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Abstract

We consider the adjoint restriction inequality associated to the hypersurface
{(1,€) : 7 = |, € € R%} at the Stein-Tomas exponent. Extremizers exist
in all dimensions and extremizing sequences are precompact modulo symmetries
conditional on a certain inequality, which we verify in the case d € {1, 2}.

1 Introduction

Fix d € N and define

Ef(t.a) = [ PO (6 e, 1)
The adjoint Fourier restriction conjecture for the paraboloid is that
sup 1€ /1lq =A, <oo 2)
rece £y

forqg > pandq = d—fp' . We will call p and ¢ for which (2) holds “valid.”

Beyond boundedness, one might ask if there exists f € LP suchthat || f||,/| fll, =
A, and furthermore, if sequences { f,,} C LP such that lim ||€ f,, |4/ || frll, = A, have
any special properties.

This paper answers these questions for the adjoint restriction inequality for the
union of a pair of reflected paraboloids. We prove that extremizers exist in all di-
mensions whenever the normal conjecture holds, and that the previously mentioned
sequences are precompact modulo certain symmetries of the new operator provided
p = 2 and the operator norm is “large enough.” Finally, we verify the hypothesis on
the operator norm for d € {1, 2}.

For the standard single paraboloid in lower dimensions (d € {1,2}) there are par-
ticularly satisfactory answers. Radial Gaussians are the unique extremizers for £ at
the Stein-Tomas exponent ([11], [14], [3]), and it is conjectured that this is true for all
dimensions. Christ and Quilodréan ([7]) proved that this is only possible for p € {1,2}.

In higher dimensions or away from the Stein-Tomas exponent, the method of profile
decompositions and mass concentration have been the most successful ([4], [16], [2],



[51, [15], [20], [22]). Since the method analyzes extremizing sequences, it also yields
precompactness of extremizing sequences modulo symmetries of the operator. The
profile decomposition approach has yielded the existence of extremizers in all dimen-
sions but without an explicit characterization ([20]). Stovall extended this approach in
[22] to prove that extremizers exist in all dimensions for all valid exponents by truncat-
ing L? functions in a controlled way and then applying the L? theory. Our proof begins
with a profile decomposition mainly modelled after Killip and Visan’s formulation in
[15].

There are similar results for other restriction inequalities, for example restriction
to S¢. Extremizers exist and are characters multiplied by constants for d € {1,2} at
the Stein-Tomas exponent ([21], [9], [10]) as well as for some higher dimensions and
even exponents ([6], [18]). The results establishing the precompactness of extremizing
sequences of Christ and Shao in [8] (d = 2) and Frank, Lieb, and Sabin in [13] (d >
2 conditional on a conjecture) are particularly relevant to our setting. Specifically,
we borrow the strategy of relating the mass of individual bubbles to the value of the
operator norm as well as some computations from [13].

In this article, we address the same questions of existence of extremizers and char-
acterization of extremizing sequences for the adjoint restriction inequality associated
to the union of a pair of reflected paraboloids. Let P = {(7,€) : 7 = [£]?} and
P ={(r,&) : 7 = —|£]?}. We pull back d-dimensional Lebesgue measure through
the projection map R x R? — R? to a measure do supported on P and do’ supported
on P_. We will analyze the operator

5i(f7 g)(t7 .’13) = gf(tv J}) + 5_g(t, .13)
= [ O ©dotr) + [ N g(e)do (r,6).
,

It can also be expressed as

Eftm) +E-g(ta) = [ OO f(g) 4 0 Oy

Rd
When we write f(£) or just f, we mean the function R¢ — C, whereas fdo will
represent the measure fd¢ lifted to P. Similarly, gdo’ will represent the measure gdé
lifted to P_.
Symmetries and Definitions

Let S, C Iso(LP(R%)) and T, C Iso(L9(R?*1)) be the subgroups generated by

Sf(&) TEf(t,x)
Scaling AU/P F(NE) A@+2)/ag f(A2, A" )
Frequency Translation f(& — &) el HE Pree) g f (1 2 4 21¢")

Spacetime Translation e?(to:@0)(€%.6) £(&) £ f(t + to, z + 20).

They are distinguished by the fact that £ 0 S, = T, o £ and each element generates
non-compact orbits in L? or LY.



Using these generators, we can write any symmetry S € S as
Sf(&) = )\d/pei(to,ro)(I/\E*E’IQ,AEfE’)f()\g —¢), 3)
and the corresponding 7' € T as
TE(t, ) = \~(@F2/agiQ T HE PR e ) px =24 L0 AL 4 39 + 20 728), (4)

for some A € R*, (tg,79) € R x R%, and ¢’ € RY.
Let S_ C Iso(LP(R%)) and T_ C Iso(L?(R4*1)) be the subgroups generated by

Sg(&) TE g(t, x)
Scaling AP g(NE) A@2)/ag g\t \"lx)
Frequency Translation g(& — &) el (HEPHae e gt 2 — 2t¢")

Spacetime Translation ei(to-20) (=€) g (&) Eq(t + to, x + x0).

