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Abstract. We show that the restriction and extension operators associated
to the moment curve possess extremizers and that Lp-normalized extremizing
sequences of these operators are precompact modulo symmetries.

1. Introduction

This article establishes the existence of extremizers and compactness, modulo
symmetries, for the restriction/extension inequalities associated to the moment
curve. More precisely, we consider the operator

Efpxq :“

ª

R
eix¨�ptqfptq dt, �ptq :“ pt, t2, . . . , tdq,

which was shown by Drury [8] to extend as a bounded linear operator from Lp
pRq

to Lq
pRd

q if and only if q °
d2

`d`2
2 and q “

dpd`1q

2 p1 for d • 2. We prove
that for all pp, qq in this range, there exist nonzero functions f such that }Ef}q “

}E}LpÑLq}f}p. Moreover, whenever pp, qq ‰ p1,8q, Lp-normalized extremizing
sequences (i.e. those that saturate the operator norm) possess subsequences that
converge, modulo the application of symmetries of the operator, to an extremizing
function.

Our argument uses a modified version of the concentration-compactness frame-
work of Lions [15] and the related Method of Missing Mass of Lieb [14]. Such
methods have been well-studied for the L2-based restriction/extension problems
associated to certain hypersurfaces (see [3], [4], [5], [7], [9], [11]), and the resulting
theory has been an important step towards breakthroughs in the study of long-time
behavior of various dispersive equations, including NLS, NLW, and other equations
([2], see also [10], [12] and the references therein).

In this article, we make two advances relative to these previous works. First,
there are not, to our knowledge, any previous results in the literature regard-
ing concentration-compactness phenomena for Fourier restriction to higher co-
dimensional manifolds. Though Fourier restriction to lower-dimensional manifolds
has been less intensively studied than restriction to hypersurfaces, one is naturally
led to the former from the latter by examining the sublevel sets of the Gaussian cur-
vature of certain higher-order surfaces. (Some preliminary work on this connection
is in [16].) Naturally, we begin this study by examining the model “curved curve,”
which is referred to as the moment curve in the literature. A key step is a multilin-
ear generalization of the bilinear-to-linear argument of Tao–Vargas–Vega [19] (and
the later refinement thereof by Bégout–Vargas [1]), for which a new Whitney-like
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decomposition is needed. Second, we continue the development from [18] of e↵ective
concentration compactness techniques for Lp

Ñ Lq inequalities for general expo-
nent pairs pp, qq. While [18] laid out a strategy that makes accessible exponent pairs
with p ‰ 2, a new issue arises in the higher co-dimensional setting. Namely, the high
degree of the determinant in the scaling relation �p�tq “ diagp�, . . . ,�dq�ptq puts
certain exponent pairs pp, qq outside of the range accessible by direct adaptations
of the Tao–Vargas–Vega approach. We bridge the gap between this multilinear-
accessible range (1 † p † d ` 2) and the Drury range (1 † p †

d2
`d`2
2 ) by

introducing a sort of interpolation-like argument, which seems likely to be of use in
other settings.

We now turn to the precise formulation of our results, for which we introduce
some notation and terminology. By a symmetry of the operator E : Lp

Ñ Lq,
we mean an element S of the isometry group of Lp

pRq for which there exists a
corresponding element T of the isometry group of Lq

pRd
q obeying E ˝ S “ T ˝ E .

The key symmetries for our analysis are the dilations, the frequency translations,
and the modulations. More precisely, the dilations are given by:

f fiÑ f� :“ �´
1
p fp�´1

¨q, Ef�
pxq “ �

dpd`1q
2q EfpD�pxqq, D�pxq “ p�x1, . . . ,�

dxdq;

The translations are given by:

f fiÑ ⌧t0f :“ fp¨ ´ t0q, Ep⌧t0fqpxq “ Lt0pEfqpxq, (1.1)

where Lt0 is the boost Lt0gpxq :“ eix¨�pt0qgpAT
t0xq, and At0 is the unique element in

GLpdq for which �pt`t0q “ �pt0q`At0�ptq (we observe that At0 is lower triangular,
with ones on the diagonal); The modulations are given by:

pmx0fqptq :“ e´ix0¨�ptqfptq, Epmx0fq “ ⌧x0Ef.

Let 1 § p †
d2

`d`2
2 , q :“ dpd`2q

2 p1, and set Bp :“ }E}LpÑLq . We say that
f P Lp is an extremizer of (the Lp

pRq Ñ Lq
pRd

q inequality for) E if f ı 0 and
}Ef}q “ Bp}f}p. We say that tfnu Ñ Lp is an extremizing sequence for (the

Lp
Ñ Lq inequality for) E if fn ı 0 for all n and limnÑ8

}Efn}q

}fn}p
“ Bp. We are most

interested in normalized extremizing sequences, that is, extremizing sequences tfnu

with }fn}p “ 1, for all n. Our main result is the following.

Theorem 1.1. For d • 2 there exist extremizers of the Lp
pRq Ñ Lq

pRd
q inequality

for E for every pp, qq satisfying 1 § p †
d2

`d`2
2 and q “

dpd`1q

2 p1
. Moreover,

when p ° 1, given any extremizing sequence of E, there exists a subsequence that

converges to an extremizer in Lp
pRq, after the application of a suitable sequence of

symmetries.

We note that the existence of extremizers and non-compactness of extremizing
sequences in the case p “ 1 is elementary. Theorem 1.1 immediately yields a related
result for the corresponding restriction operator.

Corollary 1.2. The analogous result holds for the restriction operator Rgptq :“
pgp�ptqqq; namely, for d • 2 there exist extremizers of the Lr

pRd
q Ñ Ls

pRq inequality

for R for every pr, sq satisfying 1 § r † 1 `
2

d2`d and r1
“

d2
`d
2 s. Moreover, when

r ° 1, given any extremizing sequence of R, there exists a subsequence that, after

the application of a suitable sequence of symmetries, converges in Lr
pRq to an

extremizer.
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We give the short proof of the corollary now.

Proof. In the case r “ 1, the first conclusion is elementary, and so we assume
that r ° 1. Let tgnu be an Lr-normalized extremizing sequence of R. Let fn :“

B´ps´1q

s1 |Rgn|
s´2Rgn. Then limn }fn}s1 “ 1. On the other hand, by duality,

Bs1 “ B´ps´1q

s1 lim
n

}Rgn}
s
s “ lim

n
xgn, Efny § }gn}r}Efn}r1 § Bs1 ,

so tfnu is an extremizing sequence for E , the norms of whose elements tend to 1.
Applying Theorem 1.1 to t}fn}

´1
s1 fnu, there exist symmetries tSnu of E such that

along a subsequence, tSnfnu converges in Ls1
to some extremizer f for E . Let Tn

denote the corresponding Lr1
automorphism, that is, Tn ˝E “ E ˝Sn. Since Snfn “

B´ps´1q

s1 |RTngn|
s´2RTngn, replacing tgnu by tTngnu if necessary, we may assume

that Sn equals the identity for all n and that tfnu converges to f . By Banach-
Alaoglu, tgnu converges weakly to some g P Lr and so }g}r § limn }gn}r “ 1. On
the other hand

Bs1 “ lim
n

xgn, Efny “ xg, Efy § Bs1 }g}r,

so }g}r “ 1. By Theorem 2.11 in [13] tgnu converges in Lr to g, from which we
additionally conclude that g is an extremizer of R. ⇤
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supported by C. V. Raman Postdoctoral fellowship, and the second named author
was partially supported by NSF grant DMS-1653264 and the Wisconsin Alumni
Research Foundation (WARF). The authors are indebted to Benjamin Bruce and
the anonymous referee for their comments on earlier versions of this manuscript.

