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Abstract
We consider the adjoint restriction inequality associated to the hypersurface

{(⌧, ⇠) : ⌧ = ±|⇠|2, ⇠ 2 Rd} at the Stein-Tomas exponent. Extremizers exist
in all dimensions and extremizing sequences are precompact modulo symmetries
conditional on a certain inequality, which we verify in the case d 2 {1, 2}.

1 Introduction
Fix d 2 N and define

Ef(t, x) =
ˆ

e
i(t,x)(|⇠|2,⇠)

f(⇠)d⇠. (1)

The adjoint Fourier restriction conjecture for the paraboloid is that

sup
f2Lp

kEfkq
kfkp

= Ap < 1 (2)

for q > p and q = d+2
d p

0. We will call p and q for which (2) holds “valid.”
Beyond boundedness, one might ask if there exists f 2 L

p such that kEfkq/kfkp =
Ap and furthermore, if sequences {fn} ⇢ L

p such that lim kEfnkq/kfnkp = Ap have
any special properties.

This paper answers these questions for the adjoint restriction inequality for the
union of a pair of reflected paraboloids. We prove that extremizers exist in all di-
mensions whenever the normal conjecture holds, and that the previously mentioned
sequences are precompact modulo certain symmetries of the new operator provided
p = 2 and the operator norm is “large enough.” Finally, we verify the hypothesis on
the operator norm for d 2 {1, 2}.

For the standard single paraboloid in lower dimensions (d 2 {1, 2}) there are par-
ticularly satisfactory answers. Radial Gaussians are the unique extremizers for E at
the Stein-Tomas exponent ([11], [14], [3]), and it is conjectured that this is true for all
dimensions. Christ and Quilodrán ([7]) proved that this is only possible for p 2 {1, 2}.

In higher dimensions or away from the Stein-Tomas exponent, the method of profile
decompositions and mass concentration have been the most successful ([4], [16], [2],
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[5], [15], [20], [22]). Since the method analyzes extremizing sequences, it also yields
precompactness of extremizing sequences modulo symmetries of the operator. The
profile decomposition approach has yielded the existence of extremizers in all dimen-
sions but without an explicit characterization ([20]). Stovall extended this approach in
[22] to prove that extremizers exist in all dimensions for all valid exponents by truncat-
ing L

p functions in a controlled way and then applying the L2 theory. Our proof begins
with a profile decomposition mainly modelled after Killip and Vişan’s formulation in
[15].

There are similar results for other restriction inequalities, for example restriction
to S

d. Extremizers exist and are characters multiplied by constants for d 2 {1, 2} at
the Stein-Tomas exponent ([21], [9], [10]) as well as for some higher dimensions and
even exponents ([6], [18]). The results establishing the precompactness of extremizing
sequences of Christ and Shao in [8] (d = 2) and Frank, Lieb, and Sabin in [13] (d >

2 conditional on a conjecture) are particularly relevant to our setting. Specifically,
we borrow the strategy of relating the mass of individual bubbles to the value of the
operator norm as well as some computations from [13].

In this article, we address the same questions of existence of extremizers and char-
acterization of extremizing sequences for the adjoint restriction inequality associated
to the union of a pair of reflected paraboloids. Let P = {(⌧, ⇠) : ⌧ = |⇠|2} and
P� = {(⌧, ⇠) : ⌧ = �|⇠|2}. We pull back d-dimensional Lebesgue measure through
the projection map R⇥ Rd ! Rd to a measure d� supported on P and d�

0 supported
on P�. We will analyze the operator

E±(f, g)(t, x) := Ef(t, x) + E�g(t, x)

:=

ˆ
P
e
i(t,x)(⌧,⇠)

f(⇠)d�(⌧, ⇠) +

ˆ
P�

e
i(t,x)(⌧,⇠)

g(⇠)d�0(⌧, ⇠).

It can also be expressed as

Ef(t, x) + E�g(t, x) =
ˆ
Rd

e
i(t,x)·(|⇠|2,⇠)

f(⇠) + e
i(t,x)·(�|⇠|2,⇠)

g(⇠)d⇠.

When we write f(⇠) or just f , we mean the function Rd ! C, whereas fd� will
represent the measure fd⇠ lifted to P . Similarly, gd�0 will represent the measure gd⇠

lifted to P�.

Symmetries and Definitions
Let S+ ⇢ Iso(Lp(Rd)) and T+ ⇢ Iso(Lq(Rd+1)) be the subgroups generated by

Sf(⇠) TEf(t, x)
Scaling �

d/p
f(�⇠) �

�(d+2)/qEf(��2
t,�

�1
x)

Frequency Translation f(⇠ � ⇠
0) e

i(t|⇠0|2+x·⇠0)Ef(t, x+ 2t⇠0)

Spacetime Translation e
i(t0,x0)(|⇠|2,⇠)f(⇠) Ef(t+ t0, x+ x0).

They are distinguished by the fact that E � S+ = T+ � E and each element generates
non-compact orbits in L

p or Lq .
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Using these generators, we can write any symmetry S 2 S+ as

Sf(⇠) = �
d/p

e
i(t0,x0)(|�⇠�⇠0|2,�⇠�⇠0)

f(�⇠ � ⇠
0), (3)

and the corresponding T 2 T+ as

TF (t, x) = �
�(d+2)/q

e
i(��2t|⇠0|2+��1x·⇠0)

F (��2
t+ t0,�

�1
x+ x0 + 2��2

t⇠
0), (4)

for some � 2 R+, (t0, x0) 2 R⇥ Rd, and ⇠0 2 Rd.
Let S� ⇢ Iso(Lp(Rd)) and T� ⇢ Iso(Lq(Rd+1)) be the subgroups generated by

Sg(⇠) TE�g(t, x)
Scaling �

d/p
g(�⇠) �

�(d+2)/qE�g(��2
t,�

�1
x)

Frequency Translation g(⇠ � ⇠
0) e

i(�t|⇠0|2+x·⇠0)E�g(t, x� 2t⇠0)

Spacetime Translation e
i(t0,x0)(�|⇠|2,⇠)

g(⇠) Eg(t+ t0, x+ x0).

