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Abstract
We study how to release summary statistics on a data stream subject to the constraint of di�erential
privacy. In particular, we focus on releasing the family of symmetric norms, which are invariant
under sign-flips and coordinate-wise permutations on an input data stream and include Lp norms,
k-support norms, top-k norms, and the box norm as special cases. Although it may be possible
to design and analyze a separate mechanism for each symmetric norm, we propose a general
parametrizable framework that di�erentially privately releases a number of su�cient statistics from
which the approximation of all symmetric norms can be simultaneously computed. Our framework
partitions the coordinates of the underlying frequency vector into di�erent levels based on their
magnitude and releases approximate frequencies for the “heavy” coordinates in important levels and
releases approximate level sizes for the “light” coordinates in important levels. Surprisingly, our
mechanism allows for the release of an arbitrary number of symmetric norm approximations without
any overhead or additional loss in privacy. Moreover, our mechanism permits (1 + –)-approximation
to each of the symmetric norms and can be implemented using sublinear space in the streaming
model for many regimes of the accuracy and privacy parameters.
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1 Introduction

The family of Lp norms represent important statistics on an underlying dataset, where
the Lp norm1 of an n-dimensional frequency vector x is defined as the number of nonzero
coordinates of x for p = 0 and Lp(x) = (xp

1
+ . . . + x

p

n
)1/p for p > 0. Thus, the L0 norm

counts the number of distinct elements in the dataset and, e.g., is used to detect denial of
service or port scan attacks in network monitoring [3, 32], to understand the magnitude of
quantities such as search engine queries or internet graph connectivity in data mining [55],
to manage workload in database design [33], and to select a minimum-cost query plan in

1 Lp for p œ (0, 1) does not satisfy the triangle inequality and therefore is not a norm, but is still
well-defined/well-motivated and can be computed
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query optimization [57]. The L1 norm computes the total number of elements in the dataset
and, e.g., is used for data mining [26] and hypothesis testing [39], while the L2 norm, e.g.,
is used for training random forests in machine learning [20], computing the Gini index in
statistics [50, 36], and network anomaly detection in tra�c monitoring [44, 62], in particular
in the context of heavy-hitters, e.g., [24, 16, 15, 17, 49, 14]. More generally, Lp norms for
p œ (0, 2) have been used for entropy estimation [37]. Consequently, Lp estimation has
been extensively studied in the data stream model [4, 40, 38, 45, 41, 5, 18, 35, 65, 66]. The
simplest streaming model is perhaps the insertion-only model, in which a sequence of m

updates increments coordinates of an n-dimensional frequency vector x and the goal is to
compute or approximate some statistic of x in space that is sublinear in both m and n. For
a more formal introduction to the streaming model, see Section 2.1.

In many cases, the underlying dataset contains sensitive information that should not be
leaked. Hence, an active line of work has focused on estimating Lp norms for various values
of p, while preserving di�erential privacy [53, 12, 59, 21, 63].

I Definition 1 (Di�erential privacy, [29]). Given Á > 0 and ” œ (0, 1), a randomized algorithm

A : Uú
æ Y is (Á, ”)-di�erentially private if, for every neighboring streams S and SÕ

and for

all E ™ Y,

Pr [A(S) œ E] Æ e
Á

· Pr [A(SÕ) œ E] + ”.

For example, [12] showed that the Johnson-Lindenstrauss transformation preserves di�er-
ential privacy (DP), thereby showing one of the main techniques in the streaming model for
L2 estimation already guarantees DP. Similarly, [59] showed that the Flajolet-Martin sketch,
which is one of the main approaches for L0 estimation in the streaming model, also preserves
DP. However, algorithmic designs for Lp estimation in the streaming model di�er greatly
and require individual analysis to ensure DP, especially because it is known that for some
problems, guaranteeing DP provably requires more space [28]. Unfortunately, the privacy
and utility analysis can be quite di�cult due to the complexity of the various techniques.
This is especially pronounced in the work of [63], who studied the p-stable sketch [38], which
estimates the Lp norm for p œ (0, 2]. [63] showed that for p œ (0, 1], the p-stable sketch
preserves DP, but was unable to show DP for p œ (1, 2], even though the general algorithmic
approach remains the same. Thus the natural question is whether di�erential privacy can
be guaranteed for an approach that simultaneously estimates the Lp norm in the streaming
model, for all p. More generally, the family of Lp norms are all symmetric norms, which
are invariant under sign-flips and coordinate-wise permutations on an input data stream.
Symmetric norms thus also include other important families of norms such as the k-support
norms and the top-k norms.

1.1 Our Contributions
In this paper, we show that not only does there exist a di�erentially private algorithm for
the estimation of symmetric norms in the streaming model, but also that there exists an
algorithm that privately releases a set of statistics, from which estimates of all (properly
parametrized) symmetric norms can be simultaneously computed. To illustrate the di�erence,
suppose we wanted to release approximations of the Lp norm of the stream for k di�erent
values of p. To guarantee (Á, ”)-DP for the set of k statistics, we would need, by advanced
composition, to demand

1
O

1
Á

Ô
k

2
, O

!
”

k

"2
-DP from k instances of a single di�erentially

private Lp-estimation algorithm, corresponding to the k di�erent values of p. Due to accuracy-
privacy tradeo�s, the quality of the estimation will degrade severely as k increases. For an
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extreme example, consider when k is some large polynomial of n and m so that the added
noise will also be polynomial in n and m, and then there is no utility at all – the private
algorithm might as well just release 0 for all queries!

In contrast, our algorithm releases a single set C of private statistics. By post-processing,
we can then estimate the Lp norms for k di�erent values of p while only requiring (Á, ”)-DP
from C. Hence, our algorithm can simultaneously handle any large number of estimations of
symmetric norms without compromising the quality of approximation.

We first informally introduce the definition of the maximum modulus of concentration of
a norm, which measures the worst-case ratio of the maximum value of a norm on the L2-unit
sphere to the median value of a norm on the L2-unit sphere, where the median can be taken
over any restriction of the coordinates. Intuitively, maximum modulus of concentration of a
norm quantifies the complexity of computing a norm. For example, the L1 norm is generally
“easy” to compute and has maximum modulus of concentration O (log n). See Definition 18
for a more formal definition. Then our main result can informally be stated as follows:

I Theorem 2 (Informal). There exists a (Á, ”)-di�erentially private algorithm that outputs

a set C, from which the (1 + –)-approximation to any norm, with maximum modulus of
concentration at most M of a vector x œ Rn

induced by a stream of length poly(n) can be

computed, with probability at least 1 ≠ ”. The algorithm uses M
2

· poly
!

1

–
,

1

Á
, log n, log 1

”

"
bits

of space.

We remark that as is standard in di�erential privacy on data streams, both the privacy
parameter Á and the accuracy parameter – cannot be too small or the additive noise will be
too large and cannot be absorbed into the (1 + –)-multiplicative bounds. See Theorem 33
for the formal statement of Theorem 2 describing these bounds.

We also remark that in the statement of Theorem 2, the ” failure parameter of approximate
DP is equal to the failure parameter ” of the utility guarantees of the algorithm. More
generally, if the desired failure probability ”

Õ of the utility guarantee is not equal to the
privacy parameter ”, then the dependencies will change from log 1

”
to log 1

””Õ .
We emphasize that prior to our work, there is no algorithm that can handle private

symmetric norm estimation for arbitrary symmetric norms, much less simultaneously for
all parametrized symmetric norms. Although there is specific analysis for various norm
estimation algorithms, e.g., see the discussion on related work in Section 1.3, these algorithms
require a specific predetermined norm for their input. Thus a separate private algorithm must
be run for each estimation, which increases the overall space. Moreover, for a large number
of queries, the privacy parameter will need to be much smaller due to the composition of
privacy, and thus to ensure privacy, the utility of each algorithm is provably poor. Our
algorithm sidesteps both the space and accuracy problems and is the first and only work to
do so, as of yet.

Applications. We briefly describe a number of specific symmetric norms that are handled
by Theorem 2 and commonly used across various applications in machine learning. We first
note the following parameterization of the previously discussed Lp norms.

I Lemma 3 ([52, 43]). For Lp norms, we have that mmc(L) = O (log n) for p œ [1, 2] and

mmc(L) = O
!
n

1/2≠1/p
"

for p > 2.

