EXISTENCE OF EXTREMIZERS FOR FOURIER RESTRICTION
TO THE MOMENT CURVE

CHANDAN BISWAS AND BETSY STOVALL

ABSTRACT. We show that the restriction and extension operators associated
to the moment curve possess extremizers and that LP-normalized extremizing
sequences of these operators are precompact modulo symmetries.

1. INTRODUCTION

This article establishes the existence of extremizers and compactness, modulo
symmetries, for the restriction/extension inequalities associated to the moment
curve. More precisely, we consider the operator

Ef(x) ;:j YOy dt,  y(t) = (L, 12, ..., 1),

R

which was shown by Drury [8] to extend as a bounded linear operator from LP(R)
to L9(R?) if and only if ¢ > % and ¢ = Wp’ for d = 2. We prove
that for all (p,¢) in this range, there exist nonzero functions f such that |Ef], =
|€lLr—ralflp. Moreover, whenever (p,q) # (1,00), LP-normalized extremizing
sequences (i.e. those that saturate the operator norm) possess subsequences that
converge, modulo the application of symmetries of the operator, to an extremizing
function.

Our argument uses a modified version of the concentration-compactness frame-
work of Lions [15] and the related Method of Missing Mass of Lieb [14]. Such
methods have been well-studied for the L2-based restriction/extension problems
associated to certain hypersurfaces (see [3], [4], [5], [7], [9], [11]), and the resulting
theory has been an important step towards breakthroughs in the study of long-time
behavior of various dispersive equations, including NLS, NLW, and other equations
([2], see also [10], [12] and the references therein).

In this article, we make two advances relative to these previous works. First,
there are not, to our knowledge, any previous results in the literature regard-
ing concentration-compactness phenomena for Fourier restriction to higher co-
dimensional manifolds. Though Fourier restriction to lower-dimensional manifolds
has been less intensively studied than restriction to hypersurfaces, one is naturally
led to the former from the latter by examining the sublevel sets of the Gaussian cur-
vature of certain higher-order surfaces. (Some preliminary work on this connection
is in [16].) Naturally, we begin this study by examining the model “curved curve,”
which is referred to as the moment curve in the literature. A key step is a multilin-
ear generalization of the bilinear-to-linear argument of Tao—Vargas—Vega [19] (and
the later refinement thereof by Bégout—Vargas [1]), for which a new Whitney-like
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decomposition is needed. Second, we continue the development from [18] of effective
concentration compactness techniques for LP — L4 inequalities for general expo-
nent pairs (p, q). While [18] laid out a strategy that makes accessible exponent pairs
with p # 2, a new issue arises in the higher co-dimensional setting. Namely, the high
degree of the determinant in the scaling relation v(\t) = diag(}, ..., \9)v(t) puts
certain exponent pairs (p, q) outside of the range accessible by direct adaptations
of the Tao—Vargas—Vega approach. We bridge the gap between this multilinear-
accessible range (1 < p < d + 2) and the Drury range (1 < p < %) by
introducing a sort of interpolation-like argument, which seems likely to be of use in
other settings.

We now turn to the precise formulation of our results, for which we introduce
some notation and terminology. By a symmetry of the operator £ : LP — L9,
we mean an element S of the isometry group of LP(R) for which there exists a
corresponding element T of the isometry group of L?(R) obeying €0 S = T o €.
The key symmetries for our analysis are the dilations, the frequency translations,
and the modulations. More precisely, the dilations are given by:

_1 _ d(d+1)
fo =T A, EfNa) =X 2 Ef(Da(x)), Da(z) = (Az1,...,\2q);
The translations are given by:

f'_)Ttof = f('_t0)7 g(Ttof)(‘r) :]Lto(gf)(w)’ (11)

where Ly, is the boost Ly, g(z) := eim(to)g(Ang and A;, is the unique element in
GL(d) for which v(t+tg) = v(to) + As,¥(t) (we observe that Ay, is lower triangular,
with ones on the diagonal); The modulations are given by:

(Mo () 1= 70O f(t), E(my, f) = T & f-

Let 1 < p < %, q = Wp’, and set B, := |€|rr—ps. We say that
f € LP is an extremizer of (the LP(R) — L4(RY) inequality for) € if f # 0 and
IEflq = Bplfllp- We say that {f,} < LP is an extremizing sequence for (the

LP — L9 inequality for) & if f,, # 0 for all n and lim,,_, ”Hgf{]‘,‘f = B,. We are most

interested in normalized extremizing sequences, that is, extremizing sequences { f,, }
with | fn]p, = 1, for all n. Our main result is the following.

Theorem 1.1. For d > 2 there exist extremizers of the LP(R) — L4(R?) inequality
for & for every (p,q) satisfying 1 < p < % and q = @p’, Moreover,
when p > 1, given any extremizing sequence of £, there exists a subsequence that
converges to an extremizer in LP(R), after the application of a suitable sequence of

symmetries.

We note that the existence of extremizers and non-compactness of extremizing
sequences in the case p = 1 is elementary. Theorem 1.1 immediately yields a related
result for the corresponding restriction operator.

Corollary 1.2. The analogous result holds for the restriction operator Ryg(t) :=
G(v(t))); namely, for d = 2 there exist extremizers of the L™ (R?) — L*(R) inequality
for R for every (r,s) satisfying 1 <r <1+ d%ﬂl and r’ = @s. Moreover, when
r > 1, given any extremizing sequence of R, there exists a subsequence that, after
the application of a suitable sequence of symmetries, converges in L"(R) to an

extremizer.
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We give the short proof of the corollary now.