Note that T_ o £_ = £_ o S_ here as well.
Write any S € S_ as

Sg(¢) = /\d/pei(—to,zo)(lkﬁ—f’\?A&—&’)g()\f - &) 5)
for some A € RT, (tg,79) € R x R?, and ¢’ € R, Denote its matching 7' € T_ by
TG(t,x)
= )\_(d+2)/qei(_’\72t|’5/|2+’\71‘T'5/)G(>\_2t +to, N e+ ag — 2272tE). (6)

We also need notation to indicate whether or not two sequences of symmetries are
asymptotically orthogonal in a weak sense.

Definition 1.1. Let {S,},{S),} C S; and {R,},{R]} C S_ be the symmetries
associated with the parameters (A, ty, T, &n), (A, t0, 20, €LYy (K, Sy Uns Tn ), and
(Kl 80, yh,m,) respectively. Then we say {S,} L {R,} ({Sn} is asymptotically
orthogonal to {R,, }) if

1. lim 2= € {0,00}; or
2. lim |22, + &,| = oo; or

An S, (nn +

Kn

3. lim|¢, — (’\’L)an| + |z, — Ang o —9

Rn Rn

We say {5, } L {5} }if

An _
-En)| = oo

1. 1im§—z € {0,00}; or

2. lim \i—rﬂl —&p| = 005 or

3. Wit — (3)%t] + lon — 2l + 230 1,(6, — 326a)| = <.

7
n

We define { R, } L {R!} in the same way.



Results
Let

Ef+& 4|
AF = sup I 4_
P pgere (IFI1 + llgllz) /P

Since

I€fr+E-fall, < NEAN, +N1E-Fall,
/ 1
< Ap (1 £1llp + 1 fallp) < 2Y7 Ay (1£2115 + 11 £2112) LNG)

A;f < oo provided A, < oo. The theorem assumes only that the exponents p, g are
valid. The second is proven for the Stein-Tomas exponent.

Theorem 1.2. 1. Foralld € N,

—

1/q
1 I(E9) / o
(i) s <avia,
2

2. Ifd € {1,2},
1/q

1 (gt ,

LI, < ax

VT '(%5=)

Theorem 1.3. 1. Let {(f,,gn)} C L? x L? be such that || f,]|3 + ||gn||3 = 1 for

all n and
It

VT T(%2)
then there exist {Q,} C S; N'S_ and f, g € L? such that along a subsequence,
(@) ”f - annH2 —0;

() ||lg — Qngnll2 — 0; and therefore
© [|Ef +E_glly = AT

2. For all d € N, there exist f,g € L? normalized so that || f||3 + ||g[|3 = 1 such
that

+1 1/q
(1 . F(2)> 21/p’A2 < 143:7

I€f +E-gllg = A5
The theorems immediately imply the following corollary.

Corollary 1.4. For d € {1, 2}, extremizing sequences for £, are precompact modulo
the action of Sy NS_.



Our primary tool is the identity &_ f = £ f where f(f ) = f(=¢€). For an extrem-
izing sequence {(f,, gn)}, we apply a standard profile decomposition modeled on the
one from [15] to each sequence independently. We then bound the interactions between
bubbles whose symmetries are asymptotically orthogonal in the sense of Definition 1.1.
From this we deduce that almost all of the L? mass of { f,, } and {g,,} come from single
bubbles whose symmetries are not asymptotically orthogonal.

There are two cases. Either the bubbles are translated to infinity in frequency space,
or they remain bounded. An inequality from [13] shows that under the hypothesis of
Theorem 1.3 part 1, we must be in the second case and therefore we can extract a
convergent subsequence. We verify this condition computationally for d € {1,2}. If
the bubbles translate off to infinity, no sequence of symmetries can make them both
converge. However, we know the operator norm exactly in this case and are able to
construct extremizers for £1. from extremizers for £, completing the proof of Theorem
1.3.

In this paper, we can only calculate useful lower bounds on the operator norm of
Ey : P(LP) — LY in dimensions where we know extremizers exist for £ : LP — L4
and have a particularly simple form, such as Gaussians. This is conjectured to hold
in all dimensions at the Stein-Tomas exponent, but based on the result of Christ and
Quilodréan ([7]), it seems unlikely that this will be possible for other valid exponents.
In addition, without further simplification the numerical computation must be run for
each dimension individually rather than once for the general case.
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2 Bounds on Aff

The purpose of this section is to prove Theorem 1.2 part 1. The first lemma resembles
an observation of Allaire ([1]).

