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Abstract
This work derives methods for performing non-
parametric, nonasymptotic statistical inference
for population means under the constraint of local
differential privacy (LDP). Given bounded ob-
servations pX1, . . . , Xnq with mean µ‹ that are
privatized into pZ1, . . . , Znq, we present confi-
dence intervals (CI) and time-uniform confidence
sequences (CS) for µ‹ when only given access
to the privatized data. To achieve this, we intro-
duce a nonparametric and sequentially interactive
generalization of Warner’s famous “randomized
response” mechanism, satisfying LDP for arbi-
trary bounded random variables, and then provide
CIs and CSs for their means given access to the
resulting privatized observations. For example,
our results yield private analogues of Hoeffding’s
inequality in both fixed-time and time-uniform
regimes. We extend these Hoeffding-type CSs to
capture time-varying (non-stationary) means, and
conclude by illustrating how these methods can
be used to conduct private online A/B tests.

1. Introduction
It is easier than ever for mobile apps and web browsers to
collect massive amounts of sensitive data about individuals.
Differential privacy (DP) provides a framework that lever-
ages statistical noise to limit the risk of sensitive information
disclosure (Dwork et al., 2006). The goal of private data
analysis is to extract meaningful population-level informa-
tion from the data (whether in the form of machine learning
model training, statistical inference, etc.) while preserving
the privacy of individuals via DP. In particular, this paper
will focus on statistical inference (e.g. confidence intervals
and p-values) for population means under DP constraints.

As motivating examples, suppose a city wishes to survey
households to calculate the approval rating of their mayor,
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or an IT company aims to understand whether a redesigned
homepage will lead to the average user spending more time
on it. Both problems can be framed as estimating the mean
of some (potentially large) population, but it may be infeasi-
ble to query every single household or all possible website
users. Fortunately, a sample mean can still be used to esti-
mate the population mean with some degree of precision.
For example, a city may randomly choose households to
query, or the technology company may show 10% of users
the redesigned webpage at random. This is often referred to
as “A/B testing”, and we expand on this application under
privacy constraints in Section 4. When making decisions,
however, it is crucial to both calculate sample means and

quantify the uncertainty in those estimates (e.g. using confi-
dence intervals, reviewed in Section 1.2). However, calcu-
lating confidence intervals under local differential privacy
constraints (defined in Section 1.1) poses a unique statistical
challenge, because these intervals must incorporate both
the uncertainty introduced from random sampling and from
the privacy mechanism. This paper studies and provides a
nonparametric solution to precisely this challenge.

1.1. Background I: Local Differential Privacy

There are two main models of privacy within the DP frame-
work: central and local DP (LDP) (Dwork et al., 2006;
Kasiviswanathan et al., 2011; Dwork & Roth, 2014). The
former involves a centralized data aggregator that is trusted
with constructing privatized output from raw data, while
the latter performs privatization at the “local” or “personal”
level (e.g. on an individual’s smartphone before leaving the
device) so that trust need not be placed in any data collector.
Both models have their advantages and disadvantages: LDP
is a more restrictive model of privacy and thus in general
requires more noise to be added. On the other hand, the
stronger privacy guarantees that do not require a trusted
central aggregator make LDP an attractive framework in
practice. This paper deals exclusively with LDP.

Making our setup more precise, suppose X1, X2, . . . is
a (potentially infinite) sequence of r0, 1s-valued random
variables. We could instead have assumed boundedness
on any known interval ra, bs since we can always trans-
late and scale the interval to r0, 1s via the transformation
x fiÑ px ´ aq{pb ´ aq. We will refer to pXtq

8
t“1

as the
“raw” or “sensitive” data that are yet to be privatized. Fol-
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lowing the notation of Duchi et al. (2013a) the privatized
views Z1, Z2, . . . of X1, X2, . . . , respectively are gener-
ated by a sequence of conditional distributions Q1, Q2, . . .
which we refer to as the privacy mechanism. Through-
out this paper, we will allow this privacy mechanism to
be sequentially interactive, meaning that the distribution
Qi of Zi may depend on the past privatized observations
Zi´1

1
:“ pZ1, . . . , Zi´1q (Duchi et al., 2013a). In other

words, the privatized view Zi of Xi has a conditional dis-
tribution Qip¨ | Xi “ x, Zi´1

1
“ zi´1

1
q. Following Duchi

et al. (2013a; 2018) we say that Qi satisfies "-local differen-
tial privacy if for all z1, . . . , zi´1 P r0, 1s and x, rx P r0, 1s,
the following likelihood ratio is uniformly bounded:

sup
zPr0,1s

qipz | Xi “ x, Zi´1

1
“ zi´1

1
q

qipz | Xi “ rx, Zi´1

1
“ zi´1

1
q

§ expt"u, (1)

where qi is the density (or Radon-Nikodym derivative)
of Qi with respect to some dominating measure. In the
non-interactive case where the dependence on Zi´1

1
is

dropped, (1) simplifies to the usual "-LDP definition (Dwork
& Roth, 2014). To put " ° 0 in a real-world context, Apple
uses privacy levels in the range of " P t2, 4, 8u on macOS
and iOS devices for various "-LDP data collection tasks,
including health data type usage, emoji suggestions, and
lookup hints (Apple Inc., 2022). See Figure 1 to intuit how
" affects the widths of confidence intervals that we develop.
Next, we review time-uniform confidence sequences and
how they differ from fixed-time confidence intervals.

Figure 1. Widths of private 90%-CIs for the mean of a uniform
distribution using our private Hoeffding CI given in (11) for vari-
ous levels of " ranging from " “ 0.5 (very private) to " “ 8 (no
privacy). Unsurprisingly, less privacy leads to sharper inference,
but notice that inference is still practical, especially for " • 2. For
context, Apple uses " P t2, 4, 8u for various data collection tasks
on iPhones (Apple Inc., 2022). At these levels of privacy, our CIs
perform nearly as well as — and are in some cases indistinguish-
able from — the non-private Hoeffding CI.

1.2. Background II: Confidence Sequences

One of the most fundamental tasks in statistical inference is
the derivation of confidence intervals (CI) for a parameter of
interest µ‹

P R (e.g. mean, variance, treatment effect, etc.).

Given data X1, . . . , Xn, the interval 9Cn ” CpX1, . . . , Xnq

is said to be a p1 ´ ↵q-CI for µ‹ if

Ppµ‹
R 9Cnq § ↵, (2)

where ↵ P p0, 1q is a prespecified error tolerance. Notice
that (2) is a “pointwise” or “fixed-time” statement, meaning
that it only holds for a single fixed sample size n.

The “time-uniform” analogue of CIs are so-called confi-

dence sequences (CS) — sequences of confidence intervals
that are uniformly valid over a (potentially infinite) time
horizon (Darling & Robbins, 1967; Robbins, 1970). We say
that the sequence pC̄tq

8
t“1

is a p1 ´ ↵q-CS1 for µ‹ if

PpDt • 1 : µ‹
R C̄tq § ↵. (3)

The guarantee (3) has important implications for data analy-
sis, giving practitioners the ability to (a) update inferences
as new data become available, (b) continuously monitor
studies without any statistical penalties for “peeking”, and
(c) make decisions based on valid inferences at arbitrary
stopping times: for any stopping time ⌧ , Ppµ‹

R C̄⌧ q § ↵.

1.3. Contributions and Outline

Our primary contributions are threefold: (a) a new privacy
mechanism, (b) CIs, and (c) time-uniform CSs.

(a) We introduce NPRR — a sequentially interactive, non-
parametric generalization of Warner’s randomized re-
sponse (Warner, 1965) for bounded data (Section 2).

(b) We derive several CIs for the mean of bounded random
variables that are privatized by NPRR (Section 3). We
believe Section 3 introduces the first private nonpara-
metric CIs for means of bounded random variables.

(c) We derive time-uniform CSs for the mean of bounded
random variables that are privatized by NPRR, en-
abling private nonparametric sequential inference (Sec-
tion 3.3). We also introduce a CS that is able to capture
means that change over time under no stationarity con-
ditions on the time-varying means (Section 3.4). We
believe Sections 3.3 and 3.4 are the first private non-
parametric CSs in the DP literature.

Furthermore, we show how all of the aforementioned tech-
niques can be used to conduct private online A/B tests (Sec-
tion 4). Finally, Section 5 summarizes our findings and dis-
cusses some additional results whose details can be found in
the appendix. A Python package implementing our methods
as well as code to reproduce the figures can be found on
GitHub at github.com/WannabeSmith/nprr.

1As a mnemonic, we will use overhead bars C̄t and dots 9Cn

for time-uniform CSs and fixed-time CIs, respectively.
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1.4. Related Work

The literature on differentially private statistical inference
is rich, including nonparametric estimation rates (Wasser-
man & Zhou, 2010; Duchi et al., 2013a;b; 2018; Kamath
et al., 2020; Butucea et al., 2020; Acharya et al., 2021b),
parametric hypothesis testing and confidence intervals (Vu
& Slavkovic, 2009; Wang et al., 2015; Gaboardi et al., 2016;
Awan & Slavković, 2018; Karwa & Vadhan, 2018; Canonne
et al., 2019; Joseph et al., 2019; Ferrando et al., 2022; Cov-
ington et al., 2021), median estimation (Drechsler et al.,
2021), independence testing (Couch et al., 2019), online
convex optimization (Jun & Orabona, 2019), and parametric
sequential hypothesis testing (Wang et al., 2022). A more
detailed summary can be found in Section D.

The aforementioned works do not study the problem of
private nonparametric confidence sets for population means.
Prior work does exist on confidence intervals for the sample

mean of the data (Ding et al., 2017; Wang et al., 2019). The
most closely related work is that of Ding et al. (2017, Section
2.1) who introduce the “1BitMean” mechanism which can
be viewed as a special case of NPRR (Algorithm 2). They
derive a private Hoeffding-type confidence interval for the
sample mean of the data, but it is important to distinguish
this from the more classical statistical task of population

mean estimation. For example, if X1, . . . , Xn are random
variables drawn from a distribution with mean µ‹, then the
population mean is µ‹, while the sample mean is pµn :“
1

n

∞n
i“1

Xi. A private CI for µ‹ incorporates randomness
from both the mechanism and the data, while a CI for pµn

incorporates randomness from the mechanism only. Neither
is a special case of the other, and some of our techniques
allow for the (sequential) estimation of sample means (see
Appendix B.2 for details and explicit bounds) but this paper
is primarily focused on the problem of private population

mean estimation.

2. Extending Warner’s Randomized Response
Before introducing our nonparametric extension of random-
ized response, let us briefly review Warner’s classical ran-
domized response mechanism as well as the Laplace mech-
anism, discuss their shortcomings, and introduce a new
mechanism to remedy them.

Warner’s randomized response. When the raw data
pXtq

8
t“1

are binary, one of the oldest and simplest privacy
mechanisms is Warner’s randomized response (RR) (Warner,
1965). Warner’s RR was introduced decades before the
very definition of DP, but was later shown to satisfy LDP
by Dwork & Roth (2014). RR was introduced as a method
to provide plausible deniability to subjects when answering
sensitive survey questions (Warner, 1965), and proceeds
as follows: when presented with a sensitive Yes/No ques-

tion (e.g. “have you ever used illicit drugs?”), the sub-
ject flips a biased coin with PpHeadsq “ r P p0, 1s. If
the coin comes up heads, then the subject answers truth-
fully; if tails, the subject answers “Yes” or “No” (encoded
as 1 and 0, respectively) with equal probability 1/2. It
is easy to see that this mechanism satisfies "-LDP with
" “ logp1 `

2r
1´r q by bounding the likelihood ratio of

the privatized response distributions: for any true response
x P t0, 1u, let qpz | X “ xq “ r1pz “ xq ` p1 ´ rq{2
denote the conditional probability mass function of its pri-
vatized view. Then for any x, rx P t0, 1u,

sup
zPt0,1u

qpz | X “ xq

qpz | X “ rxq
§ 1 `

2r
1 ´ r

, (4)

and hence RR satisfies "-LDP with " “ logp1 `
2r
1´r q. In

Appendix B.1, we show how one can derive a CI for the
mean of Bernoulli random variables when they are priva-
tized via RR, but as we will see in Section 3, this will be an
immediate corollary of a more general result for bounded
random variables (Theorem 4).

One downside of RR, however, is that it takes binary data as
input. On the other hand, the famous Laplace mechanism
satisfies "-LDP for bounded data, including binary ones.

The Laplace mechanism. The Laplace mechanism ap-
peared in the very same paper that introduced DP (Dwork
et al., 2006). Algorithm 1 recalls the (sequentially interac-
tive) Laplace mechanism (Duchi et al., 2013a). It is well-

Algorithm 1 Sequentially interactive Laplace mechanism
for t = 1,2,... do

Choose "t based on Zt´1

1
.

Generate Lt „ Laplacep1{"tq
Zt – Xt ` Lt

end for

known that Zt is (conditionally) "t-LDP (given Zt´1

1
) for

each t (Dwork et al., 2006). Appendix B.4 derives novel CIs
and CSs for population means under the Laplace mechanism,
but we omit them here for brevity as our new mechanism
(to be introduced shortly) will yield better bounds.

Nonparametric randomized response (NPRR). Our mech-
anism “Nonparametric randomized response” (NPRR)
serves as a sequentially interactive generalization of RR
for arbitrary bounded data by combining stochastic round-
ing (Barnes et al., 1951; Forsythe, 1959; Hull & Swenson,
1966) with k-RR — a categorical but non-interactive gen-
eralization of Warner’s RR introduced by Kairouz et al.
(2014; 2016), and also considered by Li et al. (2020) under
the name “Generalized Randomized Response”. Note that
Kairouz et al. (2014; 2016) use k to refer to the number of
unique values that the input and output data can take on,
which is k “ G ` 1 in the case of Algorithm 2. NPRR is
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explicitly described in Algorithm 2, and its LDP guarantees
are summarized in Theorem 1.

Algorithm 2 Nonparametric randomized response (NPRR)
for t “ 1, 2, . . . do

// Step 1: Discretize Xt into Yt via stochastic rounding.

Choose integer Gt • 1 based on Zt´1

1

Xceil

t – rGtXts{Gt, Xfloor

t – tGtXtu{Gt

if Xceil

t ““ Xfloor

t then
Yt – Xt

else

Generate Yt „

#
Xceil

t w.p. Gt ¨ pXt ´ Xfloor

t q

Xfloor

t w.p. Gt ¨ pXceil

t ´ Xtq

end if
// Step 2: Privatize Yt into Zt via k-RR.

Choose rt P p0, 1s based on Zt´1

1

Generate Ut „ Unif
!
0, 1

Gt
, 2

Gt
, . . . , Gt

Gt

)

Generate Zt „

#
Yt w.p. rt
Ut w.p. 1 ´ rt

end for

Notice that if pXtq
8
t“1

are t0, 1u-valued, and if we set G1 “

G2 “ ¨ ¨ ¨ “ 1 and r1 “ r2 “ ¨ ¨ ¨ “ r P p0, 1s, then no
stochastic rounding occurs and NPRR recovers RR exactly,
making NPRR a sequentially interactive and nonparametric
generalization for bounded data. Also, if we let NPRR be
non-interactive and set G1 “ ¨ ¨ ¨ “ Gn “ 1, then NPRR
recovers the “1BitMean” mechanism (Ding et al., 2017).
However, Ding et al. (2017) do not explicitly point out
the connection to stochastic rounding. Notice that Ding
et al. (2017)’s ↵-point rounding mechanism is different from
NPRR as NPRR shifts the mean of the inputs but alpha-point
rounding leaves the mean unchanged. Let us now formalize
NPRR’s LDP guarantees.

Theorem 1 (NPRR satisfies LDP). Suppose pZtq
8
t“1

are

generated according to NPRR. Then for each t P t1, 2, . . . u,

Zt is a conditionally "t-LDP view of Xt with

"t :“ log

ˆ
1 `

pGt ` 1qrt
1 ´ rt

˙
. (5)

The proof in Section A.2 proceeds by bounding the condi-
tional likelihood ratio for any two data points x, rx P r0, 1s

similar to (1). In all of the results that follow in the follow-
ing sections, we will write expressions in terms of prtqnt“1

,
but these can always be chosen given desired p"tqnt“1

levels
via the relationship

rt “
expt"tu ´ 1
expt"tu ` Gt

. (6)

In the familiar special case of rt “ r P p0, 1s and Gt “ G P

t1, 2, . . . u for each t, we have that pZtq
8
t“1

satisfy "-LDP

with " :“ logp1 ` pG ` 1qr{p1 ´ rqq. Notice that when
Gt “ 1 for each t, we have that NPRR satisfies "-LDP with
the same value of " as Warner’s RR. Consequently, there is
no privacy lost from instantiating the more general NPRR to
the binary case.

Remark 2 (Who chooses "t, rt, or Gt, and how?). Due to
the sequential interactivity of NPRR, individuals can specify
their own levels of privacy, or the parameters prt, Gtq

8
t“1

can be adjusted over time (e.g. if the data collector chooses
to decrease "t for regulatory reasons, or increase "t to obtain
sharper inference). Formally, prt, Gtq can be chosen in any
way as long as they are predictable, meaning that they can
depend on Zt´1

1
. Nevertheless, sequential interactivity is

completely optional, and the data collector is free to set
prt, Gtq “ pr,Gq for every t to recover the familiar notion
of "-LDP.

Why introduce NPRR as an alternative? While RR is lim-
ited to privatizing binary data, the Laplace mechanism can
handle bounded data, so why introduce NPRR as an alterna-
tive to the two? The reason stems from our original motiva-
tion: to derive locally private nonparametric, nonasymptotic
confidence sets for means of bounded random variables.
To achieve this, we will ultimately use modern concentra-
tion techniques from the literature on (non-private) confi-
dence sets, many of which exploit boundedness in clever
ways to yield clean, closed-form expressions and/or empir-
ically tight confidence intervals. Since the Laplace mech-
anism does not preserve the boundedness of its input, it is
not clear how those techniques can be used for Laplace-
privatized data (though we do derive novel Laplace-based
solutions using a different approach in Appendix B.4, but
they are ultimately outperformed by those that we derive
based on NPRR). NPRR on the other hand, preserves the in-
put’s boundedness, making it possible to apply analogues of
these modern concentration techniques for NPRR-privatized
data. The efficiency gains that result from this approach are
illustrated in Figures 4 and 5.

In addition to being useful for deriving simple and efficient
confidence sets, NPRR has some other orthogonal advan-
tages over the Laplace mechanism. First, NPRR has re-
duced storage requirements: Once a r0, 1s-bounded random
variable has been privatized via Laplace, the output is a
floating-point number, requiring 64 bits to store as a double-
precision float. In contrast, NPRR outputs one of pG ` 1q

different values, hence requiring only rlog
2
pG ` 1qs bits to

store. Moreover, storing the NPRR-privatized view of x will
never require more memory than storing x itself (unless G
is set to nonsensical values larger than 264), while Laplace-
privatized views will always require at least enough memory
to represent floating point numbers.