Proof. In the case r = 1, the first conclusion is elementary, and so we assume
that » > 1. Let {g,} be an L"-normalized extremizing sequence of R. Let f, :=

B;(S_1)|Rgn\sf2Rgn. Then limy, || f,]s = 1. On the other hand, by duality,
By = B, lim [Rga | = 1imdgn, ££n) < |gal, 1€ ful < Bo,

so {fn} is an extremizing sequence for £, the norms of whose elements tend to 1.
Applying Theorem 1.1 to {|fn||;' fn}, there exist symmetries {S,} of £ such that
along a subsequence, {S,,f,} converges in L* to some extremizer f for £. Let T},
denote the corresponding L automorphism, that is, T,,0 € = £05,,. Since S, f,, =
B;(S_1)|RTngn|s’2RTngn, replacing {g,} by {Thg.} if necessary, we may assume
that S,, equals the identity for all n and that {f,} converges to f. By Banach-
Alaoglu, {g,,} converges weakly to some g € L" and so ||g, < lim,, |g,|, = 1. On
the other hand

By = lm(ga,£f2) = (9. €) < Bolglr.

so |g|- = 1. By Theorem 2.11 in [13] {g,} converges in L" to g, from which we
additionally conclude that g is an extremizer of R. O

Acknowledgements. While conducting this research, the first named author was
supported by C. V. Raman Postdoctoral fellowship, and the second named author
was partially supported by NSF grant DMS-1653264 and the Wisconsin Alumni
Research Foundation (WARF). The authors are indebted to Benjamin Bruce and
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2. OUTLINE OF PROOF

We follow the general outline laid out in [18], which consists of two key steps:
First, we show that an extremizing sequence possesses good frequency (i.e. along
R) localization, after application of a suitable sequence of symmetries (translations
and dilations). Second, we show that extensions of an extremizing sequence have
good spatial localization (after modulation). This enables us to upgrade weak
convergence to LP convergence using the fact that our sequence is extremizing.
The L? limit is necessarily an extremizer.

For the frequency localization, our first step is to prove that a nonnegligible
contribution to each & f, comes from a single well-localized piece, fnX1Xy, »1<1
stated more precisely as Proposition 3.1. To prove this, we develop a d-linear-to-
linear version of the bilinear-to-linear argument of Tao—Vargas—Vega ([19]), with
improved efficiency in the spirit of Begout—Vargas [1]. Though strong d-linear
adjoint restriction theorems predate (and are integral in the proof of) Drury’s The-
orem, the higher order linearity presents some new geometric challenges (relative to
the bilinear case) as we implement them to detect well-localized pieces of the f,,. In
particular, developing a Whitney decomposition of the off-diagonal in R¢ requires
determining a notion of relatedness for d-tuples of intervals (as opposed to pairs of
balls, which arise in the bilinear setting). Furthermore, for basic arithmetic reasons

relating to the magnitude of the scaling factor % @p’

d+2
d

in the relation ¢ =
(compared with in the case of elliptic hypersurfaces), a straightforward adap-
tation of the methods of Tao—Vargas—Vega cannot yield scale-invariant LP — L4
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inequalities for large values of p (p > d + 2). We circumvent this difficulty by
adapting the proof of the Marcinkiewicz interpolation theorem.

Having identified a single contributor to much of £ f,,, iteration yields a bounded
number of contributors to any specified proportion of £ f,, (Lemma 4.2). However,
localization requires a bit more, namely, that (after applying symmetries) these
pieces must all be at scale and of maximum magnitude about one (Proposition 4.1).
Due to convexity (i.e., ¢ > p), this follows by proving an orthogonality result
(Lemma 4.3), utilizing that “distant” pieces (i.e., those with disparate localizations)
have extensions that interact weakly. We use bilinear estimates based on either
Holder’s inequality or a multilinear inequality of Christ from [6] to establish weak
interactions.

Finally, having established that for any extremizing sequence {f,} (after ap-
plying symmetries), {|f.|} is well-approximated in a uniform way by uniformly
bounded, compactly supported functions, to prove convergence, we need to control
the oscillations of the f,,. To this end, we develop a profile decomposition result
(Proposition 5.1) to write the bounded, compactly supported approximations as
a superposition of modulated profiles (the modulations, but not the profiles, may
depend on n). Curvature and stationary phase enable us to prove an LP almost
orthogonality result for these profiles, and so for {f,} extremizing, there is exactly
one significant profile. Using basic properties of LP spaces, we can then remove
the truncations of the f,, (to bounded, compactly supported functions), without
disturbing our profiles nor modulations too much. We thus obtain LP convergence
of the f, to an extremizer, our desired outcome.

Future directions. We believe that many of our methods have the potential to
be extended to a larger class of curves (and indeed, the authors intend to do so in a
forthcoming article). However, our proof uses the symmetries for the moment curve
in a fundamental way in the passage from the multilinear to the linear inequality
(the Whitney decomposition step, in particular), and a number of changes would be
needed to extend this to more general curves, even when the torsion is comparable
to 1. Therefore such results are outside of the scope of this article. Finally, we note
that the analogous questions for manifolds of intermediate dimension (dimension
and co-dimension both strictly larger than 1) seem to be extremely interesting.

Notation. We write A < B to denote A < CB where C may depend on the
dimension d and the exponent p, and whose value may change from one line to the
next but is independent of A and B. For the rest of the article we assume that
d=3.

3. A REFINED EXTENSION ESTIMATE

The purpose of this section is to prove two refinements (Propositions 3.1 and 3.10)
of the L? — L4 inequalities of Drury, both of which will be used in the proof of
Theorem 1.1. These results show that if f has nonnegligible extension, then a
significant portion of the extension comes from a piece of f with good frequency
localization. Later, we will capture essentially all of the extension of f by iterating
this inequality.
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Proposition 3.1. Let 1 <p < d2+2d+2, and let q :=

0, <1 and c, > 0 such that

d(d+1)
2

p'. There exist 0 < 0 =

1-60
£, < (sup sup supTC””Ifz”p) e rerr. (3.1)

keZ IeDy n=0
Here Dy, denotes the set of all dyadic intervals of length 2%, and

no._

= X oy

Proof of Proposition 3.1. We will prove the proposition in two steps : First, in the
range p < d + 2, we will prove the inequality (3.1) by using a multilinear extension
estimate and a variant of an argument of Bégout—Vargas [1]; then, we will adapt real
interpolation methods to deduce this bound for larger values of p. The significance
of p < d+ 2 is that it ensures that ()" > &, which allows for a d-linear-to-linear
variant of the bilinear-to-linear argument of Tao—Vargas—Vega [19]. We start with
the following lemma.