Thus our algorithm immediately introduces a di�erentially private mechanism for the approx-
imation of Lp norms that unlike previous work, e.g., [12, 58, 25, 59, 21, 63], does not need to
provide separate analysis for specific values of p. Moreover for constant-factor approximation,
the space complexity is tight with the optimal Lp-approximation algorithms that do not
consider privacy, up to polylogarithmic factors [42, 46, 34, 65] in the universe size n.

APPROX/RANDOM 2023
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I Definition 4 (Q-norm and Q
Õ-norm). We call a norm L a Q-norm if there exists a

symmetric norm L
Õ

such that L(x) = L
Õ(x2)1/2

for all x œ Rn
. Here, we use x

2
to denote

the coordinate-wise square power of x. We also call a norm L
Õ

a Q
Õ
-norm if its dual norm is

a Q-norm.

The family of Q
Õ-norms includes the Lp norms for 1 Æ p Æ 2, the k-support norm, and the

box norm [10] and thus Q
Õ-norms have been proposed to regularize sparse recovery problems

in machine learning. For instance, [7] showed that Q
Õ norms have tighter relaxations than

elastic nets and can thus be more e�ective for sparse prediction. Similarly, [51] used Q
Õ

norms to optimize sparse prediction algorithms for multitask clustering.

I Lemma 5 ([11]). mmc(L) = O (log n) for every Q
Õ
-norm L.

Theorem 2 and Lemma 5 thus present a di�erentially private algorithm for Q
Õ-norm approx-

imation that uses polylogarithmic space.

I Definition 6 (Top-k norm). The top-k norm for a vector x œ Rn
is the sum of the largest k

coordinates of |x|, where we use |x| to denote the vector whose entries are the coordinate-wise

absolute value of x.

The top-k norm is frequently used to understand the more general Ky Fan k-norm [67],
which is used to regularize optimization problems in numerical linear algebra. Whereas the
Ky Fan k norm is defined as the sum of the k largest singular values of a matrix, the top-k
norm is equivalent to the Ky Fan k norm when the input vector x represents the vector of
the singular values of the matrix.

I Lemma 7 ([11]). mmc(L) = Õ
!

n

k

"
for the top-k norm L.

In particular, the top-k norm for a vector of singular values when k = n is equivalent to the
Schatten-1 norm of a matrix, which is a common metric for matrix fitting problems such as
low-rank approximation [47].

I Definition 8 (Shannon entropy). For a frequency vector v œ Rn
, we define the Shannon

entropy by H(v) = ≠
q

n

i=1
vi log vi.

To achieve an additive approximation to the Shannon entropy, we instead compute a
multiplicative approximation to the exponential form, as follows:

I Observation 9. A (1 + –)-multiplicative approximation of the function h(v) := 2H(v)

corresponds to an –-additive approximation of the Shannon Entropy H(v) (and vice versa).

Moreover, computing a (1+–)-approximation to 2H(v) can be achieved through computing
a (1 + –)-approximation to various Lp norms for p œ (0, 2).

I Lemma 10 (Section 3.3 in [37]). Let k = log 1

–
+ log log m and –

Õ = –

12(k+1)3 log m
. There

exists an explicit set {y0, . . . , yk} with yi œ (0, 2) for all i and a post-processing function

that takes (1 + –
Õ)-approximations to Fyi(x), i.e., the (yi)-th frequency moment of x, and

outputs a (1 + –)-approximation to h(v) = 2H(x)
. Furthermore, the set {y0, . . . , yk} and

post-processing function are both e�ciently computable, i.e., polynomial runtime.

Since our mechanism releases a private set of statistics from which (1+–)-approximations
to Lp norms can be computed for any p œ (0, 2), then our mechanism also privately achieves
an additive –-approximation to Shannon entropy.
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1.2 Algorithmic Intuition and Overview
Our starting point is the Lp estimation algorithm of [40], which was parametrized by [11]
to handle symmetric norms. For a (1 + –)-approximation, the algorithm partitions the n

coordinates of the frequency vector x into powers of ›-based on their magnitudes, where › > 1
is a fixed function of –. Each partition forms a level set, so that the i-th level set consists of
the coordinates of x with frequency [›i

, ›
i+1), but [40, 11] showed that it su�ces to accurately

count the size of each important level set and zero out to the other level sets, where a level
set is considered important if its size is large enough to contribute an –

2

log m
fraction of the

symmetric norm. In other words, if x̃ is a vector whose coordinates match those of x in
important levels sets and are 0 elsewhere, then (1 ≠ –)L(x) Æ L(x̃) Æ (1 + –)L(x). We
formalize the definition of importance in Section 2.2.

Private symmetric norm estimation in the centralized setting. To preserve (Á, ”)-di�erential
privacy, one initial approach would be to view the frequency vector as a histogram and
add Laplacian noise with scale O

!
1

Á

"
to the frequency of each element. However, the level

sets consisting of elements with frequencies between [›i
, ›

i+1) for small i, say i = 0, could
be largely perturbed by such Laplacian noise. For example, it is possible that for some
coordinate j in an important level set, we have xj = 1, in which case adding Laplacian noise
with scale O

!
1

Á

"
to xj will heavily distort the coordinate. This can happen to all coordinates

in the important level set, which results in an inaccurate estimation of the norm.
Fortunately, if i is small, the corresponding level set must contain a large number of

elements if it is important, so it seems possible to privately release the size �i of the level set.
Indeed, we can show that the L1 sensitivity of the vector corresponding to level set sizes is
small and so we can add Laplacian noise with scale O

!
1

Á

"
to each level set size. Hence if the

level set has size �i roughly �
!

1

–Á

"
, then the Laplacian noise will a�ect �i by a (1 + –)-factor.

Unfortunately, there can be level sets that are both important and small in size. For
example, if there is a single element with frequency m, then the size of the corresponding
level set is just one. Then adding Laplacian noise with scale O

!
1

Á

"
will severely a�ect the

size of the level set and thus the estimation of the symmetric norm. On the other hand, for
m >

1

–Á
, the frequency of the coordinate is quite large so again it seems like we can just add

Laplacian noise with scale O
!

1

Á

"
and output the noisy frequency of the coordinate.

New approach: classifying and separately handling high, medium, and low frequency
levels. The main takeaway from these challenges is that we should handle di�erent level
sets separately. For the level sets of small coordinates, the important level sets must have
large size and thus we would like to release noisy sizes. For the important level sets of large
coordinates, we would like to release noisy frequencies of the coordinates.

In that vein, we partition the levels into three groups after defining thresholds T1 and
T2, with T1 > T2. We define the “high frequency levels” as the levels whose coordinates
exceed T1 in frequency. The intuition is that because the high frequency levels have such
large magnitude, their frequencies can be well-approximated by running an L2-heavy hitters
algorithm on the stream S.

We define the “medium frequency levels” as the levels whose coordinates are between
T1 and T2 in frequency. These coordinates are not large enough to be detected by running
an L2-heavy hitters algorithm on the stream S. However, the sizes of these level sets must
be large if the level set is important. Thus there exists a substream Sj for which a large
number of these coordinates are subsampled and their frequencies can be well-approximated
by running an L2-heavy hitters algorithm on the substream Sj .

APPROX/RANDOM 2023
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Finally, we define the “low frequency levels” as the levels whose coordinates are less than
T2 in frequency. These coordinates are small enough that we cannot add Laplacian noise
to their frequencies without a�ecting the level sets they are mapped to. Instead, we show
that the L1 sensitivity for the level set estimations is particularly small for the low frequency
levels. Thus, for these frequency levels, we report the size of the frequency levels rather
than the approximate frequencies of the heavy-hitters. We remark that if our goal was to
just approximate the symmetric norms without preserving di�erential privacy, then it would
su�ce to just consider the high and medium frequency levels, since the low frequency levels
are particularly problematic when Laplacian noise is added to the frequency vector. We
also remark that we only use the thresholds T1 and T2 for the purposes of describing our
algorithm – in the actual implementation of the algorithm, the thresholds T1 and T2 will be
implicitly defined by each of the substreams.

