢ < 1 to mean that c is
sufficiently small, and we use subscripts to indicate dependence on parameters. A number
§ is ‘dyadic’ if § = 27 for some j € Z, and an interval I is ‘dyadic’ if I = [k27, (k + 1)27) for
some j, k € Z. If u,v are geometric objects that form an angle, such as two lines or a vector
and a plane, then Z(u,v) denotes the measure of their angle. Finally, ‘hyperboloid’ always
means the hyperbolic (one-sheeted) hyperboloid.

Acknowledgments. The author is very grateful to Betsy Stovall for her advice. This
project was suggested by Stovall and grew out of joint work with Stovall and Diogo Oliveira
e Silva. The 2019 MSRI Summer Graduate School on the Polynomial Method provided
useful discussions during the earliest stage of this project. The author was supported by
NSF grant DMS-1653264.

2. BROAD POINTS AND THE GEOMETRY OF THE HYPERBOLOID

In this section, we adapt the notion of ‘broad points’ to the hyperboloid. Informally, given
a function f € LY(U), a point (t,z) € R x R? is ‘broad’ for &, f if there exist small, well-
separated squares 71,72 C U such that fx,, and fx., contribute significantly to &, f(¢t, z);
otherwise (¢,z) is ‘narrow’. To estimate &, f, it suffices to bound the contributions from
broad and narrow points separately. The narrow contribution will be handled by a parabolic
rescaling argument, since (morally) its Fourier transform is supported in a small rectangular
cap in X,. The broad contribution will be handled by polynomial partitioning, using, in
particular, some techniques from bilinear restriction theory. In the latter argument, the
precise separation condition imposed on the squares 71, 79 will be crucial for ensuring that
their lifts to X,. are appropriately transverse. Our choice of this condition will be motivated
by the geometry of the hyperboloid, which we now describe.

First, the basic symmetries of the hyperboloid are the Lorentz transformations, linear
maps on R x R? that preserve the quadratic form (7,&) — 72 — &2 + £€2. Concretely, the
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spatial rotations
Ry(1,€) = (—waba + w17, &1, wi&a + wor),  weS, (2.1)

boosts

By(,6) = (= v& + V1+ 21, V/1+ 026 —vr,&), vER, (2:2)
and dilations

A+ AT A=At A=)t A+ A7
DA(Tv g) = <Ta

R L T e

§2>, AER, (2.3)

will be of particular use to us. We define a measure du on 3 by setting

_ _dg
/Z gdp = /Q 900905 (2.4)

for g continuous and compactly supported. This measure is Lorentz invariant in the following
sense: If L is a Lorentz transformation and suppg C ¥ and L~!(suppg) C %, then

/Z(goL)du=/ngu-

We also record the following notation for later use. Given a Lorentz transformation L and
&€ let

L(§) = m(L((£), £)), (2.5)

where (7, §) := £ is the projection to the spatial coordinates. If L(¢(§), &) € ¥ (equivalently,
if e; - L(¢p(€),€) > 0), then ML(&) = M(L(€)) for any other Lorentz transformation M.

In particular, if V' C Q and L(¢(¢),£) € ¥ for € € V, then L is invertible on V with
L'(Q) =L77() for ¢ € L(V).

Second, the (hyperbolic) hyperboloid is doubly ruled. The aforementioned separation
condition will be adapted to this structure: Informally, two small squares 71,7 C U will be
‘separated’ if their lifts to the hyperboloid do not intersect a common line contained in the
surface. While the precise version of this condition will be stated in Section 4, we record a

few preparatory details here. The Lorentz norm of (1,£) € R x R? is defined as

[(r. O = /I = & + &3

It is clearly Lorentz invariant, and if (7,¢), (7',&') € X, then [(7,&) — (7/,¢)] = 0 if and
only if (7,€) and (77,¢’) belong to a common line contained 3. The latter property can be
checked by using the formulae

(o) =M +tarF o1+, a6 %), (2.6)

which parametrize the lines é(iT 6 C ¥ that intersect at (7,§) € X. We also define the Lorentz
separation of £, ¢ € Q) as the quantity

distr, (€, ¢) == [(¢(£), &) — ((C), O],

which can be viewed as the ‘distance’ between (¢(£),€) and (¢(¢), () modulo the rulings of
Y. Given this definition, a more accurate rendering of our separation requirement would be
that disty,(£,¢) = 1 for all £ € 7y and ¢ € 7. Near the end of this section, we will prove
Lemma which relates dist, to some other geometric quantities.
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Having described the geometry of the hyperboloid, we turn to defining broad points. Our
first step is to divide each surface X, into caps that lie above special sets which we call tiles.
Consider the map ® : R? — R? given by

_ EVI+HE+6VI+E,6-6)
VI+E+V/1+&
and, for each r € (0,1], let ®,.(¢) := r~1®(rf). Recall the constant &y used to define U, and

assume henceforth that ¢ is dyadic. Given two dyadic numbers 6,6 € (0, do], a (9,9, r)-tile
is any nonempty set of the form

P(¢)

p = @T(Ig X L;/) NnU,

where I5 and Is are dyadic intervals contained in [—dg,dg) of length § and &', respectively.
We denote the set of (d,6’, r)-tiles by 75,45/ ,-. Observe that ® is a diffeomorphism near the
origin. (Indeed, ® can be viewed as a perturbation of the map & — %(51 +&9,& — &) for
¢ small.) Taking &y sufficiently small, it is straightforward to check that [|[® |1y S 1
uniformly in r, and consequently that U C ®,.([—do, dp)?) for every 7. We also note that for
fixed §,d’,r, the (9,0, r)-tiles are pairwise disjoint and satisfy

U:Up.

p€7—6,5’,r

Let us briefly mention the geometry underlying these definitions. The map ® was created
with the following property in mind: If ¢ C R? is a vertical or horizontal line that intersects
®,1(U), then ®,.(¢) is a line that lifts to a line contained in %,. Thus, each tile lifts to a
quadrilateral (in fact, nearly rectangular) cap bounded by four lines. We can think of the
collection {756, }s,6- as a dyadic grid adapted to X,. A more precise geometric description
of ® will appear in Lemma [2.3| at the end of this section.

Now, let K > §; ! be a large dyadic constant. As suggested above, we will analyze
contributions to &, from square-like sets 7. The (K1, K~1 r)-tiles will function as these
basic pieces. However, controlling contributions from longer rectangle-like sets will also be
essential. (As we will see, a collection of non-separated squares 7 must cluster around a
line.) For each dyadic number § € [K~1, &), let

Ré,r = TK*1,5,T U %,K*l,r
and also set

RT = U R57T.
S€[K—1,60]

Elements of Rs, resemble rectangles of dimensions K ~! x § and slope approximately 1 or
—1. We are now ready to define broad points. Given f € L*(U) and « € (0,1], we say that
(t,z) € R x R? is a-broad for &, f if

<
max £, fp(t, z)] < al&f (L, 2)],
where f, := fx,. The a-broad part of £, f is defined as

Bro, & f(t,7) = {Erf(t,x) if (¢,x) is a-broad for &, f,

otherwise.