Lemma 2.1. Let g € L9(R'*) and let ¢ > 0 be sufficiently small. Then there exists
Ao > 0 such that

, N 1 [ 4
’/|Sel(_t|’7|2+”")qutdm— 2—/ /|Se“gg|thdxd6" <e
T Jo

for all |n| > Ao.
Proof. Let g’ € C°(R!) be such that ||g — ¢'||9 < e/4. By the triangle inequality,

. 1 [27 .
’/|%ez(m)'(_"2’”)g|thdx— 2—/ /|S‘yeleg|thdxd0‘
T Jo

. 1 [27 )
< ’/|Sel(m)'(_"2’")g'|thdac— 7/ /%ewg’|thdxd9‘ + 2
27T 0 2



Hence it suffices to prove the result for g € C2°.
Take g € C(R1). Let X = \;'Z and I = [0,1). Since g is smooth and
compactly supported, we can take \g > ¢! large enough that

/‘gei(t,z)(—lnlzm)g‘thdx:/ Z
Rd

acX

1 27 ) )\—1 27 )
— Se'?g|2dodtdx = / 20 / Set? 1d0dz + O
[ 1oetapdsais LE 3 [ e st + o)
and

/ A 1,|%ei<fvm)'<—‘"‘27">g(a,x>|4dtdx+0(e),
a+ 07

/|g\thdx:/ S A gl ) 7z + O(e).
]Rd

acX

Furthermore, by the change of variables = t|n|? — x - n,
/ |Sei e (=In*m) g (o, 2|2t
atrg I

[nl>a—zn+A5" | ,
— |y / S~ g(a, z)|7d6
\

n|2a—z-n
2ol

2
o /0 1Seg(a, 2)|9d0

— [0<1>|g<a,x>|q T
)\—1 2 )
= 0l g+ o [ f9e ot
0

Plugging this into the sum and simplifying,

/I%ei(t,x)'(—\ﬁ\2,7l)g‘thdl‘

=/Z

acX

1 2m ]
=0)nI"*Xollglld + / %/0 |Set g|9dOdtdx + O(e).

-1 2m
Ol gt + 3 [ e taayran] o+ 0l
0

Hence for 5| > Ao > e~ 1, we have

. 1 [
‘/|%ez(t"”)'(_lnlz’")g|thd$—/2/ 1Se?g|9d0dtdz| = O(e).
T Jo

O

Lemma 2.2. Let ¢ > 0 be sufficiently small. Then there exists a § such that for
all f € LP with ||f]l, = 1 and |Ef|l;, > A4, — ¢, ||SEf]l; > 6. Furthermore,
lim, g6 =: Op > 0.



Proof. Suppose we had a sequence { f,,} with || f,,||, = 1 such that [|SE f,, || — 0 and
Il€ frullq = Ap. Extremizing sequences are precompact modulo symmetries ([22]), so
there exists f € L? and symmetries {(S,,,T,)} such that || f|l;, = Ap and S, f,, — f
along a subsequence.

We want to prove that there exists a function g such that || I€g||, = 0. The quantity
ISE fl|4 is invariant under scaling and spacetime translation of f so without loss of
generality assume & f,, = ei(t:2)-(In*m2) € £(¢, - 4 2tn,,). By hypothesis ISE fully —
0 so by a change of variables, ||%e(t@)'(_“’"|2”’")5qu — 0.

Since £f # 0, fOQWf |Se?E fl9dtdzdd # 0. By Lemma 2.1 there exists ¢ >
0 and Ao > 0 such that ||Sei(t®) (=In*.mgf|| > & for all || > Ao. Therefore
lim sup |n,,| < Ag. The set {|n| < Ag} is compact, so by passing to a subsequence there
exists an 7 such that n,, — 9. Since ||%ei(t"’”)'(*|"|2’")€f||q is continuous in 7 by the
dominated convergence theorem, H%ei(t’m)'(*m‘]'z”m)g fllg = 0. Changing variables
and moving the frequency translation through &, we have ¢ a frequency translation of
f such that |SEg||, = 0.

However, this is impossible. Examining the Schrédinger equation, we find that it is
equivalent to

0:Su — ARu = 0,
O:Ru + ASu = 0.

Hence 9, REg = 0 and AREg = 0. By Weyl’s lemma RE¢(¢, -) agrees almost every-
where with a harmonic function, but since the time derivative is also zero, RE¢(t, -) is
the same non-zero harmonic function for all £. Such functions are not in L.

