
When Good Turns Evil: Encrypted 5G/4G Voice
Calls Can Leak Your Identities

Jingwen Shi∗, Tian Xie†, Guan-Hua Tu∗, Chunyi Peng‡, Chi-Yu Li§, Andrew Hou∗,
Sihan Wang∗, Yiwen Hu∗, Xinyu Lei¶, Min-Yue Chen∗, Li Xiao∗, Xiaoming Liu∗

∗Department of Computer Science and Engineering, Michigan State University,
†Department of Computer Science, Utah State University, ‡Department of Computer Science, Purdue University,

§Department of Computer Science, National Chiao Tung University,
¶Department of Computer Science, Michigan Technological University,

Email: ∗{shijingw,ghtu,houandr1,wangsih3,huyiwen3,chenmi33,lxiao,liuxm}@msu.edu,
†tian.xie@usu.edu, ‡chunyi@purdue.edu, §chiyuli@cs.nctu.edu.tw, ¶xinyulei@mtu.edu

Abstract—5G/4G voice calls are always encrypted for secu-
rity and privacy. However, in this work, we unveil several
vulnerabilities which can unintentionally leak 5G/4G call state
information, despite encryption protection. They stem from
recent call optimization techniques standardized in the 3GPP
specifications and adopted by mobile network operators. While
these techniques are effective to enhance 5G/4G call quality
and efficiency, they unfortunately expose extra call information,
which can be exploited to precisely infer call states and launch
side-channel attacks. By leveraging precise call states, we devise
a Cross-domain Identity Linkage attack, CrossIL, which aims
to infer mobile users’ user identities and cellular identities,
thereby enabling powerful cyberattacks or privacy inferences
against high-value victims. We have experimentally validated
these vulnerabilities and assessed the attack damages with three
major U.S. carriers. Our experimental result shows that the
success rate on the identity inference ranges from 89% to 98%.
Finally, we propose and evaluate a cellular-friendly solution.

I. INTRODUCTION

Mobile voice has been a killer communication service since
its origin. It is still prevalent, despite the emerging popularity
of rich communication services over mobile broadband. Many
users make phone calls on a daily basis [1]. Mobile voice ad-
vances to a Voice-over-IP (VoIP) solution as 5G/4G networks
are fully over IP. This voice solution is called as Voice over
IP Multimedia Subsystem (VoIMS) [2], which is referred to
as Voice-over-New-Radio (VoNR) for 5G and Voice-over-LTE
(VoLTE) for 4G. Until now, more than 235 operators in 105
countries have rolled out VoIMS service [3], which is projected
to serve 5 billion devices by 2025 [3].

Unsurprisingly, 5G/4G voice calls are encrypted for the
purpose of confidentiality, secrecy and privacy. They are pro-
tected by well-examined security measures including 5G/4G
authentication and key agreement (AKA) and multi-layer net-
work security (in Layers 2 and 3). Specifically, they leverage
secret keys protected in a physical SIM card or an eSIM
module to bootstrap mutual authentication between the device
and 5G/4G network and generate derived keys for subsequent
voice/data sessions [4]. All voice packets including voice
traffic and signaling messages are delivered over IP (Layer
3), which is protected by IPSec (Internet Protocol Security)

with confidentiality and integrity protection [5]. To protect
transmissions over the air, they are ciphered at Layer 2 (via
Packet Data Convergence Protocol (PDCP)) [6].

Unfortunately, we find that vulnerabilities stem from several
optimization techniques designated to enhance VoIMS quality
and efficiency. All these optimization techniques have been
standardized in 3GPP specifications and adopted by com-
mercial 5G/4G networks (at least all three U.S. operators in
our study). Specifically, VoIMS uses guaranteed-bit-rate radio
bearers, different from best-effort radio bearers for mobile
broadband [2]; it compresses packet headers to save bandwidth
via RObust Header Compression (ROHC) [7]; it handles
various radio conditions with Adaptive Multi-Rate (AMR)
audio codecs which are optimized for speech compression
and coding [8]; and it handles silence (i.e., when no one
talks) which likely results in terminating a call through a
new technique called comfort noise (injecting artificial noises
during the silence at a call conversation) [9]. Each optimization
technique is good to enhance call quality and efficiency.