In the next section, we will reduce Theorem to the following estimate on the broad part:
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Theorem 2.1. For every 0 < € < 1, there exists a constant C., depending only on &, such
that if K =211, then
12/13
| Bric—e € fllpaoss sy < CREII P 1F1X™
for allr € (0,1], R > 1, and balls Br of radius R.

To conclude this section, we present two geometric lemmas. We will need the following
notation: For &£ € Q, let Kgi denote the lines in R? parametrized by

CE(t) =&+ t(1+ &5, &6 £ 6(6)). (2.7)
Geometrically, ﬁgi are the projections to the spatial coordinates of the lines é(id)({), £ defined
in .
Lemma 2.2. For all&,( € U, we have
(a) dist(&, 65 VL) S dist(€, Q) S 1€ —¢l;
(b) distr.(&,€)* ~ [{(V2h(£) "1 (V&) — V(()), Vo(£) — V(())l-

Proof. (a) Let ¢’ be the intersection of £; and ZZ'. An easy calculation shows that Z(£;F, )2
1 for all n,n’ € U. (In fact, the lines are nearly orthogonal.) In particular, the law of sines
implies that £’ € CU for some constant C. Let L := B, R, as defined in (2.1) and (2.2)),

with

vi=(y,

._ ( #(C) G2 )
w:= ,— .
VIHG VI
Then L(¢(¢),¢) = (1,0). Let n := L(£) and i’ := L(¢’), using the notation from (2.5). Since
v and woy are very small, L is essentially a perturbation of the identity. It is _easy to check
that L(¢p(€),&) € X for all € € CU, provided &y is sufficiently small, and thus L is invertible

on CU. Additionally, we have the bound ”Z_lncl(f(CU)) < 1. Combining these facts, we
see that

dist(¢,£0) <6 =& < ln—n'l. (2.8)

Since L preserves the hyperboloid and is linear, it must permute the lines contained in the
surface. Therefore, since L is close to the identity,

L(¢f) = £5 =R(1,1),

L(tg) =4,
which implies that {n'} = R(1,1)N¢, . Then, since n € £, and Z(R(1,1),£;) 2 1, it follows
that |n — 7| < dist(n,R(1,1)). Thus, by (2.8), we have dist(f,ﬁé‘) < dist(n,R(1,1)) <

[m — 2| A similar argument shows that dist(&, £, ) < [m + n2|. Hence,
dist (€, (2‘ U ¢, ) = min{dist(¢, er), dist(&, ¢, )}

</Ini —n3|

S VI = ¢(n)]

~ [(¢(n),n) — (1,0)]
- diStL(§7<)a



6 BENJAMIN B. BRUCE

where the last step used the Lorentz invariance of the Lorentz norm. The second inequality
in (a) can be proved in a similar (but easier) fashion. (It also follows from part (b), using
the Cauchy—Schwarz inequality and bounds on the derivatives of ¢.)

(b) A straightforward computation shows that the right-hand side of (b) is equal to

(14 &0)(£16(C) — Q1(€))* + 26182(—&28(C) + C20(£))(€16(C) — 18(8))
+ (—1 4+ E2)(—&0(C) + C0(6))?.

1
$(§)e(¢)?

The expression inside absolute value signs is equal to
SEPI(1+E)CF — 20606 + (-1+&)¢)
+ ¢(§)B(O)[—2(1 + &)1t + 26182(E261 + &1G2) — 2(—1 4 £5)&a(a]
+o(O?[(1+ DT — 26765 + (-1 + &3)83),
which, by the relations ¢(£)? = 1+ &7 — €3 and ¢(¢)? = 1 + ¢ — (3, simplifies to
P(€)?[(€1¢1 — €262)% + ¢(¢)* — 1] 4+ 26(§)D(O)[—E1 61 + E2G2] + B()D(€)[¢(£) — 1].
Thus, by a bit more algebra, the right-hand side of (b) factors as

2(5))2 1+ 86G — &6 — ¢(§)o(O]I81¢ — 262 — ¢(§)(¢) — 1]

We also compute that

distr, (€,¢)? = 2|1+ &G — &2l — ¢(6)9(Q)],
and (b) follows. O

Let us briefly interpret Lemma Part (a) says that points with small Lorentz sep-
aration lie near a common line, while points with large Lorentz separation are genuinely
separated. Part (b) relates Lorentz distance to a measure of ‘transversality’ that naturally
arises in bilinear restriction theory (see [7, Theorem 1.1]). Crucially, whenever ¢ and ¢
belong to separated squares (as discussed above), the right-hand side of (b) will be bounded
below.

Lemma 2.3. If £ € U and { = ®71(€), then £f N2U = ®({C1} x R)N2U and £ N2U =
O(R x {G})N2U.

Proof. We will only prove the first equality; the second follows in a similar manner. The
proof rests on two claims.

Claim 1. If |£], €' <1/2 and £ € PL then Egr, = (¢! . Consider the lines €+ Eg,, and £, .
Each one contains £ and lifts to a hne contained in E By elementary geometry, no three
lines in the hyperboloid intersect at a common point. Thus, two of 62', é;‘,, and E_ must be

identical. Since EZ, #+ ¢ and égr # Le, as is easy to check, we conclude that égr, = €+

Claim 2. For everyf € R?, we have {®(&)} = 6?% 0
directly, using (2.7). It is helpful to reparametrize (2.7)) so that the second coordinates of
U, oy(t) and E(E 0) ( ) are identically ¢ and —t, respectively.

Now, fix £ € U and let ¢ := ®71(¢). Let ¢’ € Egr N2U and ¢’ := ®~1(¢). Claim 2 implies
that & € K(C o) and ¢ e 6&70). Hence, by claim 1, we have 6?21)0) £+ = E =7 (c1.0)
it follows that ¢; = ({. Since & was arbitrary, we conclude that £+ N 2U C @({Cl} xR)NU.
The other direction is similar: Let ¢ € ®({¢(1} x R) N 2U, so that & = ®((1,t) with

ﬂé(_f 0 This relation can be checked

and
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(¢1,t) € @71(2U) C Q. Claim 2 implies that &, &' € E&I’O). Hence, ¢ € Eg by claim 1, and

it follows that ®({¢(;} x R)N2U C E;‘ n2vU. O

3. REDUCTION TO THEOREM [2.1

In this section, we adapt the argument of Kim in [6] to show that Theorem implies
Theorem The following parabolic rescaling lemma is the main tool required for this
reduction.

Lemma 3.1. Let r € (0,1] be dyadic and let 0 € [0,1]. If [|EsgllLa(By.) < M|glls=?1Igll%,
for all s € (0,1], balls Bryy of radius R/2, and g € L>(U), then there exists an absolute

constant C such that |E,h||La(py) < C’M((S(S’)l%e*% A= IRN%, for all bounded h supported
in p € Tss r, provided 6,0 are sufficiently small.