2. Outline of proof

We follow the general outline laid out in [18], which consists of two key steps:
First, we show that an extremizing sequence possesses good frequency (i.e. along
R) localization, after application of a suitable sequence of symmetries (translations
and dilations). Second, we show that extensions of an extremizing sequence have
good spatial localization (after modulation). This enables us to upgrade weak
convergence to Lp convergence using the fact that our sequence is extremizing.
The Lp limit is necessarily an extremizer.

For the frequency localization, our first step is to prove that a nonnegligible
contribution to each Efn comes from a single well-localized piece, fn�I�|fn|p|I|À1,
stated more precisely as Proposition 3.1. To prove this, we develop a d-linear-to-
linear version of the bilinear-to-linear argument of Tao–Vargas–Vega ([19]), with
improved e�ciency in the spirit of Begout–Vargas [1]. Though strong d-linear
adjoint restriction theorems predate (and are integral in the proof of) Drury’s The-
orem, the higher order linearity presents some new geometric challenges (relative to
the bilinear case) as we implement them to detect well-localized pieces of the fn. In
particular, developing a Whitney decomposition of the o↵-diagonal in Rd requires
determining a notion of relatedness for d-tuples of intervals (as opposed to pairs of
balls, which arise in the bilinear setting). Furthermore, for basic arithmetic reasons

relating to the magnitude of the scaling factor dpd`1q

2 in the relation q “
dpd`1q

2 p1

(compared with d`2
d in the case of elliptic hypersurfaces), a straightforward adap-

tation of the methods of Tao–Vargas–Vega cannot yield scale-invariant Lp
Ñ Lq
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inequalities for large values of p (p ° d ` 2). We circumvent this di�culty by
adapting the proof of the Marcinkiewicz interpolation theorem.

Having identified a single contributor to much of Efn, iteration yields a bounded
number of contributors to any specified proportion of Efn (Lemma 4.2). However,
localization requires a bit more, namely, that (after applying symmetries) these
pieces must all be at scale and of maximum magnitude about one (Proposition 4.1).
Due to convexity (i.e., q ° p), this follows by proving an orthogonality result
(Lemma 4.3), utilizing that “distant” pieces (i.e., those with disparate localizations)
have extensions that interact weakly. We use bilinear estimates based on either
Hölder’s inequality or a multilinear inequality of Christ from [6] to establish weak
interactions.

Finally, having established that for any extremizing sequence tfnu (after ap-
plying symmetries), t|fn|u is well-approximated in a uniform way by uniformly
bounded, compactly supported functions, to prove convergence, we need to control
the oscillations of the fn. To this end, we develop a profile decomposition result
(Proposition 5.1) to write the bounded, compactly supported approximations as
a superposition of modulated profiles (the modulations, but not the profiles, may
depend on n). Curvature and stationary phase enable us to prove an Lp almost
orthogonality result for these profiles, and so for tfnu extremizing, there is exactly
one significant profile. Using basic properties of Lp spaces, we can then remove
the truncations of the fn (to bounded, compactly supported functions), without
disturbing our profiles nor modulations too much. We thus obtain Lp convergence
of the fn to an extremizer, our desired outcome.

Future directions. We believe that many of our methods have the potential to
be extended to a larger class of curves (and indeed, the authors intend to do so in a
forthcoming article). However, our proof uses the symmetries for the moment curve
in a fundamental way in the passage from the multilinear to the linear inequality
(the Whitney decomposition step, in particular), and a number of changes would be
needed to extend this to more general curves, even when the torsion is comparable
to 1. Therefore such results are outside of the scope of this article. Finally, we note
that the analogous questions for manifolds of intermediate dimension (dimension
and co-dimension both strictly larger than 1) seem to be extremely interesting.

Notation. We write A À B to denote A § CB where C may depend on the
dimension d and the exponent p, and whose value may change from one line to the
next but is independent of A and B. For the rest of the article we assume that
d • 3.

3. A refined extension estimate

The purpose of this section is to prove two refinements (Propositions 3.1 and 3.10)
of the Lp

Ñ Lq inequalities of Drury, both of which will be used in the proof of
Theorem 1.1. These results show that if f has nonnegligible extension, then a
significant portion of the extension comes from a piece of f with good frequency
localization. Later, we will capture essentially all of the extension of f by iterating
this inequality.
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Proposition 3.1. Let 1 † p †
d2

`d`2
2 , and let q :“ dpd`1q

2 p1
. There exist 0 † ✓ “

✓p † 1 and cp ° 0 such that

}Ef}q À

ˆ
sup
kPZ

sup
IPDk

sup
n•0

2´cpn}fn
I }p

˙1´✓

}f}
✓
p, f P Lp. (3.1)

Here Dk denotes the set of all dyadic intervals of length 2k, and

fn
I :“ f�I�

t|f |†2n}f}p|I|
´ 1

p u

.

Proof of Proposition 3.1. We will prove the proposition in two steps : First, in the
range p † d ` 2, we will prove the inequality (3.1) by using a multilinear extension
estimate and a variant of an argument of Bégout–Vargas [1]; then, we will adapt real
interpolation methods to deduce this bound for larger values of p. The significance
of p † d ` 2 is that it ensures that p

q
d q

1
°

p
d , which allows for a d-linear-to-linear

variant of the bilinear-to-linear argument of Tao–Vargas–Vega [19]. We start with
the following lemma.

Lemma 3.2. Let I1, . . . , Id be intervals of length one, and assume that there exists

some k, 1 § k † d, such that for all j § k and j1
° k, distpIj , Ij1 q Á 1. Then for

fj supported on Ij and q °
d2

`d`2
2 ,

}

dπ

j“1

Efj} q
d

À

dπ

j“1

}fj}s, s :“ p
2q
d2 q

1. (3.2)

Proof. Changing variables,

dπ

j“1

Efjpxq “

ª
F p⇠qei⇠¨x d⇠,

where ⇠ “
∞d

j“1 �ptjq, t1 † ¨ ¨ ¨ † td, F p⇠q “
∞

�PSd

±d
j“1 f�pjqptjq

±
i†j§d |ti ´

tj |
´1, and Sd denotes the symmetric group on d letters.
We set a :“ p

q
d q

1. Since a † 2 we may apply Hausdor↵–Young to see that

`
}

dπ

j“1

Efj} q
d

˘a
À }F }

a
a “

ª dπ

j“1

|fj |
a
ptjq

π

i†j§d

|ti ´ tj |
´pa´1qdt

À

´ ª kπ

j“1

|fj |
a
ptjq

π

i†j§k

|ti ´ tj |
´pa´1qdt1 ¨ ¨ ¨ dtk

¯
(3.3)

ˆ

´ ª dπ

j“k`1

|fj |
a
ptjq

π

k`1§i†j§d

|ti ´ tj |
´pa´1qdtk`1 ¨ ¨ ¨ dtd

¯
.

Our conditions on q imply that a ´ 1 “
a
a1 †

2
d´1 . Thus by Proposition 2.2 of

[6], the right hand side of (3.3) is bounded by

` kπ

j“1

}fj}
a
bka

˘` dπ

j“k`1

}fj}
a
bd´ka

˘
, bn :“

`
2

pn´1qpa´1q

˘1
.