Second, NPRR is automatically resistant to the floating-point
attacks that the Laplace mechanism suffers from. Mironov
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(2012) showed that storing Laplace output as a floating-point
number can leak information about the input x, thereby com-
promising its LDP guarantees. While Mironov (2012) dis-
cusses remedies to this issue, practitioners may still naively
apply the Laplace mechanism using common software pack-
ages and remain vulnerable to these so-called “floating-point
attacks”. In contrast, the discrete representation of NPRR’s
output is not vulnerable to such attacks, without the need
for remedies at all. Note that while NPRR may have to deal
with floating point numbers as input, they are transformed
into discrete random variables before any "-LDP guarantees
are added. The privatization step (transforming Yt into Zt

in Algorithm 2) takes one of Gt ` 1 values as input and pro-
duces one of Gt ` 1 values as output, thereby sidestepping
any need to handle floating point numbers.

The remainder of this paper will focus solely on construct-
ing efficient locally private confidence sets, but the above
benefits can be seen as “free” byproducts of NPRR’s design.

3. Private CIs for Bounded Data
Making matters formal, let Pµ be the set of distributions
on r0, 1s with population mean µ P r0, 1s. Pµ is a convex
set of distributions with no common dominating measure,
since it consists of discrete and continuous distributions, as
well as their mixtures. We will consider sequences of ran-
dom variables pXiq

n
i“1

drawn from the product distribution±n
i“1

Pi where n P t1, 2, . . . ,8u and each Pi P Pµ. For
succinctness, define the following set of distributions,

P
n

µ :“

#
nπ

i“1

Pi such that each Pi P Pµ

+
, (7)

for n P t1, 2, . . . ,8u. In words, Pn
µ contains distributions

for which the random variables are independent and r0, 1s-
bounded with mean µ but need not be identically distributed.
We use the notation pXtq

n
t“1

„ P for some P P P
n
µ‹ to

indicate that pXtq
n
t“1

are independent with mean µ‹. The
goal is now to derive sharp CIs and time-uniform CSs for
µ‹ given NPRR-privatized views of pXtq

n
t“1

.

Let us write Q
n
µ‹ to denote the set of joint distributions on

NPRR’s output, where we have left the dependence on each
Gt and rt implicit. In other words, given pXtq

n
t“1

„ P
for some P P P

n
µ‹ , their NPRR-induced privatized views

pZtq
n
t“1

have a joint distribution from Q for some Q P Q
n
µ‹ .

3.1. What is a Locally Private Confidence Set?

Let first define what we mean by locally private confidence
intervals (LPCI) and sequences (LPCS), and subsequently
derive them for means of bounded random variables.
Definition 3 (Locally private confidence sets). Let " ”

p"tqnt“1
” p"tqt. We say that Ln is a lower p1´↵, "q-LPCI

0 1Xt
Discretization

Privatization
Yt

Zt

0 11/2 3/41/4

0 11/2 3/41/4

Figure 2. An illustration of how a distribution Q P Q
n

µ‹ can arise
from applying NPRR with Gt “ 4 to draws from the input dis-
tribution P P P

n

µ‹ . Raw data Xt are discretized into Yt so that
Yt has finite support but so that µ‹

“ EpXtq “ EpYtq. The
discrete Yt are then privatized into Zt with conditional mean
EpZt | Zt´1

1
q “ ⇣tpµ

‹
q “ rtµ

‹
` p1 ´ rtq{2 by being mixed

with independent uniform noise Ut „ Unift0, 1{4, 1{2, 3{4, 1u.

for a parameter ✓‹, and with respect to the raw data pXtq
n
t“1

if Ln is a lower p1 ´ ↵q-CI for ✓‹, meaning

Pp✓‹
• Lnq • 1 ´ ↵, (8)

and if Ln ” LpZ1, . . . , Znq is only a function of the "t-LDP
view Zt of Xt for each t, but not of pXtq

n
t“1

directly.

Similarly, we say that pLtq
8
t“1

is a lower p1 ´ ↵, "q-LPCS
for ✓‹ if (8) is replaced with the time-uniform guarantee

Pp@t, ✓‹
• Ltq • 1 ´ ↵. (9)

Upper CIs and CSs are defined analogously.

Note that LPCIs and LPCSs also satisfy "-LDP, since DP is
closed under post-processing (Dwork & Roth, 2014).

3.2. A Locally Private Hoeffding CI via NPRR

First, we present a private generalization of Hoeffding’s
inequality under NPRR.

Theorem 4 (NPRR-H). Suppose pXtq
n
t“1

„ P for some

P P P
n
µ‹ , and let pZtq

n
t“1

„ Q P Q
n
µ‹ be their privatized

views via NPRR. Define the NPRR-adjusted sample mean

pµn :“
1

n

∞
n

i“1
pZi ´ p1 ´ riq{2q

1

n

∞
n

i“1
ri

. (10)

Then,

9LH

n :“ pµn ´

d
logp1{↵q

2np
1

n

∞
n

i“1
riq2

(11)

is a lower p1 ´ ↵, p"tqtq-LPCI for µ‹
.
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The proof in Section A.3 uses a locally private supermartin-
gale variant of the Cramér-Chernoff bound. We recommend
setting rt for the desired "t-LDP level via the relationship
in (6) and Gt :“ 1 for all t (the reason behind which we
will discuss in Remark 7). Notice that in the non-private
setting where we set ri “ 1 for all i, then 9LH

n recovers the
classical Hoeffding inequality exactly (Hoeffding, 1963).
Moreover, notice that if pXtq

n
t“1

took values in ra, bs in-
stead of r0, 1s, then (11) would simply scale with pb ´ aq in
the same manner as Hoeffding (1963). Recall as discussed
in Remark 2 that prtqnt“1

could be chosen either by the data
collector or by the subject whose data are being collected,
but that sequential interactivity is optional.

Figure 3. Two p90%, 2q-LPCIs: 9LH

n given in (11) and 9LH`
n given

in (12) — i.e. these are p1 ´↵, "q-LPCIs with ↵ “ 0.1 and " “ 2.
Notice that the latter can be tighter than the former. Indeed this is
because LH`

n is never looser than LH

n (by definition) but strictly
tighter with positive probability.

In fact, we can strictly improve on (11) by exploiting the
martingale dependence of this problem. Indeed, under the
same assumptions as Theorem 4, we have that

9LH`
n :“ max

1§t§n

#
pµt ´

logp1{↵q ` t�2

n{8

�n

∞
t

i“1
ri

+
(12)

is also a lower p1 ´ ↵, p"tqnt“1
q-LPCI for µ‹, where �n :“a

8 logp1{↵q{n. Notice that 9LH`
n is at least as tight as 9LH

n

since the nth term in the above max1§t§n recovers 9LH

n

exactly. Moreover, 9LH`
n is strictly tighter than 9LH

n with
positive probability, and hence strictly tighter in expectation:
Ep 9LH`

n q ° Ep 9LH

n q.
Remark 5 (Minimax rate optimality of (11)). In the case of
"1 “ ¨ ¨ ¨ “ "n “ " P p0, 1s, Duchi et al. (2013a, Propo-
sition 1) give minimax estimation rates for the problem
of nonparametric mean estimation. Their lower bounds
say that for any "-LDP mechanism and estimator pµn for
µ‹, the root mean squared error

a
Eppµn ´ µ‹q2 cannot

scale faster than Op1{

?

n"2q. Since NPRR is "-LDP with
" “ logp1`2r{p1´rqq, we have that r — " up to constants
on " P p0, 1s. It follows that 9LH

n — 1{

?

n"2, matching the
minimax estimation rate. Of course, the midpoint of a CI
for µ‹ can always be used as an estimator for µ‹, and hence

Figure 4. Widths of p90%, 2q-LPCIs for the mean of a Beta(50, 50)
distribution. Hoeffding-based methods (Lap-H and NPRR-H found
in Corollary 4 and Theorem 4) do slightly worse than the variance-
adaptive ones (NPRR-EB and NPRR-hedged in Proposition 2 and
Theorem 10), but in all cases, CIs that rely on NPRR seem to
outperform Lap-H in both small and large n regimes.

we cannot expect the width of the CI to shrink faster than
the minimax estimation rate. While explicit minimax lower
bounds do not exist for the setting where "i ‰ "j for some
i, j, notice that instead of scaling with r´1 (which we would
have if ri “ rj for i ‰ j), 9LH

n scales with p
1

n

∞n
i“1

riq´1,
and hence our bounds seem to be of the right order when "
is permitted to change.
Remark 6 (The relationship between " and (11) for practical
levels of privacy). As mentioned in the introduction and
in Figure 1, Apple uses values of " P t2, 4, 8u for various
"-LDP data collection tasks on iPhones (Apple Inc., 2022).
Note that for G “ 1, having " take values of 2, 4, and 8 cor-
responds to r being roughly 0.762, 0.964, and 0.999, respec-
tively, via the relationship r “ pexpp"q ´ 1q{pexpp"q ` 1q.
As such, (11) simply inflates the width of the non-private Ho-
effding CI by 0.762´1, 0.964´1, and 0.999´1, respectively.
Hence larger " (e.g. " • 4) leads to CIs that are nearly
indistinguishable from the non-private case (Figure 1).
Remark 7. Since Hoeffding-type bounds are not variance-
adaptive (meaning they use a worst-case upper-bound on
the variance of bounded random variables as in Hoeffding
(1963)), they do not benefit from the additional granularity
when setting Gt • 2 (see Section B.3 for a detailed math-
ematical explanation). As such, we set Gt “ 1 for each t
when running NPRR-H. Nevertheless, other CIs are capable
of adapting to the variance with Gt • 2, and these are dis-
cussed in Appendix B.5, with some suggestions for how to
choose Gt • 2 in Appendix B.6. Nevertheless, the empiri-
cal performance of our variance-adaptive CIs is illustrated
in Figure 4.

3.3. Time-uniform Confidence Sequences for µ‹

Previously, we focused on constructing a (lower) CI Ln for
µ‹, meaning that Ln satisfies the high-probability guarantee
Ppµ‹

• Lnq • 1 ´ ↵ for the prespecified sample size

6



Nonparametric Randomized Response

n. We will now derive CSs — i.e. entire sequences of CIs
pLtq

8
t“1

— which have the stronger time-uniform coverage
guarantee Pp@t, µ‹

• Ltq • 1´↵, enabling anytime-valid
inference in sequential regimes. See Section 1.2 for a review
of the mathematical and practical differences between CIs
and CSs. In summary, if pLtq

8
t“1

is a lower p1 ´ ↵q-CS,
then L⌧ forms a valid p1´↵q-CI at arbitrary stopping times
⌧ (including random and data-dependent times) and hence
a practitioner can continuously update inferences as new
data are collected, without any penalties for “peeking” at
the data early. Let us now present a Hoeffding-type CS for
µ‹, serving as a time-uniform analogue of Theorem 4.

Theorem 8 (NPRR-H-CS). Let pZtq
8
t“1

„ Q for some

Q P Q
8
µ‹ . Define the modified mean estimator under NPRR:

pµtp�
t

1q :“

∞
t

i“1
�i ¨ pZi ´ p1 ´ riq{2q

∞
t

i“1
ri�i

, (13)

and let p�tq8
t“1

be a real-valued sequence of tuning param-

eters (discussed in (34)). Then,

L̄H

t :“ pµtp�
t

1q ´
logp1{↵q `

∞
t

i“1
�2

i {8
∞

t

i“1
ri�i

(14)

forms a lower p1 ´ ↵, p"tqtq-LPCS for µ‹
.

Figure 5. Widths of (90%, 2)-LPCSs for the mean of a Beta(50, 50)
distribution. Like Figure 4, Hoeffding-based methods (Lap-H-CS
and NPRR-H-CS found in Proposition 1 and Theorem 8) do worse
than the variance-adaptive ones (NPRR-EB-CS and NPRR-GK-CS
in Proposition 3 and Theorem 11) for large t, though NPRR-H-CS
does outperform NPRR-EB-CS for small t. Nevertheless, in all
cases, we find that NPRR-based CSs outperform Lap-H-CS in both
small and large t regimes.

The proof can be found in Section A.4. Unlike Theorem 4,
we suggest setting

�t :“

d
8 logp1{↵q

t logpt ` 1q
^ 1, (15)

to ensure that L̄H

t — Op

a
log t{tq up to log log t factors.

Waudby-Smith & Ramdas (2023, Section 3.3) give a deriva-
tion and discussion of �t and the Op

a
log t{tq rate. Similar

to Theorem 4, we recommend setting rt for the desired
"t-LDP level via (6) and Gt :“ 1 for all t.

The similarity between Theorem 8 and Theorem 4 is no
coincidence: indeed, Theorem 4 is a corollary of Theorem 8
where we instantiated a CS at a fixed sample size n and set
�1 “ ¨ ¨ ¨ “ �n “

a
8 logp1{↵q{n. In fact, every Cramér-

Chernoff bound (even in the non-private regime) has an
underlying supermartingale and CS that are rarely exploited
(Howard et al., 2020), but setting �’s as in Theorem 4 tight-
ens these CSs for the fixed time n — yielding Op1{

?
nq

rates but only for a fixed n — while tuning �t as in (15)
allows them to spread their efficiency over all t — yielding
Op

a
log t{tq rates but for all t simultaneously. Notice that

both the time-uniform and fixed-time bounds in Theorems 4
and 8 cover an unchanging real-valued mean µ‹

P R — in
the following section, we will relax this assumption and
allow for the mean of each Xi to change over time in an
arbitrary matter, but still derive CSs for sensible parameters.

3.4. Confidence Sequences for Time-varying Means

All of the bounds derived thus far have been concerned
with estimating some common µ‹ under the nonparametric
assumption pXtq

8
t“1

„ P for some P P P
8
µ‹ and hence

pZtq
8
t“1

„ Q for some Q P Q
8
µ‹ . Let us now consider

the more general (and challenging) task of constructing
CSs for the average mean so far rµ‹

t :“ 1

t

∞t
i“1

µ‹
i under

the assumption that each Xt has a different mean µ‹
t . In

what follows, we require that NPRR is non-interactive, i.e.
rt “ r P p0, 1s and Gt “ G P t1, 2, . . . u for each t.
Theorem 9 (Confidence sequences for time-varying means).
Suppose X1, X2, . . . are independent r0, 1s-bounded ran-

dom variables with individual means EXt “ µ‹
t for each

t, and let Z1, Z2 . . . be their privatized views according to

NPRR without sequential interactivity. Define

pµt :“

∞
t

i“1
pZi ´ p1 ´ rq{2q

tr
, (16)

and rB˘
t :“

gffe t�2 ` 1
2ptr�q2

log

˜ a
t�2 ` 1

↵

¸
, (17)

for any � ° 0. Then, rC˘
t :“ ppµt ˘ rB˘

t q forms a two-sided

p1 ´ ↵, "q-LPCS for rµ‹
t , where " “ logp1 `

2r
1´r q.

The proof in Section A.5 uses a sub-Gaussian mixture super-
martingale technique similar to Robbins (1970) and Howard
et al. (2020; 2021). The parameter � ° 0 is a tuning param-
eter dictating a time for which the CS boundary is optimized.
Regardless of how � is chosen, rC˘

t has the time-uniform
coverage guarantee given in Theorem 9 but finite-sample
performance can be improved near a particular time t0 by
selecting

�↵pt0q :“

c
´2 log↵` logp´2 log↵` 1q

t0
, (18)

7



Nonparametric Randomized Response

which approximately minimizes rBt0 ; see Howard et al.
(2021, Section 3.5) for details.

Notice that in the non-private case where r “ 1, we have
that rC˘

t recovers Robbins’ sub-Gaussian mixture CS (Rob-
bins, 1970; Howard et al., 2021). Notice that while Theo-
rem 9 handles a strictly more general and challenging prob-
lem than the previous sections (by tracking a time-varying
mean prµtq

8
t“1

), it has the restriction that NPRR must be
non-interactive. There is a technical reason for this that
boils down to it being difficult to combine time-varying
tuning parameters (such as those in Theorem 8) with time-
varying estimands in the same CS. This challenge has ap-
peared in other (non-private) works on CSs (Waudby-Smith
& Ramdas, 2023; Howard et al., 2021). In short, this pa-
per has methods for tracking a time-varying mean under
non-interactive NPRR or a fixed mean under sequentially
interactive NPRR, but not both simultaneously — this would
be an interesting direction to explore in future work.

Figure 6. p90%, 2q-LPCSs for the average time-varying mean so
far rµ‹

t with the boundary optimized for t0 “ 100. In this ex-
ample, we set µ‹

t “
1

2
r1 ´ sinp2 logpe ` tqq{ logpe ` 0.01tqs to

produce the displayed sinusoidal behavior. Notice that rLt is tighter
at the expense of only being one-sided. In either case, however,
the CSs adapt to non-stationarity and capture rµ‹

t uniformly over
time.

A one-sided analogue of Theorem 9 is presented in Ap-
pendix B.7 via slightly different techniques.

4. Illustration: Private Online A/B Testing
Our methods can be used to conduct locally private online

A/B tests (sequential randomized experiments). Broadly, an
A/B test is a statistically principled way of comparing two
different treatments — e.g. administering drug A versus
drug B in a clinical trial. In its simplest form, A/B testing
proceeds by (i) randomly assigning subjects to receive treat-
ment A with some probability ⇡ P p0, 1q and treatment B
with probability 1 ´ ⇡, (ii) collecting some outcome mea-
surement Yt for each subject t P t1, 2, . . . u — e.g. severity
of headache after taking drug A or B — and (iii) measuring
the difference in that outcome between the two groups. An
online A/B test is one that is conducted sequentially over

time — e.g. a sequential clinical trial where patients are
recruited one after the other or in batches.

We now illustrate how to sequentially test for the mean
difference in outcomes between groups A and B when only
given access to locally private data. To set the stage, suppose
that pA1, Y1q, pA2, Y2q, . . . are random variables such that
At „ Bernoullip⇡q is 1 if subject t received treatment A
and 0 if they received treatment B, and Yt is a r0, 1s-bounded
outcome of interest after being assigned treatment At.

Using the techniques of Section 3.4, we will construct
p1 ´ ↵q-CSs for the time-varying mean r�t :“

1

t

∞t
i“1

�i

where �i :“ EpYi | Ai “ 1q ´ EpYi | Ai “ 0q is the mean
difference in the outcomes at time i. In words, r�t is the
mean difference in outcomes among the subjects so far.

Unlike Section 3.4, however, we will not directly priva-
tize pYtq

8
t“1

, but instead will apply NPRR to some “pseudo-
outcomes” 't ” 'tpYt, Atq — functions of Yt and At,

't :“
ft `

1

1´⇡

1

⇡
`

1

1´⇡

, where ft :“

„
YtAt

⇡
´

Ytp1 ´ Atq

1 ´ ⇡

⇢
.

Notice that due to the fact that Yt, At P r0, 1s, we have
ft P r´1{p1 ´ ⇡q, 1{⇡s, and hence 't P r0, 1s. Now that
we have r0, 1s-bounded random variables p'tq

8
t“1

, we can
obtain their NPRR-induced "-LDP views p tq

8
t“1

by setting
Gt “ 1 and rt “ expt"´1u{ expt"`1u for each t. Notice
that we are privatizing 't which is a function of both Yt

and At, so both the outcome and the treatment are protected
with "-LDP.
Corollary 1 (Locally private online A/B estimation). Fol-

lowing the setup above, let p tq
8
t“1

be the NPRR-induced

privatized views of p'tq
8
t“1

. Define the estimator

p't :“

∞
t

i“1
p i ´ p1 ´ rq{2q

tr
, (19)

and set rBt as in (46). Then,

rL�

t :“ ´
1

1 ´ ⇡
`

ˆ
1
⇡

`
1

1 ´ ⇡

˙ ´
p't ´ rBt

¯
(20)

is a lower p1 ´ ↵, "q-LPCS for r�t.