Lemma 3.2. Let I1,...,1; be intervals of length one, and assume that there exists
some k, 1 < k < d, such that for all j < k and j' > k, dist(I;,I;) 2 1. Then for
f; supported on I; and q > %,
d d
ITTEANs < Tl s:= (38 (3.2)
j=1 j=1

Proof. Changing variables,
d
[[ &) = [ Py,
j=1
where £ = Z;l:1 (), t1 < - < ta, F(§) = Yges, H?:1 fo(y @) [ licjcalti —

tj|’1, and Sy denotes the symmetric group on d letters.
We set a := (£)". Since a < 2 we may apply Hausdorff-Young to see that

d d
(ITTesls)" < IFls = f TT1A) T e t-eVar
=1 el

i<j<d
k
< ([T TT ety - 3)
j=1 i<j<k
d
X(J [T 1m0 1 |ti—tj|_(a_1)dtk+1“'dtd)~
J=k+1 k+l<i<j<d

Our conditions on ¢ imply that a — 1 = % < d%. Thus by Proposition 2.2 of

T
[6], the right hand side of (3.3) is bounded by

k d
TT1508D CTT 150 ) b= (Gere=s) -
j=1 j=k+1

After a bit of arithmetic, we see that b,a < (%)’, whenever 1 < n < d, so (3.2)
follows from Holder’s inequality, since each f; is supported on a set of measure at
most one. (]
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By scaling, Lemma 3.2 immediately implies the following corollary.

Lemma 3.3. Let ¢ > % and let I,...,1; be intervals of length r > 0, and
assume that there exists some k, 1 < k < d, such that for j <k < j', dist(I;,I;:) 2
r. Then for functions f; supported on I;, 1 < j <d,

d d
1 d(d+1)
ITTEHs /&= [Tt s 5= (3 (3.4)
j=1 j=1

O
In the spirit of the bilinear-to-linear argument of Tao—Vargas—Vega [19], we turn
to a Whitney decomposition of R? on whose pieces we can apply bound (3.4).
Consider the diagonal A := {(¢,...,¢) : t € R} and the annular tubes T, :=
{¢ 37 < dist(§,A) < 2r}. We cover Typm with axis-parallel dyadic cubes of
side length 2™ K¢ with K, sufficiently large for later purposes. Let Q denote a
maximal nonoverlapping collection of such dyadic cubes, and let Q,, denote the
subcollection consisting of those cubes in Q having sidelength 2". We may assume
that the collection Q is invariant under permutations of the coordinates. Each
Q € Q,, may be written

Q=12 x - xI¢ =2"Qp+k), with Qp:=1[0,1]%+1, (3.5)
where the IJQ are intervals, E, e 74, and

k=(k,....,k), and [e[0,Ng*\([0,M4]* + A),

with My < Ny large dimensional constants depending on K 4. The expression (3.5)

is uniquely determined by @ if we require that some entry of U equals 0.
We note that

d
IEFIE = 1N ga =1 D] nf(fxlg)\lq/w (3.6)
QeQj=1

After a possible (harmless) reordering of indices and pigeonholing, we see that the
hypotheses of Lemma 3.3 apply to each Qj, and thus to each ) € Q. However, to
access the summands on the right hand side of (3.6) for application of Lemma 3.3,
we need a bit more. We turn now to an adaptation of the Whitney decomposition
and almost orthogonality argument of [19].

Define I'(ty,...,tq) = Z;.i:lv(tj). Then for Q € Q, H?zl E(fX;e) has Fourier

support contained in I'(Q)). With @ as in (3.5), with some entry of fequal to 0, we
observe that

I(Q) = Dan (AxT'(Qp) + dvy(k)), (3.7)
where Ay, is from (1.1). This motivates us to define a map

SQ(C) = Dan (A + dy ().

We will use the Sg in a fundamental way in the proof of the decomposition lemma
below.

Lemma 3.4. There exists a collection {1pg}geo of smooth functions with the fol-
lowing properties: o ¢q =1 on [(RNA), the support of each )¢ intersects the
support of a bounded number of other ¢/, each I'(Q) intersects the support of a
bounded number of supports of Vg, and {HJQHD} is a bounded set.
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Proof of Lemma 3.4. For each I'€ Z% ~ [0, Ng]4\([0, Mg]? + A), we let V; denote a
neighborhood of I'(Qy), sufﬁ(nently small for later purposes. For @) takmg the form

(3.5), with some entry of I equal to 0, we define Vg := Sg(V}), a neighborhood of

I'(Q). We claim that the Vi are finitely overlapping. More precisely, we will show

that if @) takes the form (3.5) and Q' = 2"/(Ql~, + k'), with ¥, I’ satisfying conditions

analogous with k, [, then Vg n Vi # &5 implies [n —n/| <1 and |k — 27 ~"k/| < 1.
To this end, we define

teR

d
_ Z |§Z|%7 5(&) := mlnp( (& —dy(t))),

and let ¢(¢) denote the minimum of all ¢t with §(§) = p(A_(§ — dv(t))). (By
basic calculus, we can see that these minima are attained.) We observe that if
£ e T(Qyp), then [t(£)] < 1 and 6(§) ~ 1. This is because I'(Q;) is compact and does
not intersect d - v, provided Ky is sufficiently large. Therefore, we may choose V;-
sufficiently small so that [¢(£)] < 1 and 6(§) ~ 1forevery £ € Vi If§ € Vg = Sq(V}),
then (after some basic linear algebra) { = Sg¢ = AanpDan( + dy(2"k), for some

( eV s0
plE) = p(DanC) = 2°p(¢) ~ 2", and  1(€) = H(DanC) + 2"k = 2°(t(C) + k),

and the latter implies that [27"¢(¢) — k| < 1. If, in addition, £ € Vi, the same
computations and an application of the triangle inequality imply our claim that
27" =" ~ 1 and 2"k — k| < 1.