After a bit of arithmetic, we see that bna §
`
2q
d2 q

1, whenever 1 § n † d, so (3.2)
follows from Hölder’s inequality, since each fj is supported on a set of measure at
most one. ⇤
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By scaling, Lemma 3.2 immediately implies the following corollary.

Lemma 3.3. Let q °
d2

`d`2
2 and let I1, . . . , Id be intervals of length r ° 0, and

assume that there exists some k, 1 § k † d, such that for j § k † j1
, distpIj , Ij1 q Á

r. Then for functions fj supported on Ij, 1 § j § d,

}

dπ

j“1

Efj} q
d

À rdp
1
s1 ´

dpd`1q
2q q

dπ

j“1

}fj}s, s :“ p
2q
d2 q

1. (3.4)

⇤
In the spirit of the bilinear-to-linear argument of Tao–Vargas–Vega [19], we turn

to a Whitney decomposition of Rd on whose pieces we can apply bound (3.4).
Consider the diagonal � :“ tpt, . . . , tq : t P Ru and the annular tubes Tr :“

t⇠ : 1
2r § distp⇠,�q § 2ru. We cover T2m with axis-parallel dyadic cubes of

side length 2m´Kd , with Kd su�ciently large for later purposes. Let Q denote a
maximal nonoverlapping collection of such dyadic cubes, and let Qn denote the
subcollection consisting of those cubes in Q having sidelength 2n. We may assume
that the collection Q is invariant under permutations of the coordinates. Each
Q P Qn may be written

Q “ IQ1 ˆ ¨ ¨ ¨ ˆ IQd “ 2npQ~l ` ~kq, with Q~l :“ r0, 1s
d

`~l, (3.5)

where the IQj are intervals, ~k,~l P Zd, and

~k “ pk, . . . , kq, and ~l P r0, Nds
d
zpr0,Mds

d
` �q,

with Md † Nd large dimensional constants depending on Kd. The expression (3.5)

is uniquely determined by Q if we require that some entry of ~l equals 0.
We note that

}Ef}
d
q “ }pEfq

d
}q{d “ }

ÿ

QPQ

dπ

j“1

Epf�IQ
j

q}q{d. (3.6)

After a possible (harmless) reordering of indices and pigeonholing, we see that the
hypotheses of Lemma 3.3 apply to each Q~l, and thus to each Q P Q. However, to
access the summands on the right hand side of (3.6) for application of Lemma 3.3,
we need a bit more. We turn now to an adaptation of the Whitney decomposition
and almost orthogonality argument of [19].

Define �pt1, . . . , tdq :“
∞d

j“1 �ptjq. Then for Q P Q,
±d

j“1 Epf�IQ
j

q has Fourier

support contained in �pQq. With Q as in (3.5), with some entry of ~l equal to 0, we
observe that

�pQq “ D2npAk�pQ~lq ` d�pkqq, (3.7)

where Ak is from (1.1). This motivates us to define a map

SQp⇣q :“ D2npAk⇣ ` d�pkqq.

We will use the SQ in a fundamental way in the proof of the decomposition lemma
below.

Lemma 3.4. There exists a collection t QuQPQ of smooth functions with the fol-

lowing properties:
∞

Q  Q ” 1 on �pRd
z�q, the support of each  Q intersects the

support of a bounded number of other  Q1 , each �pQq intersects the support of a

bounded number of supports of  Q, and t} q Q}L1u is a bounded set.
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Proof of Lemma 3.4. For each ~l P Zd
X r0, Nds

d
zpr0,Mds

d
` �q, we let V~l denote a

neighborhood of �pQ~lq, su�ciently small for later purposes. For Q taking the form

(3.5), with some entry of ~l equal to 0, we define VQ :“ SQpV~lq, a neighborhood of
�pQq. We claim that the VQ are finitely overlapping. More precisely, we will show

that if Q takes the form (3.5) and Q1
“ 2n

1
pQ~l1 `~k1

q, with ~k1,~l1 satisfying conditions

analogous with ~k,~l, then VQ X VQ1 ‰ H implies |n ´ n1
| À 1 and |k ´ 2n

1
´nk1

| À 1.
To this end, we define

⇢p⇠q :“
dÿ

i“1

|⇠i|
1
i , �p⇠q :“ min

tPR
⇢pA´tp⇠ ´ d�ptqqq,

and let tp⇠q denote the minimum of all t with �p⇠q “ ⇢pA´tp⇠ ´ d�ptqqq. (By
basic calculus, we can see that these minima are attained.) We observe that if
⇠ P �pQ~lq, then |tp⇠q| À 1 and �p⇠q „ 1. This is because �pQ~lq is compact and does
not intersect d ¨ �, provided Kd is su�ciently large. Therefore, we may choose V~l
su�ciently small so that |tp⇠q| À 1 and �p⇠q „ 1 for every ⇠ P V~l. If ⇠ P VQ “ SQpV~lq,
then (after some basic linear algebra) ⇠ “ SQ⇣ “ A2nkD2n⇣ ` d�p2nkq, for some
⇣ P V~l, so

⇢p⇠q “ ⇢pD2n⇣q “ 2n⇢p⇣q „ 2n, and tp⇠q “ tpD2n⇣q ` 2nk “ 2nptp⇣q ` kq,

and the latter implies that |2´ntp⇠q ´ k| À 1. If, in addition, ⇠ P VQ1 , the same
computations and an application of the triangle inequality imply our claim that
2n

1
´n

„ 1 and |2n
1
´nk1

´ k| À 1.

We now determine our  Q. For ~l P Zd
X r0, Nds

d
zpr0,Mds

d
` �q, let �~l denote

a smooth, nonnegative function, identically 1 on Q~l and identically 0 o↵ of V~l. For
Q “ SQpV~lq, we set �Q :“ �~l ˝ pSQq

´1. Then
∞

Q �Q „ 1, and the sum has a
bounded number of nonzero entries at each point. We define

 Q :“ �Qp

ÿ

Q1:VQXVQ1 ‰H

�Q1 q´1.

The support and partition of unity conditions from the lemma are immediate.
For the L1 bound on the q Q, we note that from the computations above, the set
tS´1

Q SQ1 : VQ X VQ1 ‰ Hu is precompact in the set of invertible a�ne transforma-
tions, whence the set t�Q˝S1

Q : VQXVQ1 ‰ Hu is precompact in the Schwartz class.
Therefore tp Q ˝ SQqqu is precompact in S and consequently bounded in L1. ⇤

Using Lemma 3.3 and almost orthogonality, we will prove the following.

Lemma 3.5. If q °
d2

`d`2
2 , then

}Ef}
d
q À

`ÿ

n

ÿ

IPDn

2ntdp
1
s1 ´

dpd`1q
2q q

}fI}
dt
s

˘ 1
t ,

where s :“ p
2q
d2 q

1
, t :“ p

q
d q

1
, Dn is the collection of all dyadic intervals of length 2n,

and fI :“ f�I .

Proof. We first state the almost orthogonality result that we need, a slight mod-
ification of [19, Lemma 6.1] with the same proof. By interpolating the cases
p “ 1, 2,8, where the result is elementary (triangle inequality and Hausdor↵–Young

for p “ 1,8, Plancherel for p “ 2), the operator T
´

tgQuQPQ

¯
:“

∞
QPQ gQ ˚ q Q
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maps `p̃
1
pLp

q boundedly into Lp, 1 § p § 8, where p̃1 :“ mintp, p1
u. Noting that

Äq{d “ pq{dq
1

“ t, we have by (3.6),
∞
 Q ” 1, and the finite overlap condition

}Ef}
d
q “ }

ÿ

Q

ÿ

Q1:VQXVQ1 ‰H

q Q ˚

dπ

j“1

Epf�
IQ1
j

q}q{d

À
`ÿ

Q

}

ÿ

Q1:VQXVQ1 ‰H

dπ

j“1

Epf�
IQ1
j

q}
t
q{d

˘1{t
À

`ÿ

n

ÿ

QPQn

}

dπ

j“1

EfIj }
t
q
d

˘ 1
t .