Private symmetric norm estimation in the streaming model. Although the previously
discussed intuition builds towards a working algorithm, the main caveat is that so far, we
have mainly discussed the centralized model, where space is not restricted and so each
coordinate and thus each level set size can be counted exactly. In the streaming model, we
cannot explicitly track the frequency vector, or even the frequencies of a constant fraction of
coordinates. Instead, to estimate the sizes of each level set, [40, 11] take the stream S and
form s = O (log n) substreams S1, . . . , Ss, where the j-th substream is created by sampling
the universe of size n at a rate of 1

2j≠1 . Then Sj will only consist of the stream updates to
the particular coordinates of x that are sampled. Thus in expectation, the frequency vector
induced by Sj will have sparsity ÎxÎ0

2j≠1 . Similarly, if a level set i has size �i, then �i
2j≠1 of its

members will be sampled in Sj in expectation. It can then be shown through a variance
argument that if level set i is important, then there exists an explicit substream j from
which �i can be well-approximated using the L2-heavy hitter algorithm CountSketch
and as a result, the symmetric norm of x can be well-approximated. The main point of
the subsampling approach is that if there exists a level set with large size consisting of
small coordinates, then the coordinates will not be detected by the CountSketch on S,
but because Sj has significantly smaller L2 norm, then the coordinates will be detected by
CountSketch on Sj .

However, adapting the subsampling and heavy-hitter approach introduces additional chal-
lenges for privacy. For instance, we can analyze the L2-heavy hitter algorithm CountSketch
and show that although the L1 sensitivity of the estimated frequency for a single coordinate
is small, the L1 sensitivity of the estimated frequency vector for all the coordinates may be
large. Instead, we use the view that CountSketch is a composition function that first only
estimates frequencies for the top poly

!
1

–
,

1

Á
, log n

"
and then outputs only those estimates

that are above a certain threshold. Similarly, the Laplacian noise added to privately use
CountSketch can alter the sizes of a significant number of level sets for small coordinates.
Thus for the small coordinates (corresponding to the substreams Sj with large j), we invoke
CountSketch with much higher accuracy, so that with high probability, it will return
exactly the frequencies for the small coordinates. For example, note that if the frequency
xk of a coordinate k œ [n] is at most 1

2–2Á
, then any (1 + –

2
Á)-approximation to xk can be

rounded to exactly recover xk. This decreases the L1 sensitivity of the vector of estimated
level set sizes, therefore allowing us to add Laplacian noise without greatly a�ecting the
quality of approximation.
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1.3 Related Work

Non-private Lp norm estimation is one of the fundamental problems in the streaming model,
beginning with [4]’s seminal work that tracks the inner product of the frequency vector
with a random sign vector for L2 estimation (as well as a telescoping argument for integer
p > 0). [38, 45] later showed that this approach could be generalized for p œ (0, 2] by tracking
the inner product of the frequency vector with a vector with randomly generated p-stable
variables, which only exist for p œ (0, 2]. For p > 2, [5] gave an Lp estimation algorithm
using the max-stability property of exponential random variables. More generally, [40]
introduced the framework of subsampling and using heavy-hitters for Lp estimation, which
[11] parametrized to all symmetric norms. It should be emphasized that these techniques all
handle the more general turnstile model, in which ±1 updates are allowed to each coordinate,
rather than single positive increments. Hence our techniques also extend to the turnstile
model with a minor change on the conditions.

More recently, [13, 61] given a general framework for converting non-private approximation
algorithms into private approximation algorithms, provided that the accuracy of these
algorithms could be tuned with an input parameter Á > 0, i.e., the algorithms can achieve (1+
Á)-approximation for a wide range of Á > 0. Their results presented a solution that addresses
the di�culty of adapting privacy specifically to each non-private algorithm separately.
However, their framework only applies to problems with scalar outputs and thus do not
handle synthetic data release. Therefore, privately answering multiple norm queries while
circumventing composition bounds is still a challenge that their results cannot handle.

Symmetric norms have also recently received attention in other big data models as well.
[6] studied approximate near neighbors for general symmetric norms while [48] studied
symmetric norm estimation for network monitoring. [60] considered Orlicz norm regression
and other loss functions where the penalty is a symmetric norm. [19] gave an algorithm to
approximate the symmetric norm in the sliding window model, where updates in the data
stream implicitly expire after a fixed amount of time.

Specific cases of private Lp estimation in the streaming model have also been previously
well-studied. [25, 59] studied private L0 estimation using the Flajolet-Martin sketch, while
[63] studied private Lp estimation for p œ (0, 1] using the p-stable sketch and [12, 58, 25, 21]
studied private L2 estimation using the Johnson-Lindenstrauss projection. Specifically, [12]
gave an (Á, ”)-DP algorithm for L2 estimation that achieves a (1 + Á)-approximation while
using O

!
1

Á2 log n log 1

”

"
bits of space and [63] gave an (Á, ”)-DP algorithm for Lp estimation

that achieves a (1+–)-approximation while using O
!

1

–2 log n log 1

”

"
bits of space for constant

Á and p œ (0, 1). For fractional p > 1, private distribution estimation algorithms [2, 68, 9, 64]
can be used to approximate the Lp norm, but since the algorithms provide information over
a much larger distribution, e.g., much larger histograms of frequencies, the privacy-accuracy
trade-o� is sub-optimal and the space complexity is exponentially worse.

The related problem of privately releasing heavy-hitters in big data models has also
been well-studied. [23] studied the problem of continually releasing L1-heavy hitters in a
stream, while [30] studied L1-heavy hitters and other problems in the pan-private streaming
model. The heavy-hitter problem has also received significant attention in the local model,
e.g., [9, 27, 1, 22, 8], where individual users should locally randomize their data before sending
di�erentially private information to an untrusted server that aggregates the statistics across
all users.

APPROX/RANDOM 2023
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2 Preliminaries

In this section, we introduce definitions and simple or well-known results from di�erential
privacy, sketching algorithms, and symmetric norms. For notation, we use [n] for an integer
n > 0 to denote the set {1, . . . , n}. We also use the notation poly(n) to represent a constant
degree polynomial in n and we say an event occurs with high probability if the event holds with
probability 1 ≠

1

poly(n)
. Similarly, we use polylog(n) to denote poly(log n). Given a vector

x œ Rn, we define its second frequency moment F2(x) = x
2
1
+. . .+x

2
n
. Finally, for a parameter

c Ø 1, we say that X provides a C-approximation to a quantity Y if X

C
Æ Y Æ C · X.

Privately releasing multiple statistics that are individually di�erentially private can also
be done, but comes at a slight cost.

I Theorem 11 (Composition and post-processing of di�erential privacy, [31]). Let Ai : Ui æ Xi

be an (Ái, ”i)-di�erential private algorithm for i œ [k]. Then A[k](x) = (A1(x), . . . , Ak(x))
is

1q
k

i=1
Ái,

q
k

i=1
”i

2
-di�erentially private. Furthermore, if gi : Xi æ X

Õ

i
is an arbitrary

random mapping, then gi(Mi(x)) is (Ái, ”i)-di�erentially private.

Although there exists more sophisticated approaches for composition, such as advanced
composition, we do not need them for our purposes.

2.1 Streaming and Sketching Algorithms
In the streaming model, a frequency vector x œ Rn is induced by a sequence of updates. In
the insertion-only streaming model, x is defined through a stream of m updates u1, . . . , um,
where ut œ [n] for each t œ [m] so that xi = |{t œ [m] | ut = i}| for all i œ [n]. In other
words, xi is the number of times that i œ [n] appears in the stream. We remark that our
techniques generalize to some degree to turnstile streams, where each update is an ordered
pair ut = (�t, ct), so that the t-th update changes the ct-th coordinate by �t, i.e., ct œ [n]
is a coordinate and �t œ [≠M, M ] for some parameter M > 0. In this turnstile model, the
vector x is defined so that xi =

q
t:ct=i

�t for all i œ [n]. Although our techniques can apply
to the general turnstile model with a minor change on the conditions and assumptions, we
shall work with the insertion-only streaming model throughout the remainder of the paper.

Given a frequency vector x œ Rn on a data stream, the AMS algorithm for L2-estimation
first generates a sign vector ‡ œ {≠1, +1}

n and sets S1 = (È‡, xÍ)2. We remark that to
maintain ‡ in small space, it su�ces for the coordinates of the sign vector ‡ to be 4-wise
independent and therefore it su�ces to randomly generate and store a 4-wise independent
hash function. The AMS algorithm then repeats this process b = 6

–2 independent times to
obtain dot products S1, . . . , Sb, sets Z

2 to be the arithmetic mean of S1, . . . , Sb, and reports
Z. We define the L2 norm of a vector x œ Rn by L2(x) =


x

2
1

+ . . . + x2
n
.