We now determine our . For [ € Z% ~ [0, Ng]*\([0, My]? + A), let ¢y denote
a smooth, nonnegative function, identically 1 on @ and identically 0 off of V;. For
Q = So(Vy), we set ¢g = ¢ro (Sq)~'. Then 2. ?q ~ 1, and the sum has a
bounded number of nonzero entries at each point. We define

doi=¢a( D, o)
Q'VonVyr#J

The support and partition of unity conditions from the lemma are immediate.
For the L' bound on the JQ, we note that from the computations above, the set
{SélSQI : Vo n Vo # I} is precompact in the set of invertible affine transforma-
tions, whence the set {¢g OSé;, 1 VonVo # &} is precompact in the Schwartz class.
Therefore {(1)q o Sg)} is precompact in S and consequently bounded in L. O

Using Lemma 3.3 and almost orthogonality, we will prove the following.

Lemma 3.5. Ifq> & THAE2 then

n d(d 1) %
lefld < (3 DT 2mG =T ) T

n IeD,

where s := ((21—3)’, t:= (%), Dy is the collection of all dyadic intervals of length 2",
and f[ = fX],
Proof. We first state the almost orthogonality result that we need, a slight mod-

ification of [19, Lemma 6.1] with the same proof. By interpolating the cases
p = 1,2, 00, where the result is elementary (triangle inequality and Hausdorff-Young

for p = 1,00, Plancherel for p = 2), the operator T({gQ}Qeg) = ZQngQ #* JQ
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maps 7 (L?) boundedly into LP, 1 < p < o0, where i := min{p,p'}. Noting that
q/d (g/d) =t, we have by (3.6), 21/’@ = 1, and the finite overlap condition

€A =1, wQ*Hsfx,Q/ la/a

Q Q:VonVy #J j=1
> Hf Pl s (% Hl_[ffz %)
Q Q:VonVgy#dj=1 n QeQ, j=1

Applying Lemma 3.3, we obtain

”ngd < (Z Z 2ntd( d(d+ )y H ||f1 ” ? (3.8)

n QEQ,

-

The lemma follows because if Q € Q,,, then | J I]Q is covered by a bounded number
of intervals in D,,, and each dyadic interval arises in only a bounded number of
such coverings. O

Definition 3.6. We define a family of Banach spaces X?9"* with norms

”f“Xz»qm,s = (Z( 2 ([ )g);

n IeD,
Then Lemma 3.5 states that
1€ lg < 1fxp.arars,
P () t= () s = ()"

Lemma 3.7. Assume that1l <s<p<r <q<o. Then LP < XP?™5, Moreover,
there exist co > 0, 0 > 0 such that if f € LP with | f|, =1, then

| flxpame < supsup 2= *| f7[L7° £
k=0 I

d2+d+2

for ¢ >

Here the supremum is taken over all dyadic intervals I and f¥ := fX;X 1.
P Y I7 3= IXIX o By

We note that this immediately implies Proposition 3.1 in the range p < d(%)’,
i.e. when p < d + 2.

Proof of Lemma 3.7. We will prove the superficially stronger estimate wherein we
denote

f9= XX 1, F= x

{IfI<ll P} {2’“*1|I\7%<|f|<2k\1|7%}'
Thus f7:= fX1 = Dl=0 fF. By Holder’s inequality,
Iflxrane = (Y 2G93 #F12) 7))
n IeD, k=0

< sup sup sup 2~ Cok(2n l_7)Hfl Is )
n IeD, k=0

% (Z( Z 2nr(7—7)0(2 2c0k:s||ka59) )?)%
n IeD, k=0

By Hélder’s inequality, 2"~ )| f¥[, < | f¥[,, so it remains to bound the second
term in the product on the right hand side.
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We begin with the £ = 0 term. Since r > p, we may choose 6 < 1 sufficiently
close to 1 so that 70 > p > s. Then using Hélder’s inequality repeatedly and finally
summing a geometric series,

DD 2 G 9r) T )E <

Q=

< (U X 2R )

n IeD, n IeD,
ZQnTO %7% ‘fX n |r0)%
{Ifl<2” w30
J|f‘r0 2717'0(%7#))%:
2n<|f|7P

Now we turn to the k > 1 terms. Let ¢g < ¢1 < ¢a < (p — s)% Then several
applications of Hélder’s inequality and the triangle inequality give

Z Z gnr(2-1)0 (ZQCOksHﬁHZe)%)%)%

n IeD, k=1
a 1
< (Z( Z 2717‘0(777) Z QClkT”ffH:e)T)q
n IeD, k=1
2chq 2nq0(77— ”fk ‘r@ % %
a 1
< (Z 2chq(Z 2n7‘0(77— Z Hf[ ‘r& g q
k=1 n 1eD,,
1
< (22t XU T)
k=1 IeD,
ge2ka (Y grs(— 1) J 7195
1;1 Z {If]~2" 7 2k} )7)
a6 1
(Z 2c2kq (27k(pfs)‘|f“£) L )q ~
k=1

]

In the case of larger p (ie., d +2 < p < £44+2) we will (roughly speaking)
interpolate the bound in Pr0p081t10n 3.1, now established for sufficiently small p,

with Drury’s estimate |€f|l; < | f|p. The details of this deduction are given in the
next two lemmas.

Lemma 3.8. Let 1 < p < d2+d+2 and q dd+l)y Let f € LP and write
f=2,2"fn, where f, :=2" ”fXEﬂ, and B, = {2" < |f| < 2"}, Then

[€f]lq < sup \Ic‘??”anZHfHé’”,

for some 0 < v < 1, depending only on p.