Applying Lemma 3.3, we obtain

}Ef}
d
q À

`ÿ

n

ÿ

QPQn

2ntdp
1
s1 ´

dpd`1q
2q q

dπ

j“1

}fIj }
t
s

˘ 1
t , (3.8)

The lemma follows because if Q P Qn, then
î

IQj is covered by a bounded number
of intervals in Dn, and each dyadic interval arises in only a bounded number of
such coverings. ⇤
Definition 3.6. We define a family of Banach spaces Xp,q,r,s with norms

}f}Xp,q,r,s :“
`ÿ

n

` ÿ

IPDn

2nrp
1
p ´

1
s q

}f}
r
LspIq

˘ q
r

˘ 1
q .

Then Lemma 3.5 states that

}Ef}q À }f}Xp,dt,dt,s ,

for q °
d2

`d`2
2 , p “ p

2q
d2`d q

1, t “ p
q
d q

1, s “ p
2q
d2 q

1.

Lemma 3.7. Assume that 1 † s † p † r § q † 8. Then Lp
Ñ Xp,q,r,s

. Moreover,

there exist c0 ° 0, ✓ ° 0 such that if f P Lp
with }f}p “ 1, then

}f}Xp,q,r,s À sup
k•0

sup
I

2´c0k}fk
I }

1´✓
p }f}

✓
p.

Here the supremum is taken over all dyadic intervals I and fk
I :“ f�I�

t|f |§2k|I|
´ 1

p u

.

We note that this immediately implies Proposition 3.1 in the range p † dp
q
d q

1,
i.e. when p † d ` 2.

Proof of Lemma 3.7. We will prove the superficially stronger estimate wherein we
denote

f0
I :“ f�I�

t|f |§|I|
´ 1

p u

, fk
I :“ f�I�

t2k´1|I|
´ 1

p †|f |§2k|I|
´ 1

p u

.

Thus fI :“ f�I “
∞

k•0 f
k
I . By Hölder’s inequality,

}f}Xp,q,r,s “
`ÿ

n

` ÿ

IPDn

2nrp
1
p ´

1
s q

p

ÿ

k•0

}fk
I }

s
s

˘ r
s

˘ q
r

˘ 1
q

§ sup
n

sup
IPDn

sup
k•0

2´c0kp2np
1
p ´

1
s q

}fk
I }s

˘1´✓

ˆ
`ÿ

n

` ÿ

IPDn

2nrp
1
p ´

1
s q✓

` ÿ

k•0

2c0ks}fk
I }

s✓
s

˘ r
s

˘ q
r

˘ 1
q .

By Hölder’s inequality, 2np
1
p ´

1
s q

}fk
I }s § }fk

I }p, so it remains to bound the second
term in the product on the right hand side.
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We begin with the k “ 0 term. Since r ° p, we may choose ✓ † 1 su�ciently
close to 1 so that r✓ ° p ° s. Then using Hölder’s inequality repeatedly and finally
summing a geometric series,

`ÿ

n

` ÿ

IPDn

2nr✓p
1
p ´

1
s q

}f0
I }

✓r
s

˘ q
r

q
1
q §

`ÿ

n

` ÿ

IPDn

2nr✓p
1
p ´

1
r✓ q

}f0
I }

r✓
r✓

˘ q
r

˘ 1
q

§
`ÿ

n

2nr✓p
1
p ´

1
r✓ q

}f�
t|f |§2

´ n
p u

}
r✓
r✓

˘ 1
r

“
`ª

|f |
r✓

ÿ

2n†|f |´p

2nr✓p
1
p ´

1
r✓ q

˘ 1
r

“ }f}

p
r
p .

Now we turn to the k • 1 terms. Let c0 † c1 † c2 † pp ´ sq
✓
s . Then several

applications of Hölder’s inequality and the triangle inequality give

`ÿ

n

` ÿ

IPDn

2nrp
1
p ´

1
s q✓

` ÿ

k•1

2c0ks}fk
I }

s✓
s

˘ r
s

˘ q
r

˘ 1
q

À
`ÿ

n

` ÿ

IPDn

2nr✓p
1
p ´

1
s q

ÿ

k•1

2c1kr}fk
I }

r✓
s

˘ q
r

˘ 1
q

À
` ÿ

k•1

2c2kq
ÿ

n

2nq✓p
1
p ´

1
s q

` ÿ

IPDn

}fk
I }

r✓
s

˘ q
r

˘ 1
q

§
` ÿ

k•1

2c2kq
`ÿ

n

2nr✓p
1
p ´

1
s q

ÿ

IPDn

}fk
I }

r✓
s

˘ q
r

˘ 1
q

§
` ÿ

k•1

2c2kq
`ÿ

n

2nsp
1
p ´

1
s q

ÿ

IPDn

}fk
I }

s
s

˘ q✓
s

˘ 1
q

§
` ÿ

k•1

2c2kq
`ÿ

n

2nsp
1
p ´

1
s q

ª

t|f |„2
´ n

p 2ku

|f |
s
˘ q✓

s
˘ 1

q

„
` ÿ

k•1

2c2kq
`
2´kpp´sq

}f}
p
p

˘ q✓
s

˘ 1
q

„ }f}

p✓
s
p .

⇤

In the case of larger p (i.e., d ` 2 § p †
d2

`d`2
2 ), we will (roughly speaking)

interpolate the bound in Proposition 3.1, now established for su�ciently small p,
with Drury’s estimate }Ef}q À }f}p. The details of this deduction are given in the
next two lemmas.

Lemma 3.8. Let 1 † p †
d2

`d`2
2 and q “

dpd`1q

2 p1
. Let f P Lp

and write

f “
∞

n 2
nfn, where fn :“ 2´nf�En , and En :“ t2n § |f | † 2n`1

u. Then

}Ef}q À sup
n

}E2nfn}
⌫
q }f}

1´⌫
p ,

for some 0 † ⌫ † 1, depending only on p.

Proof. We will prove the lemma by slightly adapting the proof of the Marcinkiewicz
interpolation theorem from [17]. Write

1
p “

1´✓
p0

`
✓
p1
,
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for some 1 † p0 † p † p1 †
d2

`d`2
2 ; set qi :“

dpd`1q

2 p1

i, i “ 0, 1. Set

⌫ :“ min
i“0,1

1{pi ´ 1{qi
1 ` 1{pi ´ 1{qi

.

Note that 0 † ⌫ † 1.
Let g P Lq1

and decompose g analogously to f : g “
∞

n 2
ngn, where gn “

2´ng�Fn , Fn :“ t2n § |g| † 2n`1
u. We may assume that }f}p “ }g}q1 “ 1 and

thus
∞

n 2
np

|En| „
∞

m 2mq1
|Fm| „ 1.