Note that T� � E� = E� � S� here as well.
Write any S 2 S� as

Sg(⇠) = �
d/p

e
i(�t0,x0)(|�⇠�⇠0|2,�⇠�⇠0)

g(�⇠ � ⇠
0) (5)

for some � 2 R+, (t0, x0) 2 R⇥ Rd, and ⇠0 2 Rd. Denote its matching T 2 T� by

TG(t, x)

= �
�(d+2)/q

e
i(���2t|⇠0|2+��1x·⇠0)

G(��2
t+ t0,�

�1
x+ x0 � 2��2

t⇠
0). (6)

We also need notation to indicate whether or not two sequences of symmetries are
asymptotically orthogonal in a weak sense.

Definition 1.1. Let {Sn}, {S0
n} ⇢ S+ and {Rn}, {R0

n} ⇢ S� be the symmetries
associated with the parameters (�n, tn, xn, ⇠n), (�0n, t0n, x0

n, ⇠
0
n), (n, sn, yn, ⌘n), and

(0n, s
0
n, y

0
n, ⌘

0
n) respectively. Then we say {Sn} ? {Rn} ({Sn} is asymptotically

orthogonal to {Rn}) if

1. lim �n
n

2 {0,1}; or

2. lim |�n
n
⌘n + ⇠n| = 1; or

3. lim |tn � (�n
n

)2sn|+ |xn � �n
n

yn � 2�n
n

sn(⌘n + �n
n
⇠n)| = 1.

We say {Sn} ? {S0
n} if

1. lim �n
�0
n
2 {0,1}; or

2. lim |�n
�0
n
⇠
0
n � ⇠n| = 1; or

3. lim |tn � (�n
�0
n
)2t0n|+ |xn � �n

�0
n
x
0
n + 2�n

�0
n
t
0
n(⇠

0
n � �n

�0
n
⇠n)| = 1.

We define {Rn} ? {R0
n} in the same way.
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Results
Let

A
±
p := sup

f,g2Lp

kEf + E�gkq
(kfkpp + kgkpp)1/p

.

Since

kEf1 + E�f2kq  kEf1kq + kE�f2kq
 Ap (kf1kp + kf2kp)  21/p

0
Ap

�
kf1kpp + kf2kpp

�1/p
, (7)

A
±
p < 1 provided Ap < 1. The theorem assumes only that the exponents p, q are

valid. The second is proven for the Stein-Tomas exponent.

Theorem 1.2. 1. For all d 2 N,
 

1p
⇡
·
�( q+1

2 )

�( q+2
2 )

!1/q

21/p
0
Ap  A

±
p < 21/p

0
Ap.

2. If d 2 {1, 2},  
1p
⇡
·
�( q+1

2 )

�( q+2
2 )

!1/q

21/p
0
Ap < A

±
p .

Theorem 1.3. 1. Let {(fn, gn)} ⇢ L
2 ⇥ L

2 be such that kfnk22 + kgnk22 = 1 for
all n and

lim
n!1

kEfn + Egnkq = A
±
2 .

If  
1p
⇡
·
�( q+1

2 )

�( q+2
2 )

!1/q

21/p
0
A2 < A

±
2 ,

then there exist {Qn} ⇢ S+ \ S� and f, g 2 L
2 such that along a subsequence,

(a) kf �Qnfnk2 ! 0;

(b) kg �Qngnk2 ! 0; and therefore

(c) kEf + E�gkq = A
±
2 .

2. For all d 2 N, there exist f, g 2 L
2 normalized so that kfk22 + kgk22 = 1 such

that
kEf + E�gkq = A

±
2 .

The theorems immediately imply the following corollary.

Corollary 1.4. For d 2 {1, 2}, extremizing sequences for E± are precompact modulo
the action of S+ \ S�.
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Our primary tool is the identity E�f = E ef where ef(⇠) = f(�⇠). For an extrem-
izing sequence {(fn, gn)}, we apply a standard profile decomposition modeled on the
one from [15] to each sequence independently. We then bound the interactions between
bubbles whose symmetries are asymptotically orthogonal in the sense of Definition 1.1.
From this we deduce that almost all of the L2 mass of {fn} and {gn} come from single
bubbles whose symmetries are not asymptotically orthogonal.

There are two cases. Either the bubbles are translated to infinity in frequency space,
or they remain bounded. An inequality from [13] shows that under the hypothesis of
Theorem 1.3 part 1, we must be in the second case and therefore we can extract a
convergent subsequence. We verify this condition computationally for d 2 {1, 2}. If
the bubbles translate off to infinity, no sequence of symmetries can make them both
converge. However, we know the operator norm exactly in this case and are able to
construct extremizers for E± from extremizers for E , completing the proof of Theorem
1.3.

In this paper, we can only calculate useful lower bounds on the operator norm of
E± : `p(Lp) ! L

q in dimensions where we know extremizers exist for E : Lp ! L
q

and have a particularly simple form, such as Gaussians. This is conjectured to hold
in all dimensions at the Stein-Tomas exponent, but based on the result of Christ and
Quilodrán ([7]), it seems unlikely that this will be possible for other valid exponents.
In addition, without further simplification the numerical computation must be run for
each dimension individually rather than once for the general case.
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This project was suggested and overseen by Betsy Stovall and supported in part by NSF
DMS-1653264. The author would like to thank her for many helpful conversations and
invaluable guidance in the writing of this paper.

2 Bounds on A±
p

The purpose of this section is to prove Theorem 1.2 part 1. The first lemma resembles
an observation of Allaire ([1]).

Lemma 2.1. Let g 2 L
q(R1+d) and let " > 0 be sufficiently small. Then there exists

�0 > 0 such that
����
ˆ

|=ei(�t|⌘|2+x·⌘)
g|qdtdx� 1

2⇡

ˆ 2⇡

0

ˆ
|=ei✓g|qdtdxd✓

���� < "

for all |⌘| > �0.

