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We address the problem of estimating the transmissivity of the pure-loss channel from the Bayesian
point of view, i.e., we consider that some prior probability distribution function (PDF) on the unknown
variable is available and we employ methods to compute the Bayesian minimum mean square error
(MMSE). Specifically, we consider two prior PDFs: the two-point and the beta distributions. By
fixing the input mean photon number to an integer, for the two-point PDF we prove analytically
that the optimal state is the Fock state and the optimal measurement is photon-counting, while for
the beta PDF our numerical investigation provides evidence on the optimality of the Fock state and
photon-counting. Moreover, we investigate the situation where the input mean photon number is
any (non-negative) real number. For said case, we conjecture the form of the optimal input states
and we study the performance of photon-counting, which is a sub-optimal yet practical measurement.
Our methods can be applied for any prior PDF. We emphasize that we compute the MMSE instead
of Bayesian lower bounds on the mean square error based on the Fisherian approach.

I. INTRODUCTION

Estimation of the transmissivity τ ∈ [0, 1] (or
equivalently of loss) is of paramount importance in
quantum communications as it determines the funda-
mental limit of any point-to-point quantum protocol
[1]. In the quantum sensing setting, estimation of
loss of power is connected to the reflectance of a
target, and it affects the sensing system’s ability to
attain Heisenberg scaling in many scenarios [2, 3].
Moreover, transmissivity estimation plays a crucial
role in quantum network diagnostics: Given a net-
work where information-carrying light is transmitted
through, one wishes to estimate what the unavoid-
able losses are due to imperfections, for experimental,
manufacturing, or other practical reasons. Lastly, es-
timation of transmissivity and the questions that
come with it (e.g. optimal states and measurements
for said task) is interesting in its own right from the
theory point of view.

To our knowledge, the problem at hand has been
addressed through the Fisherian approach [4–8], i.e.,
considering the quantum and classical Fisher informa-
tion (denoted as F (τ) and C(τ)) whose inverses serve
as lower bounds on the mean square error (MSE),
with F−1(τ) being the fundamental limit. These
bounds are the well-known Cramér-Rao bounds. In
this work, we do not consider the unknown parameter
as having a fixed value, but we consider it as being a
random variable that follows a prior probability dis-
tribution (PDF) P (τ), which gives rise to Bayesian
quantum estimation [9, 10]. The use of a prior PDF

can be justified as a result of prior measurements
of the system [11] or of being based upon natural
assumptions, e.g., the manufacturer can provide in-
formation, in the form of a PDF, on the loss of an
optical fiber by performing diagnostics on random
samples, but without specifying the loss rate of the
equipment at hand.

The pure-loss channel is a successful model for lossy
optical elements and is defined as a beam splitter
with transmissivity τ , whose lower input mode is set
to vacuum and its lower output mode is traced out.
The upper input and output modes are referred to
as input and output of the channel respectively. For
said channel, and within the Fisherian approach, one
of the results in [5] was that for fixed input mean
photon number, the Fock state is the optimal probe
state to sense τ when the input mean photon number
is an integer, while for that case photon-counting was
proven to be the optimal measurement. Results for
fixed mean photon number to non-integers were also
derived.

If a prior PDF is available, one can construct
Bayesian versions of the Fisherian Cramér-Rao
bounds: Let us consider a single unknown variable
x that follows a (prior) PDF P (x). Also, let us con-
sider the optimal measurement in the sense that the
QFI is equal to the CFI, i.e., F (x) = C(x), where we
note that such a measurement always exists in the
single-parameter setting. Then, the Bayesian version
of the Cramér-Rao bound is [12] ,

δB ≥ J−1
E ≥ J−1

B , (1)
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where,

δB =

∫

dxP (x)tr
[

ρ̂(x)(Ĥ − xÎ)2
]

(2)

is the Bayesian mean square error for a measurement
given by the eigenvectors of the Hermitian operator
Ĥ on the final state ρ̂(x),

J−1
E =

∫

dxP (x)F−1(x), (3)