The above implies that there does not exist a sequence {(||€ fr|lq, [|SE fnllq)} in
A= (€13 ISE 1)  [flly = 1} © [0, A,] x [0, A,] that converges to (4, 0).
Then

Cy = timinf (f{|SES] : 7], = 1, 1€, > Ap —€}) > 0.

Proof of Theorem 1.2 part 1. First, we prove that

+1 1/q
L . F(qT) 21/p’Ap < Ai.
v T(%?) ’

Let f € LP be an extremizer for £ normalized so that || f||, = 1. Let e; € R? be
the first unit vector and define sequences

fn(€) := f(§ —ne1) and  gn(§) := f(—€ —ne).



Then by Lemma 2.1 and [13, Lemma 6.1],

lim/\gfn+5,gn|q dtdx

q

—tiw [ |e, + E5
. . J— q
:hm/ ez(t,r)'(n27ne1)gf(t7x+Qntel)+el(t,z).(_n2,_nel)gf(t7l._|_Qntel)

) . on? _ q
= hm/ eit2)(@nn e e r(¢ g 4 9nter) + Ef (¢, + 2nte;)

q

= lim / ety (=2n®2me0 g (4 1) L EF(t, )

1 o W rardlks
=5 [ [leen+ren|

20 T(%f)
= 2
2

SV TEn Y

Since (|| fll2 + l|lgnllB)'/P = 2!/P, this proves the first inequality.
Next, following the proof of [13, Lemma 6.1] let

P(t) := 1 /ﬂ(l + tcos 0)?/2d6.
0

T
Then
¢ (t) = Qi (14 tcos0)9=2/2 cos hdh
T Jo
q /2
=5 ((1 + tcos0)972/2 _ (1 —tcos 9)(‘1*2)/2) cos 0df
T Jo
> 0.

Since ¢(0) = 1 and

_ 2T
VT D(42)

using the integral representation of the beta function, the second inequality follows.
Second, we prove that

¢(1)

:l: ’
Ar <2lP 4,
Note that for a nontrivial sequence {(f,, g»)} to achieve

lim € fr + E,gan
n=0o (|| fullp + llgnllp)L/?

= 21/p/Ap,

it must approach equality for every inequality in (7). Therefore, aiming for a contra-
diction, we assume that there exists a sequence {(f,, g )} normalized in ¢?(LP) such



that |€ fnllq = Aps [|Egnllq = Ap, and ||€ fr, — E_gn|l; — 0. Expanding the integral
using the identity £ g = £3,

I & 0ull = [ (REf, ~REI? + 1985, + 367 2)".

Hence | SE fr, + SEGn|lq — 0. If we multiply f,, and g,, by ¢ and use the linearity of
& and £_, we see that

1€ Fn = E-gnllg = IE(ifn) = E-(ign)llq
= [ Sefu+ 93P +RES, + R P)
and hence ||SEf, — SEGnllq — 0 as well. However, by the triangle inequality and
Lemma 2.2
lim [[SEfp = IEGnllg = 1im 2[|IEGnllq — [SE fr + IEGnllq
n—oo
= 1im 2||3EGn||q
> 2C,A,,

which is a contradiction. Therefore no such sequence {(f,,g.)} exists and Aff <
217 A, O

3 Bubble pairing and orthogonality

Letp=2andq = %.

We will use the following formulation of the L? profile decomposition for the
Schrodinger equation.

Proposition 3.1. [15, Theorem 4.7] Let {f,,} < L?*(R%) be bounded. Then after
passing to a subsequence, there exist

1. J* € NU{o0};
2. functions ¢/ € L2 forall j < J*;
3. remainders w; € L? forall J < J*;

4. and sequences {\,} C R, {(¢},27)} C R4, and {¢J} C R? defining
{S7#} c S, forall j < J* and all n
such that for all J < J*

J i . . .
fn= Z()\gl)d/Pei(ti,Ii,,)'(lkiE*Ei,,\Z’Ai,ffffz)qgj(/\glg . A w;{, 8)

j=1

. . Jn
Jlgnj* llrrln%sotip |€w;lq =0, )



sup Hm | [|all3 Z||¢]||2 lwill3] =0, (10)

Jj=1
sup lim -\ [[€allg = Z IES N — llErlig| =0, (n

j=1

and for all j # k, ‘
{s73 L {sn}. (12)
The same holds for £_ with (8) replaced by
J .
Jn :Z(Hi)d/Pei( T ul)-(Isd =i %, Kj'f_"gl)wj(%&—nf;)ﬂ“ﬂ- (13)
j=1

Let f,., g, be bounded sequences in L? and apply the profile decompositions of (8)
and (13) respectively. If the J* are different, take the larger of the two and pad the
other sum with zero bubbles.