By Hölder’s inequality, Drury’s theorem, and the definition of the fn, gm,

xEf, gy À

ÿ

n,m

x2nEfn, 2mgmy

§

ÿ

n,m

}2nEfn}
⌫
q }2mgm}

⌫
q1 min

i“0,1
}2nEfn}

1´⌫
qi }2mgm}

1´⌫
q1
i

À sup
n

}2nEfn}
⌫
q

ÿ

n,m

min
i“0,1

}2nfn}
1´⌫
pi

}2mgm}
1´⌫
q1
i

À sup
n

}2nEfn}
⌫
q

ÿ

n,m

p2n`m min
i“0,1

|En|
1
pi |Fm|

1
q1
i q

1´⌫ .

It remains to bound the sum on the right side of this inequality.

Were it the case that 2n|En|
1
p “ 2m|Fm|

1
q1

“ 1,

|En|
1
p0 |Fm|

1
q1
0 § |En|

1
p1 |Fm|

1
q1
1

would hold if and only if nA § ´mB, where

A :“ pp
1
p1

´
1
p0

q, B :“ q1
p
1
q1
1

´
1
q1
0

q.

In any case,
ÿ

n,m

p2n`m min
i“0,1

|En|
1
pi |Fm|

1
q1
i q

1´⌫

§

ÿ

nA`mB§0

p2n`m
|En|

1
p0 |Fm|

1
q1
0 q

1´⌫
`

ÿ

nA`mB°0

p2n`m
|En|

1
p1 |Fm|

1
q1
1 q

1´⌫ (3.9)

We begin with the first summand on the right of (3.9). Simple arithmetic,
followed by Hölder’s inequality (since 1´⌫

p0
`

1´⌫
q1
0

• 1) gives

ÿ

nA`mB§0

p2n`m
|En|

1
p0 |Fm|

1
q1
0 q

1´⌫

“

ÿ

nA`mB§0

2✓pnA`mBqp1´⌫q
p2np|En|q

1´⌫
p0 p2mq1

|Fm|q

1´⌫
q1
0

§

ÿ

k§0

2✓kp1´⌫q
ÿ

n

p2np|En|q
1´⌫
p0

ÿ

rnA`mBs“k

p2mq1
|Fm|q

1´⌫
q1
0

“

ÿ

k§0

2✓kp1´⌫q
ÿ

n

p2np|En|q
1´⌫
p0

ÿ

k´nA´1
B †m§

k´nA
B

p2mq1
|Fm|q

1´⌫
q1
0

À

ÿ

k§0

2✓kp1´⌫q
` ÿ

n

2np|En|
˘ 1´⌫

p0
` ÿ

n

ÿ

k´nA´1
B †m§

k´nA
B

2mq1
|Fm|

˘ 1´⌫
q1
0 À 1.
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The proof of Lemma 3.8 is complete modulo the bound for the second term on
the right of (3.9), which can be proved in an analogous fashion. ⇤

Lemma 3.9. Proposition 3.1 holds for functions |f | „ ��E, for � ° 0 and E a

measurable subset of R, with bounds independent of �, E.

Proof. We may assume that � “ 1. Choose p0, p1, q0, q1, ✓ as in the proof of
Lemma 3.8, with the additional assumption that p0 † d`2. By Hölder’s inequality,
then the remark following Lemma 3.7 and Drury’s theorem,

}Ef}q § }Ef}
1´✓
q0 }Ef}

✓
q1 À psup

kPZ
sup
IPDk

sup
n•0

2´cp0n}p�Eq
n
I }p0q

✓1
}�E}

1´✓´✓1
p0

}�E}
✓
p1
,

where 0 † ✓1
† 1´✓ arises by applying Proposition 3.1 with exponents p0, q0 (where

it has already been established).
The proof is now just a matter of unwinding the definition of p�Eq

n
I and per-

forming some arithmetic. Observe that

}p�Eq
n
I }p0 “

#
|E X I|

1
p0 , if 1 † 2n|E|

1
p0 |I|

´
1
p0 ,

0, otherwise,

and analogously with p in place of p0. Thus we may rewrite

sup
kPZ

sup
IPDk

sup
n•0

2´cp0n}p�Eq
n
I }p0 “ sup

kPZ
sup
IPDk

mint1,
`

|E|

2k

˘ cp0
p0 u|E X I|

1
p0

„
`
sup
kPZ

sup
IPDk

sup
n•0

2´cp0n}p�Eq
n
I }p

˘ p
p0 .

Finally, we obtain

}Ef}q À psup
kPZ

sup
IPDk

sup
n•0

2´cp0n}p�Eq
n
I }pq

#
}�E}

1´#
p

„ psup
kPZ

sup
IPDk

sup
n•0

2´cp0n}fn
I }pq

#
}f}

1´#
p ,

where # “
✓1p
p0

. Note that 0 † # †
p1´✓qp

p0
† 1. ⇤

Proposition 3.1 in the cases p • d ` 2 follows by first applying Lemma 3.8, then
applying Lemma 3.9 to the supremum term in the conclusion of Lemma 3.8, and
finally observing that, in the decomposition in Lemma 3.8,

|p2mfmq
n
I | § |pfq

n
I |,

for all integers m,n and intervals I. ⇤

The following proposition is somewhat easier to use, though it only applies in a
more limited range of exponents. The proof requires only a small modification in
the argument leading to Proposition 3.1.

Proposition 3.10. Let 1 † p † d ` 2, and let q :“ dpd`1q

2 p1
. There exists 0 † ✓ “

✓p † 1 such that for f P Lp
,

}Ef}q À
`
sup
I

|I|
´

1
p1

}EfI}8

˘1´✓
}f}

✓
p. (3.10)

Here, the supremum is taken over dyadic intervals I, and fI :“ f�I .
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Proof. Let q1 † q with ✓ :“ q1
q su�ciently close to 1 for later purposes. By (3.8),

Hölder, Lemma 3.3, arithmetic, and another application of Hölder,

}Ef}q À
`ÿ

n

ÿ

Q“
±

IjPQn

}

dπ

j“1

EfIj }
t
q
d

˘ 1
td

À
`ÿ

n

ÿ

Q“
±

IjPQn

}

dπ

j“1

EfIj }
tp1´✓q

8 }

dπ

j“1

EfIj }
t✓
q1
d

˘ 1
td

À
`ÿ

n

ÿ

Q“
±

IjPQn

}

dπ

j“1

EfIj }
tp1´✓q

8 2ndt✓p
1
p1

´
1
s1

q

dπ

j“1

}fIj }
t✓
s1

˘ 1
td

§
`ÿ

n

ÿ

Q“
±

IjPQn

p2ndp
1
p ´1q max

j“1,...,d
}EfIj }

d
8

q
tp1´✓q2ndt✓p

1
p ´

1
s1

q

dπ

j“1

}fIj }
t✓
s1

˘ 1
td

§
`
sup
I

|I|
1
p ´1

}EfI}8

˘1´✓
}f}

✓
Xp,dt✓,dt✓,s1 .

Here s1 :“ p
2q1
d2 q

1, t :“ p
q
d q

1. For p † d ` 2 and ✓ su�ciently close to 1, 1 † s1 †

p † dt✓ † 8, so an application of Lemma 3.7 completes the proof. ⇤

4. Frequency Localization

In this section we prove that any near extremizer of E is uniformly bounded and
is supported on a compact set around the origin possibly after applying symmetry,
if we allow ourselves to lose a small amount of Lp-mass. Below is the precise
statement.

Proposition 4.1. Let 1 † p †
d2

`d`2
2 , and let q :“ dpd`1q

2 p1
. For each ✏ ° 0,

there exist � ° 0 and R † 8 such that for each nonzero function f satisfying

}Ef}q • Bpp1 ´ �q}f}p, there exists a symmetry S such that the following holds.