JB = JD + JP , (4)

where JD is the Fisher information related to data,

JD =

∫

dxP (x)F (x) (5)

and JP is the Fisher information related to the prior
PDF,

JP =

∫

dxP (x)

(

∂ lnP (x)

∂x

)2

. (6)

In inequality (1), JB is not always attainable and
J−1
E is attainable in the limit where the collected

data goes to infinity [12]. Therefore, said bounds
are not guaranteed to fully capture the impact of
prior information. For any given Bayesian sensing
task, even if examined using the Fisherian approach,
a rigorous analysis must be re-done in a genuinely
Bayesian fashion [9, 10]. However, some physical
intuition can be drawn from results obtained in the
Fisherian approach.

In this paper we set x = τ and we consider the for-
malism developed in [9]: We work with the minimum
mean square error (MMSE) where the minimization
is performed over all possible protective measure-
ments, i.e., all possible Hermitian operators Ĥ of Eq.
(2),

δ ≡ min
Ĥ

δB . (7)

This paper is organized as follows: In Section II
we describe the pure-loss channel and review the
Bayesian approach to single-variable quantum esti-
mation [9]. In Section III we derive a lower bound
on the MMSE which will be useful to the techni-
cal development of later sections. In Section IV we
prove that for fixed input mean photon number to
an integer and for the two-point PDF as prior, the
Fock state is optimal and also find that the optimal
measurement is photon-counting. In Section V, we
consider the two-point prior PDF and we do a nu-
merical investigation on what states are optimal for
non-integer fixed input mean photon and we examine

the behavior of photon-counting as a feasible (yet
sub-optimal) measurement. In Section VI, we repeat
the same analysis, this time based only on numerics,
for the beta distribution and we find similar results
to the previous sections. Finally, in Section VII, we
discuss further our results, we do a comparison be-
tween the bounds of inequality (1) and the MMSE δ,
and we discuss future research directions.

II. THE MATHEMATICAL TOOLS AND

THE SETUP

We denote the input of the pure-loss channel as ρ̂0.
Then, the output state is ρ̂(τ) = Lτ [ρ̂0]. The time
evolution of the input state ρ̂0 is governed by the
following master equation and its initial condition,

∂ρ̂(t)

∂t
=

γ

2
[2âρ̂(t)â† − â†âρ̂(t)− ρ̂(t)â†â], (8)

ρ̂(t = 0) = ρ̂0, (9)

where the â, â† are respectively the annihilation and
creation operators of a single bosonic mode satisfying
the commutation relation [â, â†] = 1 and through
which we define the number operator n̂ = â†â. The
loss parameter γ is related to the transmissivity τ of
the pure-loss channel as follows,

τ = exp(−γt). (10)

Under the parameterization of Eq. (10), the solution
to Eq. (8) under the initial condition of Eq. (9) is,

ρ̂(τ) =

∞
∑

l=0

(1− τ)l

l!

√
τ
n̂
âlρ̂0â

†l
√
τ
n̂
. (11)

The problem set up we consider in this work is as
follows: We consider pure input states ρ̂0 = |Ψn̄〉〈Ψn̄|
with fixed mean-photon number 〈Ψn̄|n̂|Ψn̄〉 = n̄. We
consider as unknown parameter the transmissivity
τ and on top of this we assume that τ is a random
variable following a prior PDF, P (τ). Then, the task
is to find the optimal input state that minimizes the
minimum mean square error (MMSE). Under this
Bayesian approach, Personick derived the formulas
that give the MMSE δ and which projective measure-
ment attains it [9]. For our purposes, said formulas
are written as,

δ = trΓ̂2 − tr(B̂Γ̂1). (12)

where,

Γ̂k =

∫ 1

0

dτP (τ)τkρ̂(τ), k = 0, 1, 2. (13)
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and

B̂ = 2

∫ ∞

0

dze−zΓ̂0 Γ̂1e
−zΓ̂0 , (14)

where the MMSE δ is always attainable and the op-
timal projective measurement is given by the eigen-
vectors of B̂.