Lemma 3.2. Let {S7} and { R} } be the sequences of symmetries associated with the
decompositions of { f,, } and {g,,} respectively. If {SJ} £ {RE}, then {S7} L {RF'}
for all &/ # k.

The proof is a long, unenlightening calculation, so we omit it for readability.
Lemma 3.3. Let {S7},{S7'} ¢ S,.Let¢/, ¢/ € L2 If {S7} L {S7'}, then
“m/ ESL6711E83 @771 + €S0 |ES] ¢ = 0.
Proof. By the symmetry of the statement, we need only consider the first term in the

limit. Let ¢ > 0 and let &7 € Cg5,,(R4™) be such that || &7 — £¢7 |, = O(e) (resp.
P, Expanding, changing variables, and dealing with the remainders by Holder,

[1esioliesy o ot
- / (X))~ @0 (NI )= @2/ |9 (M) 72 + 1, (M) L+ ad, + 2(0) 2l
|‘I’j/<()\3:)_2t + t‘Zz/a ()\zl/)_lx + 33{; + 2(A£/)_2t§j’|q—1 +0(e)

-/ 2 ’ 2
bY oY) A
= [y /W((%) t+ e, (A%)HIJ +2<AJ> él)

|7 (t+ 7 &+ 27 +2t&0) 71 + O(e)

)\j/ (d+2)/q )\j, 2 )\] )\Jl 2
:/()\’;) |<I>j(</\?> t+t§,<;>x+xﬂ +2<A ) )]

D7 (¢ + 1, & + 2+ 2t€2 )97 + O(e).

10



By Holder’s inequality, we see that

NG
") 07 ]loo [[(@7)7~ |1 4+ O(e)

1
[lesioliesy o it < (AJ

and

)\j/ _(d+2)/ql
/\55%¢3H55% ¢ 17 < <A’j> 127111 (®7) " oo + OCe).

7} L {S7'} is satisfied by condition 1),

/ £59¢7]1£87 ¢ |77 = O(e).

Taking € — 0, this proves the claim.

Now we may assume that, after passing to a subsequence in n, hm )\ =R €

n

(0,0). By scaling, we may also assume that A/, = 7,1 such that limr,, = R and
M =1 for all n.

Lete > O and let f,g € CZ5,, be such that || f — ¢/||2 = O(e) and ||g — ¢ || =
O(g). By the boundedness of &, the triangle inequality, and Holder,

[lesilesion i < [lesislesi gl +06)
< I(ESLAES] 9)llss (€55 9)" 21« + Oe)
= I(ESLNES) 9)llss 1S N2 2 ) + OCe),

where 0 > 0 is sufficiently small (to be determined), ss = er and ts = %.

As a function of 4, s§(¢ — 2) = % is continuous near zero and for § = 0,

s0(q¢—2) = g. Since the exponent pair (2, Q(dT“)) is in the interior of the known range
of restriction estimates (e.g. [23]), there exists a dg > 0 such that the operators £ and

£ are bounded from L' to L°50(4~2)  Let

_ dist(supp 57, f, supp S g)
diam(supp S f) + diam(supp S3, g)

This number is well-defined since f and g have compact support. Note that since {r,, }
is bounded, N,, ~ dist(supp S7 f,supp SJ'g) with some n-independent constants.
Continuing the estimate using scaled bilinear restriction ([23, Corollary 1.3]) and the
scaling assumption,

_d+2
IESAIESE D) lss, IEST g% a2 SNa I l2llglllS;  gll%

_d+2
Sso

§R7f,g Nn

11



Since s5, > 42 and N,, ~ |r,,&] — &} | for large enough n, taking n — oo and & — 0
proves the claim when {S7} | {57’} is satisfied by 2 but not 1.

We turn to the final case where neither 1 nor 2 is satisfied, but condition 3 is. We
make the same assumptions on scaling as in the previous case. Changing variables,

/ £S3¢7|1ESE ¢ |97 = / R IEY (Ap(t ) + by)||E |77

where

A, = T’%.” » 0 and b,, = ) .,t% N 7’%23]7.; . . .
2rp(rnél, — &) mnla x, — o), + 2rt, (&, — k)

Since condition 2 is not satisfied, we may pass to a subsequence in n so that || A, ||op ~
1. Condition 3 implies |b,,| — 00, so | A, (t, ) + by| — oo uniformly on compact sets.
Approximating £¢’/ and £¢7" in L4 by functions F, G € C2,,, we see that

cpct?
1im/R¥|F(An(t,x) +b)l|GT = 0

by dominated convergence. The lemma follows by taking better and better approxima-
tions. O

Lemma 3.4. Let {S7} C S; and {R/,} C S_. Let ¢/, 99 € L2 If {S7} L {R}},
then
tim [ [£5]07|€- R0 + €536717 - Ryw| o
Proof. As usual, we can express S{L and R{L in the form of (3) and (5):
ST 47 (€) = (M) /Pei(thmn) (INEEPALE—E) i (NI ¢ — ¢,
RII(€) = (k1) /Pet(—snovn) (IR &ml* s &=m) i (5] ¢ — i),
Define the sequence {UJ} C S by
QUI(€) 1= () /rellon s (R Em st ) f (1) ¢ + o).