I Definition 12 (‹-approximate ÷ L2-heavy hitters problem). Given an accuracy parameter

‹ œ (0, 1), a threshold parameter ÷, and a frequency vector x œ Rn
, compute a set H ™ [n]

and a set of approximations „xk for all k œ H such that:

(1) If xk Ø ÷L2(x) for any k œ [n], then k œ H, so that H contains all ÷ L2-heavy hitters of

x.

(2) There exists a universal constant C œ (0, 1) so that if xk Æ
C÷

2
L2(x) for any k œ [n], then

k /œ H, so that H does not contain any index that is not an
C÷

2
L2-heavy hitter of x.

(3) If k œ H for any k œ [n], then compute (1 ± ‹)-approximation to the frequency xk, i.e., a

value „xk such that (1 ≠ ‹)xk Æ „xk Æ (1 + ‹)xk.
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The well-known CountSketch algorithm can be parametrized to provide an estimated
frequency to each item and then releases the approximate frequencies of each item that
surpasses a threshold proportional to the output of AMS:

I Theorem 13 (CountSketch for ‹-approximate ÷ L2-heavy hitters, [24]). There exists a one-

pass streaming algorithm CountSketch that takes an accuracy parameter ‹ œ (0, 1) and a

threshold parameter ÷
2

and outputs a list H that contains all indices k œ [n] of an underlying

frequency vector x with xk Ø ÷ L2(x) and no index k œ [n] with xk Æ ÷(1≠‹) L2(x). For each

k œ H, CountSketch also reports a estimated frequency „xk such that (1 ≠ ‹)xk Æ „xk Æ

(1 + ‹)xk. The algorithm uses O

1
1

÷2‹2 log2
n

2
bits of space and succeeds with probability

1 ≠
1

poly(m)
.

Algorithm 1 Heavy-hitter algorithm CountSketch.

Input: Stream S inducing frequency vector x œ Rn, accuracy parameter ‹ œ (0, 1), and
threshold parameter ÷ œ (0, 1)

Output: L2 Heavy-hitter algorithm
1: r Ω O (log n), b Ω O

1
1

÷2‹2

2

2: Pick hash functions h
(1)

, . . . , h
(r) : [n] æ [b] and s

(1)
, . . . , s

(r) : [n] æ {≠1, +1}

3: Si,j Ω 0 for (i, j) œ [r] ◊ [b]
4: for each update ui œ [n], i œ [m] do

5: for each j œ [r] do

6: bi,j Ω h
(j)(ui) and si,j Ω s

(j)(ui)
7: Sj,bi,j Ω Sj,bi,j + si,j

8: for each i œ [n] do

9: bi,j Ω h
(j)(ui) for each j œ [r]

10: return medianjœ[r] |Sj,bi,j | as the estimated frequency for xi

We recall the following sensitivity analysis of CountSketch.

I Lemma 14 (Sensitivity of CountSketch). Let x, x
Õ
œ Rn

with max(Îx ≠ x
Õ
Î0, Îx ≠ x

Õ
Î1) Æ 2.

There exists a private variant PrivCountSketch of CountSketch that adds noise to
each coordinate and then uses a standard private threshold routine to ensure di�erential
privacy, giving the following guarantees:

I Lemma 15. There exists a one-pass streaming algorithm PrivCountSketch that takes

an accuracy parameter ‹ œ (0, 1) and a threshold parameter ÷
2

and outputs a list H that

contains all indices k œ [n] of an underlying frequency vector x with xk Ø ÷ L2(x) and no

index k œ [n] with xk Æ ÷(1 ≠ ‹) L2(x). For each k œ H, PrivCountSketch also reports a

estimated frequency „xk such that (1 ≠ ‹)xk ≠ O

1
log m

÷‹

2
Æ „xk Æ (1 + ‹)xk + O

1
log m

÷‹

2
. The

algorithm uses O

1
1

÷2‹2 log2
n

2
bits of space and succeeds with probability 1 ≠

1

poly(m)
.

2.2 Symmetric Norms
In this section, we provide necessary preliminaries for symmetric norm estimation.

I Definition 16 (Symmetric norm). A function L : Rn
æ R is a symmetric norm if L is a

norm and for all x œ Rn
and any vector y œ Rn

that is a permutation of the coordinates of

x, we have L(x) = L(y). Moreover, we have L(x) = L(|x|), where |x| is the coordinate-wise

absolute value of x.

APPROX/RANDOM 2023
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I Definition 17 (Modulus of concentration). Let x œ Rn
be a random variable drawn from

the uniform distribution on the L2-unit sphere S
n≠1

and let bL denote the maximum value

of L(x) over S
n≠1

. The median of a symmetric norm L is the unique value ML such that

Pr [L(x) Ø ML] Ø
1

2
and Pr [L(x) Æ ML] Ø

1

2
. Then the ratio mc(L) := bL

ML
is the modulus

of concentration of the norm L.

Although the modulus of concentration quantifies the “average” behavior of the norm L on
Rn, norms with challenging behavior can still be embedded in lower-dimensional subspaces.
For instance, the L1 norm satisfies mc(L) = O (1), but when x œ Rn has fewer than

Ô
n

nonzero coordinates, the norm max(LŒ(x), L1(x)/
Ô

n) on the unit ball becomes identically
LŒ(x) [11], which requires �(

Ô
n) space [4] to estimate. Hence, we further quantify the

behavior of a norm L by examining its behavior on all lower dimensions.

I Definition 18 (Maximum modulus of concentration). For a norm L : Rn
æ R and every

k Æ n, define the norm L
(k) : Rk

æ R by L
(k)((x1, . . . , xk)) := L((x1, . . . , xk, 0, . . . , 0)).

Then the maximum modulus of concentration of the norm L is mmc(L) := max
kÆn

mc(L(k)) =

max
kÆn

b
L(k)

M
L(k)

.

I Definition 19 (Important Levels). For x œ Rn
and › > 1, we define the level i as the set

Bi = {k œ [n] : ›
i≠1

Æ |xk| Æ ›
i
}. We define bi := |Bi| as the size of level i. For — œ (0, 1],

we say level i is —-important if

bi > —

ÿ

j>i

bj , bi›
2i

Ø —

ÿ

jÆi

bj›
2j

.

Informally, level i is —-important if (1) its size is at least a —-fraction of the total sizes of
the higher levels and (2) its contribution is roughly a —-fraction of the total contribution of
all the lower levels. We would like to show that to approximate a symmetric norm L(x), it
su�ces to identify the —-important levels and their sizes for a fixed base › > 1.

I Definition 20 (Level Vectors and Buckets). For x œ Rn
and › > 1, the level vector for x is

V (x) :=(›1
, . . . , ›

1

¸ ˚˙ ˝
b1 times

, ›
2
, . . . , ›

2

¸ ˚˙ ˝
b2 times

, . . . , ›
k
, . . . , ›

k

¸ ˚˙ ˝
bk times

, 0, . . . , 0) œ Rn
,

where each bi is the size of level i. The i-th bucket of V (x) is

Vi(x) :=( 0, . . . , 0,¸ ˚˙ ˝
b1+...+bi≠1 times

›
i
, . . . , ›

i

¸ ˚˙ ˝
bi times

, . . . , 0, . . . , 0¸ ˚˙ ˝
bi+1+...+bk times

, 0, . . . , 0) œ Rn
.

We similarly define the approximate level vectors [V (x) and [Vi(x) using approximations

‚b1, . . . , ‚bk for b1, . . . , bk. We write V (x) \ Vi(x) to denote the vector that replaces the i-th

bucket in V (x) with all zeros and we write V (x) \ Vi(x) fi [Vi(x) to denote the vector that

replaces the i-th bucket in V (x) with ‚bi instances of ›
i
.

Rather than directly handle the important levels, we define the —-contributing levels and
instead work toward estimating the contribution of the —-contributing levels.

I Definition 21 (Contributing Levels). Given x œ Rn
, a level i defined by base › > 1 is

—-contributing if L(Vi(x)) Ø —L(V (x)).