Proof. We will prove the lemma by slightly adapting the proof of the Marcinkiewicz
interpolation theorem from [17]. Write
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d®+d+2.

for some 1 <py <p<p; < B ,setqi::@p;,izo,l. Set
e min /Pi— Y4

=011+ 1/p; —1/q;
Note that 0 < v < 1.

Let g € L? and decompose g analogously to f: g = >, 2"g,, where g, =
279X p,, F, = {2" < |g| < 2"}, We may assume that |f], = gl = 1 and
thus Y, 2"P|E,| ~ Y, 277 |F,| ~ 1.

By Hoélder’s inequality, Drury’s theorem, and the definition of the f,, g,

EL,9) s Y2 Efn 2" gm)

n,m

< Y12 E Sl 12" gl min [2"E 1,

n,m

< sup [2"Efully D] nin 12 Fullpr 127 gl g
n n,m

o 12" gmll g

1
P Fm

i

1
§ sup ||2nganZ Z (2n+m 711315% ‘En q’ )1—y.
" =Y

n,m

It remains to bound the sum on the right side of this inequality.
1
Were it the case that 2”|En\% =2"F,|7 =1,
1 1 1 1
| En| 70 |Fin] %0 < | En| 71 [Fn|
would hold if and only if nA < —mB, where

A=p(t - 1) B=g(L- 1)

p1 po
In any case,
1
ST min |B |7 [ )1
wom 1=0,1
1 1
< X @ETIBIEL) T ) @R ) (39)
nA+mB<0 nA+mB>0
We begin with the first summand on the right of (3.9). Simple arithmetic,

followed by Holder’s inequality (since 1;—0" + 1(;” > 1) gives
9

1
N @B [F| )Y

nA+mB<0
— , 1
_ Z 29(nA+mB)(1—u)(2np|En|)lpT(2mq |F|)
nA+mB<0
—V ’ 1_7”
< Z 29k(1—u) Z(2np|En|)lpT Z (2mq |Fm‘) af
k<0 n [nA4+mB|=k
.y / iy
= RO e Y @B T
k<0 n L =
1y / v
< Z 29k(1—u)(2 2np|EnD 70 (Z Z 9mq ‘Fm|) af < 1.
k<0 n n %<m<w
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The proof of Lemma 3.8 is complete modulo the bound for the second term on
the right of (3.9), which can be proved in an analogous fashion. ([

Lemma 3.9. Proposition 3.1 holds for functions |f| ~ AXg, for A > 0 and E a
measurable subset of R, with bounds independent of A\, E.

Proof. We may assume that A = 1. Choose pg,p1,90,q1,0 as in the proof of
Lemma 3.8, with the additional assumption that py < d+2. By Holder’s inequality,
then the remark following Lemma 3.7 and Drury’s theorem,

IEF1q < IEFISCIELG, < (Sup sup sup 20" | (X)) IXelpy =7 IX5]5,
7 IeDy, n>0

where 0 < 8 < 1—6 arises by applying Proposition 3.1 with exponents py, go (where
it has already been established).

The proof is now just a matter of unwinding the definition of (Xg)} and per-
forming some arithmetic. Observe that

., |E~ )%, if1 < 27|E|5|I| %
I(XE)7 5o = :
0, otherwise,

and analogously with p in place of pg. Thus we may rewrite
Spo 1
sup sup sup 2~?"|(Xg)7|p, = sup sup min{l, (l%) ?o HE ~ I|?o
keZ TeDy, n=0 keZ IeDy,

P
~ (sup sup sup 2~ ™[ (Xg)7|,) 70
keZ IeDy n=0

Finally, we obtain

|€flq < (sup sup sup2=r™[(Xp)}[,)" Xkl ™"

keZ I€Dy, n=0
~ (sup sup sup 2" | F7,)7 | £,
keZ IeDy, n=0
Whereﬁ—— Notethat0<19<(1 9) < 1. O

Proposition 3.1 in the cases p = d + 2 follows by first applying Lemma 3.8, then
applying Lemma 3.9 to the supremum term in the conclusion of Lemma 3.8, and
finally observing that, in the decomposition in Lemma 3.8,

12" fm) 7] < [(H)71,
for all integers m,n and intervals I. O
The following proposition is somewhat easier to use, though it only applies in a

more limited range of exponents. The proof requires only a small modification in
the argument leading to Proposition 3.1.

Proposition 3.10. Let 1 <p <d+2, and let q := d(dﬂ) p'. There exists 0 < 6 =
0, <1 such that for f e L?,
_1 1-6
1€flq = (Slllp\f YIEfrlo) I (3.10)

Here, the supremum is taken over dyadic intervals I, and fr := fX;.
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Proof. Let q1 < q with 6 := %1 sufficiently close to 1 for later purposes. By (3.8),
Holder, Lemma 3.3, arithmetic, and another application of Holder,

d 1
1€fle< Q) > ITTEmN)™

n Q=]]1;€Q, Jj=1

d d )
<Y ITEm " ITT e %)™
j=1

n Q=[11;eQ, j=1

d d L
SN Jem e g )
j=1

n Q=[]1cQ, Jj=1

d 1

<O S @G max €, |4 020G IO T, 110)

j=1,...,d J 1 7oL
n Q=[[1;eQn j=1

1_ 1-6
< (SI}plflp MEfrllon) 1 15piavoao.en -

Here s1 := (zdi;)’,t := (). For p < d+ 2 and 0 sufficiently close to 1, 1 < s; <
p < dtf < o0, so an application of Lemma 3.7 completes the proof. (I

4. FREQUENCY LOCALIZATION

In this section we prove that any near extremizer of £ is uniformly bounded and
is supported on a compact set around the origin possibly after applying symmetry,
if we allow ourselves to lose a small amount of LP-mass. Below is the precise
statement.

d®+d+2 d(d+1) y
2 > P

Proposition 4.1. Let 1 < p < , and let q := For each € > 0,
there exist 6 > 0 and R < o such that for each nonzero function f satisfying

I€fllq = Bp(1 = 9)||flp, there exists a symmetry S such that the following holds.