By a change of variables,

:/ei(t,x)(\&\?,—é)(Iizl)d/l)ei(sf;vyf;)'(\ﬁflf—"f%|2’_%§+ni)?('€%§_ni)dg
:/ei(t,z)'(\£\2,£)(K«%)d/lﬂei(si},vyf{)'(\%f"'"%‘2”‘%54_%)?(“{15+77;l)d€

— £Q4 f(t,x).

The symmetries Q7 have the same dilation and spacetime translation as R/, only with
negative frequency translation. From this it is clear that {S7} 1 {R]} < {S?} L

{QJ}and |E_RI f| = |E Q{Lﬁ. Thus the claim follows from the previous lemma. [

12



We will need the following elementary calculus lemma.

Lemma 3.5. There exists C,, > 0 such that for all ay,...,a, € C,

n

n n
1> a9 = a[| < C sup  ajlla "t
j=1 j=1 1<j#5'<

Proof. First, let a,b € C be such that |a| > |b|. Let F/(z) = z%. Then by the triangle
inequality and the mean value theorem,
lla +0[7 —[a] — [b]7] <la +b]7 —[a|*] + [b]7

< o] sup |F(z)] + [b]*
|1<2al

= q27 ' [blla|""" + [b]?
< max{|al[p|7~", [al*~ [b]}.

Now take any aq,...,a, € C. We can expand telescopically and apply the base
case to show that

n n
1> a7 = Jag|?
j=1 j=1

n

k k-1
Do 1Dl =1l — faxl?
j=1

Jj=1

IN

k=2

n k k—1

SIS aslt =1 asl* — |axl
k=2 j=1

j=1

A

k—1 k—1
sup max \Zaﬂq_l‘ak‘v‘z%uak‘q_l
2<k<n = =1

By the triangle inequality and the pseudo-triangle inequality |a + b|9™1 < |a|971 +
|b|9=1, we obtain the result.

Proposition 3.6. Let {(f,.,g,)} C L? x L? be bounded. Then there exist J* €
N U {oco} and decompositions

J J
fo=_ Sh¢’ +ri and g, = Ri¢I +w;
j=1

j=1

for J < J* that satisfy all the conclusions in Proposition 3.1 and such that there exist
partitions Ay U By = {1, ..., J} such that

i ims q _ J b J a7 |14

JEAs (14)
= > NEF NG = D IE-D NG — NG — IE=willg = 0.
JEBy JjEBy

Furthermore, for J; < Jy < J* wehave A;, C Aj,.

13



Proof. Let J < J* and j < J. By Lemma 3.2, there exists at most one j' < J such
that {S7} £ {RJ'}. If such a j' exists we may assume that j = j’ by rearranging the
sequence {17 }{ and adding j to the set A ;. If no such j’ exists, we add j to B;. By
the triangle inequality,

1€ +E-gulls— > €S’ +E_ Rl |4
JEAy

= > ES NG = D NE-wI NG — lIErIIE — l1E-w;l g

JEBy JjEB,

J
< / ’|5wg FE) Y ESIY +E_RIY|T— D |ESLY + E_RIYI|
j=1 JEA,
= 2 (1EShe 1 + 1Ry |7) — [Ew|? — E-r]l’|. (19)
JEAS
Thanks to Lemma 3.5, Lemmas 3.3 and 3.4, the quasi-triangle inequality, Holder,
and the fact that £ is bounded, we continue the estimate of (15) with

lim RHS < lim sup /\ES%W +E_RIW | Ew] + £ r]|
n— oo n—oo j7j/§J7 61#626{1,(]—1}
< lim sup €857 + E_ R || |€wy, + E-ry |2

N0 4 1<, er#ea€{l,q—1}

: J Jlqg— J Jilg—
< lim (€l + 1€ |47 + 1€-rll + llE-r 13

~

By (9), the claim is proved. O

4 Existence of Extremizers

Now we use the profile decomposition and information about the operator norm to find
a pair of bubbles that accounts for the full L? mass in the limit.