[11] showed that even if all levels that are not —-contributing are removed, the contribution
of the remaining levels forms a good approximation to L(x).
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I Lemma 22 ([11]). Given x œ Rn
and levels defined by a base › > 1, let V

Õ(x) be

the vector obtained by removing all levels that are not —-contributing from V (x). Then

(1 ≠ O
!
log

›
n

"
· —)L(V (x)) Æ L(V Õ(x)) Æ L(V (x)).

Hence for appropriate › > 1 and — œ (0, 1], it su�ces to identify the —-contributing levels,
zero out the remaining levels, and determine the contribution of the resulting vector to
approximate the symmetric norm L(x).

I Lemma 23 ([11]). Given an accuracy parameter – œ (0, 1], let base › = (1 + O (–)),
importance parameter — = O

1
–

5

mmc(¸)2·log5 m

2
, and –

Õ = O

1
–

2

log n

2
. Let ‚bi Æ bi for all i and

‚bi Ø (1 ≠ –
Õ)bi for all —-important levels. Let ‚V be the level vector constructed using the

estimates ‚b1, ‚b2, . . . and let V
Õ

be the level vector constructed by removing all the buckets that

are not —-contributing in ‚V . Then (1 ≠ –)L(V (x)) Æ L(V Õ(x)) Æ L(V (x)).

To identify the —-contributing levels, [11] first notes that the size of the level must be at least
a significant fraction of the total size of the higher levels.

I Lemma 24 ([11]). Given x œ Rn
, let the level sets be defined by a base › > 1. If level i is —-

contributing, then there exists some fixed constant ⁄ > 0 such that bi Ø
⁄—

2

mmc(¸)2 log2 n
·
q

j>i
bj .

Moreover, [11] observes that the squared mass of a —-contributing level must be at least a
significant fraction of the total squared mass of the lower levels.

I Lemma 25 ([11]). Given x œ Rn
, let the level sets be defined by a base › > 1. If

level i is —-contributing, then there exists some fixed constant ⁄ > 0 such that bi›
2i

Ø
⁄—

2

mmc(¸)2(log› n) log2 n
·
q

jÆi
bj›

2j
.

Observe that together, Lemma 24 and Lemma 25 imply that a —-contributing level i must
also be an important level as defined in Definition 19. Crucially, since Lemma 25 states
that the squared mass (or the F2 frequency moment) of the —-contributing levels must be a
significant fraction of the total squared mass of the lower levels, then it suggests we might
be able to identify the —-contributing levels through an L2-heavy hitters algorithm after
removing the higher levels. Indeed, [11] show that the problem of identifying the size (and
thus the contribution) of the —-contributing levels can be reduced to the task of finding
‹-approximate ÷-heavy hitters for specific parameters of ‹ and ÷.

I Lemma 26 ([11]). Let s = O (log n). If a level i is —-important, then either ›
2i

Ø

–
2
—Á

2

log2 m
F2(x) or there exists j œ [s] such that bi Ø

2
j

log
2

m

–2Á2 and ›2i œ
Ë

–2—Á2

log2 m
· F2(x)

2j , –2—Á2

log2 m
· F2(x)

2j≠1

È
.

Lemma 26 implies that if level i is —-important, then either (1) it will be identified by
using PrivCountSketch, i.e., Lemma 15, with threshold –

2
—

log2 m
on the stream or (2) its

contribution can be well-approximated by using PrivCountSketch with threshold –
2
—Á

2

log2 m

on a substream formed by sampling coordinates of the universe with probability 1

2j . We thus
split our algorithm and analysis to handle these cases. In particular, we call a frequency level
i “high” if ›

2i
Ø

–
2
—Á

2

log2 m
F2(x). We call a frequency level i “medium” if ›

2i
Ø

–
2
—

Õ
Á

2

2j F2(x) > T

and bi Ø O

1
2

j
log

2
m

–2Á2

2
for a certain —

Õ
> 0 and a threshold T . We call a frequency level i

“low” if ›
2i

Ø
–

2
—

Õ
Á

2

2j F2(x) and bi Ø O

1
2

j
log

2
m

–2Á2

2
, but T Ø

–
2
—

Õ
Á

2

2j F2(x).
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3 Private Symmetric Norm Estimation Algorithm

In this section, we give our algorithm that releases a set of private statistics from which
an arbitrary number of symmetric norms can be well-approximated. In particular, recall
that Lemma 23 suggests that it su�ces to approximate the sizes of the important levels and
identity the non-important levels, so that the contributions of the non-important levels can
be set to zero. We partition the levels into three groups after defining explicit thresholds
T1 and T2, with T1 > T2. Recall that we define the “high frequency levels” as the levels
whose coordinates exceed T1 in frequency, the “medium frequency levels” as the levels whose
coordinates are between T1 and T2 in frequency, and the “low frequency levels” as the levels
whose coordinates are less than T2 in frequency.

The intuition is that because the high frequency levels have such large magnitude, their
frequencies can be well-approximated by running an L2-heavy hitters algorithm on the stream
S. On the other hand, the medium frequency level coordinates are not large enough to be
detected by running an L2-heavy hitters algorithm on the stream S, but the sizes of these
level sets must be large if the level set is important and therefore, there exists a substream Sj

for which a large number of these coordinates are subsampled and their frequencies can be
well-approximated by running an L2-heavy hitters algorithm on the substream Sj . Here we
form substreams S0, S1, . . . so that Sj first samples elements of the universe [n] at a rate 1

2j

and then only contains the stream updates that are relevant to the sampled elements. Finally,
the low frequency level coordinates are small enough that we cannot add Laplacian noise
to their frequencies without a�ecting the level sets they are mapped to. We instead show
that L1 sensitivity for the level set estimations is particularly small for the low frequency
levels and thus, we report the size of the level sets of the low frequency levels rather than
the approximate frequencies of the heavy-hitters.

We emphasize that we only use the thresholds T1 and T2 for the purposes of describing
our algorithm – in the actual implementation of the algorithm, the thresholds T1 and T2 will
be implicitly defined by each of the substreams. For example, the items with threshold larger
than T1 will automatically be revealed through the stream S, while the items with thresholds
between T1 and T2 will be revealed through the substreams Sj with 2j

>
log n

—Õ–Á
for explicit

parameters –, —
Õ, and Á. More specifically, note that Algorithm 2 sets —

Õ = O

1
–

2
—Á

2

log2 m

2
or

more specifically —
Õ = –

2
—Á

2

2 log2 m
. Then —

Õ
· F2(x) corresponds to the threshold T1, which is

utilized in the proofs of Section 3.1. Similarly, Algorithm 3 leverages the quantity log n

—Õ–Á
to

define the threshold T2, which is then utilized in the proofs of Section 3.2.

3.1 Recovery of High Frequency Levels
In this section, we describe our algorithm for recovering the high frequency levels, whose
coordinates have su�ciently large magnitude and thus their frequencies can be well-approxi-
mated by running an L2-heavy hitters algorithm on the stream S. Moreover, with high
probability, adding Laplacian noise will not a�ect the level sets because the frequencies are
so large. Thus it simply su�ces to return the noisy estimated frequencies of each of the
elements in the high frequency levels. This algorithm is the simplest of our cases and we give
the algorithm in full in Algorithm 2.

We first show that coordinates in high frequency levels are identified and their frequencies
are accurately estimated. Similarly, we show that if a coordinate does not have high frequency,
it will not be output by Algorithm 2.
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Algorithm 2 Algorithm to privately estimate the high levels.

Input: Privacy parameter Á > 0, accuracy parameter – œ (0, 1)
Output: Private estimation of the frequencies of the coordinates of the high frequency levels

1: — Ω O

1
–

5

mmc(L)2 log5 m

2
, —

Õ
Ω O

1
–

2
—Á

2

log2 m

2

2: Run PrivCountSketch on the stream S with threshold –
2
—

Õ and failure probability
1

poly(m)

3: for each heavy-hitter k œ [n] reported by PrivCountSketch do

4: Let Êxk be the frequency estimated by PrivCountSketch
5: „xk Ω Êxk + Lap

1
8

—ÕÁ

2

6: return „xk

I Lemma 27. Suppose m = �(log
5

m)
–5—2Á5 . Then with high probability Algorithm 2 outputs „xk

such that if x
2

k
Ø

–
2
—Á

2

log2 m
F2(x), then (1 ≠ –

2)xk Æ „xk Æ xk and if x
2

k
<

–
2
—Á

2

2 log2 m
F2(x), then

„xk <
3–

2
—Á

2

4 log2 m
F2(x).