Proof. Let g0 2 C
1
c (Rd+1) be such that kg � g

0kqq < "/4. By the triangle inequality,
����
ˆ

|=ei(t,x)·(�|⌘|2,⌘)
g|qdtdx� 1

2⇡

ˆ 2⇡

0

ˆ
|=ei✓g|qdtdxd✓

����


����
ˆ

|=ei(t,x)·(�|⌘|2,⌘)
g
0|qdtdx� 1

2⇡

ˆ 2⇡

0

ˆ
|=ei✓g0|qdtdxd✓

����+
"

2
.
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Hence it suffices to prove the result for g 2 C
1
c .

Take g 2 C
1
c (Rd+1). Let X = �

�1
0 Z and I = [0, 1). Since g is smooth and

compactly supported, we can take �0 > "
�1 large enough that

ˆ
|=ei(t,x)·(�|⌘|2,⌘)

g|qdtdx =

ˆ
Rd

X

↵2X

ˆ
↵+��1

0 I
|=ei(t,x)·(�|⌘|2,⌘)

g(↵, x)|qdtdx+O("),

ˆ
1

2⇡

ˆ 2⇡

0
|=ei✓g|qd✓dtdx =

ˆ
Rd

X

↵2X

�
�1
0

2⇡

ˆ 2⇡

0
|=ei✓g(↵, x)|qd✓dx+O("),

and ˆ
|g|qdtdx =

ˆ
Rd

X

↵2X

�
�1
0 |g(↵, x)|qdx+O(").

Furthermore, by the change of variables ✓ = t|⌘|2 � x · ⌘,
ˆ
↵+��1

0 I
|=ei(t,x)·(�|⌘|2,⌘)

g(↵, x)|qdt

= |⌘|�2

ˆ |⌘|2↵�x·⌘+��1
0 |⌘|2

|⌘|2↵�x·⌘
|=e�i✓

g(↵, x)|qd✓

= |⌘|�2


O(1)|g(↵, x)|q + �

�1
0 |⌘|2

2⇡

ˆ 2⇡

0
|=ei✓g(↵, x)|qd✓

�

= O(1)|⌘|�2|g(↵, x)|q + �
�1
0

2⇡

ˆ 2⇡

0
|=ei✓g(↵, x)|qd✓.

Plugging this into the sum and simplifying,
ˆ
|=ei(t,x)·(�|⌘|2,⌘)

g|qdtdx

=

ˆ X

↵2X


O(1)|⌘|�2|g(↵, x)|q + �

�1
0

2⇡

ˆ 2⇡

0
|=ei✓g(↵, x)|qd✓

�
dx+O(")

= O(1)|⌘|�2
�0kgkqq +

ˆ
1

2⇡

ˆ 2⇡

0
|=ei✓g|qd✓dtdx+O(").

Hence for |⌘| > �0 > "
�1, we have

����
ˆ

|=ei(t,x)·(�|⌘|2,⌘)
g|qdtdx�

ˆ
1

2⇡

ˆ 2⇡

0
|=ei✓g|qd✓dtdx

���� = O(").

Lemma 2.2. Let " > 0 be sufficiently small. Then there exists a � such that for
all f 2 L

p with kfkp = 1 and kEfkq > Ap � ", k=Efkq > �. Furthermore,
lim"!0 � =: Cp > 0.

6



Proof. Suppose we had a sequence {fn} with kfnkp = 1 such that k=Efnkq ! 0 and
kEfnkq ! Ap. Extremizing sequences are precompact modulo symmetries ([22]), so
there exists f 2 L

p and symmetries {(Sn, Tn)} such that kEfkq = Ap and Snfn ! f

along a subsequence.
We want to prove that there exists a function g such that k=Egkq = 0. The quantity

k=Efkq is invariant under scaling and spacetime translation of f so without loss of
generality assume Efn = e

i(t,x)·(|⌘n|2,⌘n)Ef(t, x+2t⌘n). By hypothesis k=Efnkq !
0 so by a change of variables, k=e(t,x)·(�|⌘n|2,⌘n)Efkq ! 0.

Since Ef 6⌘ 0,
´ 2⇡
0

´
|=ei✓Ef |qdtdxd✓ 6= 0. By Lemma 2.1 there exists " >

0 and �0 > 0 such that k=ei(t,x)·(�|⌘|2,⌘)Efkq > " for all |⌘| > �0. Therefore
lim sup |⌘n| < �0. The set {|⌘|  �0} is compact, so by passing to a subsequence there
exists an ⌘0 such that ⌘n ! ⌘0. Since k=ei(t,x)·(�|⌘|2,⌘)Efkq is continuous in ⌘ by the
dominated convergence theorem, k=ei(t,x)·(�|⌘0|2,⌘0)Efkq = 0. Changing variables
and moving the frequency translation through E , we have g a frequency translation of
f such that k=Egkq = 0.

However, this is impossible. Examining the Schrödinger equation, we find that it is
equivalent to (

@t=u��<u = 0,

@t<u+�=u = 0.

Hence @t<Eg ⌘ 0 and �<Eg ⌘ 0. By Weyl’s lemma <Eg(t, ·) agrees almost every-
where with a harmonic function, but since the time derivative is also zero, <Eg(t, ·) is
the same non-zero harmonic function for all t. Such functions are not in L

q .
The above implies that there does not exist a sequence {(kEfnkq, k=Efnkq)} in

A := {(kEfkq, k=Efkq) : kfkp = 1} ⇢ [0, Ap] ⇥ [0, Ap] that converges to (Ap, 0).
Then

Cp := lim inf
"!0

�
inf{k=Efkq : kfkp = 1, kEfkq > Ap � "}

�
> 0.

Proof of Theorem 1.2 part 1. First, we prove that

 
1p
⇡
·
�( q+1

2 )

�( q+2
2 )

!1/q

21/p
0
Ap  A

±
p .