The proof is an immediate consequence of the well-known
fact about “inverse-probability-weighted” estimators that
Eft “ �t for every t (Horvitz & Thompson, 1952; Robins
et al., 1994), combined with Proposition 4. Similarly, a
two-sided CS can be obtained by replacing p't ´ rBt in (20)
with p't ˘ rB˘

t , where rB˘
t is given in (17).

Practical implications. The implications of Corollary 1 for
the practitioner are threefold:

1. The CSs can be continuously monitored from the start
of the A/B test and for an indefinite amount of time;

8
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Figure 7. An example of Corollary 1 applied to the time-varying
mean given by �t :“ 1.8pexptt{300u{p1` exptt{300uq ´ 1{2q.
In this particular example, we have that r�t :“ 1

t

∞
t

i“1
�i changes

from negative to positive at time 618, and yet our lower CS rL�

t

later detects this change at time 1654, at which point the weak null
rH0: @t, r�t § 0 can be rejected (see Appendix B.9 for details

regarding the composite hypothesis rH0 and how to test it).

2. Inferences made from rL�

⌧ are valid at any stopping
time ⌧ , regardless of why the test is stopped; and

3. rL�

t adapts to non-stationarity: if the treatment differ-
ences �t drift over time, rL�

t still forms an LPCS for
r�t. But if �1 “ �2 “ ¨ ¨ ¨ “ �‹ is constant, then rL�

t

forms an LPCS for �‹.

5. Additional Results & Summary
Both NPRR and our proof techniques are general-purpose
tools with several other implications for locally private sta-
tistical inference, including confidence sets via the Laplace
mechanism, variance-adaptive inference, and sequential hy-
pothesis testing. We briefly expand on these implications
here, and leave their details to the appendix.

• §B.4: Confidence sets via the Laplace mechanism.
We introduced NPRR as an extension of randomized
response for arbitrary bounded data (rather than just
binary), but of course the Laplace mechanism also
handles bounded data. While NPRR enjoys advantages
over Laplace as discussed in Section 2, it may still be
of interest to derive confidence sets from data that are
privatized via Laplace, given its ubiquity and simplicity.
Appendix B.4 presents new nonparametric CIs and CSs
for population means under the Laplace mechanism.

• §B.5: Variance-adaptive inference. Notice that
the CIs and CSs presented in Section 3 were not
variance-adaptive due to the fact that they relied on sub-
Gaussianity of bounded random variables. However,
this is not necessary, and we present other locally pri-
vate variance-adaptive CIs and CSs in Appendix B.5.

• §B.8: Sequential hypothesis testing. While the sta-
tistical procedures of this paper have taken the form

of CIs and CSs rather than hypothesis tests, there is
a deep relationship between the two, and our results
have analogues that could have been presented in the
language of the latter. Appendix B.8 articulates this
relationship and presents explicit (sequential) tests.

• §B.10: Adaptive online A/B testing. Corollary 1 as-
sumes a common propensity score ⇡ among all subjects
for simplicity of exposition, but it is also possible to
derive CSs for r�t under an adaptive framework where
propensity scores p⇡tpXtqq

8
t“1

can change over time
in a data-dependent fashion, and be functions of some
measured covariates pXtq

8
t“1

. The details of this more
complex setup are left to Appendix B.10.

Another followup problem that we do not explicitly ad-
dress here but that can be solved using our techniques is
locally private variance estimation. Notice that the variance
VarpXq :“ EpX2

q ´ pEpXqq
2 is a function of two expecta-

tions, EpX2
q and EpXq. Since X2 is also r0, 1s-bounded if

X is, we can use all of the techniques in this paper to derive
two separate p1 ´ ↵{2, "{2q-LPCIs (or LPCSs) to derive a
p1 ´ ↵, "q-LPCI for VarpXq. Of course this requires col-
lecting privatized views of both X2 and X separately. As
a further generalization, a similar argument can be made
for the construction of LPCIs for the covariance of X and
Y since CovpX,Y q “ EpXY q ´ EpXqEpY q (though here
we would need to construct p1 ´ ↵{3, "{3q-LPCIs, etc.).

A limitation of the present paper is that we have only dis-
cussed confidence sets for univariate parameters. Indeed,
it is not immediately clear to us what is the right way to
generalize NPRR to the multivariate case, or how to derive
LPCIs and LPCSs for means of random vectors given such
a generalization. This is an open direction for future work.

With the growing interest in protecting user privacy, an in-
creasingly important addition to the statistician’s toolbox
are methods that can extract population information from
privatized data. In this paper, we derived nonparametric con-
fidence intervals and time-uniform confidence sequences
for population means from locally private data. We intro-
duced, NPRR a nonparametric and sequentially interactive
extension of Warner’s randomized response for bounded
data. The privatized output from NPRR can then be har-
nessed to produce confidence sets for the mean of the raw
data distribution. Importantly, our confidence sets are sharp,
some attaining optimal theoretical convergence rates and
others simply having excellent empirical performance, not
only making private nonparametric (sequential) inference
possible, but practical. In future work, we aim to apply these
general-purpose tools to changepoint detection, two-sample
testing, and (conditional) independence testing.
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Škoric, B. Estimating numerical distributions under local
differential privacy. In Proceedings of the 2020 ACM

SIGMOD International Conference on Management of

Data, pp. 621–635, 2020.

Maurer, A. and Pontil, M. Empirical Bernstein bounds and
sample variance penalization. In Conference on Learning

Theory, pp. 2372–2387. PMLR, 2009.

Mironov, I. On significance of the least significant bits for
differential privacy. In Proceedings of the 2012 ACM

conference on Computer and communications security,
pp. 650–661, 2012.

Orabona, F. and Jun, K.-S. Tight concentrations and con-
fidence sequences from the regret of universal portfolio.
arXiv preprint arXiv:2110.14099, 2021.

Ramdas, A., Ruf, J., Larsson, M., and Koolen, W. M. Test-
ing exchangeability: Fork-convexity, supermartingales
and e-processes. International Journal of Approximate

Reasoning, 2021.

Robbins, H. Statistical methods related to the law of the
iterated logarithm. The Annals of Mathematical Statistics,
41(5):1397–1409, 1970.

Robins, J. M., Rotnitzky, A., and Zhao, L. P. Estimation
of regression coefficients when some regressors are not
always observed. Journal of the American statistical

Association, 89(427):846–866, 1994.

Shafer, G. Testing by betting: A strategy for statistical and
scientific communication. Journal of the Royal Statistical

Society: Series A (Statistics in Society), 184(2):407–431,
2021.

Shafer, G., Shen, A., Vereshchagin, N., and Vovk, V. Test
martingales, Bayes factors and p-values. Statistical Sci-

ence, 26(1):84–101, 2011.

ter Schure, J. and Grünwald, P. ALL-IN meta-analysis:
breathing life into living systematic reviews. arXiv

preprint arXiv:2109.12141, 2021.

Ville, J. Etude critique de la notion de collectif. Bull. Amer.

Math. Soc, 45(11):824, 1939.

Vovk, V. and Wang, R. E-values: Calibration, combination
and applications. The Annals of Statistics, 49(3):1736–
1754, 2021.

Vu, D. and Slavkovic, A. Differential privacy for clinical
trial data: Preliminary evaluations. In 2009 IEEE In-

ternational Conference on Data Mining Workshops, pp.
138–143. IEEE, 2009.

Wald, A. Sequential tests of statistical hypotheses. The

annals of mathematical statistics, 16(2):117–186, 1945.

Wang, N., Xiao, X., Yang, Y., Zhao, J., Hui, S. C., Shin,
H., Shin, J., and Yu, G. Collecting and analyzing multi-
dimensional data with local differential privacy. In 2019

IEEE 35th International Conference on Data Engineering

(ICDE), pp. 638–649. IEEE, 2019.

Wang, R. and Ramdas, A. False discovery rate control with
e-values. Journal of the Royal Statistical Society, Series

B, 2022.

Wang, Y., Lee, J., and Kifer, D. Differentially private hypoth-
esis testing, revisited. arXiv preprint arXiv:1511.03376,
2015.

Wang, Y., Sibai, H., Yen, M., Mitra, S., and Dullerud, G. E.
Differentially private algorithms for statistical verification
of cyber-physical systems. IEEE Open Journal of Control

Systems, 1:294–305, 2022.

Warner, S. L. Randomized response: A survey technique for
eliminating evasive answer bias. Journal of the American

Statistical Association, 60(309):63–69, 1965.

Wasserman, L. and Zhou, S. A statistical framework for
differential privacy. Journal of the American Statistical

Association, 105(489):375–389, 2010.

Waudby-Smith, I. and Ramdas, A. Confidence sequences
for sampling without replacement. Advances in Neural

Information Processing Systems, 33, 2020.

Waudby-Smith, I. and Ramdas, A. Estimating means of
bounded random variables by betting. Journal of the

Royal Statistical Society, Series B (to appear with discus-

sion), 2023.

Waudby-Smith, I., Arbour, D., Sinha, R., Kennedy, E. H.,
and Ramdas, A. Time-uniform central limit theory,
asymptotic confidence sequences, and anytime-valid
causal inference. arXiv preprint arXiv:2103.06476, 2021.

Waudby-Smith, I., Wu, L., Ramdas, A., Karampatziakis,
N., and Mineiro, P. Anytime-valid off-policy inference
for contextual bandits. arXiv preprint arXiv:2210.10768,
2022.

12



Nonparametric Randomized Response

Zhao, S., Zhou, E., Sabharwal, A., and Ermon, S. Adaptive
concentration inequalities for sequential decision prob-
lems. Advances in Neural Information Processing Sys-

tems, 29, 2016.

13



Nonparametric Randomized Response

A. Proofs of main results
A.1. Prelude: filtrations, supermartingales, and Ville’s inequality

By far the most common way to derive a CS is by constructing a nonnegative supermartingales and then applying Ville’s
maximal inequality to it. Indeed, all of the proofs for our CS and CI results employ this technique. However, in order
to discuss supermartingales we must first review filtrations. A filtration F ” pFtq

8
t“0

is a nondecreasing sequence of
sigma-algebras F0 Ñ F1 Ñ ¨ ¨ ¨ , and a stochastic process pMtq

8
t“0

is said to be adapted to F if Mt is Ft-measurable for all
t P N. On the other hand, pMtq

8
t“1

is said to be F-predictable if each Mt is Ft´1-measurable — informally “Mt depends
on the past”.

For example, the canonical filtration X generated by a sequence of random variables pXtq
8
t“1

is given by the sigma-algebra
generated by Xt

1
, i.e. Xt :“ �pXt

1
q for each t P t1, 2, . . . u, and X0 is the trivial sigma-algebra. A function Mt ” MpXt

1
q

depending only on Xt
1

forms a X -adapted process, while pMt´1q
8
t“1

is X -predictable. Likewise, if we obtain a privatized
view pZtq

8
t“1

of pXtq
8
t“1

using some locally private mechanism, a different filtration Z emerges, given by Zt :“ �pZt
1
q.

Throughout our proofs, Z-adapted and Z-predictable processes will be central mathematical objects.

A process pMtq
8
t“0

adapted to F is a supermartingale if

EpMt | Ft´1q § Mt´1 for each t • 1. (21)

If the above inequality is replaced by an equality, then pMtq
8
t“0

is a martingale. The methods in this paper will involve
derivations of (super)martingales which are nonnegative and begin at one — often referred to as “test (super)martingales”
(Shafer et al., 2011) or simply “nonnegative (super)martingales” (NMs or NSMs for martingales and supermartingales,
respectively) (Robbins, 1970; Howard et al., 2020). NSMs pMtq

8
t“0

satisfy the following powerful concentration inequality
due to Ville (1939):

PpDt P N : Mt • 1{↵q § ↵. (22)

In other words, they are unlikely to ever grow too large.

In the CS proofs that follow, we will focus on deriving processes pMtpµqq
8
t“1

for any µ P r0, 1s such that when µ is equal to
the true mean of interest µ‹, we have that Mtpµ‹

q forms a NSM. In this case, it turns out that the set of µ such that Mtpµq is
less than 1{↵ — i.e. Ct :“ tµ P r0, 1s : Mtpµq † 1{↵u — forms a p1 ´ ↵q-CS for µ‹. This is easy to see since µ‹

R Ct if
and only if Mtpµ‹

q • 1{↵, and thus

PpDt P N : µ‹
R Ctq “ PpDt P N : Mtpµ

‹
q • 1{↵q § ↵, (23)

where the last inequality is precisely (22). The CS proofs that follow will make the exact processes pMtpµqq
8
t“1

explicit.

A.2. Proof of Theorem 1

Theorem 1 (NPRR satisfies LDP). Suppose pZtq
8
t“1

are generated according to NPRR. Then for each t P t1, 2, . . . u, Zt is

a conditionally "t-LDP view of Xt with

"t :“ log

ˆ
1 `

pGt ` 1qrt
1 ´ rt

˙
. (5)

Proof. We will prove the result for fixed r P p0, 1q, G • 1 but it is straightforward to generalize the proof for rt depending
on Zt´1

1
. It suffices to verify that the likelihood ratio Lpx, rxq is bounded above by expp"q for any x, rx P r0, 1s. Writing out

the likelihood ratio Lpx, rxq, we have

Lpx, rxq :“
1´r
G`1

` rG ¨
 
1pZ “ xceil

qpx ´ xfloor
q ` 1pZ “ xfloor

q
“
1{G ´ px ´ xfloor

q
‰(

1´r
G`1

` rG ¨ t1pZ “ rxceilqprx ´ rxfloorq ` 1pZ “ rxfloorq r1{G ´ prx ´ rxfloorqsu
,

which is dominated by the counting measure. Notice that the numerator of L is maximized when x already lies in the
discretized range, i.e. Z “ x “ xceil

“ xfloor so that the numerator becomes 1´r
G`1

` r, while the denominator is minimized
when Z ‰ rxceil and Z ‰ rxfloor so that the denominator becomes 1´r

G`1
. Therefore, we have that with probability one,

Lpx, rxq §

1´r
G`1

` r
1´r
G`1

“ 1 `
pG ` 1qr

1 ´ r
,

and thus NPRR is "-locally DP with " :“ logp1 ` pG ` 1qr{p1 ´ rqq.
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A.3. Proof of Theorem 4

Theorem 4 (NPRR-H). Suppose pXtq
n
t“1

„ P for some P P P
n
µ‹ , and let pZtq

n
t“1

„ Q P Q
n
µ‹ be their privatized views

via NPRR. Define the NPRR-adjusted sample mean

pµn :“
1

n

∞
n

i“1
pZi ´ p1 ´ riq{2q

1

n

∞
n

i“1
ri

. (10)

Then,

9LH

n :“ pµn ´

d
logp1{↵q

2np
1

n

∞
n

i“1
riq2

(11)

is a lower p1 ´ ↵, p"tqtq-LPCI for µ‹
.

Proof. The proof proceeds in two steps. First we note that L̄H

t forms a p1 ´ ↵q-lower confidence sequence, and then
instantiate this fact at the sample size n.

Step 1. L̄H

t forms a p1 ´ ↵q-lower CS. This is exactly the statement of Theorem 8.

Step 2. 9LH

n is a lower-CI. By Step 1, we have that L̄H

t forms a p1 ´ ↵q-lower CS, meaning

Pp@t P t1, . . . , nu, µ‹
• L̄H

t q • 1 ´ ↵.

Therefore,

P
ˆ
µ‹

• max
1§t§n

L̄H

t

˙
“ Ppµ‹

• 9LH

n q • 1 ´ ↵,

which completes the proof.

A.4. Proof of Theorem 8

Theorem 8 (NPRR-H-CS). Let pZtq
8
t“1

„ Q for some Q P Q
8
µ‹ . Define the modified mean estimator under NPRR:

pµtp�
t

1q :“

∞
t

i“1
�i ¨ pZi ´ p1 ´ riq{2q

∞
t

i“1
ri�i

, (13)

and let p�tq8
t“1

be a real-valued sequence of tuning parameters (discussed in (34)). Then,

L̄H

t :“ pµtp�
t

1q ´
logp1{↵q `

∞
t

i“1
�2

i {8
∞

t

i“1
ri�i

(14)

forms a lower p1 ´ ↵, p"tqtq-LPCS for µ‹
.

Proof. The proof proceeds in two steps. First, we construct an NSM adapted to the private filtration Z ” pZtq
8
t“0

. Second
and finally, we apply Ville’s inequality to obtain a high-probability upper bound on the NSM, and show that this inequality
results in the CS given in Theorem 8.

Step 1. Consider the nonnegative process starting at one given by

Mtpµ
‹
q :“

tπ

i“1

exp
 
�ipZi ´ ⇣ipµ

‹
qq ´ �2i {8

(
, (24)
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where p�tq8
t“1

is a real-valued sequence2 and ⇣tpµ‹
q :“ rtµ‹

` p1 ´ rtq{2 as usual. We claim that pMtpµ‹
qq

8
t“0

is a
supermartingale, meaning EpMtpµ‹

q | Zt´1q § Mt´1pµ‹
q. Writing out the conditional expectation of Mtpµ‹

q, we have

E pMtpµ
‹
q | Zt´1q

“ E
˜

tπ

i“1

exp
 
�ipZi ´ ⇣ipµ

‹
qq ´ �2i {8

( ˇ̌
ˇ̌ Zt´1

¸

“

t´1π

i“1

exp
 
�ipZi ´ ⇣ipµ

‹
qq ´ �2i {8

(

loooooooooooooooooooomoooooooooooooooooooon
Mt´1pµ‹q

¨E
ˆ
exp

 
�tpZt ´ ⇣tpµ

‹
qq ´ �2t {8

( ˇ̌
ˇ̌ Zt´1

˙

looooooooooooooooooooooooooomooooooooooooooooooooooooooon
p:q

,

since Mt´1pµ‹
q is Zt´1-measurable, and thus it can be written outside of the conditional expectation. It now suffices to show

that p:q § 1. To this end, note that Zt is a r0, 1s-bounded random variable with conditional mean EpZt | Zt´1q “ ⇣tpµ‹
q

by design of NPRR (Algorithm 2). Since bounded random variables are sub-Gaussian (Hoeffding, 1963), we have that

Ep�tpZt ´ ⇣tpµ
‹
qq | Zt´1q § exp

 
�2t {8

(
,

and hence p:q § 1. Therefore, pMtpµ‹
qq

8
t“0

is a Q
8
µ‹ -NSM.

Step 2. By Ville’s inequality for NSMs (Ville, 1939), we have that

PpDt : Mtpµ
‹
q • 1{↵q § ↵.