In this work we specifically consider the two-point
prior PDF,

P (τ) = qδ(τ − τ0) + (1− q)δ(τ − τ1), (15)

where 0 ≤ q ≤ 1, i.e., the transmissivity can take two
possible values τ0 and τ1 with probabilities q and
1− q respectively. The two-point prior PDF allows
for two possible transmissivities, occurring with a
probabilities q and 1 − q. This problem is akin to
target detection and quantum reading but viewed
from the angle of the MMSE instead of the minimum
probability of error [13, 14].

We also discuss briefly the beta distribution

P (τ) =
τα−1(1− τ)β−1

B(α, β) , (16)

where B(α, β) = Γ(α)Γ(β)/Γ(α + β), Γ(.) is the
gamma function, and the values of α > 0, β > 0
cover a great variety of PDF’s behavior.
We note here that if the prior PDF is simply a

Dirac delta P (τ) = δ(τ − τ0) then one can prove
that the MMSE is δ = 0, which makes perfect sense
since such a prior PDF gives full knowledge on the
parameter.

Also, we note that in our analysis we assume that
the optimal input states are pure since classical mix-
ing involves throwing away information.

III. LOWER BOUND ON THE MMSE

The first term of Eq. (12) depends only on the

prior PDF, i.e., since trρ̂ = 1, trΓ̂2 =
∫ 1

0
P (τ)τ2.

Since we fix the prior PDF, when lower-bounding
the MMSE we only consider the input state which
affects the second term of Eq. (12).
Upper bounding the second term of Eq. (12) will

yield a lower bound on δ. We write the second term
of Eq. (12) as,

tr(B̂Γ̂1) = 2

∫ ∞

0

dz tr
(

e−zΓ̂0 Γ̂1e
−zΓ̂0 Γ̂1

)

. (17)

For Hermitian operators X̂ and Ŷ , we have the in-
equality tr(X̂Ŷ X̂Ŷ ) ≤ tr(X̂2Ŷ 2) [15]. The operators

Γ̂k are Hermitian, therefore using said inequality we
write,

tr(B̂Γ̂1) ≤ 2

∫ ∞

0

dz tr
(

e−2zΓ̂0 Γ̂2
1

)

⇔ (18)

tr(B̂Γ̂1) ≤ tr(Γ̂−1
0 Γ̂2

1) = tr(Γ̂2
1Γ̂

−1
0 ), (19)

where this lower bound is meaningful as long as Γ̂0

is invertible. Under said condition, we get a lower
bound on the MMSE δ,

δ ≥ δLB, (20)

δLB =

∫ 1

0

dτP (τ)τ2 − tr(Γ̂−1
0 Γ̂2

1). (21)

In inequality (20), equality is achieved if and only if

[Γ̂0, Γ̂1] = 0.

IV. INTEGER MEAN PHOTON NUMBER:

OPTIMALITY OF FOCK STATES

In this section we prove that for input mean photon
number fixed to an integer, i.e., n̄ = n ∈ N, and
for the prior PDF of Eq. (15), the only pure state
that attains the lower bound of Eq. (21) is the
the Fock state |n〉, i.e., the Fock state is optimal in
the sense that attains the lowest MMSE. For this
case, we also prove that the optimal measurement is
photon-counting or photon number resolving (PNR)
detection, i.e., projection on the Fock basis.

Using Eq. (13), the condition [Γ̂0, Γ̂1] = 0 implies,

∫ 1

0

dτ

∫ 1

0

dτ ′τ ′P (τ)P (τ ′)[ρ̂(τ), ρ̂(τ ′)] = 0. (22)

For the prior of Eq. (15), Eq. (22) gives,

q(1− q)(τ0 − τ1)[ρ̂(τ0), ρ̂(τ1)] = 0, (23)

where the integrals disappeared because of the Dirac
deltas, and two terms gave zero as they are pro-
portional to [ρ̂(τ0), ρ̂(τ0)] = 0 and [ρ̂(τ1), ρ̂(τ1)] = 0.
From Eq. (23), there are three options: (i) q = 0 or
q = 1, which means that the prior is simply a single
Dirac delta and for that case we get that the MMSE
is δ = 0 regardless of the input state as full informa-
tion on the parameter is provided by the prior PDF,
(ii) τ0 = τ1, in which case the prior PDF is again a
single Dirac delta, and (iii) [ρ̂(τ0), ρ̂(τ1)] = 0.
Since τ0 and τ1 are arbitrary values of the trans-