Let f 2 L
p be an extremizer for E normalized so that kfkp = 1. Let e1 2 Rd be

the first unit vector and define sequences

fn(⇠) := f(⇠ � ne1) and gn(⇠) := f(�⇠ � ne1).
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Then by Lemma 2.1 and [13, Lemma 6.1],

lim

ˆ
|Efn + E�gn|q dtdx

= lim

ˆ ���Efn + Efgn
���
q

= lim

ˆ ���ei(t,x)·(n2,ne1)Ef(t, x+ 2nte1) + e
i(t,x)·(�n2,�ne1)Ef(t, x+ 2nte1)

���
q

= lim

ˆ ���ei(t,x)·(2n2,2ne1)Ef(t, x+ 2nte1) + Ef(t, x+ 2nte1)
���
q

= lim

ˆ ���ei(t,x)·(�2n2,2ne1)Ef(t, x) + Ef(t, x)
���
q

=
1

2⇡

ˆ 2⇡

0

ˆ ��ei!|Ef |+ |Ef |
��q

=
2qp
⇡
·
�( q+1

2 )

�( q+2
2 )

A
q
p.

Since (kfnkpp + kgnkpp)1/p = 21/p, this proves the first inequality.
Next, following the proof of [13, Lemma 6.1] let

�(t) :=
1

⇡

ˆ ⇡

0
(1 + t cos ✓)q/2d✓.

Then

�
0(t) =

q

2⇡

ˆ ⇡

0
(1 + t cos ✓)(q�2)/2 cos ✓d✓

=
q

2⇡

ˆ ⇡/2

0

⇣
(1 + t cos ✓)(q�2)/2 � (1� t cos ✓)(q�2)/2

⌘
cos ✓d✓

> 0.

Since �(0) = 1 and

�(1) =
2q/2p
⇡

�( q+1
2 )

�( q+2
2 )

using the integral representation of the beta function, the second inequality follows.
Second, we prove that

A
±
p < 21/p

0
Ap.

Note that for a nontrivial sequence {(fn, gn)} to achieve

lim
n!1

kEfn + E�gnkq
(kfnkpp + kgnkpp)1/p

= 21/p
0
Ap,

it must approach equality for every inequality in (7). Therefore, aiming for a contra-
diction, we assume that there exists a sequence {(fn, gn)} normalized in `p(Lp) such

8



that kEfnkq ! Ap, kEgnkq ! Ap, and kEfn � E�gnkq ! 0. Expanding the integral
using the identity E�g = Eeg,

kEfn � E�gnkqq =

ˆ �
|<Efn �<Eegn|2 + |=Efn + =Eegn|2

�q/2
.

Hence k=Efn + =Eegnkq ! 0. If we multiply fn and gn by i and use the linearity of
E and E�, we see that

kEfn � E�gnkqq = kE(ifn)� E�(ign)kq

=

ˆ �
|�=Efn + =Eegn|2 + |<Efn + <Eegn|2

�q/2

and hence k=Efn � =Eegnkq ! 0 as well. However, by the triangle inequality and
Lemma 2.2

lim
n!1

k=Efn �=Eegnkq � lim 2k=Eegnkq � k=Efn + =Eegnkq

= lim2k=Eegnkq
� 2CpAp,

which is a contradiction. Therefore no such sequence {(fn, gn)} exists and A
±
p <

21/p
0
Ap.

3 Bubble pairing and orthogonality

Let p = 2 and q = 2(d+2)
d .

We will use the following formulation of the L
2 profile decomposition for the

Schrödinger equation.

Proposition 3.1. [15, Theorem 4.7] Let {fn} ⇢ L
2(Rd) be bounded. Then after

passing to a subsequence, there exist

1. J
⇤ 2 N [ {1};

2. functions �j 2 L
2 for all j < J

⇤;

3. remainders wJ
n 2 L

2 for all J < J
⇤;

4. and sequences {�jn} ⇢ R+, {(tjn, xj
n)} ⇢ Rd+1, and {⇠jn} ⇢ Rd defining

{Sj
n} ⇢ S+ for all j < J

⇤ and all n

such that for all J < J
⇤

fn =
JX

j=1

(�jn)
d/p

e
i(tjn,x

j
n)·(|�

j
n⇠�⇠jn|

2,�j
n⇠�⇠jn)�

j(�jn⇠ � ⇠
j
n) + w

J
n , (8)

lim
J!J⇤

lim sup
n!1

kEwJ
nkq = 0, (9)
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sup
J

lim
n!1

2

4kfnk22 �
JX

j=1

k�jk22 � kwJ
nk22

3

5 = 0, (10)

sup
J

lim
n!1

2

4kEfnkqq �
JX

j=1

kE�jkqq � kErJnkqq

3

5 = 0, (11)

and for all j 6= k,
{Sj

n} ? {Sk
n}. (12)

The same holds for E� with (8) replaced by

gn =
JX

j=1

(jn)
d/p

e
i(�sjn,y

j
n)·(|

j
n⇠�⌘j

n|
2,j

n⇠�⌘j
n) 

j(jn⇠ � ⌘
j
n) + r

J
n . (13)

Let fn, gn be bounded sequences in L
2 and apply the profile decompositions of (8)

and (13) respectively. If the J
⇤ are different, take the larger of the two and pad the

other sum with zero bubbles.

Lemma 3.2. Let {Sj
n} and {Rj

n} be the sequences of symmetries associated with the
decompositions of {fn} and {gn} respectively. If {Sj

n} 6? {Rk
n}, then {Sj

n} ? {Rk0

n }
for all k0 6= k.

The proof is a long, unenlightening calculation, so we omit it for readability.

Lemma 3.3. Let {Sj
n}, {Sj0

n } ⇢ S+. Let �j ,�j
0 2 L

2. If {Sj
n} ? {Sj0

n }, then

lim
n

ˆ
|ESj

n�
j ||ESj0

n �
j0 |q�1 + |ESj

n�
j |q�1|ESj0

n �
j0 | = 0.

Proof. By the symmetry of the statement, we need only consider the first term in the
limit. Let " > 0 and let �j 2 C

1
cpct(Rd+1) be such that k�j � E�jkq = O(") (resp.