In other words, we have that Mtpµ‹
q † 1{↵ for all t P N with probability at least 1 ´ ↵. Using some algebra to rewrite the

inequality Mtpµ‹
q † 1{↵, we have

Mtpµ
‹
q † 1{↵ ñ

tπ

i“1

exp
 
�ipZi ´ ⇣ipµ

‹
qq ´ �2i {8

(
†

1

↵

ñ

tÿ

i“1

“
�ipZi ´ ⇣ipµ

‹
qq ´ �2i {8

‰
† logp1{↵q

ñ

tÿ

i“1

�iZi ´ µ‹
tÿ

i“1

�iri ´

tÿ

i“1

�i ¨ p1 ´ riq{2 ´

tÿ

i“1

�2i {8 † logp1{↵q

ñ µ‹
°

∞t
i“1

�i ¨ pZi ´ p1 ´ riq{2q
∞t

i“1
ri�iloooooooooooooooomoooooooooooooooon

pµtp�t
1

q

´
logp1{↵q `

∞t
i“1

�2i {8
∞t

i“1
ri�ilooooooooooooomooooooooooooon

B̄tp�t
1

q

Therefore, L̄t :“ pµtp�t1q ´ B̄tp�t1q forms a lower p1 ´ ↵q-CS for µ‹. The upper CS Ūt :“ pµtp�t1q ` B̄tp�t1q can be derived
by applying the above proof to p´Ztq

8
t“1

and their conditional means p´⇣ipµ‹
qq

8
t“1

. This completes the proof

A.5. Proof of Theorem 9
Theorem 9 (Confidence sequences for time-varying means). Suppose X1, X2, . . . are independent r0, 1s-bounded random

variables with individual means EXt “ µ‹
t for each t, and let Z1, Z2 . . . be their privatized views according to NPRR

without sequential interactivity. Define

pµt :“

∞
t

i“1
pZi ´ p1 ´ rq{2q

tr
, (16)

and rB˘
t :“

gffe t�2 ` 1
2ptr�q2

log

˜ a
t�2 ` 1

↵

¸
, (17)

for any � ° 0. Then, rC˘
t :“ ppµt ˘ rB˘

t q forms a two-sided p1 ´ ↵, "q-LPCS for rµ‹
t , where " “ logp1 `

2r
1´r q.

2The proof also works if p�tq
8
t“1 is Z-predictable but we omit this detail since we typically recommend using real-valued sequences

anyway.
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Proof. The proof proceeds in three steps. First, we derive a sub-Gaussian NSM indexed by a parameter � P R. Second, we
mix this NSM over � using the density of a Gaussian distribution, and justify why the resulting process is also an NSM.
Third and finally, we apply Ville’s inequality and invert the NSM to obtain p rC˘

t q
8
t“1

.

Step 1: Constructing the �-indexed NSM. Let pXtq
8
t“1

be independent r0, 1s-bounded random variables with individual
means given by EXt “ µ‹

t , and let pZtq
8
t“1

be the NPRR-induced private views of pXtq
8
t“1

. Define ⇣pµq :“ rµ ` p1 ´ rq{2
for any µ P r0, 1s, and r P p0, 1s. Let � P R and consider the process,

Mtp�q :“
tπ

i“1

exp
 
�pZi ´ ⇣pµ‹

i qq ´ �2{8
(
, (25)

with M0p�q ” 0. We claim that (25) forms an NSM with respect to the private filtration Z . The proof technique is nearly
identical to that of Theorem 8 but with changing means and � “ �1 “ �2 “ ¨ ¨ ¨ P R. Indeed, Mtp�q is nonnegative with
initial value one by construction, so it remains to show that pMtp�qq

8
t“0

is a supermartingale. That is, we need to show that
for every t, we have EpMtp�q | Zt´1q § Mt´1p�q. Writing out the conditional expectation of Mtp�q, we have

EpMtp�q | Zt´1q “ E
˜

tπ

i“1

exp
 
�pZi ´ ⇣pµ‹

i qq ´ �2{8
( ˇ̌

ˇ Zt´1

1

¸

“

t´1π

i“1

exp
 
�pZi ´ ⇣pµ‹

i qq ´ �2{8
(

looooooooooooooooooomooooooooooooooooooon
Mt´1p�q

¨E
`
exp

 
�pZt ´ ⇣pµ‹

t qq ´ �2{8
(

| Zt´1

1

˘

“ Mt´1p�q ¨ E
`
exp

 
�pZt ´ ⇣pµ‹

t qq ´ �2{8
(˘

loooooooooooooooooooomoooooooooooooooooooon
p:q

,

where the last inequality follows by independence of pZtq
8
t“1

, and hence the conditional expectation becomes a marginal
expectation. Therefore, it now suffices to show that p:q § 1. Indeed, Zt is a r0, 1s-bounded, mean-⇣pµ‹

t q random
variable. By Hoeffding’s sub-Gaussian inequality for bounded random variables (Hoeffding, 1963), we have that
Erexpt�pZt ´ ⇣pµ‹

t qqus § expt�2{8u, and thus

p:q “ E rexp t�pZt ´ ⇣pµ‹
t qqus ¨ exp

 
´�2{8

(
§ 1.

It follows that pMtp�qq
8
t“0

is an NSM.

Step 2. Let us now construct a sub-Gaussian mixture NSM. Note that the mixture of an NSM with respect to a probability
distribution is itself an NSM (Robbins, 1970; Howard et al., 2020) — a straightforward consequence of Fubini’s theorem.
Concretely, let f⇢2p�q be the probability density function of a mean-zero Gaussian random variable with variance ⇢2,

f⇢2p�q :“
1a
2⇡⇢2

exp

"
´�2

2⇢2

*
.

Then, since mixtures of NSMs are themselves NSMs, the process pMtq
8
t“0

given by

Mt :“

ª

�PR
Mtp�qf⇢2p�qd� (26)

is an NSM. We will now find a closed-form expression for Mt. To ease notation, define the partial sum
S‹
t :“

∞t
i“1

pZi ´ ⇣pµ‹
i qq. Writing out the definition of Mt, we have
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Mt :“

ª

�PR

tπ

i“1

exp
 
�pZi ´ ⇣pµ‹

i qq ´ �2{8
(
f⇢2p�qd�

“

ª

�
exp

$
’’’’&

’’’’%

�
tÿ

i“1

pZi ´ ⇣pµ‹
i qq

loooooooomoooooooon
S‹
t

´t�2{8

,
////.

////-

f⇢2p�qd�

“

ª

�
exp

 
�S‹

t ´ t�2{8
( 1a

2⇡⇢2
exp

"
´�2

2⇢2

*
d�

“
1a
2⇡⇢2

ª

�
exp

 
�S‹

t ´ t�2{8
(
exp

"
´�2

2⇢2

*
d�

“
1a
2⇡⇢2

ª

�
exp

"
�S‹

t ´
�2pt⇢2{4 ` 1q

2⇢2

*
d�

“
1a
2⇡⇢2

ª

�
exp

"
´�2pt⇢2{4 ` 1q ` 2�⇢2S‹

t

2⇢2

*
d�

“
1a
2⇡⇢2

ª

�
exp

#
´ap�2 ´

b
a2�q

2⇢2

+
d�,

where we have set a :“ t⇢2{4 ` 1 and b :“ ⇢2S‹
t . Completing the square in the exponent, we have that

exp

#
´�2 ´ 2� b

a `
`
b
a

˘2
´

`
b
a

˘2

2⇢2{a

+
“ exp

#
´p�´ b{aq

2

2⇢2{a
`

a pb{aq
2

2⇢2

+

“ exp

"
´p�´ b{aq

2

2⇢2{a

*

looooooooooomooooooooooon
p‹q

exp

"
b2

2a⇢2

*
.

Now notice that p‹q is proportional to the density of a Gaussian random variable with mean b{a and variance ⇢2{a. Plugging
the above back into the integral and multiplying the entire quantity by a´1{2

{a´1{2, we obtain the closed-form expression
of the mixture NSM,

Mt :“
1a

2⇡⇢2{a

ª

�PR
exp

"
´p�´ b{aq

2

2⇢2{a

*
d�

loooooooooooooooooooooooomoooooooooooooooooooooooon
“1

exp
!

b2

2a⇢2

)

?
a

“
1a

t⇢2{4 ` 1
exp

"
⇢2pS‹

t q
2

2pt⇢2{4 ` 1q

*
. (27)

Step 3. Now that we have computed the mixture NSM pMtq
8
t“0

, we are ready to apply Ville’s inequality and invert the
process. Since pMtq

8
t“0

is an NSM, we have by Ville’s inequality (Ville, 1939),

PpDt : Mt • 1{↵q § ↵ or equivalently, Pp@t, Mt † 1{↵q • 1 ´ ↵.
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Therefore, with probability at least p1 ´ ↵q, we have that for all t P t1, 2, . . . u,

Mt † 1{↵ ñ
1a

t⇢2{4 ` 1
exp

"
⇢2pS‹

t q
2

2pt⇢2{4 ` 1q

*
† 1{↵

ñ
⇢2pS‹

t q
2

2pt⇢2{4 ` 1q
´ log

´a
t⇢2{4 ` 1

¯
† logp1{↵q

ñ
⇢2pS‹

t q
2

2pt⇢2{4 ` 1q
† log

˜a
t⇢2{4 ` 1

↵

¸

ñ pS‹
t q

2
†

2pt⇢2{4 ` 1q

⇢2
log

˜a
t⇢2{4 ` 1

↵

¸

ñ
pS‹

t q
2

t2r2
†

2ptp⇢{2q
2

` 1q

ptr⇢q2
log

˜a
tp⇢{2q2 ` 1

↵

¸

looooooooooooooooooooooomooooooooooooooooooooooon
p‹‹q

.

Set � :“ ⇢{2 and notice that p‹‹q “ p rB˘
t q

2 where rB˘
t is the boundary given by (17) in the statement of Theorem 9.

Also recall from Theorem 9 the private estimator pµt :“ 1

tr

∞t
i“1

rZi ´ p1 ´ rq{2s and the quantity we wish to capture
— the moving average of population means rµ‹

t :“ 1

t

∞t
i“1

µ‹
i , where µ‹

i “ EXi. Putting these together with the above
high-probability bound, we have that with probability • p1 ´ ↵q, for all t,

Mt † 1{↵ ñ
pS‹

t q
2

t2r2
† p rB˘

t q
2

ñ ´ rB˘
t †

S‹
t

tr
† rB˘

t .

ñ ´ rB˘
t †

∞t
i“1

rZi ´ ⇣pµ‹
i qs

tr
† rB˘

t .

ñ ´ rB˘
t †

∞t
i“1

rZi ´ prµ‹
i ` p1 ´ rq{2qs

tr
† rB˘

t .

ñ ´ rB˘
t †

∞t
i“1

rZi ´ p1 ´ rq{2s

tr
´

Ar
∞t

i“1
µ‹
i

tAr
† rB˘

t .

ñ ´

∞t
i“1

rZi ´ p1 ´ rq{2s

tr
´ rB˘

t † ´

∞t
i“1

µ‹
i

t
† ´

∞t
i“1

rZi ´ p1 ´ rq{2s

tr
` rB˘

t .

ñ ´pµt ´ rB˘
t † ´rµ‹

t † ´pµt ` rB˘
t .

ñ pµt ´ rB˘
t † rµ‹

t † pµt ` rB˘
t .

In summary, we have that rC˘
t :“ ppµt ˘ rB˘

t q forms a p1 ´ ↵q-CS for the time-varying parameter rµ‹
t , meaning

P
´

@t, rµ‹
t P rC˘

t

¯
• 1 ´ ↵.

This completes the proof.

B. Additional results
B.1. Confidence sets under randomized response

Since NPRR is a strict generalization for bounded random variables, it can be used to construct confidence sets for the mean
of Bernoulli random variables which are privatized via randomized response (RR). The following corollary provides a
Hoeffding-type CI for the mean under RR.
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Corollary 2 (Locally private Hoeffding inequality under RR). Let X1, . . . , Xn „ Bernoullipp‹
q, and let Z1, . . . , Zn be

their privatized views according to RR for some fixed r P p0, 1s. Then,

9LH

n :“

∞
n

i“1
pZi ´ p1 ´ rq{2q

nr
´

c
logp1{↵q

2nr2
(28)

is a p1 ´ ↵, "q-lower LPCI for p‹
, where " “ logp1 ` 2r{p1 ´ rqq.

Corollary 2 is a special case of Theorem 4. Notice that in the non-private setting when r “ 1, Corollary 2 recovers
Hoeffding’s inequality exactly (Hoeffding, 1963).

B.2. Confidence sets for sample means

While we primarily focused on deriving CIs and CSs for population means, our techniques can also be applied to the
construction of CIs and CSs for the sample mean. Indeed, in the non-interactive case, the proof of Theorem 4 can be
modified so that the bound (11) is a lower p1 ´ ↵q-CI for the sample mean µ‹ :“ 1

n

∞n
i“1

xi, recovering essentially the
same result as Ding et al. (2017, Theorem 1).3 However, implicit in our results are also time-uniform CSs for the running

sample mean so far. Concretely, we have the following corollary.
Corollary 3 (A confidence sequence for the running sample mean). Let pxtq

8
t“1

be a sequence of r0, 1s-bounded numbers

and let pZtq
8
t“1

be their privatized views according to NPRR without sequential interactivity. Then, the same bound as given

in Theorem 9, i.e.

rCt :“

¨

˝
∞t

i“1
pZi ´ p1 ´ rq{2q

tr
˘

gffe t�2 ` 1

2ptr�q2
log

˜a
t�2 ` 1

↵

¸˛

‚ (29)

forms a p1 ´ ↵, "q-LPCS for the running sample mean rµ‹
t :“ 1

t

∞t
i“1

xi, i.e.

P
´

@t, rµ‹
t P rCt

¯
• 1 ´ ↵. (30)

The above corollary is an immediate consequence of Theorem 9 instantiated for random variables pXtq
8
t“1

with degenerate
distributions. (and hence EXt “ Xt “ µ‹

t ).

Corollary 3 also sheds some light on how the two estimands (population vs sample means) are related but fundamentally
different. Both the (a) stochastic setting with data X1, X2, . . . that have a constant mean EX1 “ µ‹

P r0, 1s and (b)
nonstochastic setting with deterministic data x1, x2, . . . are special cases of the stochastic setting with data that have
time-varying means EXt “ µt for t • 1. Setting (a) is recovered by assuming that µ1 “ µ2 “ ¨ ¨ ¨ “ µ‹, while setting (b)
is recovered by assuming pXtq

8
t“1

have degenerate distributions (or by conditioning on them). Clearly, neither is a special
case of the other, and hence we cannot expect CIs/CSs for one to work for the other in general (though in this case, p rCtq

8
t“1

works for both).

B.3. Why one should set G “ 1 for Hoeffding-type methods

In Section 3, we recommended setting G to the smallest possible value of 1 because Hoeffding-type bounds cannot benefit
from larger values. We will now justify mathematically where this recommendation came from.

Suppose pXtq
n
t“1

„ P for some P
n
µ‹ where we have chosen r P p0, 1s and an integer G • 1 to satisfy "-LDP with

" :“ log

ˆ
1 `

pG ` 1qr

1 ´ r

˙
. (31)

Recall the NPRR-Hoeffding lower LPCI given (11),

9LH

n :“

∞n
i“1

pZi ´ p1 ´ rq{2q

nr
´

c
logp1{↵q

2nr2looooomooooon
9BH
n

, (32)

3Technically, a one-sided CI is more general than Ding et al. (2017)’s since theirs is a two-sided CI that we recover after taking a union
bound over lower and upper CIs, but the lower CI is also implicit in their proof.
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and take particular notice of 9BH

n , the “boundary”. Making this bound as sharp as possible amounts to minimizing 9BH

n ,
which is clearly when r “ 1 — the non-private case — but what if we want to minimize 9BH

n subject to "-LDP? Given the
relationship between ", r, and G, we have that r can be written as

r :“
expt"u ´ 1

expt"u ` G
.

Plugging this into 9BH

n , we have

9BH

n :“

gffe
logp1{↵q

2n
´

exp "´1

exp "`G

¯2
“

ˆ
expt"u ` G

expt"u ´ 1

˙
¨

c
logp1{↵q

2n
,

which is a strictly increasing function of G. It follows that G should be set to the minimal value of 1 to make 9LH

n as sharp as
possible.

B.4. Confidence sets under the sequentially interactive Laplace mechanism

Proposition 1 (Lap-H-CS). Suppose pXtq
8
t“1

„ P for some P
8
µ‹ and let pZtq

8
t“1

be their privatized views according to

Algorithm 1. Let  L

t p�q :“ ´ logp1 ´ �2{"2t q be the (conditional) cumulant generating function of a mean-zero Laplace

random variable with scale 1{"t. Let p�tq8
t“1

be a sequence of random variables such that �t depends on Zt´1

1
— formally

�pZt´1

1
q-measurable — and r0, "tq-valued. Then,

L̄L

t :“

∞
t

i“1
�iZi∞

t

i“1
�i

´
logp1{↵q `

∞
t

i“1

`
�2

i {8 `  L

i p�iq
˘

∞
t

i“1
�i

(33)

forms a lower p1 ´ ↵, p"tq8
t“1

q-LPCS for µ‹
.

To obtain sharp CSs for µ‹, we recommend setting

�t :“

d
logp1{↵q

∞t
i“1

p1{8 ` 1{"2i q logpt ` 1q
^ c ¨ "t, (34)

for some prespecified truncation scale c P p0, 1q. We choose �t as scaling like 1{
?
t log t so that the CS L̄L

t is Op

a
log t{tq

up to log log factors (see Waudby-Smith & Ramdas (2023, Table 1) for more details).4 The constants provided in (34)
arise from approximating  L

p�q by �2{"2 for � near 0 — an approximation that can be justified by a simple application of
L’Hopital’s rule — and attempting to minimize the CI width.

Similar to Section 3, we can choose p�tq8
t“1

so that L̄L

t is tight for a fixed sample size n. Indeed, we have the following
Laplace-Hoeffding CIs for µ‹.

Corollary 4 (Lap-H). Given the same assumptions as Proposition 1 for a fixed sample size n, define

�t,n :“

d
logp1{↵q

n
t

∞t
i“1

p1{8 ` 1{"2i q
^ c ¨ "t, (35)

and plug it into L̄L

t as given above. Then,

9LL

n :“ max
1§t§n

L̄t

is a p1 ´ ↵, p"tqtq-lower LPCI for µ‹
.

The proof of Proposition 1 (and hence Corollary 4) can be found in Section C.1. Note that any prespecified value of
c P p0, 1q yields valid CSs and CIs, we find that smaller values (e.g. near 0.1) yield tighter intervals, and we set c “ 0.1 in
our simulations (Figures 4 and 5).

4This specific rate assumes "t “ " P p0, 1q for each t.
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B.5. Variance-adaptive confidence intervals and sequences

B.5.1. VARIANCE-ADAPTIVE CONFIDENCE INTERVALS

Notice that if Gt “ 1 for each t, then regardless of how low-variance pXtq
n
t“1

are, the observations that are ultimately used
for confidence set construction are still Bernoulli. In other words, it does not matter whether pXtq

n
t“1

are Bernoulli(1/2),
Uniform[0, 1], or Beta(100, 100) — with variances of roughly 0.25, 0.083, and 0.0012, respectively — the privatized
observations pZtq

n
t“1

are all Bernoulli(1/2) with a maximal variance 0.25. Unfortunately, this means that variance-adaptive
techniques cannot be used to derive tighter CIs from pZtq

n
t“1

directly. The story changes, however, when Gt • 2. Concretely,
for the same value of rt, setting Gt to be very large does not change the conditional mean of Zt but it can substantially
lower its conditional variance (e.g. if Xt has a continuous distribution, such as Beta(↵,�)). Of course, given the fact that
NPRR satisfies "t-LDP with "t “ log

´
1 `

pGt`1qrt
1´rt

¯
, there are privacy implications to increasing Gt, and hence there is a

tradeoff that must be carefully navigated when choosing prt, Gtq to satisfy "t when attempting to derive variance-adaptive
CIs. We will leave that delicate discussion for later — for now, it is just important to keep in mind that larger Gt can lower
the variance of pZtq

n
t“1

, and our goal will be to exploit this fact for the sake of tighter CIs.