missivity, the non-trivial option [ρ̂(τ0), ρ̂(τ1)] = 0
means that any two outputs of the pure-loss channel
must commute so that the lower bound of Eq. (21)
is attained.
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It is known that if the input of the pure-loss channel
is a Fock state, the output will remain Fock diagonal.
Therefore, Fock states satisfy the condition [Γ̂0, Γ̂1] =
0 and as a result they attain the lower bound of Eq.
(21).

At the same time, the condition [Γ̂0, Γ̂1] = 0 must
be true for all τ0 and τ1, including the choice τ0 = 0
and 0 < τ1 ≤ 1. For said choice, from Eq. (11) we
get ρ̂(τ0 = 0) = |0〉〈0|, which means that ρ̂(τ1) must
be Fock-diagonal for all 0 < τ1 ≤ 1. In Appendix A
we prove that a Fock-diagonal output of the pure-
loss channel can only correspond to a Fock-diagonal
input, and since we restrict our search to pure states,
the only Fock-diagonal input state is the Fock state.

Furthermore, let a state |Ψn〉 and a Fock state |n〉,
with mean photon number 〈Ψn|n̂|Ψn〉 = 〈n|n̂|n〉 = n.
Since all states in a Hilbert space can be connected
through at least one unitary operator, there is always
at least one unitary Ûn, such that Ûn|Ψn〉 = |n〉.
Therefore, the state preparation scheme Ûn|Ψn〉 =
|n〉 results to a lower MMSE for all pure states with
the same input energy.
We now derive the expression of the MMSE for

a Fock state input and the optimal measurement
that attains it. In general, the main difficulty with
the MMSE formulation is to compute analytically
the term exp(−zΓ̂0) required by Eq. (14). Since
for a Fock input state, the output remains Fock
diagonal, per Eq. (13) Γ̂0 is Fock-diagonal, rendering

exp(−zΓ̂0) Fock-diagonal as well. In Appendix C we
derive the MMSE,

δ|n〉 = δ
|n〉
LB

= qτ20 + (1− q)τ21 − σ(n)(q, τ0, τ1), (24)

where,

σ(n)(q, τ0, τ1) =

n
∑

l=0

[qτ0e
(n)
l (τ0) + (1− q)τ1e

(n)
l (τ1)]

2

qe
(n)
l (τ0) + (1− q)e

(n)
l (τ1)

and

e
(n)
l (τ) =

(

n

l

)

τn−l(1− τ)l. (25)

Since the Γ̂k operators are diagonal on the Fock
basis, the operator B̂ is also Fock-diagonal, therefore
the optimal projective measurement consists of pro-
jections on the Fock basis, i.e., PNR detection. In
Appendix B, we find the form of the B̂ operator,

B̂ =

n
∑

l=0

b
(n)
l (q, τ0, τ1)|n− l〉〈n− l|, (26)

where,

b
(n)
l (q, τ0, τ1) =

qτ0e
(n)
l (τ0) + (1− q)τ1e

(n)
l (τ1)

qe
(n)
l (τ0) + (1− q)e

(n)
l (τ1)

.

We note that even though the symmetric logarithm
derivative found in [5] (derived within the Fishe-

rian context) and the B̂ presented here are both
Fock-diagonal, their exact form is different, i.e., their
eigenvalues are different, reflecting the incompara-
bility of the Bayesian and the Fisherian approaches.
Moreover, as we discuss in Section VII, it is not ob-
vious what is the optimal state for arbitrary prior
PDFs.