�j0 ). Expanding, changing variables, and dealing with the remainders by Hölder,
ˆ

|ESj
n�

j ||ESj0

n �
j0 |q�1

=

ˆ
(�jn)

�(d+2)/q(�j
0

n )
�(d+2)/q0 |�j((�jn)

�2
t+ t

j
n, (�

j
n)

�1
x+ x

j
n + 2(�jn)

�2
t⇠

j
n)|

|�j0((�j
0

n )
�2

t+ t
j0

n , (�
j0

n )
�1

x+ x
j0

n + 2(�j
0

n )
�2

t⇠
j0

n |q�1 +O(")

=

ˆ
(�jn)

�(d+2)/q(�j
0

n )
(d+2)/q|�j(

 
�
j0
n

�
j
n

!2

t+ t
j
n,

 
�
j0
n

�
j
n

!
x+ x

j
n + 2

 
�
j0
n

�
j
n

!2

⇠
j
n)|

|�j0(t+ t
j0

n , x+ x
j0

n + 2t⇠j
0

n )|q�1 +O(")

=

ˆ  
�
j0
n

�
j
n

!(d+2)/q

|�j(

 
�
j0
n

�
j
n

!2

t+ t
j
n,

 
�
j0
n

�
j
n

!
x+ x

j
n + 2

 
�
j0
n

�
j
n

!2

⇠
j
n)|

|�j0(t+ t
j0

n , x+ x
j0

n + 2t⇠j
0

n )|q�1 +O(").

10



By Hölder’s inequality, we see that

ˆ
|ESj

n�
j ||ESj0

n �
j0 |q�1 

 
�
j0
n

�
j
n

!(d+2)/q

k�jk1k(�j0)q�1k1 +O(")

and

ˆ
|ESj

n�
j ||ESj0

n �
j0 |q�1 

 
�
j0
n

�
j
n

!�(d+2)/q0

k�jk1k(�j0)q�1k1 +O(").

Therefore if lim �j0
n

�j
n
2 {0,1} (i.e. {Sj

n} ? {Sj0
n } is satisfied by condition 1),

ˆ
|ESj

n�
j ||ESj0

n �
j0 |q�1 = O(").

Taking "! 0, this proves the claim.

Now we may assume that, after passing to a subsequence in n, lim �j0
n

�j
n

= R 2
(0,1). By scaling, we may also assume that �jn = r

�1
n such that lim rn = R and

�
j0
n = 1 for all n.

Let " > 0 and let f, g 2 C
1
cpct be such that kf � �

jk2 = O(") and kg � �
j0k2 =

O("). By the boundedness of E , the triangle inequality, and Hölder,
ˆ

|ESj
n�

j ||ESj0

n �
j0 |q�1 

ˆ
|ESj

nf ||ESj0

n g|q�1 +O(")

 k(ESj
nf)(ESj0

n g)ks�k(ESj0

n g)q�2ks0� +O(")

= k(ESj
nf)(ESj0

n g)ks�kESj0

n gkq�2
s0�(q�2) +O("),

where � > 0 is sufficiently small (to be determined), s� = q+�
2 , and t

0
� = ds�(q�2)

d+2 .
As a function of �, s0�(q � 2) = (q+�)(q�2)

q+��2 is continuous near zero and for � = 0,

s
0
0(q�2) = q. Since the exponent pair (2, 2(d+2)

d ) is in the interior of the known range
of restriction estimates (e.g. [23]), there exists a �0 > 0 such that the operators E and
E� are bounded from L

t�0 to L
s0�0 (q�2). Let

Nn :=
dist(suppSj

nf, suppS
j0
n g)

diam(suppSj
nf) + diam(suppSj0

n g)
.

This number is well-defined since f and g have compact support. Note that since {rn}
is bounded, Nn ⇠ dist(suppSj

nf, suppS
j0
n g) with some n-independent constants.

Continuing the estimate using scaled bilinear restriction ([23, Corollary 1.3]) and the
scaling assumption,

k(ESj
nf)(ESj0

n g)ks�0 kES
j0

n gkq�2
s0�0

(q�2) . N

d� d+2
s�0

n kfk2kgk2kSj0

n gkq�2
t�0

.R,f,g N

d� d+2
s�0

n .

11



Since s�0 >
d+2
d and Nn ⇠ |rn⇠j

0

n � ⇠jn| for large enough n, taking n ! 1 and "! 0

proves the claim when {Sj
n} ? {Sj0

n } is satisfied by 2 but not 1.
We turn to the final case where neither 1 nor 2 is satisfied, but condition 3 is. We

make the same assumptions on scaling as in the previous case. Changing variables,ˆ
|ESj

n�
j ||ESj0

n �
j0 |q�1 =

ˆ
R

d+2
q |E�j(An(t, x) + bn)||E�j

0
|q�1

where

An =

✓
r
2
n 0

2rn(rn⇠jn � ⇠
j0
n ) rnId

◆
and bn =

✓
t
j
n � r

2
nt

j0
n

x
j
n � rnx

j0
n + 2rntj

0

n (⇠
j0
n � rn⇠

j
n)

◆
.

Since condition 2 is not satisfied, we may pass to a subsequence in n so that kAnkop ⇠
1. Condition 3 implies |bn| ! 1, so |An(t, x)+ bn| ! 1 uniformly on compact sets.
Approximating E�j and E�j0 in L

q by functions F,G 2 C
1
cpct, we see that

lim

ˆ
R

d+2
q |F (An(t, x) + bn)||G|q�1 = 0

by dominated convergence. The lemma follows by taking better and better approxima-
tions.

Lemma 3.4. Let {Sj
n} ⇢ S+ and {Rj

n} ⇢ S�. Let �j , j 2 L
2. If {Sj

n} ? {Rj
n},

then
lim

ˆ
|ESj

n�
j ||E�Rj

n 
j |q�1 + |ESj

n�
j |q�1|E�Rj

n 
j | = 0.

Proof. As usual, we can express Sj
n and R

j
n in the form of (3) and (5):

S
j
n�

j(⇠) = (�jn)
d/p

e
i(tjn,x

j
n)·(|�

j
n⇠�⇠jn|

2,�j
n⇠�⇠jn)�

j(�jn⇠ � ⇠
j
n),

R
j
n 

j(⇠) = (jn)
d/p

e
i(�sjn,y

j
n)·(|

j
n⇠�⌘j

n|
2,j

n⇠�⌘j
n) 

j(jn⇠ � ⌘
j
n).