We then show that Algorithm 2 preserves di�erential privacy and analyze its space
complexity.

I Lemma 28. Algorithm 2 is
!

Á

4
,

”

4

"
-di�erentially private for ” = 1

poly(m)
and uses space

mmc(L)2
· poly

!
1

–
,

1

Á
, log m

"
.

3.2 Recovery of Medium Frequency Levels
In this section, we describe our algorithm for recovering the medium frequency levels, whose
coordinates do not have su�ciently large magnitude to be detected by running an L2-heavy
hitters algorithm on the stream S, but have su�ciently large size, so that there exists some
j œ [s] across the s subsampling levels such that the coordinates can be detected by running
an L2-heavy hitters algorithm on the stream Sj . On the other hand, their magnitudes are
su�ciently large so that with high probability, adding Laplacian noise will not a�ect the
level sets. We give the algorithm in full in Algorithm 3.

We first upper bound the second frequency moment (and hence the L2 norm) of each sub-
stream. This is necessary because we want to detect the coordinates of the medium frequency
levels as L2-heavy hitters for each substream, but if the substream has overwhelmingly large
L2 norm, then we will not be able to find coordinates of the medium frequency levels. How-
ever, it may not be true that F2(Sj) is significantly smaller than F2(S) with high probability.
For example, if there were a single large element, then the probability it is sampled at level
s is 1

2s , which is roughly 1

n
>

1

poly(m)
. Instead, we note that PrivCountSketch benefits

from the stronger tail guarantee, which states that not only does PrivCountSketch with
threshold ÷ < 1 detect the elements k such that (xk)2

Ø ÷F2(S), but it also detects the
elements k such that (xk)2

Ø ÷F2(Stail(1/÷)), where Stail(1/÷) is the frequency vector x induced
by S, with the largest 1

÷
entries instead set to zero [15, 17].

I Lemma 29. Consider a —-important level i with ›
2i

œ

Ë
—–

2
Á

2

log2 m
·

F2(x)

2j ,
—–

2
Á

2

log2 m
·

F2(x)

2j≠1

È
for

some integer j > 0 and ›
i

>
log n

—Õ–Á
. If F2((Sj)1/(–2—ÕÁ2)) Æ

200 log m

2j F2(x) for all j œ [s], then

with high probability, Algorithm 3 outputs ‚bi such that (1 ≠ O (–))bi Æ ‚bi Æ bi, where bi is

the size of level i.
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Algorithm 3 Algorithm to privately estimate the medium levels.

Input: Privacy parameter Á > 0, accuracy parameter – œ (0, 1)
Output: Private estimations of the sizes of the medium frequency levels

1: — Ω O

1
–

5

mmc(L)2 log5 m

2
, —

Õ
Ω O

1
–

3
—Á

2

log2 m

2
, › Ω (1 + O (Á))

2: “ Ω (1/2, 1) uniformly at random, ¸ Ω
'
log

›
(2m)

(
, s Ω O (log n)

3: for j œ [s] with 2j
>

log n

—Õ–Á
do

4: Form stream Sj by sampling elements of [n] with probability 1

2j

5: Run PrivCountSketchj on stream Sj with threshold –
2
—

Õ
Á

2 and failure probability
1

poly(m)

6: for each heavy-hitter k œ [n] reported by PrivCountSketchj do

7: Let „xk be the frequency estimated by PrivCountSketchj

8: if „xk >
log n

—Õ–Á
then

9: Êxk Ω „xk + Lap
1

8

—ÕÁ

2

10: for i œ [¸] with m
2

2j+1 > “›
2i

Ø 2j
> O

1
log n

—Õ–2Á

2
do

11: Let Âbi be the number of indices k œ [n] such that “›
2i

Æ Êxk < “›
2i+2

12: ‚bi Ω
2

j

(1+O(–))
Âbi

13: return ‚bi

We now show that Algorithm 3 preserves di�erential privacy and analyze its space
complexity.

I Lemma 30. Algorithm 3 is
!

Á

4
,

”

4

"
-di�erentially private for ” = 1

poly(m)
and uses space

mmc(L)2
· poly

!
1

–
,

1

Á
, log m

"
.

3.3 Recovery of Low Frequency Levels
In this section, we describe our algorithm for recovering the low frequency levels, whose
coordinates have magnitude small enough that we cannot add Laplacian noise to their
frequencies without a�ecting the corresponding level set sizes. We instead report the sizes
of the level sets for the low frequency levels rather than the approximate frequencies of the
heavy-hitters. Thus we must add Laplacian noise to the sizes of the level sets; we show that
the L1 sensitivity for the level set estimations is particularly small for the low frequency
levels and thus the Laplacian noise does not greatly a�ect the estimates of the level set
sizes. We note that this approach does not work for the high frequency levels because the
high frequency levels may have small level set sizes, so that adding Laplacian noise to the
sizes can significantly a�ect the resulting estimates of the level set sizes. Similarly, it is
more challenging to argue the low L1 sensitivity for the level set estimations for the medium
frequency levels. Hence, both the algorithm and analysis are especially well-catered to the
low frequency levels. We give the algorithm in full in Algorithm 4.

We first show that the estimates of the level set sizes for the low frequency levels are
accurate.

I Lemma 31. Consider a —-important level i with ›
2i

œ

Ë
—–

2
Á

2

log2 m
·

F2(x)

2j ,
—–

2
Á

2

log2 m
·

F2(x)

2j≠1

È
for

some integer j > 0 and ›
i

Æ
log n

—Õ–Á
. If F2((Sj)1/(–2—ÕÁ2)) Æ

200 log m

2j F2(x) for all j œ [s], then

with high probability, Algorithm 4 outputs ‚bi such that

(1 ≠ O (–))bi Æ ‚bi Æ bi,

where bi is the size of level set i.
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Algorithm 4 Algorithm to privately estimate the low levels.

Input: Privacy parameter Á > 0, accuracy parameter – œ (0, 1)
Output: Private estimations of the sizes of the low frequency levels

1: — Ω O

1
–

5

mmc(L)2 log5 m

2
, —

Õ
Ω O

1
–

2
—Á

log n

2
, › Ω (1 + O (Á))

2: “ Ω (1/2, 1) uniformly at random, ¸ Ω
'
log

›
(2m)

(
, s Ω O (log n)

3: for j œ [s] with 2j
Æ

log n

—Õ–Á
do

4: Form stream Sj by sampling elements of [n] with probability 1

2j

5: Run PrivCountSketchj on stream Sj with threshold —
ÕÕ := O

1
—

Õ
–

2
Á

3

log2 n

2

6: for each heavy-hitter k œ [n] reported by PrivCountSketchj do

7: Let „xk be the frequency estimated by PrivCountSketchj

8: for i œ [¸] with O

1
log n

—Õ–2Á

2
Ø 2j+1

> “›
2i

Ø 2j
do

9: Let Âbi be the number of indices k œ [n] such that “›
2i

Æ „xk < “›
2i+2

10: ‚bi Ω
2

j

(1+O(–))

1
Âbi + Lap

!
8

Á

"2

11: return ‚bi

We then show that Algorithm 4 is di�erentially private and analyze its space complexity.

I Lemma 32. Algorithm 4 is
!

Á

4
,

”

4

"
-di�erentially private for ” = 1

poly(m)
and uses space

mmc(L)2
· poly

!
1

–
,

1

Á
, log m

"
.

3.4 Putting Things Together
We would like to combine the subroutines from the previous sections to output a private
dataset for symmetric norm estimation. Thus it remains to describe how to privately partition
the coordinates into the high, medium, and low frequency levels. To that end, we remark that
by Lemma 14, the sensitivity of PrivCountSketch in Algorithm 1 is at most 2. Moreover,
although PrivCountSketch actually provides an estimated frequency for each coordinate,
for our purposes, we only need estimated frequencies for the L2-heavy hitters and there are
at most K := O

1
1

÷2

2
possible L2-heavy hitters with whichever threshold ÷ that we choose,

e.g., ÷ = –
2
—

Õ in Algorithm 2. Thus it su�ces to observe that we can privately partition the
coordinates into the high, medium, and low frequency levels by first privately outputting the
top K estimated frequencies and then partitioning the coordinates according to their noisy
estimated frequencies, which can be viewed as post-processing. In particular, [56] observes
that it su�ces to add Laplacian noise with scale 8

÷Á
to each of the frequencies and then

outputting the top K noisy estimated frequencies to achieve Á

4
-di�erential privacy.