However, the good turns evil when putting them together.
Those new techniques together pose unexpected yet intriguing
implications that can turn security threats into VoIMS calls
over 5G/4G. VoIMS traffic can be distinguished from all other
traffic when ROHC and comfort noise are used together to
generate tiny packets (< 16 bytes). Notably, the packets for
all other traffic are more than 30 bytes (Table I). By this means,
a VoIMS call can be detected by checking the presence of tiny
packets. Moreover, voice call states can be further inferred by
checking IMS voice packets with/without comfort noises.

We further devise a proof-of-concept attack over side-
channel inference: Cross-domain Identity Linkage (CrossIL),
which is designed to discover the confidential identities of
multiple VoIMS users in public; it links the victim’s cellular
identity to a specific user by correlating the call state informa-
tion inferred from cellular radio domain and visual domain. We
validate and assess this attack using various phone models and
cellular operators in the U.S. The results show that CrossIL
has a success rate ranging from 89% to 98% in the controlled
and wild settings. We finally propose a standard-compliant
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Fig. 1: Network architecture, main protocols and an operation
flow for 5G/4G voice over VoIMS.
solution to address the discovered vulnerabilities and evaluate
its effectiveness.

II. 5G/4G VOICE PRIMER

VoIMS is an essential VoIP-based voice solution for 5G/4G
networks [2]. Figure 1 depicts its network architecture, main
protocols, and a basic work flow.
5G/4G network architecture supporting VoIMS. It com-
prises two parts: the 5G/4G network infrastructure and the
IMS domain. The former provides User Equipment (UE, e.g.,
mobile phones) with active mobile connections (user-plane
data pipes) to deliver user traffic over IP. User traffic packets
in turn traverse the UE, the base station and the gateways
in the core cellular network to reach the external Internet or
the IMS domain (for 5G/4G voice), or vice versa. The IMS
domain comprises two key components: media gateway and
signaling server. The former delivers IP multimedia data (e.g.,
voice packets) to IMS clients (e.g., UEs); the latter processes
all signaling messages to establish and manage call sessions.
Main protocols for VoIMS. The main protocols above IP
are Session Initiation Protocol (SIP) and Real-time Transport
Protocol (RTP). SIP is used for voice signaling to initiate,
maintain, modify, and terminate voice calls over IP. RTP
transmits a live multimedia stream over IP. VoIMS takes the
same choices used by VoIP. Below IP, the main protocol
is PDCP [6]. It performs three main functions within 5G/4G
networks. First, it compresses the IP headers of data packets
to improve transmission efficiency over the air. Second, it
supports ciphering and integrity protection to protect the
upper-layer data, namely, IP packets. The session keys are
generated through 5G/4G security functions [10], [11]. Third,
it dispatches the upper-layer data to their corresponding radio
bearers: Dedicated Radio Bearer (DRB) and Signaling Radio
Bearer (SRB). DRB is used to carry traffic in the user plane,
and SRB is for 5G/4G signaling in the control plane. PDCP is
the only Layer-2 protocol studied in this work because PDCP
wraps other lower L2/L1 protocols to offer a user-plane pipe
for IP packet delivery. Conceptually, there is no difference
between 5G and 4G except that 5G supports varying QoS
settings for distinct IP data flows [12].
VoIMS call flow. A VoIMS call typically takes three steps:
establishment ( 1 ), call conversation ( 2 ), and termination ( 3 ),
if a 5G/4G user-plane pipe below IP is available. Otherwise, it
first establishes this pipe ( 0 ). Actually, this pipe is encrypted
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Fig. 2: MiTM attacks in the threat model.
using the keys derived from the mutual authentication between
the UE and the network. A VoIMS call session is established
by SIP signaling; it starts when someone dials a phone number
to generate a call request and ends when the call request is
accepted by the other call party ( 1 ). A call conversation is
then carried over this established call session ( 2 ). The voice
call application uses a speech audio codec to convert voice
traffic into a digital format, which is later delivered by RTP.
To end the call, SIP is used again to terminate the VoIMS
call session ( 3 ). Both RTP and SIP packets are encapsulated
into IP packets for delivery. Specifically, they are forwarded
to the IMS through the user-plane (PDCP) pipe provided and
encrypted by 5G/4G networks.
Voice enhancement techniques. Four techniques have been
introduced by 3GPP to enhance quality and efficiency of
VoIMS services, as illustrated in Figure 1. From bottom up,
they include special radio bearers ( 1 ), ROHC ( 2 ), comfort
noise (CN) ( 3 ), and AMR speech codecs ( 4 ). VoIMS uses
a special DRB with a guaranteed-bit-rate to ensure sufficient
radio bandwidth for voice [2]; ROHC compresses the headers
of VoIMS packets to reduce transmission overhead [6]; CN
injects some background noise to prevent an unexpected call
termination caused by a period of silence [9]; AMR speech
codecs [9] offer adaptive rates for voice, and VoIMS uses a
lower coding rate for unvoiced packets that carry background
noise. These techniques indeed enhance 5G/4G voice quality
and efficiency. However, the good turns evil as they together
bring unanticipated side effects to leak confidential call infor-
mation despite encryption (§IV).