1S H s (gegsryoqssi=risi,y) < €l

We start with the following lemma.

Lemma 4.2. Let 1 < p < , and q = @p’. There exists a sequence

pr — 0 such that for every f € LP(R), there exists a sequence {Ix} of dyadic
intervals such that if {f>*} is inductively defined by

>0 ,_ k,z >k—1 N >k e >k—1 _ rk
=1 = X{mdkllkmHf“P}XJk, fre=7 f5(41)

d?>4+d+2
2

then for any measurable function h>* with |h>¥| = Xg|f>*|, for some measurable
set F,

[€r7 1y < prll flp-

Proof. Let 0 £ f € LP. Multiplying by a constant if needed, we may assume that
Ifl, = 1. By the Dominated Convergence Theorem, given f>*~! we choose a
dyadic I, to maximize | f*|,. With the sequence {f*} and {f>*} as defined in 4.1,
let K € N and set

Ag = sup [(f7H) .
I dyadic
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By the maximality property of the I, Ax < | f5*7],, for each 0 < j < K. Hence
by the disjointness of the supports of the f*’s,

K
KA% < Y < 1.
j=1

By Proposition 3.1, for any measurable function |h>25| = Xg|f>2X],

]
1ER72K ], < max{2~0K 1} < K™%,
K

3 ||

6
This completes the proof with py := C (%)7?1) with 6, as in Proposition 3.1 and C
a sufficiently large constant. (|

Proof of Proposition 4.1. Since we can always take § < %, it suffices to consider

those f for which | f|, = 1 and |Ef|q; > 3Bp|flp. Let Iry denote the dyadic
intervals from Lemma 4.2 and set

fék = f o f>k, and so fk: _ f>k:71 o f>k~

By Lemma 4.2, | f*7|, 2 1 for some k; < 1. Applying a symmetry if needed, we
may assume that Iy, ; is the unit interval. We will prove (under these assumptions
on f) that the conclusion of the proposition holds with S equal to the identity.

If the conclusion were to fail, there would exist some ¢ > 0 and sequence of
functions {f,} < LP with |[fu], = 1, kn := ky, < 1, |fF|, = 1, Ik, 7, = [0,1],
IE€ frllq = Bp(1 — n~'), and

”fn‘|Lp({‘t\>n}u{|fn|>"}) - e

By pigeonholing and passing to a subsequence, we may assume that k, = kg <1
for all n. Write

I" =1y =68 +00,68],  kmneN.

Passing to a subsequence, we may assume that {¢¥} and {¢*} converge in [—c0, 0]
and [0, o0], respectively, for each k and that {|f¥|,} converges for all k. For each
k, say that the k is negligible if || f¥], — 0, that the k is good if it is negligible or if
{¢k} converges in R and {¢¥} converges in (0, 00). Say that the k is bad if it is not
good. For bad k: say k is long if ¢ — o0 as n — oo, short if £ — 0 as n — oo;
otherwise it must be far, i.e. [£¥| — o0.

We will prove that every k is good. Assuming this for now, we complete the
proof of the proposition. Since every k is good, for each fixed K and sufficiently
large n (depending on K),

| FalX(t1=nyoilful>ny) < |75
Therefore
hm lnf Hf'rTK”P > 67
n—o0

for every K. Since the supports of the f= and f>¥ intersect on a set of measure
zero,

. ES 1
lim sup 1550 = (£l = 175D < (1 =€)
n—
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We conclude that |[EfSK|, < B,(1 — sp)%. On the other hand, by Lemma 4.2,
IEf75|l, < pr. Therefore |EfsK|, = B,—pk. For K sufficiently large, depending
on e,

By(1— 5”)% > B, — pk,
leading to a contradiction.
It remains to prove that every k is good. Define

<K . k <K . k
k<K, good k<K, bad
Then fsK = ¢gSK 4+ bSK | and the supports of g=% and bs¥ have measure zero
intersection and thus obey the LP orthogonality condition
<K <K <K
17715 = gn™ 15 + 1657 15

Our next lemma shows that we have L9-orthogonality in limit.

Lemma 4.3. For every 1 < K < 0,
Tim 553~ (1605512 + 1€55512) = 0.

Assuming Lemma 4.3, we complete the proof of the proposition by showing that
every k is good. Suppose, by way of contradiction, that k¢ is bad. By definition,
limsup,,_,., |f¥|, > ¢, for some ¢ > 0. Passing to a subsequence, we may assume
that | fo|, > e for all n. Therefore |b5X |, > ¢ for all K > ko and all n. Taking
a smaller ¢ if needed, |gS%|, = || fko|, > ¢, for all K > kg and all n. We may
further assume that e? < % We can use these LP estimates to bound the extension
for sufficiently large K:

limsup € {552 < limsup |Eg5 ™2+ €057
n—o0 n—o0

< limsup BY (|52 + [b55)2) < [(1 —€P)7 + 9] BY.
n—ao0
For the last inequality, we have used that for g,b > 0, g? + P < 1, b,g > ¢, and
el < 1,
g7+ b9 < (1—P) + &,
which in turn follows from basic calculus.