Define the sequence {U j
n} ⇢ S+ by

Q
j
nf(⇠) := (jn)

d/p
e
i(sjn,y

j
n)·(|

j
n⇠+⌘j

n|
2,j

n⇠+⌘j
n)f(jn⇠ + ⌘

j
n).

By a change of variables,

E�Rj
nf(t, x) =

ˆ
e
�i(t,x)·(�|⇠|2,⇠)

R
j
nf(⇠)d⇠

=

ˆ
e
i(t,x)·(|⇠|2,�⇠)(jn)

d/p
e
i(sjn,y

j
n)·(|

j
n⇠�⌘j

n|
2,�j

n⇠+⌘j
n)f(jn⇠ � ⌘

j
n)d⇠

=

ˆ
e
i(t,x)·(|⇠|2,⇠)(jn)

d/p
e
i(sjn,y

j
n)·(|

j
n⇠+⌘j

n|
2,j

n⇠+⌘j
n) ef(jn⇠ + ⌘

j
n)d⇠

= EQj
n
ef(t, x).

The symmetries Qj
n have the same dilation and spacetime translation as Rj

n, only with
negative frequency translation. From this it is clear that {Sj

n} ? {Rj
n} () {Sj

n} ?
{Qj

n} and |E�Rj
nf | = |EQj

n
ef |. Thus the claim follows from the previous lemma.
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We will need the following elementary calculus lemma.

Lemma 3.5. There exists Cn > 0 such that for all a1, . . . , an 2 C,
������
|

nX

j=1

aj |q �
nX

j=1

|aj |q
������
 Cn sup

1j 6=j0n
|aj ||aj0 |q�1

.

Proof. First, let a, b 2 C be such that |a| � |b|. Let F (z) = z
q . Then by the triangle

inequality and the mean value theorem,

||a+ b|q � |a|q � |b|q|  ||a+ b|q � |a|q|+ |b|q

 |b| sup
|z|2|a|

|F 0(z)|+ |b|q

= q2q�1|b||a|q�1 + |b|q

. max{|a||b|q�1
, |a|q�1|b|}.

Now take any a1, . . . , an 2 C. We can expand telescopically and apply the base
case to show that

������
|

nX

j=1

aj |q �
nX

j=1

|aj |q
������
=

������

nX

k=2

0

@|
kX

j=1

aj |q � |
k�1X

j=1

aj |q � |ak|q
1

A

������


nX

k=2

������
|

kX

j=1

aj |q � |
k�1X

j=1

aj |q � |ak|q
������

. sup
2kn

max

8
<

:|
k�1X

j=1

aj |q�1|ak|, |
k�1X

j=1

aj ||ak|q�1

9
=

; .

By the triangle inequality and the pseudo-triangle inequality |a + b|q�1 . |a|q�1 +
|b|q�1, we obtain the result.

Proposition 3.6. Let {(fn, gn)} ⇢ L
2 ⇥ L

2 be bounded. Then there exist J⇤ 2
N [ {1} and decompositions

fn =
JX

j=1

S
j
n�

j + r
J
n and gn =

JX

j=1

R
j
n 

j + w
J
n

for J  J
⇤ that satisfy all the conclusions in Proposition 3.1 and such that there exist

partitions AJ [BJ = {1, . . . , J} such that

lim
J!J⇤

lim sup
n!1

kEfn + E�gnkqq �
X

j2AJ

kESj
n�

j + E�Rj
n 

jkqq

�
X

j2BJ

kE�jkqq �
X

j2BJ

kE� jkqq � kErJnkqq � kE�wJ
nkqq = 0.

(14)

Furthermore, for J1  J2  J
⇤ we have AJ1 ⇢ AJ2 .

13



Proof. Let J < J
⇤ and j  J . By Lemma 3.2, there exists at most one j

0  J such
that {Sj

n} 6? {Rj0
n }. If such a j

0 exists we may assume that j = j
0 by rearranging the

sequence { j}J1 and adding j to the set AJ . If no such j
0 exists, we add j to BJ . By

the triangle inequality,
���kEfn + E�gnkqq �

X

j2AJ

kESj
n�

j + E�Rj
n 

jkqq

�
X

j2BJ

kE�jkqq �
X

j2BJ

kE� jkqq � kErJnkqq � kE�wJ
nkqq
���


ˆ ���|EwJ

n + E�rJn +
JX

j=1

ESj
n�

j + E�Rj
n 

j |q �
X

j2AJ

|ESj
n�

j + E�Rj
n 

j |q

�
X

j 62AJ

�
|ESj

n�
j |q + |E�Rj

n 
j |q
�
� |EwJ

n |q � |E�rJn |q
���. (15)

Thanks to Lemma 3.5, Lemmas 3.3 and 3.4, the quasi-triangle inequality, Hölder,
and the fact that E is bounded, we continue the estimate of (15) with

lim
n!1

RHS . lim
n!1

sup
j,j0J, ✏1 6=✏22{1,q�1}

ˆ
|ESj

n�
j + E�Rj0

n  
j0 |✏1 |EwJ

n + E�rJn |✏2

. lim
n!1

sup
j,j0J, ✏1 6=✏22{1,q�1}

kESj
n�

j + E�Rj
n 

jk✏1q kEwJ
n + E�rJnk✏2q

. lim
n!1

kEwJ
nkq + kEwJ

nkq�1
q + kE�rJnkq + kE�rJnkq�1

q .

By (9), the claim is proved.

4 Existence of Extremizers
Now we use the profile decomposition and information about the operator norm to find
a pair of bubbles that accounts for the full L2 mass in the limit.