}Sf}
Lp

`
t|t|°RuYt|Sf |°R}f}pu

˘ † ✏}f}p.

We start with the following lemma.

Lemma 4.2. Let 1 † p †
d2

`d`2
2 , and q :“ dpd`1q

2 p1
. There exists a sequence

⇢k Ñ 0 such that for every f P Lp
pRq, there exists a sequence tIku of dyadic

intervals such that if tf°k
u is inductively defined by

f°0 :“ f, fk :“ f°k´1�
t|f |†2k|Ik|

´ 1
p }f}pu

�Ik , f°k :“ f°k´1
´ fk, (4.1)

then for any measurable function h°k
with |h°k

| “ �E |f°k
|, for some measurable

set E,

}Eh°k
}q § ⇢k}f}p.

Proof. Let 0 ı f P Lp. Multiplying by a constant if needed, we may assume that
}f}p “ 1. By the Dominated Convergence Theorem, given f°k´1, we choose a
dyadic Ik to maximize }fk

}p. With the sequence tfk
u and tf°k

u as defined in 4.1,
let K P N and set

AK :“ sup
I dyadic

}pf°2K
q
K
I }p.
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By the maximality property of the Ik, AK § }fK`j
}p, for each 0 § j § K. Hence

by the disjointness of the supports of the fk’s,

KAp
K §

Kÿ

j“1

}fK`j
}
p
p § 1.

By Proposition 3.1, for any measurable function |h°2K
| “ �E |f°2K

|,

}Eh°2K
}q À maxt2´cp✓pK , 1

K
✓
p

u À K´
✓p
p .

This completes the proof with ⇢k :“ Cp
k
2 q

´
✓p
p with ✓p as in Proposition 3.1 and C

a su�ciently large constant. ⇤

Proof of Proposition 4.1. Since we can always take � †
1
2 , it su�ces to consider

those f for which }f}p “ 1 and }Ef}q °
1
2Bp}f}p. Let Ik,f denote the dyadic

intervals from Lemma 4.2 and set

f§k :“ f ´ f°k, and so fk
“ f°k´1

´ f°k.

By Lemma 4.2, }fkf }p Á 1 for some kf À 1. Applying a symmetry if needed, we
may assume that Ikf ,f is the unit interval. We will prove (under these assumptions
on f) that the conclusion of the proposition holds with S equal to the identity.

If the conclusion were to fail, there would exist some " ° 0 and sequence of
functions tfnu Ñ Lp with }fn}p “ 1, kn :“ kfn À 1, }fkn

n }p Á 1, Ikn,fn “ r0, 1s,
}Efn}q • Bpp1 ´ n´1

q, and

}fn}
Lp

`
t|t|°nuYt|fn|°nu

˘ ° ".

By pigeonholing and passing to a subsequence, we may assume that kn “ k0 À 1
for all n. Write

Ikn :“ Ik,fn “: ⇠kn ` r0, `kns, k, n P N.

Passing to a subsequence, we may assume that t⇠knu and t`knu converge in r´8,8s

and r0,8s, respectively, for each k and that t}fk
n}pu converges for all k. For each

k, say that the k is negligible if }fk
n}p Ñ 0, that the k is good if it is negligible or if

t⇠knu converges in R and t`knu converges in p0,8q. Say that the k is bad if it is not
good. For bad k: say k is long if `kn Ñ 8 as n Ñ 8, short if `kn Ñ 0 as n Ñ 8;
otherwise it must be far, i.e. |⇠kn| Ñ 8.

We will prove that every k is good. Assuming this for now, we complete the
proof of the proposition. Since every k is good, for each fixed K and su�ciently
large n (depending on K),

|fn|�pt|t|°nuYt|fn|°nuq § |f°K
n |.

Therefore

lim inf
nÑ8

}f°K
n }p ° ",

for every K. Since the supports of the f§K
n and f°K

n intersect on a set of measure
zero,

lim sup
nÑ8

}f§K
n }p “

`
}fn}

p
p ´ }f°K

n }
p
pq

1
p † p1 ´ "pq

1
p .
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We conclude that }Ef§K
n }q † Bpp1 ´ "pq

1
p . On the other hand, by Lemma 4.2,

}Ef°K
n }q § ⇢K . Therefore }Ef§K

n }q • Bp´⇢K . For K su�ciently large, depending
on ",

Bpp1 ´ "pq
1
p ° Bp ´ ⇢K ,

leading to a contradiction.
It remains to prove that every k is good. Define

g§K
n :“

ÿ

k§K, good

fk
n , b§K

n :“
ÿ

k§K, bad

fk
n .

Then f§K
n “ g§K

n ` b§K
n , and the supports of g§K

n and b§K
n have measure zero

intersection and thus obey the Lp orthogonality condition

}f§K
n }

p
p “ }g§K

n }
p
p ` }b§K

n }
p
p.

Our next lemma shows that we have Lq-orthogonality in limit.

Lemma 4.3. For every 1 § K † 8,

lim
nÑ8

}Ef§K
n }

q
q ´

`
}Eg§K

n }
q
q ` }Eb§K

n }
q
q

˘
“ 0.

Assuming Lemma 4.3, we complete the proof of the proposition by showing that
every k is good. Suppose, by way of contradiction, that k0 is bad. By definition,
lim supnÑ8

}fk0
n }p ° ", for some " ° 0. Passing to a subsequence, we may assume

that }fk0
n }p ° " for all n. Therefore }b§K

n }p ° " for all K • k0 and all n. Taking
a smaller " if needed, }g§K

n }p • }fk0
n }p ° ", for all K • k0 and all n. We may

further assume that "p †
1
2 . We can use these Lp estimates to bound the extension

for su�ciently large K:

lim sup
nÑ8

}Ef§K
n }

q
q § lim sup

nÑ8

}Eg§K
n }

q
q ` }Eb§K

n }
q
q

§ lim sup
nÑ8

Bq
p

`
}g§K

n }
q
p ` }b§K

n }
q
p

˘
§

“
p1 ´ "pq

q
p ` "q

‰
Bq

p.

For the last inequality, we have used that for g, b • 0, gp ` bp § 1, b, g ° ", and
"p †

1
2 ,

gq ` bq § p1 ´ "pq
q
p ` "q,

which in turn follows from basic calculus.
Crucially,

“
p1 ´ "pq

q
p ` "q

‰
“: c" † 1. On the other hand, by our hypothesis on

tfnu and Lemma 4.2,

Bp “ lim
nÑ8

}Efn}q “ lim
KÑ8

lim
nÑ8

}Ef§K
n }q.

⇤
It remains to prove Lemma 4.3.

Proof of Lemma 4.3. By elementary calculus, for all q ° 1 and a, b • 0,

|pa ` bqq ´ aq ´ bq| Àq

`
abq´1

` baq´1
˘
.

Since q °
d2

`d`2
2 ° 2, we may apply this inequality to our good and bad part of

the function to see that

}Ef§K
n }

q
q ´ }Eg§K

n }
q
q ´ }Eb§K

n }
q
q

Àq,K

ÿ

k§K good

ÿ

k1§K bad

ª
|Efk

n ||Efk1
n |

q´1
` |Efk

n |
q´1

|Efk1
n |.
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Moreover, by Hölder’s inequality, and boundedness of the Ef j
n,ª

|Efk
n ||Efk1

n |
q´1

` |Efk
n |

q´1
|Efk1

n | §
`
}Efk

n}
q´2
q ` }Efk1

n }
q´2
q

˘
}Efk

nEfk1
n } q

2

À }Efk
nEfk1

n } q
2
,

so it su�ces to prove that }Efk
nEfk1

n } q
2

Ñ 0 when k is good and k1 is bad.