Crucially, [(1 — 6”)% + 5‘1] =: ¢e < 1. On the other hand, by our hypothesis on
{fn} and Lemma 4.2,

. . . <K
By = lim [[Efnfg = lim lim €55,

It remains to prove Lemma 4.3.
Proof of Lemma 4.3. By elementary calculus, for all ¢ > 1 and a,b > 0,
[(a+b)? —a? —bl| <4 (ab?™" + ba?™1).
Since ¢ > > 2, we may apply this inequality to our good and bad part of
the function to see that
IELERNE = I€g3 12 — IR

s NN [lesnest e v essiess )

k<K good k'’< K bad

d?>4+d+2
2
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Moreover, by Hélder’s inequality, and boundedness of the & f7,
f|5f:f||6f,’§’|q*1 +HIEFHTTHEE | < (IEFEIT2 + ELE 197D EFEEFE |4
<|EfFEfE s,

so it suffices to prove that |€fFEfF la — 0 when k is good and &’ is bad.
To this end, choose ¢4+ < ¢ < g— with ¢4 = d(dgl)p’i and % = qi—l—q%. Therefore

p_ < p < py. Because k is good, f¥ remains bounded in LP* (in fact, in every
Lebesgue space) as n — o0. When the & is short, |f*|,_ — 0. Therefore

Hgfvlfgfn H% < Hgfijqu Hgfn HCI— H HP—
Similarly when the & is long, | f¥'|,, — 0 and thus

IESRESN g < 1IN Ips =0

Finally, suppose the k' is far (and neither short nor long). We set L := lim ¥ +
lim /¥, and assume that n is sufficiently large so that I¥ + 1% < 2L and |¢F —&¥'| >
100L. By the arithmetic-geometric mean inequality, Lemma 3.3, and Hdlder’s
inequality with s := (2—3)’ <p,

IEFEELE s < WELEYITELK g + [ELEEFE Y4

Sl (7o Tt ol IR A W el )
)G=5) 0.

S (e

5. A PROFILE DECOMPOSITION FOR FREQUENCY LOCALIZED SEQUENCES

Proposition 5.1. Let g = (dgl)p >p>1. Let {f,} be a sequence of measurable

functions with supp f, € [—R, R] and |fn| < R for all n. Then, after passing to a
subsequence, there exist {xJ }, j=1 € R? and {¢/} S LP such that the following hold

with
J

wyf = fn— Z e*”i'wqﬁj.
j=1
(i) limy, o @) — 23| = 0, for all j # j;
(ii) e i@y, nY f — @J, weakly in LP, for all j;
(i) limy o0 |€£a]7 — 2, Hé’wuq — |Ew] |2 = 0 for all J;
) 1i
)

(iv) limy_ o hmnﬁOO [Ew] |, =

(v (2j=1 [ Hg) < lim mfn_)OO | frlp, where p := max{p, p'}.

Remark 5.2. Here we allow for the possibility that the ¢/ with j sufficiently large
might all be identically zero.

The essential step is finding a nonzero weak limit.
Lemma 5.3. Let q = @p’ >p>1 withp <d+ 2. There exists C > 0 such
that for any sequence {f,} < LP with |f,| < RX[_R )

[fally < As - and [Efalq =€
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there exists a sequence {x,} < R such that, after passing to a subsequence, **»7 f,, —

¢, weakly in LP, for some ¢ € LP with @], 2 5(%)0. Here the implicit constant is

independent of R.

Proof. By (3.10), for each n, there exists a dyadic interval I,, such that

_1 0 1
e < (™7 1E(fa) 1, o) AT °. (5.1)
By Holder’s inequality,

1

_ 1 . 1 1
L7 |E(fu)r, o0 < Crmin{|L,|” ¥, |, ~ [~ R, R]|7}.

Hence, in the terminology of the previous section, {I,,} cannot be long, short,
nor far, and so, after passing to a subsequence, we may assume that I, = [ is
independent of n.

By (5.1), for each n, there exists z,, € R? such that

(%) < I 7IEn)i(@n)| = [T 7€ £2)1(0)]-

By boundedness of the sequence {f,}, after passing to a subsequence, €7 f,, —
¢, weakly in LP, for some ¢ € LP. Along this same subsequence, we then have
enY(fn)1 — ¢r. By compactness of their support,

Eor(0) = lirr;o £ £,)1(0).
n—
Therefore by Holder’s inequality,

1-0 _a _1
e(5)7 STV IEG1 ) < 177 [lprlln < lpallp-
([l

The remainder of the section is devoted to the proof of Proposition 5.1. We
prove the proposition first in the case p = 2, and then in the general case.

Proof of Proposition 5.1 when p = 2. In the case p = 2,q = g2 := d(d + 1), we may
replace (v) with the stronger condition that for all J,

J
() Jim L fal3 = Y5 10703 — syl = .
j=1

Suppose that we are given 1 < J; < o and sequences {x‘%}neN’j<Jl c R,
{¢7}j<s, < L? such that (i - iii) and (v’) hold for all J < Jy. If lim |[Ew; 71, =
0, we are done after setting ¢/ = 0 for 5 > J;. Otherwise, after passing to a
subsequence, for sufficiently large n, |Ew] 7Y, > e > 0. By (ii), w7l <
Jl.RX[_R,R]7 and by (V’)7

J

n

limsup [w)* Y2 < limsup || f,[2 =: A.

Therefore, by Lemma 5.3, there exists {zJ1} € R? and a subsequence along which
et Tl N weakly in L2,
with |¢”t]s = €©. This immediately implies that

Tim [ Vw3 — o7 3 — e Yt = ¢ 3 = 0,
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so (v) holds with J = J;. By the compact support condition, £(e®" Vw/1=1) —
E¢”1, a.e., so by the Brezis-Lieb lemma,

fim, €™ Y| — €67 ] — € Tt~ M) = 0.

n—oo
Therefore (iii) holds with J = J;.

Suppose that |z/1 — 20| 4> 0, for some jo < J;. Passing to a subsequence, we
may assume that zJ' — 29 — . Then multiplication by eil@nt =)y converges
to multiplication by e** in the strong operator topology. Moreover, by (i), multi-
plication by ei(wil_”ﬂt)'”, J # jo, converges to zero in the weak operator topology.
Therefore
wkolim ef@n" T =1 = wk-lim eilant —wa)w(einP-vfn — ) + Z I —wi})'"/¢j -0

Jj#jo
On the other hand, the left hand side of the preceding equals ¢”*, which is nonzero,
a contradiction. Tracing back, (i) holds for indices bounded by J;. The proof of
(ii) is similar: Along our subsequence,

Ji—1 Ji—1
. jrJ1. . (2?1 —g7 ). i izJ1. —
wk-lim e**» 7 f,, = wk-lim Z @t mT) Y T et Vil = Z 0+ ¢t
Jj=1 j=1

It remains to verify (iv). Let e/ := limsup,,_,, [|Ew; |4 If €/ > & > 0 infinitely
often, then, as we have seen, |¢”||z = € infinitely often, which is impossible by
(v)). O

Having proved Proposition 5.1 in the case p = pg := 2, ¢ = ¢ :=d(d + 1), we
turn to the general case.