We now finally put together the results from the previous sections to show the following

result. We remark that we set Á, – = �̃
31

M
2

m

2 1
30

4
so that along with the assumption that

m Ø n, the conditions of the previous statements are satisfied, e.g., Lemma 34, we obtain
the following formalization of Theorem 2.

I Theorem 33. Given a parameter M > 1, let Á, – = �̃
31

M
2

m

2 1
30

4
. There exists a (Á, ”)-

di�erentially private algorithm that outputs a set C, from which the (1 + –)-approximation to

any norm , with maximum modulus of concentration at most M of a vector x œ Rn
induced

by a stream of length poly(n) can be computed, with probability at least 1 ≠ ”. The algorithm

uses M
2

· poly
!

1

–
,

1

Á
, log n, log 1

”

"
bits of space.
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A Missing Proofs

We first show that coordinates in high frequency levels are identified and their frequencies
are accurately estimated.

I Lemma 34. Suppose x
2

k
Ø

–
2
—Á

2

log2 m
F2(x) and m = �(log

5
m)

–5—2Á5 . Then with high probability,

Algorithm 2 outputs „xk such that

(1 ≠ –
2)xk Æ „xk Æ xk.

Proof. Consider Algorithm 2. Since x
2

k
Ø

–
2
—Á

2

2 log2 m
F2(x) and we call PrivCountSketch

with threshold –
2
—

Õ with —
Õ := O

1
–

2
—Á

2

log2 m

2
, then with high probability, the output Êxk satisfies

(1 ≠ O
!
–

2
"
)xk Æ Êxk Æ xk.
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We then add Laplacian noise Lap
1

8

—ÕÁ

2
to Êxk to form „xk. Since x

2

k
Ø

–
2
—Á

2

2 log2 m
F2(x) = —

Õ
F2(x)

and F2(x) Ø m, then with high probability, the Laplacian noise is at most an –
2 fraction of „xk

for O(log m)

—ÕÁ Æ –
2
m or equivalently, m Ø

�(log m)

–(—Õ)2Á
Ø

�(log
5

m)
–5—2Á5 . Hence with high probability,

(1 ≠ –
2)xk Æ „xk Æ xk. J

Similarly, we show that if a coordinate does not have high frequency, it will not be output by
Algorithm 2.

I Lemma 35. Suppose x
2

k
<

–
2
—Á

2

2 log2 m
F2(x) and m = �(log

5
m)

–5—2Á5 . Then with high probability,

Algorithm 2 outputs „xk such that

„xk <
3–

2
—Á

2

4 log2
m

F2(x).

Proof. Since x
2

k
<

–
2
—Á

2

2 log2 m
F2(x) and we call PrivCountSketch with threshold –

2
—

Õ with

—
Õ := O

1
–

2
—Á

2

log2 m

2
, then the output Êxk satisfies

|(Êxk)2
≠ (xk)2

| Æ 2–
2
—

Õ
F2(x).

We then add Laplacian noise Lap
1

8

—ÕÁ

2
to Êxk to form „xk. Since F2(x) Ø m, then with high

probability, the Laplacian noise is at most an –
2
—

Õ fraction of F2(x) for O(log m)

—ÕÁ Æ –
2
m or

equivalently, m Ø
�(log m)

–(—Õ)2Á
Ø

�(log
5

m)
–5—2Á5 . Hence with high probability,

|(Êxk)2
≠ (xk)2

| Æ
–

2
—Á

2

4 log2
m

F2(x).

Since x
2

k
<

–
2
—Á

2

2 log2 m
F2(x), then it follows that

„xk <
3–

2
—Á

2

4 log2
m

F2(x). J

We now show that Algorithm 2 preserves di�erential privacy.

I Lemma 36. Algorithm 2 is
!

Á

4
,

”

4

"
-di�erentially private for ” = 1

poly(m)
. Algorithm 2 uses

space mmc(L)2
· poly

!
1

–
,

1

Á
, log m

"
.

Proof. By Lemma 14, the sensitivity of PrivCountSketch is at most 2 and the failure
probability is 1

poly(m)
. Thus by adding Laplacian noise Lap

1
8

—ÕÁ

2
to Êxk, each estimated

frequency is
1

—
Õ
Á

4
,

”

4—

2
-di�erentially private for ” = 1

poly(m)
. Since PrivCountSketch with

threshold —
Õ can release at most 1

—
estimated frequencies and post-processing does not cause

loss in privacy, then by Theorem 11, Algorithm 2 is
!

Á

4
,

”

4

"
. J

Finally, we analyze the space complexity of Algorithm 2.

I Lemma 37. Algorithm 2 uses space mmc(L)2
· poly

!
1

–
,

1

Á
, log m

"
.

Proof. The space complexity follows from running a single instance of PrivCountSketch
with threshold –

2
—

Õ and failure probability 1

poly(m)
, where —

Õ = O

1
–

2
—Á

2

log2 m

2
and — =

O

1
–

5

mmc(L)2 log5 m

2
. J



V. Braverman, J. Manning, Z. S. Wu, and S. Zhou 45:21

I Lemma 38. With high probability, we have that F2((Sj)1/(–2—ÕÁ2)) Æ
200 log m

2j F2(x) for all

j œ [s].

Proof. For each j œ [s], we have that E [F2(Sj)] = F2(x)

2j . By Cherno� bounds with O (log n)-
wise limited independence, we have that

Pr

5
F2((Sj)1/(–2—ÕÁ2)) >

200 log m

2j
F2(x)

6
Æ

1
poly(m) .

Since s Æ 2 log m, then by a union bound over all j œ [s], we have that F2(Sj) Æ

(200 log m)F2(x) for all j œ [s]. J

We now show that conditioned on the event that the L2 norm of the subsampled streams are
not too large, then we can well-approximate the frequency of any coordinate of the medium
frequency levels, provided that they are sampled in the substream.

I Lemma 39. Suppose i is a —-important level and k œ [n] is in level i, so that xk œ [›i
, ›

i+1).
If F2((Sj)1/(–2—ÕÁ2)) Æ

200 log m

2j F2(x) for all j œ [s] and k is sampled in stream Sj with

2j
>

log n

—Õ–Á
, then with high probability, Algorithm 3 outputs „xk such that

(1 ≠ –
2)xk Æ „xk Æ xk.

Proof. Consider Algorithm 3. By Lemma 26, x
2
2

œ

Ë
–

2
—Á

2

log2 m
·

F2(x)

2j ,
–

2
—Á

2

log2 m
·

F2(x)

2j≠1

È
. Condi-

tioned on the event that F2((Sj)1/(–2—ÕÁ2)) Æ
200 log m

2j F2(x) for all j œ [s], then x
2

k
Ø

–
2
—Á

2

200 log m
F2(Sj). We call PrivCountSketch with threshold –

2
—

Õ
Á

2 = O

1
–

4
—Á

3

log2 m

2
. Thus

with high probability, the output Êxk satisfies

(1 ≠ O
!
–

2
"
)xk Æ Êxk Æ xk.

We then add Laplacian noise Lap
1

8

—ÕÁ

2
to Êxk to form „xk. Since x

2

k
Ø O

1
log n

—Õ–2Á

2
, then with

high probability, the Laplacian noise is at most an –
2 fraction of „xk. Hence with high

probability,

(1 ≠ –
2)xk Æ „xk Æ xk. J

Unfortunately, Lemma 39 only provides guarantees for the coordinates of the medium
frequency levels that are sampled. Thus, we still need to use Lemma 39 to show that a good
estimator to the sizes of the medium frequency levels can be obtained from the estimates of
the coordinates of the medium frequency levels that are sampled. In particular, we show
that rescaling the empirical sizes of the medium frequency levels forms a good estimator to
the actual sizes of the medium frequency levels.