We will proceed by turning to the literature on nonasymptotic CIs for bounded random variables, focusing on the
(super)martingale-based CIs of Waudby-Smith & Ramdas (2023) and adapting their techniques to the locally private
setting. Specifically, we will derive private analogues of the product martingales outlined in Waudby-Smith & Ramdas
(2023, Section 4) as well as the so-called “predictable plug-in” supermartingales of Waudby-Smith & Ramdas (2023, Section
3). As we will see in Theorem 10 and Proposition 2, the former product martingales yield tighter CIs but at the expense
of a closed-form expression, while the latter supermartingales are looser (but still variance-adaptive) and are available in
closed-form.

Product “betting” martingales. Beginning with the former, we follow the discussions in Waudby-Smith & Ramdas
(2023, Remark 1 & Section 5.1) and set

�t,npµq :“

d
2 logp1{↵q

p�2t´1
n

^
c

⇣tpµq
, where (36)

p�2t :“
1{4 `

∞t
i“1

pZi ´ p⇣iq2

t ` 1
, p⇣t :“

1{2 `
∞t

i“1
Zi

t ` 1
,

and c P p0, 1q is some prespecified truncation scale (e.g. 1/2 or 3/4). Given the above, we have the following variance-
adaptive CI for µ‹ under NPRR.

Theorem 10 (NPRR-hedged). Suppose pXtq
n
t“1

„ P for some P P P
n
µ‹ and let pZtq

n
t“1

„ Q be their NPRR-privatized

views where Q P Q
n
µ‹ . Define

Kt,npµq :“
tπ

i“1

r1 ` �i,npµq ¨ pZi ´ ⇣ipµqqs (37)

with �t,npµq given by (36). Then, Kt,npµq is a nonincreasing function of µ P r0, 1s, and Kt,npµ‹
q forms a Q

n
µ‹ -NM.

Consequently,

9Ln :“ max
1§t§n

inf tµ P r0, 1s : Kt,npµq † 1{↵u (38)

forms a lower p1 ´ ↵, p"tqtq-LPCI for µ‹
, meaning Ppµ‹

• 9Lnq • 1 ´ ↵.

The proof in Section C.3 follows a similar technique to that of Theorem 11. As is apparent in the proof, Kt,npµ‹
q forms a

Q
n
µ‹ -NM regardless of how �t,npµq is chosen, in which case the resulting 9Ln would still be a bona fide lower confidence

bound. However, the choice of �t,npµq given in (36) provides excellent empirical performance for the reasons discussed in
(Waudby-Smith & Ramdas, 2023, Section 5.1) and guarantees that 9Ln is an interval (rather than a union of disjoint sets, for
example). We find that Theorem 10 has the best empirical performance out of the private CIs in our paper (see Figure 4). In
our simulations (Figure 4), we set c “ 0.8, and pr,Gq were chosen using the technique outlined in Section B.6.

Empirical Bernstein supermartingales. While Theorem 10 improves on Theorem 4 in terms of variance-adaptivity, the
resulting bounds given in (38) are implicit, and hence require numerical methods (e.g. root-finding algorithms) to compute
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the downstream CI. The numerical operations required are both computationally efficient and straightforward to implement
in code, but closed-form bounds may nevertheless be preferable for the sake of simplicity. Empirical Bernstein CIs occupy a
middle ground between the Hoeffding-style CIs of Theorem 8 and the implicit CIs of Theorem 10 by being both closed-form
and variance-adaptive. To this end, consider the following tuning parameters which are similar (but not identical) to (36):

�EB

t,npµq :“

d
2 logp1{↵q

p�2t´1
n

^ c, where (39)

p�2t :“
1{4 `

∞t
i“1

pZi ´ p⇣iq2

t ` 1
, p⇣t :“

1{2 `
∞t

i“1
Zi

t ` 1
,

and c P p0, 1q. Then, we have the following variance-adaptive empirical Bernstein CIs under NPRR.
Proposition 2 (NPRR-EB). Under the same assumptions as Theorem 10, let p�EB

t,nq
n
t“1

be the r0, 1q-valued Z-predictable

sequence given in (39) and define

pµtp�
t
1
q :“

∞t
i“1

�i ¨ pZi ´ p1 ´ riq{2q
∞t

i“1
ri�i

,

B̄EB

t p�t
1
q :“

logp1{↵q `
∞t

i“1
4pZi ´ p⇣i´1q

2 Ep�iq∞t
i“1

ri�i
.

where  Ep�q :“ p´ logp1 ´ �q ´ �q{4. Then,

9LEB

t :“ max
1§t§n

 
pµt ´ B̄EB

t

(
(40)

forms a lower p1 ´ ↵, p"tqtq-LPCI for µ‹
, meaning Ppµ‹

• 9LEB

t q • 1 ´ ↵.

Proposition 2 is a corollary of Proposition 3 whose proof can be found in Appendix C.5. Similar to Theorem 10, one
can use any p�EB

t,nq
n
t“1

as long as they are predictable and r0, 1q-valued, but we presented (39) as it tends to exhibit good
empirical performance for the reasons discussed in Waudby-Smith & Ramdas (2023). As previously alluded to, the essential
difference between Theorem 10 and Proposition 2 is that the former tends to be tighter in practice, while the latter has
the advantage of having a computationally and analytically simple closed-form expression. In principle, the proof and
techniques of Theorem 10 and Proposition 2 may be adapted to many other variance-adaptive CIs for bounded random
variables, including Bentkus (2004), Audibert et al. (2007), Maurer & Pontil (2009), Orabona & Jun (2021), or other bounds
in Waudby-Smith & Ramdas (2023), but we presented the aforementioned two for simplicity and illustration. Let us now
turn our attention to a more challenging but related problem of constructing time-uniform confidence sequences instead of
fixed-time confidence intervals.

B.5.2. VARIANCE-ADAPTIVE TIME-UNIFORM CONFIDENCE SEQUENCES

In Section 3, we presented Hoeffding-type CSs for µ‹ under NPRR. As discussed in Section B.5.1, Hoeffding-type
inequalities are not variance-adaptive. In this section, we will derive a simple-to-compute, variance-adaptive CS at the
expense of a closed-form expression. Adapting the so-called “grid Kelly capital process” (GridKelly) of Waudby-Smith &
Ramdas (2023, Section 5.6) to the locally private setting, consider the family of processes for each µ P r0, 1s, and for any
user-chosen integer D • 2,

K
`
t pµq :“

Dÿ

d“1

tπ

i“1

”
1 ` �`

i,d ¨ pZi ´ ⇣ipµqq

ı
,

and K
´
t pµq :“

Dÿ

d“1

tπ

i“1

”
1 ´ �´

i,d ¨ pZi ´ ⇣ipµqq

ı
,

where �`
i,d :“ d

pD`1q⇣ipµq and �´
i,d :“ d

pD`1qp1´⇣ipµqq for each i. Then we have the following locally private CSs for µ‹.

Theorem 11 (NPRR-GK-CS). Let pZtq
8
t“1

„ Q for some Q P Q
8
µ‹ be the output of NPRR as described in Section 2. For

any prespecified ✓ P r0, 1s, define the process pK
GK

t pµqq
8
t“0

given by

K
GK

t pµq :“ ✓K`
t pµq ` p1 ´ ✓qK

´
t pµq,
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with K
GK

0
pµq ” 1. Then, K

GK

t pµ‹
q forms a Q

8
µ‹ -NM, and

C̄GK

t :“

"
µ P r0, 1s : KGK

t pµq †
1

↵

*

forms a p1 ´ ↵, p"tqtq-LPCS for µ‹
, meaning Pp@t, µ‹

P C̄GK

t q • 1 ´ ↵. Moreover, C̄GK

t forms an interval almost surely.

The proof of Theorem 11 is given in Section C.4 and follows from Ville’s inequality for nonnegative supermartingales
(Ville, 1939; Howard et al., 2020). If a lower or upper CS is desired, one can set ✓ “ 1 or ✓ “ 0, respectively, with ✓ “ 1{2
yielding a two-sided CS. In our simulations (Figure 5), we set D “ 30, and pr,Gq were chosen using the technique outlined
in Section B.6.

In Proposition 2, we presented a closed-form empirical Bernstein CI for µ‹ under NPRR. Similar to the relationship between
the fixed-time NPRR-Hoeffding CI (Theorem 8) and the time-uniform NPRR-Hoeffding CS (Theorem 4), Proposition 2 is a
corollary of a more general closed-form empirical Bernstein CS instantiated at a fixed sample size. We omitted this CS from
the main discussion for brevity, but provide its details here.
Proposition 3 (NPRR-EB-CS). Given pZtq

8
t“1

„ Q
8
µ‹ and let pµtp�t1q and sBEB

t p�t
1
q be as in Proposition 2:

pµtp�
t
1
q :“

∞t
i“1

�i ¨ pZi ´ p1 ´ riq{2q
∞t

i“1
ri�i

, and

B̄EB

t p�t
1
q :“

logp1{↵q `
∞t

i“1
4pZi ´ p⇣i´1q

2 Ep�iq∞t
i“1

ri�i
.

where  Ep�q :“ p´ logp1 ´ �q ´ �q{4. Then,

sLEB

t :“ pµtp�
t
1
q ´ sBEB

t p�t
1
q (41)

forms a lower p1 ´ ↵, p"tqtq-LPCS for µ‹
, meaning Pp@t • 1, µ‹

• sLEB

t q • 1 ´ ↵.

The proof can be found in Appendix C.5, and combines the techniques for deriving private concentration inequalities (such
as in Theorem 8) with those for deriving predictable plug-in empirical Bernstein inequalities (such as in Waudby-Smith &
Ramdas (2023, Theorem 2)).

Similar to Theorem 10 and Proposition 2, the proofs and techniques of Theorem 11 and Proposition 3 could potentially
be adapted to many other variance-adaptive CSs for bounded random variables, including other bounds contained in
Waudby-Smith & Ramdas (2023), Kuchibhotla & Zheng (2021), or Orabona & Jun (2021).

B.6. Choosing pr,Gq for variance-adaptive confidence sets

Unlike Hoeffding-type bounds, it is not immediately clear how we should choose pr,Gq to satisfy "-LDP and obtain sharp
confidence sets using Theorems 11 and 10, since there is no closed form bound to optimize. Nevertheless, certain heuristic
calculations can be performed to choose pr,Gq in a principled way.5

One approach is to view the raw-to-private data mapping X fiÑ Z as a channel over which information is lost, and we would
like to choose the mapping so that as much information is preserved as possible. We will aim to measure “information lost”
by the conditional entropy HpZ | Xq and minimize a surrogate of this value.

For the sake of illustration, suppose that X has a continuous uniform distribution. This is a reasonable starting point because
it captures the essence of preserving information about a continuous random variable X on a discretely supported output
space G :“ t0, 1{G, . . . , G{Gu. Then, the entropy HpZ | X “ xq conditioned on X “ x is given by

HpZ | X “ xq :“
ÿ

zPG
PpZ “ z | X “ xq log

2
PpZ “ z | X “ xq, (42)

and we know that by definition of NPRR, the conditional probability mass function of pZ | Xq is

PpZ “ z | X “ xq “
1 ´ r

G ` 1
` rG ¨

“
1pz “ xceil

qpx ´ xfloor
q ` 1pz “ xfloor

qpxceil
´ xq

‰
.

5Note that “heuristics” do not invalidate the method — no matter what pr,Gq are chosen to be, "-LDP and confidence set coverage are
preserved. We are just using heuristic to choose pr,Gq in a smart way for the sake of gaining power.
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We will use the heuristic approximation x ´ xfloor
« xceil

´ x « 1{p2Gq, which would hold with equality if x were at the
midpoint between xfloor and xceil. With this approximation in mind, we can write

PpZ “ z | X “ xq «
1 ´ r

G ` 1
` rG ¨

„
1

2G
1pz “ xceil or z “ xfloor

q

⇢

“
1 ´ r

G ` 1
`

r

2
1pz “ xceil or z “ xfloor

q (43)

Given (43), we can heuristically compute HpZ | X “ xq because for exactly two terms in the sum
∞

zPG PpZ “ z | X “

xq log
2
PpZ “ z | X “ xq, we will have 1pz “ xceil or z “ xfloor

q “ 1 and the other G ´ 1 terms will have the indicator
set to 0. Simplifying notation slightly, let p1pr,Gq :“ p1 ´ rq{pG ` 1q ` r{2 be (43) for those whose indicator is 1, and
p0pr,Gq :“ p1 ´ rq{pG ` 1q for those whose indicator is 0. Therefore, we can write

HpZ | X “ xq « pG ´ 1qp0pr,Gq log
2
p0pr,Gq ` 2p1pr,Gq log

2
p1pr,Gq. (44)

Finally, the conditional entropy HpZ | Xq can be approximated by

HpZ | Xq “

ª
1

0

HpZ | X “ xqdx « pG ´ 1qp0pr,Gq log
2
p0pr,Gq ` 2p1pr,Gq log

2
p1pr,Gq, (45)

since we assumed that X was uniform on [0, 1].

Given a fixed privacy level " P p0,8q, the approximation (45) gives us an objective function to minimize with respect to r
(since G is completely determined by r once " is fixed). This can be done using standard numerical minimization solvers.
Once an optimal propt, rGoptq pair is determined numerically, rGopt may not be an integer (but we require G • 1 to be an
integer for NPRR). As such, one can then choose the final Gopt to be t rGoptu or r rGopts, depending on which one minimizes
HpZ | Xq while keeping " fixed. If the numerically determined rGopt is § 1, then one can simply set Gopt :“ 1 and adjust
ropt accordingly.

B.7. One-sided time-varying

The following one-sided analogue of Theorem 9 can be derived via slightly different techniques; the details can be found in
its proof.
Proposition 4. Given the same setup as Theorem 9, define

rBt :“

gffe t�2 ` 1
2ptr�q2

log

˜
1 `

a
t�2 ` 1

2↵

¸
. (46)

Then, rLt :“ pµt ´ rBt forms a lower p1 ´ ↵, "q-LPCS for rµ‹
t :“ 1

t

∞t
i“1

µ‹
i , meaning

P
´

@t, rµ‹
t • rLt

¯
• 1 ´ ↵. (47)

The proof is provided in Section C.7 and uses a one-sided sub-Gaussian mixture supermartingale technique similar to
Howard et al. (2021, Proposition 6). Since rBt resembles rB˘

t but with ↵ doubled, we suggest choosing � using (18) but with
�2↵pt0q. We display rLt alongside the two-sided bound rC˘

t of Theorem 9 in Figure 6.

B.8. Private hypothesis testing and p-values

So far, we have focused on the use of confidence sets for statistical inference, but another closely related perspective is
through the lens of hypothesis testing and p-values (and their sequential counterparts). Fortunately, we do not need any
additional techniques to derive methods for testing, since they are byproducts of our previous results.

Following the nonparametric conditions6 outlined in Section 3, suppose that pXtq
8
t“1

„ P for some P P P
8
µ‹ which are

then privatized into pZtq
8
t“1

„ Q P Q
8
µ‹ via NPRR. The goal now — “locally private sequential testing” — is to use the

6The discussion that follows also applies to the parametric case.
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private data pZtq
8
t“1

to test some null hypothesis H0. For example, to test µ‹
“ µ0, we set H0 “ Q

8
µ0

or to test µ‹
§ µ0,

we set H0 “ tQ P Q
8
µ : µ § µ0u.

Concretely, we are tasked with designing a binary-valued function �̄t ” �̄pZ1, . . . , Ztq Ñ t0, 1u with outputs of 1 and 0
being interpreted as “reject H0” and “fail to reject H0”, respectively, so that

sup
QPH0

QpDt : �̄t “ 1q § ↵. (48)

A sequence of functions p�̄tq8
t“1

satisfying (48) is known as a level-↵ sequential test. Another common tool in hypothesis
testing is the p-value, which also has a sequential counterpart, known as the anytime p-value (Johari et al., 2017; Howard
et al., 2021). We say that a sequence of p-values pp̄tq8

t“1
is an anytime p-value if

sup
QPH0

QpDt : p̄t § ↵q § ↵. (49)

There are at least two ways to achieve (48) and (49): (a) by using CSs to reject non-intersecting null hypotheses, and (b) by
explicitly deriving e-processes. We will first discuss (a) and leave (b) to Appendix B.8.2 as the discussion is more involved.

B.8.1. PRIVATE HYPOTHESIS TESTING USING CONFIDENCE SETS.

The simplest and most direct way to test hypotheses using the results of this paper is to exploit the duality between
CSs and sequential tests (or CIs and fixed-time tests). Suppose pC̄tp↵qq

8
t“1

is an LDP p1 ´ ↵q-CS for µ‹, and let
H0 : tQ P Q

8
µ : µ P ⇥0u be a null hypothesis that we wish to test. Then, for any ↵ P p0, 1q,

�̄t :“ 1
`
C̄tp↵q X ⇥0 “ H

˘
(50)

forms an LDP level-↵ sequential test for H0, meaning it satisfies (48). In particular, if C̄tp↵q shrinks to a single point as
t Ñ 8, then p�̄tq8

t“1
has asymptotic power one. Furthermore, inft↵ : C̄tp↵q X ⇥0 “ Hu forms an anytime p-value for H0,

meaning it satisfies (49).

Similarly, if 9Cnp↵q is a p1 ´ ↵q CI for µ‹, then 9�n :“ 1p 9Cnp↵q X ⇥0 “ Hq is a level-↵ test: supQPH0
Qp 9�n “ 1q § ↵,

and 9pn :“ inft↵ : 9Cnp↵q X ⇥0 “ Hu is a p-value for H0: supQPH Qp 9pn § ↵q § ↵.

One can also derive sequential tests using so-called e-processes — processes that are upper-bounded by nonnegative
supermartingales under a given null hypothesis. In fact, every single one of our CSs is derived by first deriving an explicit
e-process. Let us now discuss how one can derive sequential tests and CSs using e-processes.

B.8.2. TESTING VIA e-PROCESSES

To achieve (48) and (49), it is also sufficient to derive an e-process pĒtq
8
t“1

— a Z-adapted process that is upper bounded
by an NSM for every element of H0. Formally, pĒtq

8
t“1

is an e-process for H0 if for every Q P H0, there exists a Q-NSM
pMQ

t q
8
t“1

such that
@t, Ēt § MQ

t
, Q-almost surely. (51)

Here, pMQ
t q

8
t“1

being a Q-NSM means that EQM
Q
t § MQ

t´1
, and MQ

0
” 1, and MQ

t • 0, Q-almost surely. Note that
these upper-bounding NSMs need not be the same, i.e. pĒtq

8
t“1

can be upper bounded by a different Q-NSM for each
Q P H0.