V. NON-INTEGER MEAN PHOTON

NUMBER

We now consider the input mean photon number
n̄ as a real non-negative, not necessarily an integer.
For this case, we provide numerical evidence that the
optimal state has the form,

|Φn̄〉 = |a(n̄)||dn̄e − 1〉+ |c(n̄)||dn̄e〉 (27)

where,

|c(n̄)| =
√

1− dn̄e+ n̄ (28)

|a(n̄)| =
√

1− |c(n̄)|2 (29)

and dn̄e is the ceiling of n̄. We refer to the state of
Eq. (27) as in-between state as it is a superposition
of the two nearest Fock states for a given n̄ and it
reverts to a Fock state when n̄ is an integer.
For our numerical simulations, we create random

states that satisfy the following conditions,

|Ψn̄〉 =
N
∑

n=0

dn|n〉, (30)

N
∑

n=0

|dn|2 = 1, (31)

N
∑

n=0

n|dn|2 = n̄, (32)

for dn ∈ C and by choosing N and n̄. For the two-
point prior PDF (15), we verify that for integer n̄ the
optimal state is the Fock state with the same photon
number. For real n̄, our numerical results support
the conjecture that the optimal state has the form
of the state (27), up to a phase, i.e.,

|Φ′
n̄〉 = eiφn̂|Φn̄〉. (33)
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FIG. 3. For Fock states and the two-point prior PDF
with parameters q = 0.79, τ = 0.127, τ = 0.641, we plot
the Fisherian-inspired Bayesian bounds (triangles and
squares) and the MMSE. The MMSE is the lowest one
and by definition attainable.

FIG. 4. For Fock states and the beta prior PDF with
parameters α = 2.33, β = 3.84, we plot the Fisherian-
inspired Bayesian bounds (triangles and squares) and the
MMSE. The MMSE is the lowest attainable quantity,
emphasizing the fact that J−1

B is not attainable by a
measurement.

Beta prior PDF: For that case we find,

J−1
E =

αβ

n(α+ β)(α+ β + 1)
(43)

JB = C(α, β) [nf(α, β) + g(α, β))] (44)

where C(α, β) = B(α − 2, β − 2)/B(α, β), f(α, β) =
(α− 2)(β − 2), and g(α, β) = (α− 1)(β − 1)(α+ β −
4). The computation of JP required for Eq. (44)
converges only if α > 2 and β > 2, reflecting the
problematic nature of the Fisherian-inspired bounds.
We present an example of our computations in Fig.
4.

We note that for the beta prior PDF, we were not
able to prove analytically that the Fock states or the
in-between states of Eq. (27) states are optimal, even
though our numerical computations support such
conjecture. To prove this, following the lower bound
approach of Eq. (21) and for n̄ ∈ N, one should show
that the lower bound is a function of the mean input
photon number only; That would mean that even if
states other than Fock, albeit with the same mean-
photon number, satisfy Eq. (22), these states give
the same MMSE. Another route would be to prove
that for all prior PDFs, Eq. (22) necessarily gives
[ρ̂(τ), ρ̂(τ ′)] = 0, however we note that this seems to
be an onerous task (and probably non-true).

Aforesaid difficulties make the genuine Bayesian
approach interesting and non-trivial. Future direc-
tions, could include the study of optimal Gaussian
states and optimal measurements for sensing the
transmissivity of a pure-loss channel. For that case,
the difficulty in calculating the MMSE is found in the
fact that even if ρ̂(τ) is Gaussian, Γ̂0 is not. Other
future directions are sensing the transmissivity in-
cluding a thermal environment, and sensing multiple
parameters of a general Gaussian transformation (or
channel) by devising algorithms in the same spirit as
in [11].
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Appendix A: Fock-diagonal outputs of pure-loss

channel necessarily correspond to Fock-diagonal

inputs

Although the result of this appendix may be known,
we could not find a formal proof. Thus, we provide
one here.

We consider a generic single-mode density operator
written on the Fock basis,

ρ̂(t) =
∑

n,m

cn,m(t)|n〉〈m|. (A1)

Then, Eq. (8) can be written as,

ċm,n =
γ

2
[2
√

(m+ 1)(n+ 1)cm+1,n+1

−(m+ n)cm,n], (A2)

where cm,n(t) ≡ cm,n are time-dependent (unless
otherwise specified) and the dot represents derivative
with respect to time.