Proof. Fix h € L*°(U) supported in p € 756/ . There exists p; € Tr5,r67,1 such that rp C p;.
By parabolic rescaling, we have
a_
1€l Loy = 71 2IE0hp, || Lo (P, (Br))»

where h,, := h(r~!-) is supported in p;. We assume without loss of generality that § < &’
and fix € p;. We claim that p; lies in the intersection of an O(rd)-neighborhood of E;;‘ and
an O(rd’)-neighborhood of £, . Indeed, let " € p1 and set ( = ®~1(n) and ¢’ = ().
By the definition of (rd,rd’, 1)-tile, we have

dist(¢, ({¢1} x R) N @~H(U)) < rd,
dist(¢, (R x {G}) Nnd~H(U)) <rd'.
Thus, by Lemma and the boundedness of ||[V®|| near the origin, it follows that
dist(n, £F) < 76,
dist(n’, £,) < 7o',

proving the claim.
Now, let L := (D\B,R,)~! with

L ( B(n) 72 >
w = s )
VIt V4
using the notation from (2.1)—(2.3). As in the proof of Lemma the map B, R,, sends
7 to the origin and Z# to fx = R(1,+1) and satisfies |ByRo|lcv@wy S 1. Thus, by the
claim, B, R, (p1) lies in an O(rd) x O(rd") rectangle with slope 1 centered at the origin, and

consequently Dy (B, R, (p1)) is contained in sU for some s < rv/6d. It is easy to check that
B,R,(4(£),£) € ¥ for all £ € U, and thus by the discussion following (2.5)),

L=Y(p1) = DA(ByRu(p1)) C sU. (3.1)

We claim that

L () ={¢€Q: L) e p} =L Lp). (3.2)
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Indeed, given a set V C Q, let VE := {(£4(£),€) : £ € V}. Then

L7 (pr) = {€ € Q1 L(6(6),€) € pf Upr }
={6€Q: (46,6 € L™Hp) U—~L 7 ((—=p1) ")}
It is easy to check that ey - L=1(¢(¢),{) > 0 for every ¢ € U. Thus, since —p; C U and
¢ > 0, we have (¢(£),€) ¢ —L71((—p1)T) for every &. Hence,
L7 (1) = {€ € Q: (6(6),9) € L (p1)} = LT (p1),

proving the claim.

Now, define F': ¥ — C by F(7,§) := h,, (§)$(§) and assume that §, 6" are small enough
that s < 1. Then, using (3.2) and (3.1)), it is straightforward to check that L= (supp F') C X.
Thus,

Evh, (t7) = e 27t [ 20 (7 ) du(r
ACE) (7, &)dp(r, &)
>

— et [ @m KO P(L(r,€)du(r, €,
P

where dy is the Lorentz-invariant measure given by (2.4). Hence, for H(£) := h,,, (L(£)) 2L(E)
we have

E1hy, (8, x)| = [ELH (L™ (E, ).
Noting that | det L| = 1, we obtain the relation
4 _
IEhllLa(mry = 75 2 1EH | Laze P (Ba))»
and parabolic rescaling then gives
ErhllLa(BR) ~ (55/)1_5||53[H(5')}||La(PS,1L*P,r(BR)),

where H(s-) is supported in U by (3.2)) and (3.1)).
We claim that P,-1L*P.(Bg) is covered by a bounded number of balls of radius R/2.

Assuming the claim is true, the hypothesis of the lemma implies that
_2 _
IErhlla(Bry S M(86)' | H(s) Iz || H(s) 1% (3-3)

To prove the claim, we may assume by translation invariance that Bpg is centered at the
origin. Let Q(a,b,c) denote any rectangular box centered at zero with sides of length
O(a),0(b),O(c) parallel to (1,0,0), (0,1,1), (0,1,—1), respectively. Thus, for example,

Br CQ(R,R,R) and
R R R
P’I"(BR) c Q(zaa)'
T T r

We have L* = D;*B,*R_*, where S~* := (S71)*. Since R,* and B, * have bounded

w )
norm, we can ignore their contribution. Thus, from the definition of D), we have
L°P.(B )c@(R V'R \/SR>
T R) = T27 \/571 7\/§T N

The definition of s then implies that
P,..L*P.(Br) CQ(60'R,5'R,6R),

which proves claim.
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Finally, to finish the proof, we need to undo the changes of variable we have used. Using
and (3.1)), we have L(¢(£),€) €  for all € € f_l(pl). Thus, L is invertible on supp H
with f_l(C) = L=1(¢) for ¢ € L(supp H) C U. Moreover, L=1 = Dy o B, o R,, on U, 50 a
straightforward calculation shows that |det VL | <1 on U. Using these observations, we
find that

7l S <= bl
IH (s)]loo < [1B]loo-
Plugging these bounds into (3.3)) completes the proof. O

Proposition 3.2. Assume that Theorem [2.1 holds. Then for every 6 € (3/13,1] and
0 < e < 1, there exists a constant C. 9, depending only on € and 0, such that

1€ Fllpas/a(pry < CepBENFIENFI%
for allr € (0,1], R > 1, and balls Br of radius R.

Proof. We will induct on R. The base case, that R ~ 1, holds trivially. We assume as
our induction hypothesis that the proposition holds with R/2 in place of R. Additionally,

we may assume that 2C13/4 < 013/4
definition of K ~¢-broad implies that

[€-f(t,2)| < max{| Br—- & f(t,z)|, K* max |€ f,(t, 2)[}
PER

, where C; is the constant from Theorem H The

for every (t,z) € R x R2. It follows that
/ Igrf|13/4§/ ‘BI‘K—eg,,f|13/4+K1735 Z / Igf |13/4_ I+1L
b Br pER,

To bound the first term, we use Theorem [2.I] and Holder’s inequality to get

L< (Cel fI PN AL < (CellAIEP D180 < 2( Ceoll fllz " 1711%) /.

To bound the second term, we will use Lemma [3.1] We may assume that r is dyadic by par-
abolic rescaling, and the other hypothesis of the lemma holds by our inductive assumption.
Additionally, by Holder’s inequality, we may assume that 6 is close to 3/13; in particular,
that § < 5/13. Then

M<KTE " > (CCpRE(GK )2 0735|1571 £, 1% )/

d€[K~1,50] PERs,r

< KEFRGOCA S GROH (R ST £ IR

de[K—1,00] PERs,»
S[K* 013/4( > 5183(6_133))215“‘9)](CE,QRgllfII%_QIIf20)13/4,
SE[K—1,60]

where the last step used the inclusion ¢2 < ¢ 7(-9) and that Rs,r covers U with overlap of
multiplicity 2. Since 6 > 3/13, the sum over ¢ is bounded and the power of K is negative
for € sufficiently small. Thus, since K — oo as ¢ — 0 by the hypothesis of Theorem
the expression in square brackets is at most 1/2 for ¢ sufficiently small, and the induction
closes. O
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Assuming Theorem [2.1] holds, Proposition [3.2] implies the restricted strong type bounds
ngfEHLl?’/‘l(BR) Se,p RE|E|1/p~

for all p > 13/5, measurable sets E C U, and |fg| < xg. Then, by real interpolation with
the trivial L' — L™ estimate, we obtain the strong type bounds

1€ fllLa(BR) Sewa BN Ilp

for all ¢ > 13/4 and p > (¢/2)’. Tao’s epsilon removal lemma, in the form of Theorem 5.3
in [6], consequently gives the global strong type bounds