To this end, choose q` † q † q´ with q˘ “
dpd`1q

2 p1

˘
and 2

q “
1
q`

`
1
q´

. Therefore

p´ † p † p`. Because k is good, fk
n remains bounded in Lp˘ (in fact, in every

Lebesgue space) as n Ñ 8. When the k1 is short, }fk1
n }p´ Ñ 0. Therefore

}Efk
nEfk1

n } q
2

§ }Efk
n}q` }Efk1

n }q´ À }fk1
n }p´ Ñ 0.

Similarly when the k1 is long, }fk1
n }p` Ñ 0 and thus

}Efk
nEfk1

n } q
2

À }fk1
n }p` Ñ 0.

Finally, suppose the k1 is far (and neither short nor long). We set L :“ lim lkn `

lim lk
1

n , and assume that n is su�ciently large so that lkn ` lk
1

n § 2L and |⇠kn ´ ⇠k
1

n | •

100L. By the arithmetic-geometric mean inequality, Lemma 3.3, and Hölder’s
inequality with s :“ p

2q
d2 q

1
† p,

}Efk
nEfk1

n } q
2

§ }pEfk
nq

d´1Efk1
n } q

d
` }Efk

npEfk1
n q

d´1
} q

d

À |⇠kn ´ ⇠k
1

n |
´dp

1
s ´

1
p q

p}fk
n}

d´1
s }fk1

n }s ` }fk
n}s}fk1

n }
d´1
s q

À
`

L
|⇠kn´⇠k1

n |
q
dp

1
s ´

1
p q

Ñ 0.

⇤

5. A profile decomposition for frequency localized sequences

Proposition 5.1. Let q “
dpd`1q

2 p1
° p ° 1. Let tfnu be a sequence of measurable

functions with supp fn Ñ r´R,Rs and |fn| § R for all n. Then, after passing to a

subsequence, there exist txj
nun,j•1 Ñ Rd

and t�ju Ñ Lp
such that the following hold

with

wJ
n :“ fn ´

Jÿ

j“1

e´ixj
n¨��j .

(i) limnÑ8 |xj
n ´ xj1

n | “ 8, for all j ‰ j1
;

(ii) eix
j
n¨�fn á �j, weakly in Lp

, for all j;

(iii) limnÑ8 }Efn}
q
q ´

∞J
j“1 }E�j}

q
q ´ }EwJ

n}
q
q “ 0 for all J ;

(iv) limJÑ8 limnÑ8 }EwJ
n}q “ 0;

(v)
`∞

8

j“1 }�j}
p̃
p

˘ 1
p̃

§ lim infnÑ8 }fn}p, where p̃ :“ maxtp, p1
u.

Remark 5.2. Here we allow for the possibility that the �j with j su�ciently large
might all be identically zero.

The essential step is finding a nonzero weak limit.

Lemma 5.3. Let q “
dpd`1q

2 p1
° p ° 1 with p † d ` 2. There exists C ° 0 such

that for any sequence tfnu Ñ Lp
with |fn| § R�r´R,Rs,

}fn}p § A, and }Efn}q • ",
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there exists a sequence txnu Ñ Rd
such that, after passing to a subsequence, eixn¨�fn á

�, weakly in Lp
, for some � P Lp

with }�}p Á "p "
A q

C
. Here the implicit constant is

independent of R.

Proof. By (3.10), for each n, there exists a dyadic interval In such that

" §
`
|In|

´
1
p1

}EpfnqIn}8

˘✓
A1´✓. (5.1)

By Hölder’s inequality,

|In|
´

1
p1

}EpfnqIn}8 § CR mint|In|
´

1
p1 , |In X r´R,Rs|

1
p u.

Hence, in the terminology of the previous section, tInu cannot be long, short,
nor far, and so, after passing to a subsequence, we may assume that In “ I is
independent of n.

By (5.1), for each n, there exists xn P Rd such that

"
`
"
A q

1´✓
✓ À |I|

´
1
p1

|EpfnqIpxnq| “ |I|
´

1
p1

|Epeixn¨�fnqIp0q|.

By boundedness of the sequence tfnu, after passing to a subsequence, eixn�fn á

�, weakly in Lp, for some � P Lp. Along this same subsequence, we then have
eixn�pfnqI á �I . By compactness of their support,

E�Ip0q “ lim
nÑ8

Epeixn¨�fnqIp0q.

Therefore by Hölder’s inequality,

"
`
"
A q

1´✓
✓ À |I|

´
1
p1

|E�Ip0q| § |I|
´

1
p1

}�I}1 § }�I}p.

⇤

The remainder of the section is devoted to the proof of Proposition 5.1. We
prove the proposition first in the case p “ 2, and then in the general case.

Proof of Proposition 5.1 when p “ 2. In the case p “ 2, q “ q2 :“ dpd` 1q, we may
replace (v) with the stronger condition that for all J ,

(v’) lim
nÑ8

}fn}
2
2 ´

Jÿ

j“1

}�j}
2
2 ´ }wJ

n}
2
2 “ 0.

Suppose that we are given 1 § J1 † 8 and sequences txj
nunPN,j†J1 Ñ Rd,

t�juj†J1 Ñ L2 such that (i - iii) and (v’) hold for all J † J1. If lim }EwJ1´1
n }q2 “

0, we are done after setting �j ” 0 for j • J1. Otherwise, after passing to a
subsequence, for su�ciently large n, }EwJ1´1

n }q2 ° " ° 0. By (ii), |wJ1´1
n | §

J1R�r´R,Rs, and by (v’),

lim sup }wJ1´1
n }2 § lim sup }fn}2 “: A.

Therefore, by Lemma 5.3, there exists txJ1
n u Ñ Rd and a subsequence along which

eix
J1
n ¨�wJ1´1

n á �J1 weakly inL2,

with }�J1}2 Á "C . This immediately implies that

lim
nÑ8

}eix
J1
n ¨�wJ1´1

n }
2
2 ´ }�J1}

2
2 ´ }eix

J1
n ¨�wJ1´1

n ´ �J1}
2
2 “ 0,
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so (v’) holds with J “ J1. By the compact support condition, Epeix
J1
n ¨�wJ1´1

n q Ñ

E�J1 , a.e., so by the Brezis–Lieb lemma,

lim
nÑ8

}Epeix
J1
n ¨�wJ1´1

n q}
q
q ´ }E�J1}

q
q ´ }Epeix

J1
n ¨�wJ1´1

n ´ �J1q}
q
q “ 0.

Therefore (iii) holds with J “ J1.
Suppose that |xJ1

n ´ xj0
n | �Ñ 8, for some j0 † J1. Passing to a subsequence, we

may assume that xJ1
n ´ xj0

n Ñ x. Then multiplication by eipx
J1
n ´xj0

n q¨� converges
to multiplication by eix¨� in the strong operator topology. Moreover, by (i), multi-

plication by eipx
J1
n ´xj

nq¨� , j ‰ j0, converges to zero in the weak operator topology.
Therefore

wk-lim eix
J1
n ¨�wJ1´1

n “ wk-lim eipx
J1
n ´xj0

n q¨�
peix

j0
n ¨�fn ´ �j0q `

ÿ

j‰j0

eipx
J1
n ´xj

nq¨��j “ 0.