Importantly, if pĒtq
8
t“1

is an e-process under H0, then �t :“ 1pĒt • 1{↵q forms a level-↵ sequential test satisfying (48) by
applying Ville’s inequality to the NSM that upper bounds pĒtq

8
t“1

:

sup
QPH0

QpDt : Ēt • 1{↵q § ↵. (52)

Using the same technique it is easy to see that, p̄t :“ 1{Ēt forms an anytime p-value satisfying (49). Similarly to Section 3,
if we are only interested in inference at a fixed sample size n, we can still leverage e-processes to obtain sharp finite-sample
p-values from private data by simply taking

9pn :“ min
1§t§n

1{Ēt. (53)

As an immediate consequence of (52), we have supQPH0
Qp 9pn § ↵q § ↵.
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With all of this in mind, the question becomes: where can we find e-processes? The answer is simple: every single CS and
CI in this paper was derived by first constructing an e-process under a point null, and Table B.8.2 explicitly links all of these
CSs to their corresponding e-processes.7 For more complex composite nulls however, there may exist e-processes that are
not NSMs (Ramdas et al., 2021), and we touch on one such example in Proposition 5.

Confidence sequence e-process
Theorem 8 (24)
Theorem 9 (27)
Proposition 4 (75)

A note on locally private e-values. Similar to how the p-value is the fixed-time version of an anytime p-value, the
so-called e-value is the fixed-time version of an e-process. An e-value for a null H0 is a nonnegative random variable
9E with Q-expectation at most one, meaning EQp 9Eq § 1 for any Q P H0 (Grünwald et al., 2019; Vovk & Wang, 2021),

and clearly by Markov’s inequality, 1{ 9E is a p-value for H0. Indeed, the time-uniform property (52) for the e-process
pEtq

8
t“1

is equivalent to saying E⌧ is an e-value for any stopping time ⌧ (Howard et al., 2021, Lemma 3); (Zhao et al., 2016,
Proposition 1).

Given the shared goals between e- and p-values, a natural question arises: “Should one use e-values or p-values for
inference?”. While p-values are the canonical measure of evidence in hypothesis testing, there are several reasons why one
may prefer to work with e-values directly; some practical, and others philosophical. From a purely practical perspective,
e-values make it simple to combine evidence across several studies (Grünwald et al., 2019; ter Schure & Grünwald, 2021;
Vovk & Wang, 2021) or to control the false discovery rate under arbitrary dependence (Wang & Ramdas, 2022). They have
also received considerable attention for philosophical reasons including how they relate testing to betting (Shafer, 2021) and
connect frequentist and Bayesian notions of uncertainty (Grünwald et al., 2019; Waudby-Smith & Ramdas, 2020). While the
details of these advantages are well outside the scope of this paper, they are advantages that can now be enjoyed in locally
private inference using our methods.

B.9. A/B testing the weak null

As described in Section B.8, there is a close connection between CSs and sequential hypothesis tests. The lower CS prL�

t q
8
t“1

presented in Proposition 5 is no exception, and can be used to test the weak null hypothesis, rH0: @t, r�t § 0 (see Figure 7).
In words, rH0 is testing “is the new treatment as bad or worse than placebo among the patients so far?”. Indeed, adapting
(76) from the proof of Proposition 4 to the current setting, we have the following anytime p-value for the weak null under
locally private online A/B tests.
Proposition 5. Consider the same setup as Corollary 1, and let �p¨q be the cumulative distribution function of a standard

Gaussian. Define for any � ° 0,

rE�

t :“
2a

t�2 ` 1
exp

#
2�2

pS�

t,0q
2

t�2 ` 1

+
�

˜
2�S�

t,0a
t�2 ` 1

¸
,

where S�

t,0 :“
∞t

i“1
p i ´ p1 ´ rq{2q ´ tr 1{p1´⇡q

1{⇡`1{p1´⇡q and � ° 0. Then, rE�

t forms an e-process and hence rp�t :“ 1{ rE�

t

forms an anytime p-value, and r��t :“ 1prp�t § ↵q forms a level-↵ sequential test for the weak null rH0.

The proof provided in Section C.6 relies on the simple observation that under rH0, p rE�

t q
8
t“1

is upper bounded by a
nonnegative supermartingale, and is hence an “e-process”. We suggest choosing � ° 0 in a similar manner to Proposition 4.

B.10. Locally private adaptive online A/B testing

In Section 4, we demonstrated how our techniques can be used to conduct online A/B tests. However, those A/B tests were
non-adaptive, in the sense that the propensity score ⇡ P p0, 1q was required to be the same constant for all individuals (e.g. in
a Bernoulli experiment). In this section, we briefly describe an alternative CS that can be used to conduct adaptive online
A/B tests, where the propensity scores p⇡tpXtqq

8
t“1

can change over time in a data-dependent fashion and be a function of
7We do not link CIs to e-processes since all of our CIs are built using the aforementioned CSs.
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some measured baseline covariates pXtq
8
t“1

. Note that while we will still consider private tests in the sense of the outcomes
pYtq

8
t“1

being privatized, we will not be privatizing the covariates pXtq
8
t“1

(though this is an interesting direction for future
work).

To set the stage, suppose that pX1, A1, Y1q, pX2, A2, Y2q, . . . are joint random variables such that covariates Xt „ pXp¨q,
are drawn according to some common distribution, treatments At „ Bernoullip⇡tpXtqq are drawn from a conditional
distribution ⇡t (called the propensity score) which can be chosen based on pXi, Ai, Yiq

t´1

i“1
, and Yt „ pY p¨ | At, Xtq is

drawn from a common conditional distribution.8 In words, we have that for each subject t, covariates Xt are observed, a
propensity score ⇡t is chosen based on all previous subjects, a binary treatment At is drawn with probability ⇡tpXtq, and a
r0, 1s-bounded outcome Yt is observed based on subject t’s covariates and their treatment At. Of course, if ⇡pXtq ” ⇡ for
each t, then the above setup recovers the classical (non-adaptive) A/B testing setup considered in Section 4.

Similarly to Section 4, we will construct p1 ´ ↵q-CSs for the time-varying mean r�t :“
1

t

∞t
i“1

�i where

�i :“ E tEpYi | Xi, Ai “ 1q ´ EpYi | Xi, Ai “ 0qu (54)

is the individual treatment effect for subject i. To state our main result, we need to prepare some notation. Let wp1q
t :“

1pAt“1q
⇡tpXtq and wp0q

t :“ 1pAt“0q
1´⇡tpXtq denote the inverse propensity score weights for treatment and control groups, respectively,

and define the following pseudo-outcomes ✓t :“ rwp1q
t Zt ´ p1 ´ wp0q

t p1 ´ Ztqqs{r, and the resulting variance process

Vt :“
1
t

tÿ

i“1

´
✓i ´ p✓i´1

¯
2

, where p✓t :“
˜
1
t

tÿ

i“1

✓i

¸
^ 1 (55)

We are now ready to state the main result of this section.
Theorem 12 (Locally private adaptive A/B estimation). Let Stp

r�1
tq :“ p

∞t
i“1

✓i ´ tr�1
tq{2 for any r�1

t P r0, 1s and define

for any ⇢ ° 0,

ÄMEB

t p r�1
tq :“

ˆ
⇢⇢e´⇢

�p⇢q ´ �p⇢, ⇢q

˙ ˆ
1

Vt ` ⇢

˙
Ftp

r�1
tq, (56)

where Ftp
r�1
tq :“ 1F1p1, Vt ` ⇢` 1, Stp

r�1
tq `Vt ` ⇢q, and 1F1 is Kummer’s confluent hypergeometric function, and �p¨, ¨q

is the upper incomplete gamma function. Then, when evaluated at the true r�t, we have that ÄMEB

t p r�tq forms a nonnegative

supermartingale. Consequently,

rL�

t :“ inf
!

r�t P r0, 1s : ÄMEB

t p r�tq † 1{↵
)

(57)

forms a lower p1 ´ ↵q-CS for the running ATE r�t.

The proof can be found in Appendix C.8. Readers familiar with the semiparametric causal inference literature will notice
that ✓t takes the form of a modified inverse-probability-weighted (IPW) influence function, and that doubly robust (also
known as “augmented IPW”) approaches are often superior both theoretically and empirically. In principle, the above
discussion can be modified to handle doubly robust pseudo-outcomes and CSs using the ideas contained in Waudby-Smith
et al. (2022, Section 2.1), but we presented the IPW-based approach instead for the sake of simplicity.

C. Proofs of additional results
C.1. Proof of Proposition 1

Proposition 1 (Lap-H-CS). Suppose pXtq
8
t“1

„ P for some P
8
µ‹ and let pZtq

8
t“1

be their privatized views according to

Algorithm 1. Let  L

t p�q :“ ´ logp1 ´ �2{"2t q be the (conditional) cumulant generating function of a mean-zero Laplace

random variable with scale 1{"t. Let p�tq8
t“1

be a sequence of random variables such that �t depends on Zt´1

1
— formally

�pZt´1

1
q-measurable — and r0, "tq-valued. Then,

L̄L

t :“

∞
t

i“1
�iZi∞

t

i“1
�i

´
logp1{↵q `

∞
t

i“1

`
�2

i {8 `  L

i p�iq
˘

∞
t

i“1
�i

(33)

forms a lower p1 ´ ↵, p"tq8
t“1

q-LPCS for µ‹
.

8These distributional assumptions can be substantially weakened as in Waudby-Smith et al. (2022), but we present this simplified
setting for the sake of exposition.
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Proof. The proof proceeds in two steps. First, we construct an exponential NSM using the cumulant generating function of
a Laplace distribution. Second and finally, we apply Ville’s inequality to the NSM and invert it to obtain the lower CS.

Step 1. Consider the following process for any µ P r0, 1s,

ML

t pµq :“
tπ

i“1

exp
 
�ipZi ´ µq ´ �2i {8 ´  L

i p�iq
(
,

with ML

t pµq ” 1. We claim that pML

t pµ‹
qq

8
t“0

forms an NSM with respect to the private filtration Z . Indeed, pML

t pµ‹
qq

8
t“0

is nonnegative and starts at one by construction. It remains to prove that pML

t pµ‹
qq is a supermartingale, meaning

EpML

t pµ‹
q | Zt´1q § ML

t´1
pµ‹

q. Writing out the conditional expectation of ML

t pµ‹
q, we have

E
`
ML

t pµ‹
q | Zt´1

˘

“ E
˜

tπ

i“1

exp
 
�ipZi ´ µ‹

q ´ �2i {8 ´  L

i p�iq
( ˇ̌

ˇ̌ Zt´1

¸

“

t´1π

i“1

exp
 
�ipZi ´ µ‹

q ´ �2i {8 ´  L

i p�iq
(

looooooooooooooooooooooooomooooooooooooooooooooooooon
Mt´1pµ‹q

¨E
ˆ
exp

 
�tpZt ´ µ‹

q ´ �2t {8 ´  L

t p�tq
( ˇ̌

ˇ̌ Zt´1

˙

looooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooon
p:q

,

since ML

t´1
pµ‹

q is Zt´1-measurable, and thus it can be written outside of the conditional expectation. It now suffices to
show that p:q § 1. To this end, note that Zt “ Xt ` Lt where Xt is a r0, 1s-bounded, mean-µ‹ random variable, and Lt

is a mean-zero Laplace random variable (conditional on Zt´1). Consequently, Epexp t�tXtu | Zt´1q § expt�2t {8u by
Hoeffding’s inequality (Hoeffding, 1963), and Epexpt�tLtu | Zt´1q “ exp

 
�Lt p�tq

(
by definition of a Laplace random

variable. Moreover, note that by design of Algorithm 1, Xt and Lt are conditionally independent. It follows that

p:q “ E
´
exp

 
�tpZt ´ µ‹

q ´ �2t {8 ´  L

t p�tq
( ˇ̌

ˇ Zt´1

¯

“ E
´
exp

 
�tpXt ´ µ‹

q ` �tLt ´ �2t {8 ´  L

t p�tq
( ˇ̌

ˇ Zt´1

¯

“ E
´
exp

 
�tpXt ´ µ‹

q ´ �2t {8
( ˇ̌

ˇ Zt´1

¯

loooooooooooooooooooooooomoooooooooooooooooooooooon
§1

¨E
´
exp

 
�tLt ´  L

t p�tq
( ˇ̌

ˇ Zt´1

¯

loooooooooooooooooooomoooooooooooooooooooon
“1

§ 1,

where the third equality follows from the conditional independence of Xt and Lt. Therefore, pML

t pµ‹
qq

8
t“0

is an NSM.

Step 2. By Ville’s inequality, we have that

P
`
@t, ML

t pµ‹
q † 1{↵

˘
• 1 ´ ↵.

Let us rewrite the inequality ML

t pµ‹
q † 1{↵ so that we obtain the desired lower CS.

ML

t pµ‹
q † 1{↵ ñ

tπ

i“1

exp
 
�tpZt ´ µ‹

q ´ �2i {8 ´  L

i p�iq
(

† 1{↵

ñ

tÿ

i“1

“
�tpZt ´ µ‹

q ´ �2i {8 ´  L

i p�iq
‰

† logp1{↵q

ñ

tÿ

i“1

�tZt ´

tÿ

i“1

r�2i {8 `  L

i p�iqs ´ µ‹
tÿ

i“1

�i † logp1{↵q

ñ µ‹
°

∞t
i“1

�tZt∞t
i“1

�i
´

logp1{↵q `
∞t

i“1
p�2i {8 `  L

i p�iqq
∞t

i“1
�i

.
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In summary, the above inequality holds uniformly for all t P t1, 2, . . . u with probability at least p1 ´ ↵q. In other words,

∞t
i“1

�tZt∞t
i“1

�i
´

logp1{↵q `
∞t

i“1
p�2i {8 `  L

i p�iqq
∞t

i“1
�i

forms a p1 ´ ↵q-lower CS for µ‹. An analogous upper-CS can be derived by applying the same technique to ´Z1,´Z2, . . .
and their mean ´µ‹. This completes the proof.

C.2. A lemma for Theorems 10 and 11

To prove Theorems 11 and 10, we will prove a more general result (Lemma 1), and use it to instantiate both theorems as
immediate consequences. The proof follows a similar technique to Waudby-Smith & Ramdas (2023) but adapted to the
locally private setting.

Lemma 1. Suppose pXtq
8
t“1

„ P for some P P P
8
µ‹ and let pZtq

8
t“1

be their NPRR-induced privatized views. Let

✓1, . . . , ✓D P r0, 1s be convex weights satisfying
∞D

d“1
✓d “ 1 and let p�pdq

t q
8
t“1

be a Z-predictable sequence for each

d P t1, . . . , Du such that �t P p´p1 ´ ⇣tpµ‹
qq

´1, ⇣tpµ‹
q

´1
q. Then the process formed by

Mt :“
Dÿ

d“1

✓d

tπ

i“1

p1 ` �pdq
i ¨ pZi ´ ⇣ipµ

‹
qqq (58)

is a nonnegative martingale starting at one. Further suppose that pM̆tpµqq
8
t“0

is a process for any µ P p0, 1q that when

evaluated at µ‹
, satisfies M̆tpµ‹

q § Mt almost surely for each t. Then

C̆t :“
!
µ P p0, 1q : M̆tpµq † 1{↵

)
(59)

forms a p1 ´ ↵q-CS for µ‹
.

Proof. The proof proceeds in three steps. First, we will show that the product processes given by
±t

i“1
p1`�i ¨pZi´⇣ipµ‹

qqq

form nonnegative martingales with respect to Z . Second, we argue that
∞D

d“1
✓dM

pdq
t forms a martingale for any Z-adapted

martingales. Third and finally, we argue that C̆t forms a p1´↵q-CS despite not being constructed from a martingale directly.

Step 1. We wish to show that M pdq
t :“

±t
i“1

p1 ` �pdq
i ¨ pZi ´ ⇣ipµ‹

qqq forms a nonnegative martingale starting at one
given a fixed d P t1, . . . , Du. Nonnegativity follows immediately from the fact that �t P p´r1 ´ ⇣tpµ‹

qs
´1, ⇣tpµ‹

q
´1

q,
and M pdq

t begins at one by design. It remains to show that M pdq
t forms a martingale. To this end, consider the conditional

expectation of M pdq
t for any t P t1, 2, . . . u,

E
´
M pdq

t | Zt´1

¯
“ E

˜
tπ

i“1

p1 ` �pdq
i ¨ pZi ´ ⇣ipµ

‹
qqq

ˇ̌
ˇ̌ Zt´1

¸

“

t´1π

i“1

p1 ` �pdq
i ¨ pZi ´ ⇣ipµ

‹
qqq

looooooooooooooooomooooooooooooooooon
Mpdq

t´1

¨E
´
1 ` �pdq

t ¨ pZt ´ ⇣tpµ
‹
qq | Zt´1

¯

“ M pdq
t´1

¨

¨

˝1 ` �pdq
t ¨ rEpZt | Zt´1q ´ ⇣tpµ

‹
qsloooooooooooooomoooooooooooooon

“0

˛

‚

“ M pdq
t´1

.

Therefore, pM pdq
t q

8
t“0

forms a martingale.
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Step 2. Now, suppose that M p1q
t , . . . ,M pDq

t are test martingales with respect to the private filtration Z , and let
✓1, . . . , ✓D P r0, 1s be convex weights, i.e. satisfying

∞D
d“1

✓d “ 1. Then Mt :“
∞D

d“1
M pdq

t also forms a martingale since

EpMt | Zt´1q “ E
˜

Dÿ

d“1

✓dM
pdq
t

ˇ̌
ˇ Zt´1

¸

“

Dÿ

d“1

✓dE
´
M pdq

t | Zt´1

¯

“

Dÿ

d“1

✓dM
pdq
t´1

“ Mt´1.

Moreover, pMtq
8
t“0

starts at one since M0 :“
∞D

d“1
✓dM

pdq
0

“
∞D

d“1
✓d “ 1. Finally, nonnegativity follows from the fact

that ✓1, . . . , ✓D are convex and each pM pdq
t q

8
t“0

is almost-surely nonnegative. Therefore, pMtq
8
t“0

is a test martingale.

Step 3. Now, suppose pM̆tpµqq
8
t“0

is a process that is almost-surely upper-bounded by pMtq
8
t“0

. Define
C̆t :“

!
µ P p0, 1q : M̆tpµq † 1{↵

)
. Writing out the probability of C̆t miscovering µ‹ for any t, we have

PpDt : µ‹
R C̆tq “ PpDt : M̆tpµ

‹
q • 1{↵q

§ PpDt : Mt • 1{↵q

§ ↵,

where the first inequality follows from the fact that M̆tpµ‹
q § Mt almost surely for each t, and the second follows from

Ville’s inequality (Ville, 1939). This completes the proof of Lemma 1.

In fact, a more general “meta-algorithm” extension of Lemma 1 holds, following the derivation of the “Sequentially
Rebalanced Portfolio” in Waudby-Smith & Ramdas (2023, Section 5.8) but we omit these details for the sake of simplicity.

C.3. Proof of Theorem 10

Theorem 10 (NPRR-hedged). Suppose pXtq
n
t“1

„ P for some P P P
n
µ‹ and let pZtq

n
t“1

„ Q be their NPRR-privatized

views where Q P Q
n
µ‹ . Define

Kt,npµq :“
tπ

i“1

r1 ` �i,npµq ¨ pZi ´ ⇣ipµqqs (37)

with �t,npµq given by (36). Then, Kt,npµq is a nonincreasing function of µ P r0, 1s, and Kt,npµ‹
q forms a Q

n
µ‹ -NM.