1€-Flla Spa 11l (3-4)

for the same range of p, g, completing the proof of Theorem |L.1

4. PROOF OF THEOREM [2.1]

We are left to prove Theorem this will occupy the rest of the article. To enable an
inductive argument, we will actually need to prove a slightly stronger theorem, as in [5].
In Section 2, we defined broad points by considering the contribution to &, f from each f,,
where f, := fx, and p € R,. Soon we will work with wave packets of the form &, f, r,
where f, 7 is supported not in p but in a slight enlargement of it. Thus, we need a more
general definition of broad points in which the functions f, may have larger, overlapping
supports. Given p = ®,(I5 x Is) NU € T, and m > 1, we define

mp = &, (m(Is x Iy)) N U,
where m(I5 x Is/) is the m-fold dilate of the rectangle Is x I5» with respect to its center. Let
Sr = ,R'K_l,r;

elements of S, are essentially K ! x K1 squares. Now, given f € L'(U), suppose that
f=>c s, J=» with each f; supported in m7, for some m > 1. In our modified definition,

(t,z) € R x R? is a-broad for &, f if

max > &t lt)
T€S:TCp

We define the a-broad part of &, f, still denoted by Br,, &, f, as in Section 2. These definitions
depend on the particular decomposition f =>"_ f-.

< al& f(t,x)|.

Theorem 4.1. For every 0 < £ < 1, there exists a constant CL, depending only on €, such
that if K = 2(5710], then the following holds: If f = Zres,. fr with each f; supported in
mr, for some m > 1, and if additionally f satisfies

/ f < (41)
D(¢,R~1/2)
forall€ €U and T € S;, then

, 3/24¢
[ Bt < oot (5 1 3)
R

TES,.

for allr € (0,1], R>. 1, balls Br of radius R, and o € [K~¢,1].
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A couple of remarks may be helpful. Firstly, the dyadic structure of our tiles, as defined in
Section 2, implies that if 7 € S, and p € R, then either 7N p = 0 or 7 C p. More generally,
if p1 € Ts, 5 » and pa € Ts, s;,r, then either p1Npe = 0 or p1Np2 € Tmin, 6;,min; s, Secondly,
Theorem is indeed stronger than Theorem We can derive the latter from the former
as follows: If R ~. 1, then the estimate in Theorem is trivial, so we may assume that
R >. 1. By scaling, we also may assume that ||f||lcc = 1. Thus, the condition holds
automatically. We now apply Theorem with a = K¢ and m =1 to get

| Buce g g < cRe I < UFCLE £,
Br
and then raising both sides to the power 4/13 finishes the proof.

4.1. Preliminaries. Before beginning the proof of Theorem 4.1} we lay some groundwork.
For the remainder of the article, €, m, r, R, Bg, and « are fixed. Implicit constants will be
allowed to depend on €. The propositions and lemma we record in this subsection are by
now quite standard.

We begin with the wave packet decomposition. Let © be a collection of discs 8 of radius
R~1/2 which cover U with bounded overlap. We denote by ¢y the center of 6, and we let vg
be the unit normal vector to X, at (¢, (cg), cy). We may assume that ¢y € U for every 0. Let
§ := €2, and for each 6, let T(6) be a collection of tubes parallel to vy with radius RO+1/2
and length R and which cover Br with bounded overlap. If T € T(#), then v(T) := vy
denotes the direction of 7. Finally, we set T := (Jycg T(f). The following wave packet
decomposition resembles Proposition 2.6 in [5]:

Proposition 4.2. For each T € T, there exists a function fr € L*(R?) such that:

(i) If T € T(0), then fr is supported in 36;

(ii) If (t,x) € BR\ T, then |E. fr(t,x)] < R7109 f|l2;

(i) 1€ £(2) = Yper & Frlt,a)| < R0 £y for every (t,2) € Br;

(iV) ]f T,Ts € T(@) and T1 NTy = (D, then |ffT1fT2| < R_1000‘|f||%2(9);
)

() Sreno 1213 S 17132

Proof. Adapting Guth’s argument in [5] is straightforward. The fact that the derivatives
of ¢, are bounded in 7 (i.e. supeer [V, (€)| i 1) ensures that all constants arising in
the argument can be made uniform in 7. We note, in particular, that the crucial derivative
estimates appearing in line (17) of [5] hold uniformly in » when adapted to our setting. [

Next, we record an orthogonality lemma from [5]. The special case N = 1 will be of
particular use.

Lemma 4.3. Let Tq,..., Ty be subsets of T. Suppose that each tube in T belongs to at
most M of the T;, and for each T € S,., let

f'r,i = Z fT,T?

TeT,;

where the functions f.r come from applying Proposition (4.2 to f,. Then

N
Z/ |fT,i|25M/ 112
1 /30 100
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for every 6 € ©, and

i/U il S M/U 5P

Finally, we turn to polynomial partitioning. Let P be a polynomial on R?. We denote the
zero set of P by Z(P) and say that z € Z(P) is nonsingular if VP(z) # 0. If z is nonsingular,
then Z(P) is a smooth hypersurface near z. If every point of Z(P) is nonsingular, then we
say that P is nonsingular.

Proposition 4.4 (Guth [5]). Given g € L*(R?) and D > 1, there exists a polynomial P of
degree at most D such that P is a product of nonsingular polynomials and each connected
component O of R\ Z(P) satisfies

[lol~5 [ 1o
Og Ddeg'

We note that a product of nonsingular polynomials may have singular points. However,
by a perturbation argument using Sard’s theorem, one can ensure that nonsingular points
are dense in the zero set of the partitioning polynomial.

4.2. Main proof. We are now ready to prove Theorem in earnest. We will induct on
Rand ) _ s [f-]l3. The base cases, that R ~ 1 or | f-[|3 < R7'%%, are easy to check,
and our induction hypotheses are that Theorem [4.1]holds with: (i) R/2 in place of R, or (ii)
g in place of f whenever 3°_|lg-|l3 < 33, [If-[l5- Throughout the proof, we will assume
that e is sufficiently small and that R is sufficiently large in relation to e.

We begin by setting D := R and applying Propositionto the function | Bro, & f|**/* x5,
to produce a polynomial P of degree at most D such that

R*\ z(P) =] 0,
icl

where the ‘cells’ O; are connected, pairwise disjoint, and satisfy

1
[ Brass e o [ Brae g, (42)
BrNO; ‘D Br

In particular, the number of cells is #I ~ D3. We define the ‘wall’ W as the R!/2+9-
neighborhood of Z(P), and we set O} := O; \ W. Thus,

[ B =S [ B [ mrs g )
Br icl BRﬂog BrNW
We now argue by cases, according to which term on the right-hand side of (4.3) dominates.