Proof of Lemma 29. Suppose i is a —-important level. Then by Lemma 26 and a shifting of
the index j, bi Ø O

1
2

j
log

2
m

–2Á2

2
. Thus in Sj , the expected number of items Ej from level i is at

least log
2

m

–2Á2 and the variance Vj is at most Ej . Hence by Cherno� bounds with O (log n)-wise
limited independence, we have that the number of items Nj from level i satisfies

(1 ≠ O (–))bi Æ 2j
· Nj Æ (1 + O (–))bi,

with high probability. [11] show that due to the uniformly random chosen “ œ (1/2, 1), we
further have

(1 ≠ O (–))Nj Æ (1 + O (–))‚bi Æ (1 + O (–))Nj ,
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with high probability. Since s Æ 2 log m, then by a union bound over all j œ [s], we have that
with high probability, Algorithm 3 outputs ‚bi such that

(1 ≠ O (–))bi Æ ‚bi Æ bi. J

We now show that Algorithm 3 preserves di�erential privacy.

I Lemma 40. Algorithm 3 is
!

Á

4
,

”

4

"
-di�erentially private for ” = 1

poly(m)
.

Proof. By Lemma 14, the sensitivity of PrivCountSketch is at most 2 and the failure
probability is 1

poly(m)
. Thus by adding Laplacian noise Lap

1
8

—ÕÁ

2
to Êxk, each estimated

frequency is
1

—
Õ
Á

4
,

”

4—

2
-di�erentially private for ” = 1

poly(m)
. Since PrivCountSketch with

threshold —
Õ can release at most 1

—
estimated frequencies, then by Theorem 11, Algorithm 3

is
!

Á

4
,

”

4

"
. J

It remains to analyze the space complexity of Algorithm 3.

I Lemma 41. Algorithm 3 uses space mmc(L)2
· poly

!
1

–
,

1

Á
, log m

"
.

Proof. The space complexity follows from running s instances of PrivCountSketch
with threshold –

2
—

Õ and failure probability 1

poly(m)
, where —

Õ = O

1
–

2
—Á

2

log2 m

2
and — =

O

1
–

5

mmc(L)2 log5 m

2
. Since s = O (log n) and we assume n Æ m so that O (log n) = O (log m),

then the space complexity follows. J

Proof of Lemma 31. Suppose i is a —-important level. Hence by a shifting of the index j in
Lemma 26, we have that bi Ø O

1
2

j
log

2
m

–2Á2

2
. Therefore, the expected number of items Ej

from level i sampled in the substream Sj is at least log
2

m

–2Á2 and the variance Vj is at most Ej .
Thus by Cherno� bounds with O (log n)-wise limited independence, the number of items Nj

from level i satisfies

(1 ≠ O (–))bi Æ 2j
· Nj Æ (1 + O (–))bi,

with high probability. [11] show that due to the uniformly random chosen “ œ (1/2, 1), we
further have

(1 ≠ O (–))Nj Æ (1 + O (–))‚bi Æ (1 + O (–))Nj ,

with high probability. Since s Æ 2 log m and Lap
!

8

Á

"
is at most an Á-fraction of bi Ø

O

1
2

j
log

2
m

–2Á2

2
with high probability, then by a union bound over all j œ [s], we have that with

high probability, Algorithm 3 outputs ‚bi such that

(1 ≠ O (–))bi Æ ‚bi Æ bi. J

We then show that Algorithm 4 is di�erentially private.

I Lemma 42. Algorithm 4 is
!

Á

4
,

”

4

"
-di�erentially private for ” = 1

poly(m)
.

Proof. Note that since each instance of PrivCountSketchj uses threshold
—

ÕÕ := O

1
—

Õ
–

2
Á

3

log2 n

2
on a stream Sj with F2(Sj) Æ

200 log m

2j F2(x), then for any k œ [n]

with xk Æ O

1
log n

—Õ–2Á

2
, we have that PrivCountSketchj outputs xk exactly. Hence, at

most two estimates of the sizes of the level sets ‚bi can change, and then can change by at
most one. Thus the sensitivity is at most 2, so it su�ces to add Laplcian noise Lap

!
8

Á

"
to

each estimate ‚bi to obtain
!

Á

4
,

”

4

"
-di�erentially private for ” = 1

poly(m)
. J
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Finally, we argue the space complexity of Algorithm 4.

I Lemma 43. Algorithm 4 uses space mmc(L)2
· poly

!
1

–
,

1

Á
, log m

"
.

Proof. Similar to Algorithm 3, the space complexity follows as a result of running s instances
of PrivCountSketch with threshold –

2
—

Õ and failure probability 1

poly(m)
, where —

Õ =

O

1
–

2
—Á

2

log2 m

2
and — = O

1
–

5

mmc(L)2 log5 m

2
. Since s = O (log n) and we assume n Æ m so that

O (log n) = O (log m), then the space complexity follows. J

I Theorem 44. Given a parameter M > 1, let Á, – = �̃
31

M
2

m

2 1
30

4
. There exists a

(Á, ”)-di�erentially private algorithm that outputs a set C, for ” = 1

poly(m)
. From C, the

(1 + –)-approximation to any norm with maximum modulus of concentration at most M can

be computed, with probability at least 1 ≠ ”. The algorithm uses M
2

· poly
!

1

–
,

1

Á
, log m

"
bits

of space.

Proof. Note that from Lemma 34 and Lemma 35, the frequencies of the coordinates in the
high frequency levels are well-approximated with high probability. Similarly, from Lemma 29
and Lemma 31, the sizes of the level sets of the medium and low frequency levels are
well-approximated with high probability. Moreover, all the level sets are partitioned into
the high, medium, or low frequency levels. We would like to say that by Lemma 23, these
statistics are su�cient to recover a (1 + –)-approximation to any norm with maximum

modulus of concentration at most M and so we achieve a (1 + –)-approximation to any norm
with maximum modulus of concentration at most M that with high probability. Indeed, in
an idealized process where ›

i
Æ „xk Æ ›

i+1 if and only if k is sampled by the substream j

assigned to level i and ›
i

Æ xk < ›
i+1, Lemma 23 would show that we achieve a (1 + –)-

approximation to any norm with maximum modulus of concentration at most M that with
high probability. However, this may not always be the case because the frequency xk may lie
near the boundary of the interval [›i

, ›
i+1) and the estimate „xk may lie outside of the interval,

in which case „xk is used toward the estimation of some other level set. Thus, our algorithm
randomizes the boundaries of the level sets by instead defining the level sets as [“›

i
, “›

i+1)
for some “ œ (1/2, 1) chosen uniformly at random. Since we call PrivCountSketch with
threshold at most –

2
—

Õ, then the probability that item k œ [n] is misclassified over the choice
of “ is at most O

!
–

2
—

Õ
"
. Furthermore, if k in level set i is misclassified, it can only be

classified into level set i ≠ 1 or i + 1, causing at most an incorrect multiplicative factor of two.
Then in expectation across all k œ [n], the error due to the misclassification is at most an
O

!
–

2
—

Õ
"

fraction of the symmetric norm. Hence by Markov’s inequality, the error due to the
misclassification is at most an additive –

2
fraction of the symmetric norm with probability at

least 0.99. To obtain high probability of success, it then su�ces to take the median across
O (log m) independent instances, finally showing correctness of our algorithm.

The private partitioning of the coordinates into the high, medium, and low frequency
levels is Á

4
-di�erentially private. Each of the three sets of statistics released by the high,

medium, and low frequency levels are
!

Á

4
,

”

4

"
-di�erentially private, by Lemma 36, Lemma 40,

and Lemma 42. Then (Á, ”)-di�erential privacy follows from the composition of di�erential
privacy, i.e., Theorem 11.

Finally, the space complexity follows from Lemma 37, Lemma 41, and Lemma 43. J
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We remark that our algorithm is presented as having unlimited access to random bits
but is analyzed using O (log m)-wise independence, so it can be properly derandomized
to provide the space guarantees without needing to store a large number of random bits.
Alternatively, our algorithm can also be derandomized using Nisan’s pseudorandom generator,
which induces an extra multiplicative factor of O (log m) in the space overhead [54].

Finally, we remark that the failure probability can be raised from ” = 1

poly(m)
to arbitrarily

” > 0 using additional space overhead polylog 1

”
, since the space dependency in each subroutine

on the failure probability ” is polylog 1

”
.
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