Consequently,

9Ln :“ max
1§t§n

inf tµ P r0, 1s : Kt,npµq † 1{↵u (38)

forms a lower p1 ´ ↵, p"tqtq-LPCI for µ‹
, meaning Ppµ‹

• 9Lnq • 1 ´ ↵.

Proof. The proof of Theorem 10 proceeds in three steps. First, we show that Kt,n is nonincreasing and continuous in
µ P r0, 1s, making 9Ln simple to compute via line/grid search. Second, we show that Kt,npµ‹

q forms a Q
8
µ‹ -NM. Third and

finally, we show that 9Ln is a lower CI by constructing a lower CS that yields 9Ln when instantiated at n.

Step 1. Kt,npµq is nonincreasing and continuous. To simplify the notation that follows, write gi,npµq :“ 1 ` �i,npµq ¨

pZi ´ ⇣ipµqq so that

Kt,npµq ”

tπ

i“1

gi,npµq.
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Now, recall the definition of �i,npµq,

�t,npµq :“

d
2 logp1{↵q

p�2t´1
nloooooomoooooon

⌘

^
c

⇣tpµq
, where

p�2t :“
1{4 `

∞t
i“1

pZi ´ p⇣iq2

t ` 1
, p⇣t :“

1{2 `
∞t

i“1
Zi

t ` 1
.

Notice that �t,npµq ” ⌘ ^ c{⇣tpµq is nonnegative and does not depend on µ except through the truncation with c{⇣tpµq. In
particular we can write gi,npµq as

gi,npµq ” 1 `

ˆ
⌘ ^

c

⇣ipµq

˙
pZi ´ ⇣ipµqq

“ 1 ` p⌘Ziq ^
cZi

⇣ipµq
´ ⌘⇣ipµq ^ c,

which is a nonincreasing (and continuous) function of ⇣ipµq. Since ⇣ipµq :“ riµ ` p1 ´ riq{2 is an increasing (and
continuous) function of µ, we have that gi,npµq is nonincreasing and continuous in µ.

Moreover, we have that gi,npµq • 0 by design, and the product of nonnegative nonincreasing functions is also nonnegative
and nonincreasing, so Kt,n “

±t
i“1

gi,npµq is nonincreasing.

Step 2. Kt,npµ‹
q is a Q

8
µ‹ -NM. Recall the definition of Kt,npµ‹

q

Kt,npµ‹
q :“

tπ

i“1

r1 ` �i,npµ‹
q ¨ pZi ´ ⇣ipµ

‹
qqs

Then by Lemma 1 with D “ 1 and ✓1 “ 1, Kt,npµ‹
q is a Q

n
µ‹ -NM.

Step 3. 9Ln is a lower CI. First, note that by Lemma 1, we have that

Ct :“ tµ P r0, 1s : Kt,npµq † 1{↵u

forms a p1 ´ ↵q-CS for µ‹. In particular, define

L̄t,n :“ inftµ P r0, 1s : Kt,npµq † 1{↵u.

Then, rL̄t,n, 1s forms a p1 ´ ↵q-CS for µ‹, meaning Pp@t, µ‹
• Lt,nq • 1 ´ ↵, and hence

P
ˆ
µ‹

• max
1§t§n

Lt,n

˙
“ P

´
µ‹

• 9Ln

¯
• 1 ´ ↵.

This completes the proof.

C.4. Proof of Theorem 11

Theorem 11 (NPRR-GK-CS). Let pZtq
8
t“1

„ Q for some Q P Q
8
µ‹ be the output of NPRR as described in Section 2. For

any prespecified ✓ P r0, 1s, define the process pK
GK

t pµqq
8
t“0

given by

K
GK

t pµq :“ ✓K`
t pµq ` p1 ´ ✓qK

´
t pµq,

with K
GK

0
pµq ” 1. Then, K

GK

t pµ‹
q forms a Q

8
µ‹ -NM, and

C̄GK

t :“

"
µ P r0, 1s : KGK

t pµq †
1

↵

*

forms a p1 ´ ↵, p"tqtq-LPCS for µ‹
, meaning Pp@t, µ‹

P C̄GK

t q • 1 ´ ↵. Moreover, C̄GK

t forms an interval almost surely.

Proof. The proof will proceed in two steps. First, we will invoke Lemma 1 to justify that C̄GK

t indeed forms a CS. Second
and finally, we prove that C̄GK

t forms an interval almost surely for each t P t1, 2, . . . u by showing that KGK

t pµq is a convex
function.
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Step 1. C̄GK

t forms a CS. Notice that by Lemma 1, we have that K`
t pµ‹

q and K
´
t pµ‹

q defined in Theorem 11 are both
test martingales. Consequently, their convex combination

K
GK

t pµ‹
q :“ ✓K`

t pµ‹
q ` p1 ´ ✓qK

´
t pµ‹

q

is also a test martingale. Therefore, C̄GK

t :“
 
µ P r0, 1s : KGK

t pµq † 1{↵
(

indeed forms a p1 ´ ↵q-CS.

Step 2. C̄GK

t is an interval almost surely. We will now justify that C̄GK

t forms an interval by proving that KGK

t pµq is a
convex function of µ P r0, 1s and noting that the sublevel sets of convex functions are themselves convex.

To ease notation, define the multiplicands g`
i pµq :“ 1 ` �`

i,d ¨ pZi ´ ⇣ipµqq so that

K
`
t pµq ”

tπ

i“1

gipµq.

Rewriting gipµq, we have that

1 ` �`
i,d ¨ pZi ´ ⇣ipµqq “ 1 `

d

D ` 1
¨

ˆ
Zi

riµ ` p1 ´ riq{2
´ 1

˙
,

from which it is clear that each gipµq is (a) nonnegative, (b) nonincreasing, and (c) convex in µ P r0, 1s. Now, note that
properties (a)–(c) are preserved under products (Waudby-Smith & Ramdas, 2023, Section A.7), meaning

K
`
t pµq ”

tπ

i“1

gipµq

also satisfies (a)–(c).

A similar argument goes through for K´
t pµq, except that this function is nonincreasing rather than nondecreasing, but it is

nevertheless nonnegative and convex. Since convexity of functions is preserved under convex combinations, we have that

K
GK

t pµq :“ ✓K`
t pµq ` p1 ´ ✓qK

´
t pµq

is a convex function of µ P r0, 1s.

Finally, observe that C̄GK

t is the p1{↵q-sublevel set of KGK

t pµq by definition, and the sublevel sets of convex functions are
convex. Therefore, C̄GK

t is an interval almost surely. This completes the proof of Theorem 11.

C.5. Proof of Proposition 3

Proposition 3 (NPRR-EB-CS). Given pZtq
8
t“1

„ Q
8
µ‹ and let pµtp�t1q and sBEB

t p�t
1
q be as in Proposition 2:

pµtp�
t
1
q :“

∞t
i“1

�i ¨ pZi ´ p1 ´ riq{2q
∞t

i“1
ri�i

, and

B̄EB

t p�t
1
q :“

logp1{↵q `
∞t

i“1
4pZi ´ p⇣i´1q

2 Ep�iq∞t
i“1

ri�i
.

where  Ep�q :“ p´ logp1 ´ �q ´ �q{4. Then,

sLEB

t :“ pµtp�
t
1
q ´ sBEB

t p�t
1
q (41)

forms a lower p1 ´ ↵, p"tqtq-LPCS for µ‹
, meaning Pp@t • 1, µ‹

• sLEB

t q • 1 ´ ↵.

Proof. The proof proceeds in two steps. First, we derive a sub-exponential NSM. Second and finally, we apply Ville’s
inequality to the NSM and invert it to obtain p 9LEB

t q
8
t“1

.
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Step 1: Deriving a sub-exponential nonnegative supermartingale. Consider the process pMEB

t pµ‹
qq

8
t“1

given by

MEB

t pµ‹
q :“

tπ

i“1

exp
!
�i ¨ pZi ´ ⇣ipµ

‹
qq ´ 4pZi ´ p⇣i´1pµ‹

qq
2 Ep�iq

)
, (60)

and defined as MEB

0
pµ‹

q ” 1. Clearly, MEB

t ° 0, and hence in order to show that pMEB

t pµ‹
qq

8
t“1

is an NSM, it suffices to
show that EpMEB

t pµ‹
q | Zt´1q “ MEB

t´1
pµ‹

q for each t • 1. To this end, we have that

EpMEB

t pµ‹
q | Zt´1q “ E

˜
tπ

i“1

exp
!
�i ¨ pZi ´ ⇣ipµ

‹
qq ´ 4pZi ´ p⇣i´1pµ‹

qq
2 Ep�iq

)
| Zt´1

¸
(61)

“ MEB

t´1
pµ‹

qE
´
exp

!
�t ¨ pZt ´ ⇣tpµ

‹
qq ´ 4pZt ´ p⇣t´1pµ‹

qq
2 Ep�tq

)
| Zt´1

¯

loooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooon
p‹q

, (62)

and hence it suffices to show that p‹q § 1. Following the proof of Waudby-Smith & Ramdas (2023, Theorem 2), denote

Yt :“ Zt ´ ⇣tpµ
‹
q and �t :“ p⇣tpµ‹

q ´ ⇣tpµ
‹
q. (63)

Note that EpYt | Zt´1q “ 0. and thus it suffices to prove that for any r0, 1q-bounded, Zt´1-measurable �t,

E
˜
exp

#
�tYt ´ 4pYt ´ �t´1q

2 Ep�tq

+ ˇ̌
ˇ Ft´1

¸
§ 1.

Indeed, in the proof of Fan et al. (2015, Proposition 4.1), expt⇠� ´ 4⇠2 Ep�qu § 1 ` ⇠� for any � P r0, 1q and ⇠ • ´1.
Setting ⇠ :“ Yt ´ �t´1 “ Zt ´ p⇣t´1pµ‹

q,

E
˜
exp

#
�tYt ´ 4pYt ´ �t´1q

2 Ep�tq

+ ˇ̌
ˇ Zt´1

¸

“ E
´
exp

!
�tpYt ´ �t´1q ´ 4pYt ´ �t´1q

2 Ep�tq
) ˇ̌

Zt´1

¯
expp�t�t´1q

§ E p1 ` pYt ´ �t´1q�t | Zt´1q expp�t�t´1q
piq
“ E p1 ´ �t´1�t | Zt´1q expp�t�t´1q

piiq
§ 1,

where piq follows from the fact that Yt is conditionally mean zero, and piiq follows from the inequality 1 ´ x § expp´xq

for all x P R. This completes the proof of Step 1.

Step 2: Applying Ville’s inequality and inverting. Now that we have established that pMEB

t pµ‹
qq

8
t“1

is an NSM, we
have by Ville’s inequality (Ville, 1939) that

PpDt • 1 : MEB

t pµ‹
q • 1{↵q § ↵, (64)
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or equivalently, Pp@t • 1, MEB

t pµ‹
q † 1{↵q • 1 ´ ↵. Consequently, we have that with probability at least p1 ´ ↵q,

MEB

t pµ‹
q ° 1{↵

tπ

i“1

exp
!
�i ¨ pZi ´ ⇣ipµ

‹
qq ´ 4pZi ´ p⇣i´1pµ‹

qq
2 Ep�iq

)
† 1{↵ (65)

ñ

tÿ

i“1

�ipZi ´ ⇣ipµ
‹
qq ´

tÿ

i“1

4pZi ´ p⇣i´1pµ‹
qq

2 Ep�iq † logp1{↵q (66)

ñ

tÿ

i“1

�i⇣ipµ
‹
q °

tÿ

i“1

�iZi ´

tÿ

i“1

4pZi ´ p⇣i´1pµ‹
qq

2 Ep�iq ´ logp1{↵q (67)

ñ

tÿ

i“1

�i

ˆ
riµ

‹
`

1 ´ ri
2

˙
°

tÿ

i“1

�iZi ´

tÿ

i“1

4pZi ´ p⇣i´1pµ‹
qq

2 Ep�iq ´ logp1{↵q (68)

ñ µ‹
tÿ

i“1

�iri `

tÿ

i“1

�i
1 ´ ri

2
°

tÿ

i“1

�iZi ´

tÿ

i“1

4pZi ´ p⇣i´1pµ‹
qq

2 Ep�iq ´ logp1{↵q (69)

ñ µ‹
°

∞t
i“1

�ipZi ´ p1 ´ riq{2q
∞t

i“1
�irilooooooooooooooomooooooooooooooon

pµtp�t
1

q

´

∞t
i“1

4pZi ´ p⇣i´1pµ‹
qq

2 Ep�iq ` logp1{↵q
∞t

i“1
�irilooooooooooooooooooooooooooomooooooooooooooooooooooooooon

sBtp�t
1

q

, (70)

(71)

and hence pµtp�t1q ´ sBtp�t1q forms a lower p1 ´ ↵q-CS. This completes the proof of Proposition 3.

C.6. Proof of Proposition 5
Proposition 5. Consider the same setup as Corollary 1, and let �p¨q be the cumulative distribution function of a standard

Gaussian. Define for any � ° 0,

rE�

t :“
2a

t�2 ` 1
exp

#
2�2

pS�

t,0q
2

t�2 ` 1

+
�

˜
2�S�

t,0a
t�2 ` 1

¸
,

where S�

t,0 :“
∞t

i“1
p i ´ p1 ´ rq{2q ´ tr 1{p1´⇡q

1{⇡`1{p1´⇡q and � ° 0. Then, rE�

t forms an e-process and hence rp�t :“ 1{ rE�

t

forms an anytime p-value, and r��t :“ 1prp�t § ↵q forms a level-↵ sequential test for the weak null rH0.

Proof. In order to show that rE�

t is an e-process, it suffices to find an NSM that almost surely upper bounds rE�

t for each t
under the weak null rH0: r�t § 0. As such, the proof proceeds in three steps. First, we justify why the one-sided NSM (75)
given by Proposition 4 is a nonincreasing function of rµt. Second, we adapt the aforementioned NSM to the A/B testing setup
to obtain M�

t p r�tq and note that it is a nonincreasing function of r�t. Third and finally, we observe that rE�

t :“ M�

t p0q is
upper bounded by M�

t p r�tq under the weak null, thus proving the desired result.

Step 1: The one-sided NSM (75) is nonincreasing in rµt. Recall the �-indexed process from Step 1 of the proof of
Proposition 4 given by

Mtp�q :“
tπ

i“1

exp
 
�pZi ´ ⇣pµiqq ´ �2{8

(
,

which can be rewritten as
Mtp�q :“ exp

 
Stprµtq ´ �2{8

(
,

where Stprµtq :“
∞t

i“1
pZi ´ p1 ´ rq{2q ´ trrµt and rµt :“

1

t

∞t
i“1

µt. In particular, notice that Mtp�q is a nonincreasing
function of rµt for any � • 0, and hence we also have that

Mtp�qf`
⇢2p�q
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is a nonincreasing function of rµt where f`
⇢2p�q is the density of a folded Gaussian distribution given in (73), by virtue of

f`
⇢2p�q being everywhere nonnegative, and 0 for all � † 0. Finally, by Step 2 of the proof of Proposition 4, we have that

ª

�
Mtp�qf`

⇢2p�qd� ”
2a

t⇢2{4 ` 1
exp

"
⇢2Stprµtq

2

2pt⇢2{4 ` 1q

*
�

˜
⇢Stprµtqa
t⇢2{4 ` 1

¸

is nonincreasing in rµt, and forms an NSM when evaluated at the true means prµ‹
t q

8
t“1

.

Step 2: Applying Step 1 to the A/B testing setup to yield M�

t pr�tq. Adapting Step 1 to the setup described in Proposition 5,
let �1, �2, ¨ ¨ ¨ P R and let r�t :“

∞t
i“1

�i. Define the partial sum process,

S�

t pr�tq :“
tÿ

i“1

p i ´ p1 ´ rq{2q ´ rt
r�t `

1

1´⇡
1

⇡ `
1

1´⇡

and the associated process,

M�

t pr�tq :“
2a

t�2 ` 1
exp

#
2�2S�

t pr�tq2

t�2 ` 1

+
�

˜
2�S�

t pr�tqa
t�2 ` 1

¸
,

where we have substituted ⇢ :“ 2� ° 0. Notice that by construction,  t is a [0, 1]-bounded random variable with mean
r

r�t`1{p1´⇡q
1{⇡`1{p1´⇡q ` p1 ´ rq{2, so M�

t p r�tq forms an NSM. We are now ready to invoke the main part of the proof.

Step 3: The process rE�

t is upper-bounded by the NSM M�

t p r�tq. Define the nonnegative process p rE�

t q
8
t“0

starting at
one given by

rE�

t :“ M�

t p0q ”
2a

t�2 ` 1
exp

"
2�2S�

t p0q
2

t�2 ` 1

*
�

˜
2�S�

t p0qa
t�2 ` 1

¸
.

By Steps 1 and 2, we have that rE�

t § M�

t p r�tq for any r�t § 0, and since M�

t p r�tq is an NSM, we have that p rE�

t q
8
t“0

forms an e-process for H0: r�t § 0. This completes the proof.

C.7. Proof of Proposition 4
Proposition 4. Given the same setup as Theorem 9, define

rBt :“

gffe t�2 ` 1
2ptr�q2

log

˜
1 `

a
t�2 ` 1

2↵

¸
. (46)

Then, rLt :“ pµt ´ rBt forms a lower p1 ´ ↵, "q-LPCS for rµ‹
t :“ 1

t

∞t
i“1

µ‹
i , meaning

P
´

@t, rµ‹
t • rLt

¯
• 1 ´ ↵. (47)

Proof. The proof begins similar to that of Theorem 9 but with a slightly modified mixing distribution, and proceeds in four
steps. First, we derive a sub-Gaussian NSM indexed by a parameter � P R identical to that of Theorem 9. Second, we mix
this NSM over � using a folded Gaussian density, and justify why the resulting process is also an NSM. Third, we derive an
implicit lower CS for prµ‹

t q
8
t“1

. Fourth and finally, we compute a closed-form lower bound for the implicit CS.

Step 1: Constructing the �-indexed NSM. This is exactly the same step as Step 1 in the proof of Theorem 9, found in
Section A.5. In summary, we have that for any � P R,

Mtp�q :“
tπ

i“1

exp
 
�pZi ´ ⇣pµ‹

i qq ´ �2{8
(
, (72)

with M0p�q ” 0 forms an NSM with respect to the private filtration Z .
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Step 2: Mixing over � P p0,8q to obtain a mixture NSM. Let us now construct a one-sided sub-Gaussian mixture NSM.
First, note that the mixture of an NSM with respect to a probability density is itself an NSM (Robbins, 1970; Howard et al.,
2020) and is a simple consequence of Fubini’s theorem. For our purposes, we will consider the density of a folded Gaussian

distribution with location zero and scale ⇢2. In particular, if ⇤ „ Np0, ⇢2q, let ⇤` :“ |⇤| be the folded Gaussian. Then ⇤`
has a probability density function f`

⇢2p�q given by

f`
⇢2p�q :“ 1p� ° 0q

2a
2⇡⇢2

exp

"
´�2

2⇢2

*
. (73)

Note that f`
⇢2 is simply the density of a mean-zero Gaussian with variance ⇢2, but truncated from below by zero, and

multiplied by two to ensure that f`
⇢2p�q integrates to one.