III. THREAT MODEL AND METHODOLOGY

Threat Model. Adversaries are organizations or people who
attempt to monitor/attack mobile users through 5G/4G radio
channels (via MiTM attacks). As shown in Figure 2, they
can eavesdrop on all messages over public communication
channels, but they cannot decrypt the encrypted messages
without knowing the decryption keys. Specifically, they can
deploy their equipment near the victim UEs to capture all the
packets over the air, but they cannot compromise any victim’s
smartphone or the 5G/4G networks. Moreover, adversaries can
deploy hidden cameras at public locations to stealthily record
videos of victims.
Responsible methodology and ethics. We conduct this study
in a responsible manner. We run real experiments with all
three top-tier U.S. operators (denoted as OP-I, OP-II, and
OP-III) to validate the identified vulnerabilities and assess
attack damages. We understand that some feasibility tests and
attack evaluations might be detrimental to network operators
and their mobile users. As a result, unless specified, we
run all the experiments in a fully controlled environment,



Fig. 3: Overview of side-channel call inference.
where we deploy an attacker (a 5G/4G sniffer over software-
defined radio (SDR)) to infer call information of participating
smartphones which are all owned by our lab. To prevent
inadvertent attacks on non-participating smartphones, we take
two measures: (1) we run all experiments in a private labo-
ratory during off-peak times and ensure that no passersby are
present. In this setup, one smartphone serves as the victim,
and several other smartphones act as users nearby to simulate
normal 5G/4G traffic over the air; and (2) when passersby are
present, we utilize phone-side cellular trace collectors, such
as MobileInsight [13], to collect the victim’s cellular radio
traffic exclusively, thus ensuring that no cellular radio traffic
is collected from non-participating smartphones. A few attack
experiments are launched in semi-controlled environments or
at public places. More experimental settings are given in §V.

IV. SIDE-CHANNEL CALL INFERENCE

In this section, we present call inference techniques to
obtain confidential call information over encrypted pack-
ets.Figure 3 gives an overview of side-channel inference with
three tasks. First, it detects the presence of a VoIMS call out
of all the packets received in the air (§IV-A). Note that most
packets are not for voice (say, for mobile data and 5G/4G
signaling). Second, it infers call states for the detected VoIMS
call, particularly who is talking (§IV-B). It means that the
adversary Evil is capable of knowing more about how this
voice call is going on by dividing a call conversation into fine-
grained segments (e.g., Alice talks most time or rarely talks).
Last, it infers the start and end time for each conversation
segment (marked as “+” and “×” in Figure 3). Such precise
call state information makes it possible to launch attacks to
infer more confidential information (say, user identities) or
selectively manipulate the target call at specific time.

A. Detecting VoIMS Calls

At first glimpse, detecting the presence of an ongoing
VoIMS call is not hard. This is because the radio bearers used
for VoIMS (voice traffic and signaling) are different from those
for mobile Internet data. A prior study [14] has observed the
use of distinct DRBs (say, DRB1: mobile Internet data, DRB2:
VoIMS signaling, DRB3: VoIMS voice packets). Even though
traffic is ciphered at PDCP, it is not hard to detect VoIMS calls
by analyzing the use of all DRBs.

However, the reality is more complex and challenging.
First, the mapping between a DRB number and its supported
traffic type is never fixed or explicitly defined by any VoIMS
standard. As a result, it varies with network operators and

changes over time. Second, there are many packets transmitted
over DRBs, and all of them are encrypted. It is not scalable or
even technically feasible (unless with a super-powerful sniffer)
to inspect all the encrypted packets of multiple mobile devices
for a long while and identify the DRBs reserved for VoIMS
traffic. Here, we need a reliable, scalable and lightweight
solution to effectively detect the presence of VoIMS calls by
concurrently screening all DRBs used by nearby mobile users.