Proof of Theorem 1.3 part 1. Assume that
1/q
1 (et ,
. (qu) 9l/p A, < A;)t
VT T(57)

as in the statement of the theorem.
Let {(fny gn)} € 62 (L2) be such that

lim [|€f +E-gullg = A3 and | ful3 + llgal3 =1
n—oo

for all n. Using Proposition 3.6, write

J J
fa=) Shd' +r] and g, = R +w;
j=1 j=1

14



for J < J*. Lete > 0 and let J and N be sufficiently large dependent on €. Then by
applying (11), Holder, and (10),

(A7)7 —e< Y €8¢ + E-RIWI(L+ D (€719 + lE-47[|9)
JEA; JEB,
+ | Ew||a + (lE-7;] |12
< sup [[ESF¢F + E_REGF(NE D €SI + E-RLY|?
keA, jEA,
+ sup max{[[E¢* |39 1€ w* 13/ > (1607112 + 1E-¢7[12) + O(e)
J JjEBy

< (A%E)kagf IESES™ + E_REGHA* > (147113 + [1¢7113)
J k€A,

+ A3 JSup max{||E6" [/, [E-4* 1574} > (17113 + 197 ]13) + O(e)
7 JjEBy

< max { (AF Pl|ESpe™ + £ R |3/, A3 €07 |3/, A3 2}
+0(e),
for jo € Ay and ji,j2 € By, chosen based on the supremum, and all n > N. By
the second inequality in Theorem 1.2 part 1, there exists a C' > 0 such that A2 + C <
(A¥)4. Since ||¢7]|3 < 1 by (10),
A€ Iy < A3l 1y < (45)7 ~ €.
Applying the same logic to £ 72 and taking ¢ sufficiently small, this proves that the
maximum is achieved by the first term and hence
Ay = O(e) < ||ESP G + E_Rep™|,. (16)
Since o o _ _
lESR &% + E_Riw™ |y < Az (167113 + 47 ]13)"/2,
we have ||¢7°]|3 + ||47°||3 = 1 by taking e — 0. By (10),
I fn = S5¢" ]2 =0 and |lgn — RI9™[l2 = 0 a7

Let {(Anstn, Tn, &)} and {(Kn, Sn, Yn, )} be the parameters for {S7°} C S,
and {RJ°} C S_ respectively and let {770} € T and {UJ°} C T_ be the associated

L9 symmetries. Let 7, = 5= and

en = _T'r21|£n|28n —TnYn En - 2rn3nnn : fn + Sn|7]n‘2 + Yn - Mn- (18)
By calculation,
d+2
(Ujo)—lTjoF(t .’17) — THTei(rit,rnx)~(|£n+7“;1nn\2,§n,+r;1'r]n)—2i(t,x)-(|nn|2,nn)+i9n
n n )

F(rit +t, — risn, X + Ty — TplYn + 27“2(5“ + r;lnn)(t — 55)).

Since jo € Ay, Definition 1.1 implies that there exist g € (0,00), (tg,zo) € RI*L,
& € R4, 6y € [0, 27), and a subsequence in n along which

15



1. limr, =9,
2. hmgn + Tglnn = 50,

3. lim(ty, — 1255, T — TYn — 2725, (En +777100)) = (to, 20), and

4. lim e¥n = ¢,

Let V7o € T be the symmetry associated with the parameters r,, -, L, &, and (tg, o),
and let W7o € S, be the corresponding L? isometry. Assume F, G € Cepet- Then by
the dominated convergence theorem,
lim || (U70) = T30 F(t, z) — e 2&2) U Pm) giboy7io (¢ )|, = 0.
By density, we can extend this to F, G € L9.
Let ® := £¢7° and ¥ := £ )70, By the triangle inequality,
lim || T90® + U W||, — [le~22) (nml*mm) gioysiog 4w, = 0.

If |1, — oo,
1 —2i(t2)- (1 %) 001 1 il a
lim || 24(62) (%) OVJ°<I>+\IJ\|3:2— || VD] + ||| dtdwdw
T Jo

by Lemma 2.1. However, by [13, Lemma 6.1]

2 Tt

VT T2

This contradicts the hypothesis on A;t and (16) by taking ¢ sufficiently small. There-
fore |1,| 7 oo and there exists 19 € R? such that 7,, — 7 along a subsequence.