4.3. Cellular case. Suppose that the total contribution from the shrunken cells O} domi-
nates. In this case, we have

[ e [ Brag g
Bgr icl BRQO,E

Using (4.2), we then see that the contribution from any single Oj is controlled by the average
of all such contributions. Thus, ‘most’ cells should contribute close to the average, and it is
straightforward to show that there exists J C I such that #J ~ D? and

1
/ | Bro & f|13/4 ~ ﬁ/ | Bry & f|13/4 (4.4)
BRr‘IO,E Br
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for all 4 € J. The lower bound on #.J will be the basis for a pigeonholing argument shortly.
First, some definitions are needed. For each i € [ and 7 € S,., we set

T,:={T eT:TNO, #0}

and

f'r,i = Z f‘r,Ta

TEeT;
where the functions f,r come from applying Proposition to fr. We also set
fi= z fm'-
TES,

Since f, is supported in m7, property (i) in Proposition implies that f,; is supported
in an O(R~'/?)-neighborhood of mr. Let f, := xy f; and fir = xuvlfir If Ris sufficiently
large, then supp ?m» C 2mr. Consequently, f, has a well defined broad part with respect to

these larger squares. Soon we will apply our induction hypothesis to f, (for some special 7)
with m replaced by 2m.

Lemma 4.5. If (t,z) € O; and oo < 1/2, then

| Bra £ f(t,2)] < | Broa & F,(t.2)| + R > [|f+l2.
TEST

Proof. First, we may assume that

€ ()] = R0 fol2: (4.5)

otherwise, the required inequality is trivial. Since (¢,2) € O}, properties (iii) and (ii) in
Proposition 4.2| imply that

grf‘r(t7x) = Z grf‘r,T(ta CE) + O(R_ggollf‘rHQ)

TET;

for each 7. Summing over 7, we get

E-f(t.2) = & filt,2) + O(R™0 Y |2, (4.6)

Now it suffices to show that if (,2) is a-broad for f, then (¢, x) is 2a-broad for f;. Assume
the former and fix p € R,. Using Proposition again, we have

Z g’r?ni(tv 33) Z (c""'fTv'i (t’ .73)

T:7Cp T7:7Cp

> &folta)| + OB fle)
T:TCp T

< ale (@) + O(R™ 3|1l

Using (4.5), (4.6), and the fact that @ > K¢, the right-hand side is at most 2a€,. f;(t, 7)| =
2a|E, f;(t, x)| for R sufficiently large. O
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If & > 1/2, then the estimate in Theoremholds trivially, since the power of R can then
be made at least 1000 by taking e sufficiently small. Thus, we may assume that o < 1/2.

Applying Lemma to (4.4) and recalling that D = R54, we get

_ 13/4
[ Braesispt [ et o(R0 (S kL)) @)
Bgr BRI’WO£ rES,

for every i € J. We will now pick ig € J so that > s
to apply our induction hypothesis to 7%. Because Z(P) is the zero set of a polynomial of
degree at most D, any line is either contained in Z(P) or intersects Z(P) at most D times.
Thus, each tube in T belongs to at most D + 1 of the sets T;. Now, applying Lemma 4.3
and the bound #.J > D?, we must have

¥%§:Zﬂﬂﬁ

e T

f+4,]I3 is small, which will allow us

c

for some constant C. Consequently, there exists ¢y € J such that
_ C 1
DolFriol3 <D il < D2 oIl < 3 NRAE (4.8)
T T T T

for R sufficiently large. We can apply Theorem to fio with 2m in place of m, provided

(4.1) holds. Since (4.1) holds for f, Lemmagives

f Iﬁmst |ﬂ%F§f FACES
D(§,R*1/2) D(E,R*l/z) D(E,lOOR*l/Z)

Thus, after multiplying ?750 by a constant, we can apply Theorem to (4.7) with i = ig to
get

. _ 3/2+ 13/4
/BR | Bra &, f|13/4 < CD3C’QR5+EG log (8K am2)( Z ||f”0||§) ) + O(R*looo( Z ||f7'H2) )

TES, TES,
for some C'. If the big O term dominates, then the desired estimate follows easily. Assuming
it does not, then by (4.8) and the definition of D, we have altogether

5 . 3/2+4e
/B |BI‘a 5rf|13/4 < 20R72€ +€6 log(S)C;ReJreG log(K am2)( Z HfTH%) ,
R

TES,

and the induction closes if € is sufficiently small and R sufficiently large.

4.4. Algebraic case. Next, suppose that the contribution from W dominates in (4.3)), so
that

/|m¢ﬁﬁ“5/ | Bra &, f13/4. (4.9)
Br

BrNW

Following Guth [5], we distinguish between tubes that intersect W transversely and those
essentially tangent to W. Let B be a collection of balls B of radius R'~° that cover By
with bounded overlap.

Definition 4.6. Fix B € B. Let TEB be the set of tubes T satisfying TNW N B # @ and
Z(v(T), T.Z(P)) < R?~1/2 for every nonsingular point z € Z(P) N 2B N 107T. Let ’]TuB be
the set of tubes T satisfying TN W N B # § and T ¢ T%.
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Observe that if T intersects W N B, then T belongs to exactly one of ']I‘% and TuB. (The
definition of ']I‘?8 would be vacuous if Z(P)N 2B N 10T contained only singular points; how-
ever, as noted above, we can arrange for nonsingular points to be dense in Z(P).) Thus,
on W N B, each &, f, is well approximated by the sum of the ‘tangent’ and ‘transverse’
wave packets, {&frr}rer, and {€ fr, B}TGT”B , respectively. Roughly speaking, our de-
sired bound for || Brg & f|| L13/4(pawr) Will soon be reduced to a broad part estimate on the
transverse contribution and a bilinear estimate on the tangent contribution. The following
geometric lemma, due to Guth [5], will be critical for establishing those bounds:

Lemma 4.7. (a) Each T € T belongs to TuB for at most DY) balls B € B. (b) For each
B € B, the number of discs 0 € © such that T% NT(0) # O is at most RO +1/2,

To carry out the bilinear argument, we need to define the separation condition mentioned
in Section 2. Recall how we defined the Lorentz separation distr,(£,() of £, € Q. We say
that two squares 11,70 € S, are separated if

disty, (ré, r¢) > CormK 1

for all £ € 2mm and ( € 2mm, where Cy > 1 is a constant to be chosen later. Part (a)
of Lemma implies that points having small Lorentz separation must lie near a common
line. The next lemma extends this property to collections of non-separated squares.

Lemma 4.8. Let Z C S, be a collection of pairwise non-separated squares. Then there exist
01,09,03,04 € Ts.50.0 U Tsg.0, with K™ <6 < mK~t, such that 7 C U?:l o; for every
TeT.

Proof. For € € U, let € :== ®~1(r¢) and also set
I:= U T,

I:={¢(:¢el}.
Fix 7,7 € Z. By part (a) of Lemma and the definition of (non-)separated squares,
there exist £* € 2mm and (* € 2mmy such that
dist(r&™, é:rg* Ul
Let n be a point in E:‘C* U E;C* closest to r¢*. By elementary geometry, n lies in 2U. Thus,
from the bound ||~ !{|c1 20y S 1 and Lemma we have

GstE, () % B) U (R x (G 1) S Iré* — | S rmK .
Since diam ® (7 - 2m7) < rmK ! for each 7, it follows that
dist(€, ({C1} x R)U (R x {¢p})) < A (4.10)
for all £,¢ € I and some A < rmK 1. Fix ¢ € I and set
S:=1[¢; — A, + A xR,
T:=Rx[(y— A+ 4]
so that T C S UT. Additionally, define
35 :=[¢; —34,(; +34] xR,
3T := R x [Cy — 3A,C, + 34].