Our call detection approach exploits two voice quality
optimization techniques: ROHC [6] and CN [9]. It is fueled
by two facts: (1) both ROHC and CN are mandatory features
for VoIMS services regulated by 3GPP standards [9]; and
(2) they together produce special voice packets whose sizes
are much smaller than the non-VoIMS ones. As a matter of
fact, the use of both techniques is observed in all VoIMS
call experiments with three US operators. Notably, VoIMS
standard specifies that the CN generator on a smartphone
should cooperate with a Voice Activity Recognizer (VAR)
module that detects the activity of human speech (i.e., talking
or not talking) [9]. There are speech pauses (silence) in a call
conversation, where synthetic background noises are injected
to generate CN packets. The noise payload is small; with
ROHC, the packet is compressed into tiny packets which are
never used by non-VoIMS traffic.

Specifically, a CN voice packet contains 35∼48 bits
(4.375∼6 bytes) for noise information [8]; it is then encap-
sulated into an RTP packet using the payload type of 13 [15].
With ROHC, it is further compressed into a PDCP packet with
the length of 8∼13 bytes. We find that such tiny PDCP packets
appear only during VoIMS calls. Consequently, the presence
of tiny PDCP packets is considered as an indicator to VoIMS
calls. Note that the minimum IP packet size is 20 bytes (IPv4)
or 40 bytes (IPv6) as ROHC is not activated for non-VoIMS
traffic. Once a tiny packet is detected, we further obtain its
DRB number (which is not encrypted) and learn which DRB
is used for VoIMS. By this means, it is able to detect multiple
VoIMS calls over distinct DRBs. Notably, the vulnerability lies
in that both ROHC and CN are used only for VoIMS.
Empirical validation. We have conducted experiments with
three U.S. operators to validate that only VoIMS calls generate
tiny PDCP packets but non-VoIMS applications do not. We test
four phone models: Google Pixel 5, Pixel 3, Samsung S5, and
LG G3, all supporting VoLTE and Pixel 5 supporting VoNR.
We run three VoIMS-based applications (VoLTE, VoNR, and
Google Voice) and 57 non-VoIMS applications selected from
the top-100 mobile Internet applications. These test appli-
cations are roughly classified into three other categories:
(1) Non-VoIMS VoIP (e.g., Skype), (2) Non-VoIP streaming
(e.g., Netflix, Youtube), and (3) Non-streaming (e.g., Amazon,
Twitter, Reddit). For all VoIP applications (including VoIMS
and non-VoIMS VoIP), each test is a 30-second voice call
with 10s for ringing and 20s for call conversation. For non-
VoIP streaming applications, each test runs video streaming
for about 5 minutes. For non-streaming applications, we con-
tinuously access their Internet services (e.g., refreshing online



No. App Name Len No. App Name Len

VoIM
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1 VoLTE (4G) 11 – 13

N
on-Str eam

ing

31 Amazon 42
2 VoNR (5G) 12 – 13 32 Reddit 42
3 Google Voice 13 33 McDonald’s 42

N
on-V oIM

S
VoIP

4 WhatsApp 32 34 DuckDuckGo 42
5 WhatsApp Business 32 35 DoorDash 42
6 Skype 37 36 WeatherPort 42
7 Telegram 42 37 Waze 42
8 Discord 42 38 Instagram 42
9 TextNow 42 39 TikTok 42
10 Google Hangouts 50 40 Walmart 42
11 Snapchat 54 41 Airbnb 42

N
on-V oIP

Stream
ing

12 Twitch 42 42 AAA 42
13 Spotify 42 43 Snapfish 42
14 Netflix 42 44 Apex News 42
15 SoundCloud 42 45 Expedia 42
16 Disney+ 42 46 Chrome 42
17 Amazon Prime Video 42 47 Brave Browser 54
18 Xbox 42 48 Google Earth 61
19 NewsBreak 42 49 SpeedVPN 30
20 Bigo Live 42 50 Thunder VPN 37
21 Shazam! 54 51 Google Translate 42
22 YouTube Kids 59 52 Microsoft Authenticator 42

N
on-Str eam

ing

23 The Weather Channel 42 53 Acrobat Reader 42
24 Microsoft Edge 42 54 Google Docs 42
25 Twitter 42 55 DNS Speed Test 42
26 Photomath 42 56 FTP Server 42
27 Microsoft Teams 54 57 Outlook 42
28 Zillow 42 58 Canva 54
29 Booking 42 59 Google Authenticator 54
30 Duolingo 42 60 Pinterest 54

TABLE I: Tiny packets are only observed in VoIMS.
content and searching for products) for 1 minute.