Then, since mixtures of NSMs are themselves NSMs, the process pMtq
8
t“0

given by

Mt :“

ª

�
Mtp�qf`

⇢2p�qd� (74)

is an NSM. We will now find a closed-form expression for Mt. Many of the techniques used to derive the expression for Mt

are identical to Step 2 of the proof of Theorem 9, but we repeat them here for completeness. To ease notation, define the
partial sum S‹

t :“
∞t

i“1
pZi ´ ⇣pµ‹

i qq. Writing out the definition of Mt, we have

Mt :“

ª

�

tπ

i“1

exp
 
�pZi ´ ⇣pµ‹

i qq ´ �2{8
(
f`
⇢2p�qd�

“

ª

�
exp

$
’’’’&

’’’’%

�
tÿ

i“1

pZi ´ ⇣pµ‹
i qq

loooooooomoooooooon
S‹
t

´t�2{8

,
////.

////-

f`
⇢2p�qd�

“

ª

�
1p� ° 0q exp

 
�S‹

t ´ t�2{8
( 2a

2⇡⇢2
exp

"
´�2

2⇢2

*
d�

“
2a
2⇡⇢2

ª

�
1p� ° 0q exp

 
�S‹

t ´ t�2{8
(
exp

"
´�2

2⇢2

*
d�

“
2a
2⇡⇢2

ª

�
1p� ° 0q exp

"
�S‹

t ´
�2pt⇢2{4 ` 1q

2⇢2

*
d�

“
2a
2⇡⇢2

ª

�
1p� ° 0q exp

"
´�2pt⇢2{4 ` 1q ` 2�⇢2S‹

t

2⇢2

*
d�

“
2a
2⇡⇢2

ª

�
1p� ° 0q exp

#
´ap�2 ´

b
a2�q

2⇢2

+

looooooooooooomooooooooooooon
p‹q

d�,

where we have set a :“ t⇢2{4 ` 1 and b :“ ⇢2S‹
t . Completing the square in p‹q, we have that

exp

#
´ap�2 ´

b
a2�q

2⇢2

+
“ exp

#
´�2 ` 2� b

a `
`
b
a

˘2
´

`
b
a

˘2

2⇢2{a

+

“ exp

#
´p�´ b{aq

2

2⇢2{a
`

a pb{aq
2

2⇢2

+

“ exp

"
´p�´ b{aq

2

2⇢2{a

*
exp

"
b2

2a⇢2

*
.
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Plugging this back into our derivation of Mt and multiplying the entire quantity by a´1{2
{a´1{2, we have

Mt “
2a
2⇡⇢2

ª

�
1p� ° 0q exp

#
´ap�2 `

b
a2�q

2⇢2

+

looooooooooooomooooooooooooon
p‹q

d�

“
2a
2⇡⇢2

ª

�
1p� ° 0q exp

"
´p�´ b{aq

2

2⇢2{a

*
exp

"
b2

2a⇢2

*
d�

“
2

?
a
exp

"
b2

2a⇢2

* ª

�
1p� ° 0q

1a
2⇡⇢2{a

exp

"
´p�´ b{aq

2

2⇢2{a

*
d�

looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon
p‹‹q

.

Now, notice that p‹‹q “ PpNpb{a, ⇢2{aq • 0q, which can be rewritten as �pb{⇢
?
aq, where � is the CDF of a standard

Gaussian. Putting this all together and plugging in a “ t⇢2{4 ` 1 and b “ ⇢2S‹
t , we have the following expression for Mt,

Mt “
2

?
a
exp

"
b2

2a⇢2

*
�

ˆ
b

⇢
?
a

˙

“
2a

t⇢2{4 ` 1
exp

"
⇢4pS‹

t q
2

2pt⇢2{4 ` 1q⇢2

*
�

˜
⇢2S‹

t

⇢
a
t⇢2{4 ` 1

¸

“
2a

t⇢2{4 ` 1
exp

"
⇢2pS‹

t q
2

2pt⇢2{4 ` 1q

*
�

˜
⇢S‹

ta
t⇢2{4 ` 1

¸
. (75)

Step 3: Deriving a p1 ´ ↵q-lower CS pL1
tq

8
t“1

for prµ‹
t q

8
t“1

. Now that we have computed the mixture NSM pMtq
8
t“0

, we
apply Ville’s inequality to it and “invert” a family of processes — one of which is Mt — to obtain an implicit lower CS (we
will further derive an explicit lower CS in Step 4).

First, let pµtq
8
t“1

be an arbitrary real-valued process — i.e. not necessarily equal to pµ‹
t q

8
t“1

— and define their running
average rµt :“

1

t

∞t
i“1

µi. Define the partial sum process in terms of prµtq
8
t“1

,

Stprµtq :“
tÿ

i“1

Zi ´ trrµt ´ tp1 ´ rq{2,

and the resulting nonnegative process,

Mtprµtq :“
2a

t⇢2{4 ` 1
exp

"
⇢2Stprµtq

2

2pt⇢2{4 ` 1q

*
�

˜
⇢Stprµtqa
t⇢2{4 ` 1

¸
. (76)

Notice that if prµtq
8
t“1

“ prµ‹
t q

8
t“1

, then Stprµ‹
t q “ S‹

t and Mtprµ‹
t q “ Mt from Step 2. Importantly, pMtprµ‹

t qq
8
t“0

is an NSM.
Indeed, by Ville’s inequality, we have

PpDt : Mtprµ‹
t q • 1{↵q § ↵. (77)

We will now “invert” this family of processes to obtain an implicit lower boundary given by

L1
t :“ inftrµt : Mtprµtq † 1{↵u, (78)

and justify that pL1
tq

8
t“1

is indeed a p1 ´ ↵q-lower CS for rµ‹
t . Writing out the probability of miscoverage at any time t, we

have

PpDt : rµ‹
t † L1

tq ” P
ˆ

Dt : rµ‹
t † inf

rµt

tMtprµtq † 1{↵u

˙

“ P pDt : Mtprµ‹
t q • 1{↵q

§ ↵,

where the last line follows from Ville’s inequality applied to pMtprµ‹
t qq

8
t“0

. In particular, L1
t forms a p1 ´ ↵q-lower CS,

meaning
Pp@t, rµt • L1

tq • 1 ´ ↵.
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Step 4: Obtaining a closed-form lower bound prLtq
8
t“1

for pL1
tq

8
t“1

. The lower CS of Step 3 is simple to evaluate via
line- or grid-searching, but a closed-form expression may be desirable in practice, and for this we can compute a sharp lower
bound on L1

t.

First, take notice of two key facts:

(a) When rµt “
1

tr

∞t
i“1

Zi ´ p1 ´ rq{2r, we have that Stprµtq “ 0 and hence Mtprµtq † 1, and

(b) Stprµtq is a strictly decreasing function of rµt §
1

tr

∞t
i“1

Zi ´ p1 ´ rq{2r, and hence so is Mtprµtq.

Property (a) follows from the fact that �p0q “ 1{2, and that
a
t⇢2{4 ` 1 ° 1 for any ⇢ ° 0. Property (b) follows from

property (a) combined with the definitions of Stp¨q,

Stprµtq :“
tÿ

i“1

Zi ´ trrµt ´ tp1 ´ rq{2,

and of Mtp¨q,

Mtprµtq :“
2a

t⇢2{4 ` 1
exp

"
⇢2Stprµtq

2

2pt⇢2{4 ` 1q

*
�

˜
⇢Stprµtqa
t⇢2{4 ` 1

¸
,

In particular, by facts (a) and (b), the infimum in (78) must be attained when Stp¨q • 0. That is,

StpL
1
tq • 0. (79)

Using (79) combined with the inequality 1 ´ �pxq § expt´x2
{2u (a straightforward consequence of the Cramér-Chernoff

technique), we have the following lower bound on MtpL1
tq:

MtpL
1
tq “

2a
t⇢2{4 ` 1

exp

"
⇢2StpL1

tq
2

2pt⇢2{4 ` 1q

*
�

˜
⇢StpL1

tqa
t⇢2{4 ` 1

¸

•
2a

t⇢2{4 ` 1
exp

"
⇢2StpL1

tq
2

2pt⇢2{4 ` 1q

* ˆ
1 ´ exp

"
´

⇢2StpL1
tq

2

2pt⇢2{4 ` 1q

*˙

“
2a

t⇢2{4 ` 1

ˆ
exp

"
⇢2StpL1

tq
2

2pt⇢2{4 ` 1q

*
´ 1

˙

“: |MtpL
1
tq.

Finally, the above lower bound on MtpL1
tq implies that 1{↵ • MtpL1

tq • |MtpL1
tq which yields the following lower bound
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on L1
t:

|MtpL
1
tq § 1{↵ ñ

2a
t⇢2{4 ` 1

ˆ
exp

"
⇢2StpL1

tq
2

2pt⇢2{4 ` 1q

*
´ 1

˙
§ 1{↵

ñ exp

"
⇢2StpL1

tq
2

2pt⇢2{4 ` 1q

*
§ 1 `

a
t⇢2{4 ` 1

2↵

ñ
⇢2StpL1

tq
2

2pt⇢2{4 ` 1q
§ log

˜
1 `

a
t⇢2{4 ` 1

2↵

¸

ñ StpL
1
tq §

gffe2pt⇢2{4 ` 1q

⇢2
log

˜
1 `

a
t⇢2{4 ` 1

2↵

¸

ñ

tÿ

i“1

Zi ´ trL1
t ´ tp1 ´ rq{2 §

gffe2pt⇢2{4 ` 1q

⇢2
log

˜
1 `

a
t⇢2{4 ` 1

2↵

¸

ñ trL1
t •

tÿ

i“1

Zi ´ tp1 ´ rq{2 ´

gffe2pt⇢2{4 ` 1q

⇢2
log

˜
1 `

a
t⇢2{4 ` 1

2↵

¸

ñ L1
t •

∞t
i“1

pZi ´ p1 ´ rq{2q

tr
´

gffe2pt⇢2{4 ` 1q

ptr⇢q2
log

˜
1 `

a
t⇢2{4 ` 1

2↵

¸

ñ L1
t •

∞t
i“1

pZi ´ p1 ´ rq{2q

tr
´

gffe t�2 ` 1

2ptr�q2
log

˜
1 `

a
t�2 ` 1

2↵

¸

loooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooon
rLt

,

where we set ⇢ “ 2� in the right-hand side of the final inequality. This precisely yields rLt as given in Proposition 4,
completing the proof.

C.8. Proof of Theorem 12

Theorem 12 (Locally private adaptive A/B estimation). Let Stp
r�1
tq :“ p

∞t
i“1

✓i ´ tr�1
tq{2 for any r�1

t P r0, 1s and define

for any ⇢ ° 0,

ÄMEB

t p r�1
tq :“

ˆ
⇢⇢e´⇢

�p⇢q ´ �p⇢, ⇢q

˙ ˆ
1

Vt ` ⇢

˙
Ftp

r�1
tq, (56)

where Ftp
r�1
tq :“ 1F1p1, Vt ` ⇢` 1, Stp

r�1
tq `Vt ` ⇢q, and 1F1 is Kummer’s confluent hypergeometric function, and �p¨, ¨q

is the upper incomplete gamma function. Then, when evaluated at the true r�t, we have that ÄMEB

t p r�tq forms a nonnegative

supermartingale. Consequently,

rL�

t :“ inf
!

r�t P r0, 1s : ÄMEB

t p r�tq † 1{↵
)

(57)

forms a lower p1 ´ ↵q-CS for the running ATE r�t.

Proof. The proof proceeds in three steps and follows a similar form to the proof of Waudby-Smith et al. (2022, Theorem
2). First, we show that a collection of processes (indexed by � P p0, 1q) each form Q

8
µ‹ -NSMs with respect to the private

filtration Z . Second, we mix over � P p0, 1q using the truncated gamma density to obtain the NSM obtained in Theorem 12.
Third and finally, we “invert” the aforementioned NSM to obtain the LPCS of Theorem 12.

Step 1: Showing that M�
t forms an NSM. Consider the process pM�

t q
8
t“1

given by

M�
t :“

tπ

i“1

exp
!
�p✓i ´ �iq ´  Ep�qp✓i ´ p✓i´1q

2
{4

)
. (80)
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We will show that pM�
t q

8
t“1

forms an NSM. First, note that M�
0

” 1 by construction, and M�
t is always positive. It remains

to show that M�
t forms a supermartingale. Writing out the conditional expectation of M�

t given Zt´1, we have that

EpM�
t | Zt´1q “ M�

t´1
E

”
exp

!
�p✓t ´ �tq ´  Ep�qp✓t ´ p✓t´1q

2
{4

)
| Zt´1

ı

loooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooon
p:q

, (81)

and hence it suffices to prove that p:q § 1. Denote for the sake of succinctness,

⇠t :“ ✓t ´ �t and ⌘t :“ p✓t´1 ´ �t,

and note that Ep⇠t | Zt´1q “ 0. Using the proof of Fan et al. (2015, Proposition 4.1), we have that exptb�´ b2 Ep�qu §

1 ` b� for any � P r0, 1q and b • ´1. Noticing that p✓t ´ p✓t´1q{2 • ´1 and setting b :“ p⇠t ´ ⌘tq{2 “ p✓t ´ p✓t´1q{2, we
have that

E
”
exp

 
�⇠t ´  Ep�qp⇠t ´ ⌘tq

2
{4

( ˇ̌
ˇ Zt´1

ı

“ E
“
exp

 
�p⇠t ´ ⌘tq ´  Ep�qp⇠t ´ ⌘tq

2
{4

( ˇ̌
Zt´1

‰
expp�⌘tq

§ E r1 ` p⇠ ´ ⌘tq� | Zt´1s expp�⌘tq

“ E r1 ´ ⌘t� | Zt´1s expp�⌘tq § 1,

where the last line follows from the fact that ⇠t is conditionally mean zero and the inequality 1´ x § expp´xq for all x P R.
This completes Step 1 of the proof.

Step 2: Mixing over � using the truncated gamma density. For any distribution F on p0, 1q,

ÄMEB

t :“

ª

�Pp0,1q
M�

t dF p�q (82)

forms a test supermartingale by Fubini’s theorem. In particular, we will use the truncated gamma density fp�q given by

fp�q “
⇢⇢e´⇢p1´�q

p1 ´ �q
⇢´1

�p⇢q ´ �p⇢, ⇢q
, (83)

as the mixing density. Writing out ÄMEB

t ” ÄMEB

t p r�tq using dF p�q :“ fp�qd�, and using the shorthand St ” Stp
r�tq, we

have

ÄMEB

t :“

ª
1

0

exp t�St ´ Vt Ep�qu fp�qd�

“

ª
1

0

exp t�St ´ Vt Ep�qu
⇢⇢e´⇢p1´�q

p1 ´ �q
⇢´1

�p⇢q ´ �p⇢, ⇢q
d�

“
⇢⇢e´⇢

�p⇢q ´ �p⇢, ⇢q

ª
1

0

expt� p⇢` St ` Vtqu p1 ´ �q
Vt`⇢´1 d�

“

ˆ
⇢⇢e´⇢

�p⇢q ´ �p⇢, ⇢q

˙ ˆ
1

Vt ` ⇢

˙ ˆ
�pbq

�paq�pb ´ aq

ª
1

0

ezuua´1
p1 ´ uq

b´a´1du

˙ˇ̌
ˇ̌

a“1
b“Vt`⇢`1

z“St`Vt`⇢

“

ˆ
⇢⇢e´⇢

�p⇢q ´ �p⇢, ⇢q

˙ ˆ
1

Vt ` ⇢

˙
1F1p1, Vt ` ⇢` 1, St ` Vt ` ⇢q,

which completes this step.

Step 3: Applying Ville’s inequality and inverting the mixture NSM. Notice that r�t † rL�

t if and only if ÄMtp
r�tq • 1{↵,

and hence by Ville’s inequality for nonnegative supermartingales (Ville, 1939), we have that

PpDt : r�t † rL�

t q “ PpDt : ÄMEB

t • 1{↵q § ↵,

and hence rL�

t forms a lower p1 ´ ↵, "q-LPCS for r�t. This completes the proof.
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D. A more detailed survey of related work
There is a rich literature exploring the intersection of statistics and differential privacy. Wasserman & Zhou (2010) studied
DP estimation rates under various metrics for several privacy mechanisms. Duchi et al. (2013a;b; 2018) articulated a new
“locally private minimax rate” — the fastest worst-case estimation rate with respect to any estimator and LDP mechanism
together — and studied them in several estimation problems. To accomplish this they provide locally private analogues of
the famous Le Cam, Fano, and Assouad bounds that are common in the nonparametric minimax estimation literature. As an
example application, Duchi et al. (2013a;b; 2018) derived minimax rates for nonparametric density estimation in Sobolev
spaces, and showed that a naive application of the Laplace mechanism cannot achieve said rates, but a different carefully
designed mechanism can. This study of density estimation was extended to Besov spaces by Butucea et al. (2020). Butucea
& ISSARTEL (2021) employed this minimax framework to study the fundamental limits of private estimation of nonlinear
functionals. Acharya et al. (2021b) extended the locally private Le Cam, Fano, and Assouad bounds to central DP setting.
Duchi & Ruan (2018) developed a framework akin to Duchi et al. (2013a;b; 2018) but from the local minimax point of view
(here, “local” refers to the type of minimax rate considered, not “local DP”). Barnes et al. (2020) studied the locally private
Fisher information for parametric models. All of the aforementioned works are focused on estimation rates, rather than
inference — i.e. confidence sets, p-values, and so on (though some asymptotic inference is implicitly possible in (Duchi &
Ruan, 2018; Barnes et al., 2020)).

The first work to explicitly study inference under DP constraints was Vu & Slavkovic (2009), who developed asymptotically
valid private hypothesis tests for some parametric problems, including Bernoulli proportion estimation, and independence
testing. Several works have furthered the study of differentially private goodness-of-fit and independence testing (Wang
et al., 2015; Gaboardi et al., 2016; Berrett & Butucea, 2020; Amin et al., 2020; Acharya et al., 2020a;b; 2021a; 2022).
Couch et al. (2019) develop nonparametric tests of independence between categorical and continuous variables. Awan &
Slavković (2018) derive private uniformly most powerful nonasymptotic hypothesis tests in the binomial case. Karwa &
Vadhan (2018), Gaboardi et al. (2019), and Joseph et al. (2019) study nonasymptotic CIs for the mean of Gaussian random
variables. Canonne et al. (2019) study optimal private tests for simple nulls against simple alternatives. Covington et al.
(2021) derive nonasymptotic CIs for parameters of location-scale families. Ferrando et al. (2022) introduces a parametric
bootstrap method for deriving asymptotically valid CIs.

All of the previously mentioned works either consider goodness-of-fit testing, independence testing, or parametric problems
where distributions are known up to some finite-dimensional parameter. Drechsler et al. (2021) study nonparametric CIs for
medians. To the best of our knowledge, no prior work derives private nonasymptotic CIs (nor CSs) for means of bounded
random variables.

Moreover, like most of the statistics literature, the prior work on private statistical inference is non-sequential, with the
exception of Wang et al. (2022) who study private analogues of Wald’s sequential probability ratio test (Wald, 1945) for
simple hypotheses, and Berrett & Yu (2021) who study locally private online changepoint detection. Another interesting
paper is that of Jun & Orabona (2019, Sections 7.1 & 7.2) — the authors study online convex optimization with sub-
exponential noise, but also consider applications to martingale concentration inequalities (and thus CSs) as well as locally
private stochastic subgradient descent.
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