On the other hand, the left hand side of the preceding equals �J1 , which is nonzero,
a contradiction. Tracing back, (i) holds for indices bounded by J1. The proof of
(ii) is similar: Along our subsequence,

wk-lim eix
J1
n ¨�fn “ wk-lim

J1´1ÿ

j“1

eipx
J1
n ´xj

nq¨��j ` eix
J1
n ¨�wJ1´1

n “

J1´1ÿ

j“1

0 ` �J1 .

It remains to verify (iv). Let "J :“ lim supnÑ8
}EwJ

n}q. If "J ° " ° 0 infinitely
often, then, as we have seen, }�J}2 Á "C infinitely often, which is impossible by
(v’). ⇤

Having proved Proposition 5.1 in the case p “ p2 :“ 2, q “ q2 :“ dpd ` 1q, we
turn to the general case.

Proof of Proposition 5.1 for d2 ` d ‰ q “
d2

`d
2 p1

° p ° 1. Fix an exponent 8 °

q1 °
d2

`d`2
2 so that q lies strictly between q1 and q2. As tfnu is bounded in L2,

we may apply the L2-based profile decomposition to determine txj
nu, t�ju. That (i)

and (ii) hold are immediate. That (iii) holds follows from the Brezis–Lieb lemma
and the above argument in the case q “ q2. The Brezis–Lieb lemma also implies
that (iii) holds in the case q “ q1, so }EwJ

n}q1 is bounded, uniformly in J (albeit
with a constant that depends on R). Choosing ✓ so that 1

q “
✓
q1

`
1´✓
q2

,

lim
JÑ8

lim
nÑ8

}EwJ
n}q ÀR lim

JÑ8

lim
nÑ8

}EwJ
n}

1´✓
q2 “ 0,

so (iv) holds as well.
It remains to prove (v). Let us fix J and let ✏ ° 0. We choose compactly

supported smooth nonnegative functions a, b satisfying sup b “
≥
a “ 1 and }a ˚

pb�jq ´ �j}p † ✏ for all 1 § j § J . We define for each j § J

⇡j
nfptq :“ a ˚s peix

j
n¨�psqbpsqfpsqqptq.

The weak limit condition (ii), compactness of the supports of a and b, and an
application of the Dominated Convergence Theorem imply that

lim
n

}⇡j
nfn ´ a ˚ pb�jq}p “ 0.

Letting ✏ to 0, it su�ces to prove that

lim
n

}Pn}LpÑlp̃pLpq § 1 for all 1 § p § 8 (5.2)
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where p̃ “ maxpp, p1
q and Pn :“ p⇡j

nq
J
j“1. Validity of (5.2) is elementary for

p “ 1,8. By complex interpolation it su�ces to prove (5.2) for p “ 2, which

is equivalent to proving limn }P˚

n }l2pL2qÑL2 § 1. Note that P˚

nF “
∞J

j“1p⇡j
nq

˚Fj

for F “ tFju P l2pL2
q and p⇡j

nq
˚Fjptq “ bptqeix

j
n¨�ptq

pa ˚ Fjqptq. Thus it su�ces to
show that

}

Jÿ

j“1

p⇡j
nq

˚Fj}
2
L2 § p1 ` oJnp1qq

Jÿ

j“1

}Fj}
2
L2

(where, of course, oJnp1q is independent of F and limnÑ8 oJnp1q “ 0). Now

}

Jÿ

j“1

p⇡j
nq

˚Fj}
2
L2 §

Jÿ

j“1

}Fj}
2
L2 ` 2

ÿ

j‰j1
|x⇡j1

n p⇡j
nq

˚Fj , Fj1 y|,

and thus it is enough to prove that ⇡j1
n p⇡j

nq
˚

Ñ 0 in the operator norm topology.
We have ⇡j1

n p⇡j
nq

˚gpuq “
≥
Kjj1

n pu, sqgpsqds where

Kjj1
n pu, sq “

ª
apu ´ tqeipx

j
n´xj1

n q¨�ptq
rbptqs

2apt ´ sqdt.

Since both a and b have compact support and suppu K
jj1
n pu, sq Ä supp a ` supp b,

by stationary phase,

lim
n

sup
s

}Kjj1
n pu, sq}L1

u
“ 0.

By identical reasoning

lim
n

sup
u

}Kjj1
n pu, sq}L1

s
“ 0.

Therefore ⇡j1
n p⇡j

nq
˚ : g fiÑ

≥
Kjj1

n pu, sqgpsqds goes to 0 in the operator norm topology.
This completes the proof. ⇤

6. Lp
convergence

We are finally ready to prove Theorem 1.1. Let tfnu be an extremizing se-
quence and " ° 0. By Proposition 4.1 after applying an appropriate sequence of
symmetries, there exists R “ R" such that for all su�ciently large n

}EfR
n }q • Bp ´ ".

Restricting R to lie in the positive integers, we may apply Proposition 5.1 along a
subsequence (which is independent of R) to decompose fR

n “
∞J

j“1 e
ixR

n ¨�ptq�jR `

rJRn , J † 8. Furthermore since tfR
n u is nearly extremizing, for each R, there exists

some large profile �jR. Indeed, for all large n

Bq
p ´ 2" § }EfR

n }
q
q ´ " §

8ÿ

j“1

}E�jR}
q
q § Bp̃

p

` 8ÿ

j“1

}�jR}
p̃
p

˘
max

j
}E�jR}

q´p̃
q

§ Bp̃
p max

j
}E�jR}

q´p̃
q § Bq

p max
j

}�jR}
q´p̃
p . (6.1)

Denoting this large �jR by �R, by Proposition 5.1 there exists txR
n u Ñ Rd such

that teix
R
n ¨�fR

n u converges weakly in Lp to some function �R. Since limR }�R}p “

1 “ limn }fn}p, by strict convexity (see Theorem 2.5 and the proof of Theorem 2.11
in [13]) we have

lim
R

lim
n

}fR
n ´ e´ixR

n ¨��R}p “ 0.
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By the triangle inequality and Proposition 4.1

lim
R

lim
n

}fn ´ e´ixR
n ¨��R}p “ 0. (6.2)

Therefore for all su�ciently large R1, R2

lim sup
n

}e´ixR1
n ¨��R1 ´ e´ixR2

n ¨��R2}p “ ominpR1,R2qp1q.

If t|xR1
n ´ xR2

n |u was unbounded for some R1, R2, then after passing through a

subsequence, multiplication by eipx
R2
n ´xR1

n q¨� tends to zero in the weak operator
topology. Thus, by Hölder’s inequality,

1 À }�R2}p “ lim
n

|
≥
peipxR2

n ´x
R1
n q¨��R1´�R2 q�R2 |�R2 |

p´2dt|

}�R2 }
p´1
p

À lim sup
n

}e´ixR1
n ¨��R1 ´ e´ixR2

n ¨��R2}p,

which contradicts (6.2). Thus, for all su�ciently large R1, R2, t|xR1
n ´xR2

n |u remains
bounded as n goes to infinity. Applying an appropriate sequence of modulations
to the tfnu, we may assume that txR

n u is bounded for all R. After passing to a
subsequence, each txR

n u converges to some xR
P R for every su�ciently large integer

R. Replacing �R with e´ixR
¨��R, we may assume that xR

“ 0 for all R. By (6.2),
limR lim supn }fn ´ �R}p “ 0, so t�Ru and tfnu both converge in Lp to some �,
which must be an extremizer. This completes the proof of Theorem 1.1.
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