Table I shows the PDCP packet lengths for three VoIMS
applications and the minimal length per each non-VoIMS
application observed in our study. We have four findings. First,
all three U.S. operators have adopted both ROHC and CN
techniques for VoIMS calls. Second, no tiny PDCP packets are
observed from any non-VoIMS application, but many of them
are seen during VoIMS calls. This finding is consistent across
four phone models and three operators. Third, it is effective
in detecting multiple ongoing calls (up to four tested in our
study). Last, the number of tiny packets observed during a
VoIMS call changes with network operators and mobile device
models. We later show that it is due to varying speech coding
rates (AMR), which impacts call state inference (§IV-B).

B. Inferring Call States

We next describe how to infer call states when a VoIMS
call is detected. Consider an adversary usually eavesdrops
on one call party (say, Alice), since two call parties (say,
Alice and Bob) are unlikely in close proximity and do not
use the same radio channel sniffed by the adversary. Consider
the adversary Evil deploys a sniffer near Alice, not Bob.
From Alice’s viewpoint, there are two call states: talking and
not-talking (listening) when the call conversation is on. Here,
talking means that Alice is talking, and listening means Alice
is not talking, but listening to Bob.

An intuitive approach is to check the presence of CN and
non-Comfort-Noise (nonCN) voice packets in both directions
– downlink (DL) and uplink (UL) – to infer whether Alice is
talking. When Alice is talking, UL-nonCN packets will be sent
out; when Alice is not talking (silence), UL-CN packets will
be sent out. Similarly, DL packets are observed depending
on whether Bob is talking. Figure 4 presents this approach
by zooming into the start of a call conversation where Alice
begins to talk. Note that the target DRB has been identified
while detecting a VoIMS call (§IV-A). It is thus easy to
recognize the packets transmitted over this target DRB, out
of many packets from concurrent DRBs.

Fig. 4: Call state inference for one detected call (§IV-B).
Call State Intermediate Criteria

#UL-CN #UL-nonCN #DL-CN #DL-nonCN
Talking ∗ >0 >0 ∗

Listening >0 ∗ ∗ >0
No conversation =0 ∗ = 0 >0

TABLE II: Intermediate criteria for 3 call states (∗: wildcard).

However, there are three practical issues to address, as
illustrated in Figure 4. First, we find that the call conversation
might not start yet even when some packets are transmitted
over the target DRB. It happens with some premium voice
services. For instance, Early Media [16] allows the callee to
deliver a preferred alerting music (e.g., a song) to the caller.
As a result, we introduce a new call state of no conversation:
the DRB is active but the call is not established yet. We
observe that the CN packets are never used before the call
starts. Hence, we use the first CN packet over this DRB as
the start of this call conversation.

Second, CN packets are tiny, much smaller than non-VoIMS
packets. However, it is unclear whether CN and nonCN voice
packets can be distinguished by their packet lengths. The good
news is that we do find that nonCN voice packets are always
larger than the CN ones. The minimum PDCP payload length
of nonCN voice packets is 15.08 (4, 750bits/8/50 + 3.2 =
15.08) bytes, which is rounded up to 16 bytes. It is observed
when the lowest VoIMS codec bit-rate for nonCN voice
packets is used (4.75 Kbps via AMR); the inter-arrival time is
20 ms on average (50 packets per second), and ROHC reduces
the size of RTP headers to 3.2∼6.5 bytes; on contrast, the
maximum length of CN packets is 13 bytes. In this work, we
choose a threshold θ =16 (14, 15, and 16 all work) and the
packet with the payload length < 16 is a CN packet.

We further collect packet statistics every second: the counts
of CN and nonCN packets in UL and DL, denoted as #UL-
CN, #UL-nonCN, #DL-CN and #DL-nonCN. Table II lists
the criteria (actually, intermediate results) to infer three call
states simply based on the presence of these four packet types,
namely No conversation: the conversation does not start when
#UL-CN= 0 and #DL-CN= 0; Talking: When #UL-nonCN>0
and #DL-CN>0, the user sends voice packets to the remote
call party and receives comfort noise packets from them,
which means that the user is talking to the remote party; and
Listening: When #DL-nonCN>0 and #UL-CN>0, the user
does not send voice packets to the remote call party but sends
CN packets to them, which means that the user is listening.