Proof of Proposition 5.1 for d*> +d # q = #p’ >p>1. Fix an exponent o0 >
qQ > % so that ¢ lies strictly between ¢; and qa. As {f,} is bounded in L2
we may apply the L2-based profile decomposition to determine {27}, {¢?}. That (i)
and (ii) hold are immediate. That (iii) holds follows from the Brezis—Lieb lemma
and the above argument in the case ¢ = ¢». The Brezis—Lieb lemma also implies
that (iii) holds in the case ¢ = qi, so |Ew;!|,, is bounded, uniformly in J (albeit

with a constant that depends on R). Choosing 6 so that é = (% + 1(1;29,

. . J < . . J)1—-6 —
728 25 VEwnla < ji, Jiug Wewnle, ™ = 0.

so (iv) holds as well.

It remains to prove (v). Let us fix J and let € > 0. We choose compactly
supported smooth nonnegative functions a,b satisfying supb = {a = 1 and |a *
(b?) — 7|, < eforall 1 <j<.J. We define for each j < J

A () 1= axg (€77 Ob(5)f(5))(0):
The weak limit condition (ii), compactness of the supports of a and b, and an
application of the Dominated Convergence Theorem imply that

tim 73 £, — a» (bg?)], = 0.
Letting € to 0, it suffices to prove that

lim [P, zpipry <1 forall 1<p< oo (5.2)
n
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where p = max(p,p’) and P, = (7} )]] 1. Validity of (5.2) is elementary for

p = 1,00. By complex interpolation it suffices to prove (5.2) for p = 2, which
is equivalent to proving lim,, | P¥{;2(z2)—z2 < 1. Note that P} F = Z;-le(ﬁ%)*Fj
for ' = {F;} € 12(L?) and (7)*F;(t) = b(t)e?n M (a + F})(t). Thus it suffices to

show that
J

| 25 (m)*FilZe < (1+ 0 Z 1757

Jj=1

(where, of course, 0/ (1) is independent of F and hmn_,oo 0] (1) = 0). Now

J J
| 2 () il < D) IE |22 +2 ) [l (wl)“Ey, Fy)l,
j=1 j=1

J#Jy
and thus it is enough to prove that 773:(77%)* — 0 in the operator norm topology.
We have 7} (n7)*g(u) = § K77 (u, s)g(s)ds where

K97 (u, 5) = fa(u — )el@h = O 1) 2a(t — s)dt.

Since both @ and b have compact support and supp,, K{Lj'(u, $) € suppa + supp b,
by stationary phase,

lim sup | K77 (u, s)| 11 = 0.
n s v

By identical reasoning
lim sup | K27 (u, 5)|1; = 0.
n u g

Therefore 7d (7))* : g — SKZLj/ (u, s)g(s)ds goes to 0 in the operator norm topology.
This completes the proof. ([

6. L? CONVERGENCE

We are finally ready to prove Theorem 1.1. Let {f,} be an extremizing se-
quence and € > 0. By Proposition 4.1 after applying an appropriate sequence of
symmetries, there exists R = R, such that for all sufficiently large n

R
Hgfn Hq = BP - &
Restricting R to lie in the positive integers, we may apply Proposition 5.1 along a
subsequence (which is independent of R) to decompose fF = Z}]=1 ei‘vﬁ'"’(t)qﬁj R4

rJB® J < co. Furthermore since { £} is nearly extremizing, for each R, there exists
some large profile ¢7%. Indeed, for all large n

BI — 2 < |EfF)9 - Z |E47F |2 < BE Z 7% 5) maux €67 577
Jj=1 j=1
< By max 677177 < B max ¢ 177 (6.1)

Denotlng this large ¢/f by ¢, by Proposition 5.1 there exists {zff} < R such
that {e"®n 7 fR} converges weakly in LP to some function ¢®. Since limp [¢F I, =

1 = lim,, || f»|lp, by strict convexity (see Theorem 2.5 and the proof of Theorem 2.11
in [13]) we have

lim lim || £ — e~ 7R, = 0
R n
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By the triangle inequality and Proposition 4.1
lim lim | £, — e~ T TR, = 0. (6.2)

Therefore for all sufficiently large Ry, Ra

lim sup ”eimﬁ1 Jyd)Rl - efimfz-'y(sz Hp = Omin(Rth)(l)'
n

If {|zf" — 21|} was unbounded for some R;, R, then after passing through a

UCHEEERS)

subsequence, multiplication by e 7 tends to zero in the weak operator

topology. Thus, by Holder’s inequality,

R
—apt )-“/¢R1 _¢R2 YpTi2 |¢RQ |p’2dt|
IRz 5T

< limsup e~ TR — Tt gRe
n

i(a:Rz
15 |97, = tim L

which contradicts (6.2). Thus, for all sufficiently large Ry, Ra, {|zf* —2%2|} remains
bounded as n goes to infinity. Applying an appropriate sequence of modulations
to the {f,}, we may assume that {z?} is bounded for all R. After passing to a
subsequence, each {x*} converges to some xf* € R for every sufficiently large integer
R. Replacing ¢ with e*“”R'ngR, we may assume that 2% = 0 for all R. By (6.2),
limg limsup,, | fn — ¢%[, = 0, so {¢*} and {f,} both converge in LP to some ¢,
which must be an extremizer. This completes the proof of Theorem 1.1.
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