Proof of Theorem 1.3 part 1. Assume that
 

1p
⇡
·
�( q+1

2 )

�( q+2
2 )

!1/q

21/p
0
Ap < A

±
p

as in the statement of the theorem.
Let {(fn, gn)} 2 `

2(L2) be such that

lim
n!1

kEfn + E�gnkq = A
±
2 and kfnk22 + kgnk22 = 1

for all n. Using Proposition 3.6, write

fn =
JX

j=1

S
j
n�

j + r
J
n and gn =

JX

j=1

R
j
n 

j + w
J
n

14



for J < J
⇤. Let " > 0 and let J and N be sufficiently large dependent on ". Then by

applying (11), Hölder, and (10),

(A±
2 )

q � " 
X

j2AJ

kESj
n�

j + E�Rj
n 

jkqq +
X

j2BJ

(kE�jkqq + kE� jkqq)

+ kEwJ
nkqq + kE�rJnkqq

 sup
k2AJ

kESk
n�

k + E�Rk
n 

kk4/dq

X

j2AJ

kESj
n�

j + E�Rj
n 

jk2q

+ sup
k2BJ

max{kE�kk4/dq , kE� kk4/dq }
X

j2BJ

(kE�jk2q + kE� jk2q) +O(")

 (A±
2 )

2 sup
k2AJ

kESk
n�

k + E�Rk
n 

kk4/dq

X

k2AJ

(k�jk22 + k jk22)

+A
2
2 sup
k2BJ

max{kE�kk4/dq , kE� kk4/dq }
X

j2BJ

(k�jk22 + k jk22) +O(")

 max
n
(A±

2 )
2kESj0

n �
j0 + E�Rj0

n  
j0k4/dq , A

2
2kE�j1k4/dq , A

2
2kE� j2k2q

o

+O("),

for j0 2 AJ and j1, j2 2 BJ , chosen based on the supremum, and all n > N . By
the second inequality in Theorem 1.2 part 1, there exists a C > 0 such that Aq

2 + C <

(A±
2 )

q . Since k�j1k22  1 by (10),

A
2
2kE�j1k4/dq  A

q
2k�j1k

4/d
2 < (A±

2 )
q � C.

Applying the same logic to E� j2 and taking " sufficiently small, this proves that the
maximum is achieved by the first term and hence

A
±
2 �O(")  kESj0

n �
j0 + E�Rj0

n  
j0kq. (16)

Since
kESj0

n �
j0 + E�Rj0

n  
j0kq  A

±
2 (k�j0k22 + k j0k22)1/2,

we have k�j0k22 + k j0k22 = 1 by taking "! 0. By (10),

kfn � S
j0
n �

j0k2 ! 0 and kgn �R
j0
n  

j0k2 ! 0 (17)

Let {(�n, tn, xn, ⇠n)} and {(n, sn, yn, ⌘n)} be the parameters for {Sj0
n } ⇢ S+

and {Rj0
n } ⇢ S� respectively and let {T j0

n } ⇢ T+ and {U j0
n } ⇢ T� be the associated

L
q symmetries. Let rn = n

�n
and

✓n := �r
2
n|⇠n|2sn � rnyn · ⇠n � 2rnsn⌘n · ⇠n + sn|⌘n|2 + yn · ⌘n. (18)

By calculation,

(U j0
n )�1

T
j0
n F (t, x) = r

d+2
q

n e
i(r2nt,rnx)·(|⇠n+r�1

n ⌘n|2,⇠n+r�1
n ⌘n)�2i(t,x)·(|⌘n|2,⌘n)+i✓n

F (r2nt+ tn � r
2
nsn, rnx+ xn � rnyn + 2r2n(⇠n + r

�1
n ⌘n)(t� sn)).

Since j0 2 AJ , Definition 1.1 implies that there exist r0 2 (0,1), (t0, x0) 2 Rd+1,
⇠0 2 Rd, ✓0 2 [0, 2⇡), and a subsequence in n along which
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1. lim rn = r0,

2. lim ⇠n + r
�1
n ⌘n = ⇠0,

3. lim(tn � r
2
nsn, xn � rnyn � 2r2nsn(⇠n + r

�1
n ⌘n)) = (t0, x0), and

4. lim e
i✓n = e

i✓0 .

Let V j0 2 T+ be the symmetry associated with the parameters r�1
n , ⇠0, and (t0, x0),

and let W j0 2 S+ be the corresponding L
2 isometry. Assume F,G 2 C

1
cpct. Then by

the dominated convergence theorem,

lim k(U j0
n )�1

T
j0
n F (t, x)� e

�2i(t,x)·(|⌘n|2,⌘n)e
i✓0V

j0F (t, x)kq = 0.

By density, we can extend this to F,G 2 L
q .

Let � := E�j0 and  := E� j0 . By the triangle inequality,

lim kT j0
n �+ U

j0
n  kq � ke�2i(t,x)·(|⌘n|2,⌘n)e

i✓0V
j0�+ kq = 0.

If |⌘n| ! 1,

lim ke�2i(t,x)·(|⌘n|2,⌘n)e
i✓0V

j0�+ kqq =
1

2⇡

ˆ 2⇡

0

ˆ ��ei!|V j0�|+ | |
��q dtdxd!

by Lemma 2.1. However, by [13, Lemma 6.1]

1

2⇡

ˆ 2⇡

0

ˆ ��ei!|V j0�|+ | |
��q dtdxd!  2q/2p

⇡
·
�( q+1

2 )

�( q+2
2 )

�
k�k2q + k k2q

�q/2
.

This contradicts the hypothesis on A
±
2 and (16) by taking " sufficiently small. There-

fore |⌘n| 6! 1 and there exists ⌘0 2 Rd such that ⌘n ! ⌘0 along a subsequence.
Let {Kn} ⇢ S+\S� be the symmetries associated with the parameters {(n, sn, yn+

2sn⌘n, 0)}. Let {Ln} ⇢ T+ \ T� be the associated L
q (note that the definitions of

the L
q symmetries coincide when the frequency translation is zero so the Ln are well-

defined). Let rn = n
�n

,

✓n := �r
2
nsn|⇠n|2 � rnyn · ⇠n � 2rnsn⌘n · ⇠n,

and
!n := �sn|⌘n|2 � yn · ⌘n.