Let {K,,} C S;NS_ be the symmetries associated with the parameters {(x, Sn, Yn+
2807, 0)}. Let {L,} € T4 N T_ be the associated L4 (note that the definitions of
the L7 symmetries coincide when the frequency translation is zero so the L,, are well-
defined). Let r,, = ”‘:,

27
— / e Vioa| + |0||! dtdedw < (@) + w2 )q/2

en = —7‘7218n|§n‘2 —TnYn - gn — 27’n$n77n . En7
and
Wn i = =8n |0l = Yn - -
We calculate
L\ T9®(t,x) + L, 'UPW(t, )
= 7“1%ew”ei(ritarnfﬂ)-(\fn|2,£n)
@(Tnt tin— ™ nSns Tn® + 2r;, tfn (QT%Sn (T»;1777L - gn) +x, — ’I"nyn))
+ ei““ei(t7w)'(—|nn\2,nn)\1j(t7 T — 2t77n)

By Definition 1.1 and the fact that lim #,, = 7, there exist 7y € (0, 00), (to,x0) €
R+ &5 € RY, 6y € [0,27), wo € [0,27), and a subsequence in n along which
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1. limr, =9,

2. limé, = &,

3. lim(t, — 1280, T — PYn + 2125, (r i — €2)) = (to, 20),
4. lim e = ¢ and
5. lim e™n = eiwo,

Let (WJo YJ) € S, x T, be the symmetry pair associated with the parameters
(ro s to, o, &) and let (X70, ZJ0) € S_ x T_ be associated with the parameters

(1,0,0,m0). By approximating ¢’° and ”° in C2, and applying dominated conver-

gence, the convergence in parameters implies that
K~1gjo (bjo —y oo ¢j0 and K ~l1Rjo ¢j0 N eionjowjo.
Let f = e Wiogio and g = ™0 X7oq)do, By (17),
K 'fo—f and K, 'g,—g,
in L2. Finally, by the continuity of £y from ¢2(L?) to L4,

IEf +E_glly = AF.

Proof of Theorem 1.3 part 2. If
1/q
1 I 1/p' +
<ﬁ'r(q;2> A

then the previous part proves that extremizers exist. Therefore, assume

+1 1/q
(o o)) 2=
™ T(457)

Let f € L? be such that [fllz =1and [|Eflg = A2 ([22]). Let go(§) = e f(=¢).
Then by the identity £_h = Eh and [13, Lemma 6.1],

1 2 1 21 o
7/ /\5f+5,ge|qcztdxd9= 7/ /|€f+e_’95f|thdxd0
27T 0 27T 0
24 F(ﬂl)
= 7=tz I
2
¢ T(atl
= 27 . (quQ)Ag.
VT T(57)
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Since [ |Ef + £_gp|? is continuous in 6 by dominated convergence, there exists a
0o € [0, 27) such that

1/q
1 D«
& E_ =2 = .2 As.
” f+ gGqu (ﬁ F(ﬁﬁ) 2

Therefore, by the assumption on Ai,

1€ +Egolla _ 4o
(T3 + Tigan 1372 ~ 72

5 Validated numerics

Proof of Theorem 1.2 part 2. Let f(§) = e~l¢”. By [11, Theorem 1.1], IEfllq =

As||fll2. By the identity £_ f = Sfand [13, Lemma 6.1],

1 27\' . 1 27\'
- /‘?Rewﬂé'f‘thdzdﬁ - 7/ /
27T 0 27T 0

20  T(Lth)

) 2 q

VR Ty

LetJ(0) = [ ‘é)‘ﬁewé’ﬂq dtdx. If we can show that J (61) # J(02) for some 61 # 6-,
then by the continuity of J there exists a 6y such that

e 9128 ¢ 1 9% f|" dtdude

20 T(%3)
T(00) > —= - —2L AL,
VT ()

which will complete the proof.
Expanding € f and integrating in polar coordinates, we see that

_ _dq/2 oy —dg/2, 2z t]x]? !
j(o) =TT a/ /(1 +1t ) a/ e +t2) COS (9 + m dtdx
oo o) -~ t 2 q
= cd/ / (1+ t2)d(lz L pd=lo=ar® | og (9 + Z) drdt
—o0 J0
where ¢g = %.

We will consider d = 1 as the case d = 2 follows m.m. Bounding cos by one and
using Sage ([19]), we can bound the tail error
tr?
0+ —
Ccos ( + 1 >

> 2\ d4l-a) 4 g —qr?
Cd (I+¢3)" 2 r* e
[t]|>49 J4

18

q
drdt < 10719,




The techniques of interval arithmetic (e.g. [17, Chapter 3], RIF Sage datatype) allow
us to track potential computation errors in the upper and lower Riemann sums with

steps of 0.1. Sage provides
tr?
cos | —
4

5

dd—a) 4 1 _ .2

cd/ /(1—|—t2) = pd-lemar
[t|<50 J 0O

5 2
- t
cd/ / 1+ t2)d(12 L pd=1e=ar? | cog (W + 2 )
|t|]<50 J0 2 4

These intervals are further apart than twice the tail error, so J(0) # J(7/2). O

q

drdt € (23,37)

and

q

drdt € (0,0.1).
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