We consider three exhaustive cases:

) SrmK
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(i) f IN(S\3T) # 0, then ([4.10) implies that I N (T \ 35) = ), and consequently
IC38s.

(i) f IN(T\ 3S) # 0, then (4.10) implies that T N (S \ 3T) = 0, and consequently
IC3T.

(iii) Otherwise, I C 35N 37T.
Thus, by symmetry, we may assume that ® 1(I) = r=1I C (r~1-3S5) N[, 50)%. The
interval
[T_l(a - 3A)7 7’_1(?1 + SA)] n [_5(% 50)

is covered by two dyadic intervals Iy, Iy C [0, o) of length 6 < r~'A < mK~!. Thus, if
we set

g1 = (I)T(Il X [*50,0)) n U,
g9 1= (I)T(IQ X [—(5070)) n U7
o3 = (I)T(Il X [0,(50)) n U,
04 1= (b»r-(IQ X [0,50)) N U,
then I C U?Il o; and the proof is complete. ([l

As mentioned above, estimating || Bro & || L13/4(prw) can be reduced to estimating cer-
tain contributions from transverse and tangent wave packets. The next lemma carries out
this reduction. First, some notation is needed. For 7 € S, and B € B, we set

b
7B = Z frr and fﬁ,B = Z frr-
TeTS, TeTh

We also let
fo=>fp and fhi=3 fi

TES, TES,
Given Z C §,., we set

frp=> fig and  fip=> fio

TEL TET

We note that f% g (analogously f% p) has the natural decomposition f% B = D.res, fﬁ,I, B

where
Ao ﬁﬁ ifrez,
B0 ifr ¢ T

Let ?ﬁz,B = XUf% 5 and 7373 = XUf.& - Then supp ?:B C 2mr, and thus fﬂLB has a well
defined broad part. Finally, we define

Bil(Efp) = D &S sl S, .
T1,T2 separated
Lemma 4.9. If (t,z) € BNW and am is sufficiently small, then

IBro & f(t2)| < 3 |Brioa & Frp(t. o) + K Bi(E f5)(t2) + B2 3 [|frla-
ICS, TES,
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Proof. We may assume that (¢,z) is a-broad for &, f and that

Ef(tx)| = RS fr o (4.11)

Let
Ti={re& & f(tx)] < K'ClEf2 5t 2)]}.

If Z contains a pair of separated squares, then the bound | Br,, &, f(t, z)| < K0 Bil(&, £%)(t, z)
follows immediately. Thus, we may assume that Z contains no pair of separated squares.
By Lemma there exist o1,09,03,04 € Ts55,r U Tsy,6,7, With K=' <6 <mK~!, such
that 7 C Ule o; for every 7 € Z. Let

j::{TESTZTgOO'i}.

i=1

Then

> Enflty)l.

GISVAS

4
& f(t, )] Z ng;tx
i=1'rirCo;

Since § < mK !, each o; is a union of at most C'm elements of Rs,,r where C'is a constant.
Thus, since (t, z) is a-broad for &, f and am is sufficiently small, we have

4
Dol D Eftw)
i=1

T:7Co;
and consequently,

<ACma|&,. f(t,x)| < %O\&f(tafv)\»

9
= <
SIEf ()] <

> Efe(tx)|.

TETC
Since (t,2) € BN W, properties (iii) and (ii) in Proposition [{.2] imply that

Efr(t,w) = EfE p(t,2) + & 12 p(t ) + O(R| f-]|2)
for every T € S,.. Summing over T € J€, we get

> & felt,)

TEJTC
Since J¢ C Z¢, we have

(& fre 5t )| < #TKTVNEf(t2)| < KTIEf(t, ).

<1 e () + €S e 5 (L) + O(RT S £ 2).

Hence,

9
It 2)] 1€ F5 p(t2)| + KIE f ()| + O(R™ Y [1fr2)-

Using (4.11)), we see that
|5Tf(t7x)| < Z'gT’fJC,B(tﬂx” = ilgrij,B(t7x)|7
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provided ¢ is sufficiently small and R sufficiently large. To finish the proof, we will show
that (t,z) is 10a-broad for €T7fi7u’3. It suffices to show that

Z 8773_73(75,.%‘)

TeJ<:tCp

< Ba&f(t, )| (4.12)

for every p € R,. Fixing p € R,, we have

S T sta) S Efi st

TeTJ:TCp TeJe:TCp
<| Y arta|+| Y &fpta)|+0o(R 9902\\le| ).
TeJe:tCp TeJe:tCp

As above, J¢ C Z¢ implies that

Yo & st

TeJe:TCp

It is straightforward to check that o; N p € R, for each i = 1,...,4. Thus, since (¢,x) is
a-broad for &, f, we have

Y. Eftao)| <

TeJ:TCp
Using the preceding three estimates and (4.11]), we arrive at (4.12). O

< K& f(t,x)] < alE f(t,z)|.

Y

i=1

< 5alé, f(t, )]

> Efe(t,x)

T:7Cp

> &t x)

T:7Co;Np

If am 2 1 so that Lemma does not apply, then the estimate in Theorem holds
trivially, since the power of R can then be made at least 1000 by taking e sufficiently small.
Thus, we may assume that am < 1. We now apply Lemmam to ) to get

/ |Bro & f1"* <) Z/ | Briga & fIB|13/4+Z/ Bﬂgfb 13/4

BEBICS, Bep’ BNW

fR00 (S ) )

TES,

note that the implicit constant is allowed to depend on K, a function of €. If the last term
dominates in (4.13)), then the estimate in Theorem holds trivially.

4.4.1. Transverse subcase. Suppose that the first term dominates in , so that
[T D) Dl RTINS (4.14)
BeBICS,

Each ball B € B has radius R'~?, so by induction on R, we can apply Theoremto each
summand in (4.14), whenever (4.1)) holds. Since (4.I) holds for f, Lemma [4.3] gives

—f
][ TP < ][ 2 < ][ [AES
D(¢,R~1/2) D(¢,R-1/2) D(&,100R-1/2)

Thus, after multiplying by a constant, Theorem [4.1] implies that

/ | Bro &.f|"%/* < Z Z C! RO~ 8)e ge° 10g(40K€am2)( Z “?3,3”3)3/2 e

BeBICS, TES,
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By Lemma each T € T belongs to at most DY) sets ']I‘ﬁB. Therefore, by Lemma
we have

—t 3/24¢ 3/2+4¢ 3/2+¢
S (X Imsld) < (X Y s3) T SO )
BeB T€S,. TE€S, BEB TES,
Since § = €2, D = RE4, and the number of subsets Z C S, depends only on K, we have
altogether
) 3,6 4 6 e 2 3/2+e
/ |BI‘a grf‘15/4 < CR¢ +e® log(40)+O0(e )CéREJrE log(K*®am )( Z HfTH%)
Bgr TES,
for some C' (depending on ). The power of the first R is negative for ¢ sufficiently small,

and then the induction closes for R sufficiently large.