We calculate

L
�1
n T

j0
n �(t, x) + L

�1
n U

j0
n  (t, x)

= r

d+2
q

n e
i✓ne

i(r2nt,rnx)·(|⇠n|
2,⇠n)

�(r2nt+ tn � r
2
nsn, rnx+ 2r2nt⇠n + (2r2nsn(r

�1
n ⌘n � ⇠n) + xn � rnyn))

+ e
i!ne

i(t,x)·(�|⌘n|2,⌘n) (t, x� 2t⌘n).

By Definition 1.1 and the fact that lim ⌘n = ⌘0, there exist r0 2 (0,1), (t0, x0) 2
Rd+1, ⇠0 2 Rd, ✓0 2 [0, 2⇡), !0 2 [0, 2⇡), and a subsequence in n along which
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1. lim rn = r0,

2. lim ⇠n = ⇠0,

3. lim(tn � r
2
nsn, xn � rnyn + 2r2nsn(r

�1
n ⌘n � ⇠n)) = (t0, x0),

4. lim e
i✓n = e

i✓0 , and

5. lim e
i!n = e

i!0 .

Let (W j0 , Y j0) 2 S+ ⇥ T+ be the symmetry pair associated with the parameters
(r�1

0 , t0, x0, ⇠0) and let (Xj0 , Zj0) 2 S� ⇥ T� be associated with the parameters
(1, 0, 0, ⌘0). By approximating �j0 and  j0 in C

1
cpct and applying dominated conver-

gence, the convergence in parameters implies that

K
�1
n S

j0
n �

j0 ! e
i✓0W

j0�
j0 and K

�1
n R

j0
n �

j0 ! e
i!0X

j0 
j0 .

Let f = e
i✓0W j0�j0 and g = e

i!0X
j0 j0 . By (17),

K
�1
n fn ! f and K

�1
n gn ! g,

in L
2. Finally, by the continuity of E± from `

2(L2) to L
q ,

kEf + E�gkq = A
±
2 .

Proof of Theorem 1.3 part 2. If

 
1p
⇡
·
�( q+1

2 )

�( q+2
2 )

!1/q

21/p
0
A2 < A

±
2 ,

then the previous part proves that extremizers exist. Therefore, assume

 
1p
⇡
·
�( q+1

2 )

�( q+2
2 )

!1/q

21/p
0
A2 = A

±
2 .

Let f 2 L
2 be such that kfk2 = 1 and kEfkq = A2 ([22]). Let g✓(⇠) = e

i✓
f(�⇠).

Then by the identity E�h = Eeh and [13, Lemma 6.1],

1

2⇡

ˆ 2⇡

0

ˆ
|Ef + E�g✓|qdtdxd✓ =

1

2⇡

ˆ 2⇡

0

ˆ
|Ef + e

�i✓Ef |qdtdxd✓

=
2qp
⇡
·
�( q+1

2 )

�( q+2
2 )

kEfkqq

=
2qp
⇡
·
�( q+1

2 )

�( q+2
2 )

A
q
2.
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Since
´
|Ef + E�g✓|q is continuous in ✓ by dominated convergence, there exists a

✓0 2 [0, 2⇡) such that

kEf + E�g✓0kq = 2

 
1p
⇡
·
�( q+1

2 )

�( q+2
2 )

!1/q

A2.

Therefore, by the assumption on A
±
2 ,

kEf + E�g✓0kq
(kfk22 + kg✓0k22)1/2

= A
±
2 .

5 Validated numerics

Proof of Theorem 1.2 part 2. Let f(⇠) = e
�|⇠|2 . By [11, Theorem 1.1], kEfkq =

A2kfk2. By the identity E�f = E ef and [13, Lemma 6.1],

1

2⇡

ˆ 2⇡

0

ˆ ���<ei✓/2Ef
���
q
dtdxd✓ =

1

2⇡

ˆ 2⇡

0

ˆ ���e�i✓/2Ef + e
i✓/2E�f

���
q
dtdxd✓

=
2qp
⇡
·
�( q+1

2 )

�( q+2
2 )

A
q
2.

Let J (✓) =
´ ��<ei✓Ef ��q dtdx. If we can show that J (✓1) 6= J (✓2) for some ✓1 6= ✓2,

then by the continuity of J there exists a ✓0 such that

J (✓0) >
2qp
⇡
·
�( q+1

2 )

�( q+2
2 )

A
q
2,

which will complete the proof.
Expanding Ef and integrating in polar coordinates, we see that

J (✓) = ⇡
dq/2

ˆ
(1 + t

2)�dq/2
e

�q|x|2

4(1+t2)

����cos
✓
✓ +

t|x|2

4(1 + t2)

◆����
q

dtdx

= cd

ˆ 1

�1

ˆ 1

0
(1 + t

2)
d(1�q)

2 r
d�1

e
�qr2

����cos
✓
✓ +

tr
2

4

◆����
q

drdt

where cd = 2⇡d(1+q)/2

�(d/2) .
We will consider d = 1 as the case d = 2 follows m.m. Bounding cos by one and

using Sage ([19]), we can bound the tail error

cd

ˆ
|t|>49

ˆ 1

4
(1 + t

2)
d(1�q)

2 r
d�1

e
�qr2

����cos
✓
✓ +

tr
2

4

◆����
q

drdt < 10�19
.
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The techniques of interval arithmetic (e.g. [17, Chapter 3], RIF Sage datatype) allow
us to track potential computation errors in the upper and lower Riemann sums with
steps of 0.1. Sage provides

cd

ˆ
|t|<50

ˆ 5

0
(1 + t

2)
d(1�q)

2 r
d�1

e
�qr2

����cos
✓
tr

2

4

◆����
q

drdt 2 (23, 37)

and

cd

ˆ
|t|<50

ˆ 5

0
(1 + t

2)
d(1�q)

2 r
d�1

e
�qr2

����cos
✓
⇡

2
+

tr
2

4

◆����
q

drdt 2 (0, 0.1).

These intervals are further apart than twice the tail error, so J (0) 6= J (⇡/2).
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