We can rewrite Eq. (A2) as ċ = Ac, where c is a
vectorized version of the matrix with elements cm,n,
and A is a matrix which by inspection of Eq. (A2)
is upper triangular. For that reason, we choose to
rewrite cm,n as cn+l,n, i.e.,

ċn+l,n = γ
√

(n+ 1)(n+ l + 1)cn+l+1,n+1

−γ

(

n+
l

2

)

cn+l,n, (A3)

where l = 0, 1, 2, . . ., and l = 0 gives the time evolu-
tion of the diagonal elements of Eq. (A1). For any
fixed l, we denote a vector,

c
(l) =

















c0+l,0

c1+l,1

...
cn+l,n

...

















. (A4)

Under these considerations, we write Eq. (A3),










ċ
(l=0)

ċ
(l=1)

ċ
(l=2)

...











= A











c
(l=0)

c
(l=1)

c
(l=2)

...











, (A5)

where A is a block-diagonal matrix or the form,

A =











A
(l=0)

A
(l=1)

A
(l=2)

. . .











, (A6)
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while all empty entries are equal to zero. The matrix
A

(l) has the form,

A
(l) = A

(l)
D +A

(l)
UD, (A7)

where the matrix A
(l)
D is diagonal,

A
(l)
D = −γD, (A8)

where D = diag
[

l
2 + 0, l

2 + 1, l
2 + 2, . . .

]

, and the

matrix A
(l)
UD is upper-diagonal (i.e. the only non-

zero elements are in its upper diagonal),

A
(l)
UD = γDu, (A9)

whereDu = udiag
[√

l + 1,
√

2(l + 2),
√

3(l + 3), . . .
]

,

where by udiag we denote an upper diagonal matrix.
The solution to each differential equation (i.e. for

each l) represented in Eq. (A5) is given by,

c
(l) = exp

(

A
(l)t

)

c
(l)
0 , (A10)

where c
(l) is time-dependent and c

(l)
0 ≡ c

(l)(t = 0) is
given by the initial condition of Eq. (9) on the Fock
basis.
We note that since A

(l) is upper-triangular, the
matrix exp

(

A
(l)t

)

is upper triangular as well. Let us

work out the specific form of exp
(

A
(l)t

)

. We have,

exp
(

A
(l)t

)

= exp
(

A
(l)
D t+A

(l)
UDt

)

. (A11)

To apply the Zassenhaus formula [19], we first calcu-
late the commutator,

CN = [A
(l)
D ,CN−1], (A12)

with C0 = A
(l)
UD. We find,

CN = γN
A

(l)
UD. (A13)

We also find,

[A
(l)
UD,CN ] = 0. (A14)

Applying the Zassenhaus formula we get,

exp
(

A
(l)t

)

= exp
(

A
(l)
D t

)

× exp





∞
∑

j=1

tj

j!
(−1)j+1γj−1

A
(l)
UD



 ,

which gives,

exp
(

A
(l)t

)

= exp
(

A
(l)
D t

)

exp
(

S
(l)
)

, (A15)

where,

S
(l) = (1− e−tγ)Du,

from which we find the ij (we enumerate as i, j =
1, 2, . . . everywhere) element of exp

(

S
(l)
)

for j ≥ i,

exp
(

S
(l)
)

ij
=

(1− e−tγ)j−i

(j − i)!

j−1
∏

r=i

√

r(l + r),

with the convention
∏i−1

r=i

√

r(l + r) = 1. For j < i

we find exp
(

S
(l)
)

ij
= 0. Since A

(l)
D is diagonal, the

ij element of exp
(

A
(l)
D

)

is,

exp
(

A
(l)
D

)

ij
= δij exp

[

−tγ

(

l

2
+ i− 1

)]

.