4.4.2. Tangent subcase. In the remaining case, the second term in (4.13|) dominates, whence
/ |BI' g f‘13/4 < Z/ Bll g fb 13/4
BeB”/BNW

We will bound the right-hand side directly (i.e. without induction) using basically standard
bilinear restriction techniques and Lemma Since #B = RP©) < Re, it will suffice to
prove the following:

Proposition 4.10. For every B € B, we have
3/2
[ mie s S RO S 11 IB)
Bnw TES,

We will need a preliminary lemma. Fix B € B and let Q be a collection of cubes @ of
side length R'/? that cover BN W with bounded overlap. For each Q € Q, let

Tho={T €Ts:TNQ # 0}

Henceforth, we will write ‘negligible’ in place of any quantity of size O(R™° Y _ || f+[2)-
In particular, if (¢,2) € @, then

Er fTB(t x) Z Erfrr(t, x) + negligible . (4.15)
TeT, 4

It will suffice to bound || Bil(E, fB)||L13/4(Q) for each Q € Q. Informally, the tubes in T’
are tangent to W at @ and are thus coplanar. Dually, the wave packets {&, f-,—T}TGTb

have Fourier support near a curve formed by the intersection of ¥, and a plane. Thus
estimating || Bil(&,. f%)|| L18/4(@) 1s essentially a two-dimensional bilinear restriction problem,
making the L* argument a natural approach (as done in [5], of course).

Lemma 4.11. For all Q € Q and separated 1,7 € S, we have
Lien s sPle s sl S RO (CF WamlB) (X Ifnnl) + nesteivi,
Q TieTy o Ty 4
Proof. Let 1o be a smooth function satisfyin < Yo < x20 and
Q ying x@ < ¥q < X2
(.| S R¥2(1+|(r, )[RV 1/,



20 BENJAMIN B. BRUCE

By (4.15) and Plancherel’s theorem, we have

/ & 17, B IE 17, I = > / Erfrr 1 En [y 7, Er fra 1,6 Ty 7, + megligible
Q T1,T1,T2,T2 ETbByQ Q
< > /R 3 (Yq *dor, 1, % dor, 1,)(do, 7, *do_ 7))+ negligible,

T1,T1,T2,T> ET?S,Q

(4.16)

where do, 7 is the measure on X, defined by

/ gdor 7 = / 9(60(€), ) o1 (€)dE. (4.17)
hI. U

Fix T1,T1,T2, T2 € TIE?,Q and let &, €, ¢, ¢ denote the centers of 0(Ty),0(T1),0(Tz), 0(T2),
respectively. The rapid decay of 1[1@ and the fact that supp xv fr,r C %mT for every T € S,
and T € T imply that the contribution of Ty, T, Ts, T to (4.16) is negligible unless

E+(=E+C+O(RTY?),
& (€) + 6() = 6:(§) + 6.(C) + O(R™1/2),

and &, € € 2mm, and (,{ € 2mTy. We need to estimate the number of non-negligible terms
in (4.16) involving given tubes T7,T5.
Toward that end, we adapt some techniques of Cho-Lee [3] and Lee [7]. Assuming
T.,T1,T>, T contribute non-negligibly, then
() + 6:(Q) = 6r(E) + (€ + ¢ = &) + O(R™/2). (4.18)
We define a function ¥ : U — R by

‘I’(Tl) = ¢r(77) + ¢r(€ + C - 77) - ¢r(€) - ¢r(<)

and denote by Z := WU1(0) its zero set. We claim that |[V¥| > 1 on 2m7;. Indeed, if
n € 2mry, then by the Cauchy-Schwarz inequality, boundedness of ||(V2¢)~!|| on U, part
(b) of Lemma [2.2] and finally the separation of 71 and 7>, we have

Vér(m) = Vor(Q)l = r~HVé(rn) = Vé(rO)|

Z r (V2 o(rm) T (Vé(rn) = Vo(rC)), Ve(rn) — Ve(r¢)) [/
~ r~ Y disty, (ry, 7¢)
> C’Omel,

whence

W) = [Vén(n) — Voo (6 + ¢ — )] > [Vr(C) — Vor(O)] — 6l o) diam(2mm) 2 1
if Cy is sufficiently large. By the claim, Z is a smooth curve near £, and and a Taylor
approximation argument imply that

dist(¢, Z) < ROY/? (4.19)

for R sufficiently large. As mentioned above, tubes in T%)Q are nearly coplanar. Inspecting
the definition, it is straightforward to check that Z(v(T),T.Z(P)) < R*~'/2 for all T €
T%,Q and some (nonsingular) z € 2R°QNZ(P). Thus, dually, there exisﬁs a plane IT through
the origin such that dist((—1, V¢, (n)),II) < R?~1/2 for each n € {¢,€,¢}. Consequently,
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there exists a line whose O(R2°~1/2)-neighborhood contains V¢,.(¢), V¢, (€), and V¢, (¢).
Since |[V¢,.(¢) = V,(¢)| = 1 due to the separation of 7y and 79, it follows that V¢,.(€) lies in
an O(R?*~1/2)-neighborhood of the line ¢ containing V¢,.(¢) and V¢, (¢). We consider now
the smooth curve £ := (V¢,)~1(£ N 3U), noting that V¢ (and thus Ve,) is invertible near

the origin since det V2¢(0) # 0. This curve contains & by construction, and the boundedness
of [|[(V2¢)~1|| implies that

dist(€,0) < R*1/2, (4.20)
Crucially, ¢ and Z intersect transversely at £. Indeed, parametrizing ¢ by
U(t) = (Vo) "H(1 = )V6,(€) +1Vr(0)),
the tangent line to ? at £ is parallel to
G| = (F6€) (99,0 - Vor(6),
and the normal line to Z at ¢ is parallel to VU (£) = V,.(§) — V¢,.(¢). Thus, the bound

{(V26,(€) T (Vor (&) — Vo, (Q), Vér(€) — Vor ()] 2 1,

which follows from part (b) of Lemmaand the separation of 7 and 75, implies the claimed
transverse intersection. Consequently, by and , we have |¢ — €] < R?-1/2 A
similar argument shows that |¢ — ¢| < R?*~1/2. Since #(TE,Q NT(#)) <1 for every 6 € O,
it follows that for each T7,Ts € T%,Q’ there are O(R85) pairs T1,Ty € T%’Q such that
Ty, Ty, Ty, To contribute non-negligibly to .

Hence, by the Cauchy—Schwarz inequality (a few times) and Young’s inequality, is
at most

RO /R |0, 1, % dorp, 1, + negligible. (4.21)
T1,T2€Ty

To estimate the convolution, we use Plancherel’s theorem and the familiar wave packet
approximation

Erg7] ~ B2\ gr |25 (4.22)

we will give a rigorous argument in Lemma 4.12] appearing at the end of the article. If
Ty, Ty € T are such that 36(T;) N 7; # @, then the separation of 7; and 7 implies that the
directions v(7}) and v(T%) are transverse and consequently that |7 N7T,| < R3%+3/2. Hence,
by Plancherel’s theorem and , we (essentially) have

\/R3 |d0—7'1,T1 * dO—T27T2|2 = /R3 ‘ngTllegrfT27T2|2 5 R3671/2Hf‘r1,T1”g”f‘r'z,TzH%'
Plugging this estimate into (4.21), we obtain the lemma. O

Given Lemma [4.11] the rest of the proof of Proposition |4.10| is identical to the corre-
sponding part of [5]. For the convenience of the reader, we repeat the details here. We
set

1/2
S—br,B = ( Z (R1/2|fr,T|2X2T)2>

TEeTYy,
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(cf. (4.22))). Let 71,72 € S, be separated squares. Lemma implies that
P £l S B0 [ (87 X5, )+ neslgible.

Summing over @ € Q and exploiting the separation of 7, and 75 (as above) leads to the
bound

[ tepslies sl £ 8O (8 Unmlt)( X 1mlB) + nestgivi.
Bnw TiETY, TL€TY,

By properties (i) and (iv) of Proposition the functions f; r are nearly orthogonal and
we have

> frrl3 S 11£2 513 + negligible
TEeTy,

for every 7. Thus, altogether,

/B . 12, BIP1E 12, 5P S ROOT2| £ B3I 7, 5113 + negligible,
.

and consequently by Holder’s inequality,

1/2
I Bi(E, f5) |l La(maw) S RO<‘”—1/8( > ||f£,B|§) + negligible .
TES,

The well-known estimate
1€:9ll22(Br) S RY?|gll2

(which is a consequence of Plancherel’s theorem for the spatial Fourier transform), together
with Holder’s inequality, implies that

1/2
IBE ) sy < R (3 1£2608)

TES,

Hence, by interpolation,

p/2
/ Bil(&, f)? < ROO*HE-% < oI B||%> + negligible (4.23)
Bow TES, 7

~

Lemma gives a different bound: There are at most RO(®)+1/2 discs € © such that
T% NT() # 0. By property (i) of Proposition each fE,B is therefore supported in
RO®+1/2 discs 0, on each of which we have the bound

[P s [ 1pP SR
0 100
by Lemma and (4.1). Thus, ||f£,13||2 < ROWG)-1/4 Combining these two estimates gives

||fTb7B||2 < HfT||g/pRO(6)_%(1_%) for p > 3. Plugging this bound into (4.23) yields

3/2
/ Bﬂ(&fg)psz%w”fp(anTn%) ,
BNW

TES,

for p € [2,4]. Now, on one hand, ||f7b—,BH2 < || f+ll2 by Lemma On the other hand,

and then taking p = 13/4 completes the proof of Proposition m
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To conclude the article, we rigorously prove the convolution estimate used in the proof
of Lemma This standard argument is sketched in [5]; we fill in the details here.

Lemma 4.12. If 1,7 € S, are separated squares and T1,To € T are such that 30(T;) N7 #
(0, then

/3 |d07’1,T1 * dUT2,T2|2 5 Ril/z”fﬁ,Tl H2||f7'27T2||2’
RS

where do,, T, is giwen by (4.17).

Proof. Let 0; := 6(T;) and ¢; := ¢p,. Since 30;N7; # (), we have ¢; € 2m;, and consequently,
IVor(c1) — Vr(c2)| 2 1 by the separation of 7 and 7o. Indeed, by the Cauchy—Schwarz
inequality, boundedness of ||(V2¢)~!|| on U, and part (b) of Lemma

Vor(er) = Vor(e)| = r7HVo(rer) — Vo(rea)|
2 {(V2e(rer)) " (Vo(rer) — Vo(rea)), Vo(rer) — V(rea)) |/
~ r~disty, (rep, re)
> 1.

It follows (from the law of sines, say) that the unit normal vectors ny := vg, and ns := vy,
satisfy Z(n1,nq2) 2 1. Using this angle bound, we will foliate 36; by lines whose lifts to X,
are transverse to the tangent plane Ty, (c,),c,)5r above ca. Define the direction set

Vi={weS?:w-n; =0and |w-ns| >c},

where ¢ > 0. If ¢ is sufficiently small relative to Z(n1,n2), then V' is nonempty. Choose
w €V, let W := (w2,ws), and let S be the rotation of R? satisfying S(0,1) = @/[w| (note
that @ # 0). Define the lines 7, by

¥, (t) := S(s,t) + c1,

and note that supp do,, 7, C 301 C {7,(t) : (s,t) € I?}, where I := [-3R~/2 3R~1/2]. The
lift of 7, to X, is given by

Vs (t) = (6r (7 (1)), 7,(2))

for s,t small. For almost every s, the function t — f, 1, (7,(t)) is measurable and

/ gdv, = / 1 (8)) fr s (7, (1))

s

defines a measure dv, on vs. Using (4.17), an easy calculation shows that do,, 7, = dvsxrds.
Now, to prove the required convolution estimate, it suffices to show that

|<d071,T1 * dO—T27T2ﬂ1/}>| /S R71/4||f7'1,T1 ||2||fT27T2 ||2||7/}||2

for all b € C2°(R3); the brackets denote the pairing between distributions and test functions.
We compute that

|<d7'1,T1 * do""z,Tz ) w>| = ‘ /E /Z q/)(o' + 7, C + f)dUTQ,TQ (07 C)dUTth (T, 5)‘

:‘ / / W0+ 7.C 4 E)doy 1y(0, O (. €)ds
I s J 2

5 R—1/4</
I

2 1/2
ds) .

/ /2 1/}(0— + 7, C + f)dUTz,Tz (07 C)dys (T7 6)
Vs r
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Using the definitions of do,, 1, and dvs; and the Cauchy—Schwarz inequality, the quantity
between absolute value signs is at most

||f72,T2||2( /] (00,0 +vs<t>>|2d<dt)1/2( / |fn,T1<vs<t>>|2dt)

Thus, if we can show that

/ / W((60(0). ©) + e (E)2dcdt < ]2,
IJ360,

then a simple change of variable, using the definition of 7, gives the required estimate.

Toward that end, let G((,t) := (¢,(C), () +s(t). We claim that G is invertible on 362 x I,
provided R is sufficiently large. The definition of S implies that 7, (t) = @/|w| for every s, t.
Thus, the Jacobian of G at (cg,0) is given by

Nhor(c2) Oatpr(cz) Vor(7s(0)) - w/[w]
VG(cs,0) = 1 0 wa/ ||
0 1 ws/|w|

1/2

The first two columns of this matrix are orthogonal to ny. If we replace v5(0) by ¢1, then
the third column becomes w/|w|, since w - n; = 0. The angle between w and the orthogonal
complement of ny is bounded below, since |w - na| > ¢. Combining these observations, we
see that

1 81¢>r(02) 32¢r(02) w1
|det VG(ca,0)| = —: |det 1 0 wy || +ORYV?)>1.
‘w| 0 1 w3

Thus, the inverse function theorem implies that G is invertible on 36y x I, if R is suf-
ficiently large. (The meaning of ‘sufficiently large’ does not depend on r or s, since the
bounds ||[VG(c2,0)|| ~ 1 and |[(VG(c2,0))7!|| ~ 1 hold uniformly in these parameters.)
Additionally, the bound |det VG({,t)| 2 1 holds on 36, x I, so we obtain

/ / W((6+(0).€) + e (£))Pdcd = / / o) 2| det VG () < (111
1.J30, G(305%1)

completing the proof. O
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