Multiplying a diagonal matrix with an upper-
triangular matrix as per the left hand side of Eq.
(A15), we get an upper-triangular matrix, as ex-
pected. Also, all elements of exp

(

A
(l)t

)

are non-zero
for l 6= 0 (i.e. for non-diagonal entries of the density
operator on the Fock basis), unless when tγ → 0,
which is the case of no-interaction (τ = e−tγ = 1).
We demand Eq. (A10) to be element-wise equal to
zero for l 6= 0, i.e.,

c
(l 6=0) = exp

(

A
(l 6=0)t

)

c
(l 6=0)
0 = 0. (A16)

In Eq. (A16) the upper-triangular matrix exp
(

A
(l)t

)

multiplies the vector c
(l)
0 , rendering all coefficients

of Eq. (A4), starting from the bottom and moving
upwards equal to zero. Therefore, if the time-evolved
off-diagonal coefficients of Eq. (A1) are zero, then
the input density operator is Fock-diagonal.
If τ = e−tγ = 1, then the input state is retrieved

at the output and trivially such an output is Fock-
diagonal if the input is Fock-diagonal.
The converse, i.e., if the input is Fock-diagonal,

then the output is also Fock-diagonal is a well known
fact referred to as gauge or phase invariance of the
pure-loss channel.

Appendix B: The optimal projective

measurements for Fock states under the

two-point prior and beta PDFs

For input state ρ̂0 = |n〉〈n|, Eq. (11) gives,

ρ̂(τ) =

n
∑

l=0

e
(n)
l (τ)|n− l〉〈n− l|, (B1)
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where e
(n)
l (τ) is given in Eq. (25). For the prior PDF

of Eq. (15), from Eq. (13) we find,

Γ̂k = q

n
∑

l=0

e
(n)
l (τ0)τ

k
0 |n− l〉〈n− l|

+(1− q)

n
∑

l=0

e
(n)
l (τ1)τ

k
1 |n− l〉〈n− l|. (B2)

Since Γ̂0 is Fock-diagonal we find,

e−zΓ̂0 =

n
∑

l=0

exp
[

−z
(

qe
(n)
l (τ0) + (1− q)e

(n)
l (τ1)

)]

×|n− l〉〈n− l| (B3)

From Eqs. (B2) for k = 1 and (B3), Eq. (14) gives
Eq. (26) which is a closed form relation expressed as
a finite sum.
The calculation is similar if we use the beta dis-

tribution of Eq. (16). In fact, for every density
operator of Eq. (B1) and for any prior PDF P (τ)
we can write,

Γ̂k =

∫ 1

0

dτP (τ)τk
n
∑

l=0

e
(n)
l (τ)|n− l〉〈n− l|

=

n
∑

l=0

g
(n,k)
l [P ]|n− l〉〈n− l|, (B4)

where,

g
(n,k)
l [P ] =

∫ 1

0

dτP (τ)τke
(n)
l (τ). (B5)

The square bracket denotes the functional depen-

dence of g
(n,k)
l [P ] on P (τ).

From Eqs. (14) and (B4) for k = 1, we get,

B̂ =
n
∑

l=0

g
(n,1)
l [P ]

g
(n,0)
l [P ]

|n− l〉〈n− l|, (B6)

meaning that for a Fock state input, projection on
Fock states is always the optimal measurement.

Appendix C: The MMSE for Fock states under

the two-point prior and beta PDFs

Let us consider the two-point prior PDF of Eq.
(15). Using Eq. (B2) for k = 2 we find,

tr(Γ̂2) = qτ20 + (1− q)τ21 . (C1)
From Eqs. (26) and (B2) for k = 1 we find,

tr(B̂Γ̂1) =

n
∑

l=0

[qτ0e
(n)
l (τ0) + (1− q)τ1e

(n)
l (τ1)]

2

qe
(n)
l (τ0) + (1− q)e

(n)
l (τ1)

,

which together with Eqs. (12) and (C1), gives Eq.
(24).

The calculation is similar if we use the beta dis-
tribution of Eq. (16) to derive Eq. (39). In fact, for
every density operator of Eq. (B1) and for any prior
PDF P (τ), using Eqs. (12) and (B4) for k = 1, 2 we
find,

δ|n〉[P ] =

n
∑

l=0







(

g
(n,2)
l [P ]

)2

−

(

g
(n,1)
l [P ]

)2

g
(n,0)
l [P ]






,

where the square brackets in δ|n〉[P ] denote the func-
tional dependence on P (τ).
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