Third, we find that short-term call state inference based on
the above criteria may not be sufficient to infer accurate call
time due to some noises. In particular, we observe tiny CN
packets in both directions when Alice is talking or listening
(more explained in §IV-C). We will next present our final



Fig. 5: Side-channel inference uses DBSCAN and MAVG to
prevent unnecessary talking-listening state switches (§IV-C).
approach along with inferring call time.

C. Inferring Call Time

The intuitive approach in §IV-B infers a call state per second
and then accumulates time periods during the talking and
listening states. However, we find that it does not work well
in practice. It is because there exist other noise packets. In
particular, there are two types of other noise packets: hidden
noise and redundant comfort noise. The hidden noise packets
are unvoiced nonCN packets, which are generated based on
uncancelled environment noises when the call party is listen-
ing; the redundant comfort noise is produced over human’s
short speech pause during talking. Thus, there are frequent
switches between talking and listening states. A short speech
pause (with redundant comfort noises) results in inaccurate
inference on the talking state; i.e., talking stops earlier and
switches to the listening state but soon returns back to the
talking state, as Alice is still talking. Similarly, the hidden
noise packets impact the inference on when listening stops.

We thus devise two approaches: (1) density-based spatial
clustering of applications with noise (DBSCAN) and (2) the
moving average of voiced packet ratio (MAVG) to reduce the
unnecessary listening and talking state switches. They yield a
more accurate inference on the start and end time of each call
state, as illustrated in Figure 5.
◦ DBSCAN is used to handle hidden noises and prevent

the unwanted listening→talking state transitions. We analyze
nonCN packets and classify them into two categories: (1)
voiced nonCN and (2) unvoiced nonCN. The hidden noise
packets belong to the unvoiced nonCN. The unvoiced nonCN
packets do not carry any user voice but carry uncanceled
environment noise. Although the coding bit rate of unvoiced
nonCN packets is specified to be smaller than that of voiced
nonCN according to VoIMS standards [17], differentiating
those two categories is still challenging due to the AMR
audio codec used by VoIMS, in which voice coding rates may
vary with time. To this end, we develop a classifier based on
the well-established DBSCAN algorithm [18]. DBSCAN is
employed for the classification with the input of a desired
number of clusters or categories and a proper value of ε,
which represents the maximum distance range between two
data points belonging to the same cluster. In our prototype, ε
is set to 10, which achieves comparable performance on all
audio coding rates stipulated by VoIMS standards.
◦ MAVG is used to deal with redundant comfort noises

and prevent the unwanted talking→listening state switches.

Metrics
Cross-Carrier Exp. Cross-Phone Exp.

OP-I OP-II OP-III OP-III OP-III OP-III
S5 S5 S5 G3 Pixel 3 Pixel 5†

C Inference accuracy 100% 100% 100% 100% 100% 100%
Time errors 0.51s 0.3s 1.8s 0.53s 0.57s 0.39s

T Inference accuracy 100% 100% 100% 100% 100% 100%
Time errors 0.36s 0.6s 0.99s 0.14s 0.89s 0.22s

L Inference accuracy 100% 100% 100% 100% 100% 100%
Time errors 0.48s 0.4s 1.22s 0.45s 0.76s 0.31s

TABLE III: Accuracy of VoIMS call detection, state and time
inference (†:VoNR). C: Conversation, T: Talking, L: Listening.
To address this issue, the talking state should not be trans-
ferred to the listening state based on only little comfort
noise. We develop a moving average algorithm to prevent
unnecessary state switches. Notably, since the short speaking
pauses may generate not only comfort noise packets but
also unvoiced nonCN packets, both of them are considered
in the algorithm. The devised algorithm works as follows.
First, given a pre-defined time window (e.g., 2∼4 seconds)
over time, wnd, we collect statistics on the numbers of
uplink comfort noise packets, unvoiced nonCN packets, and
voiced nonCN packets, denoted as #CN, #Unvoiced-nonCN,
and #Voiced-nonCN, respectively. Second, we calculate the
percentage of voiced packets, V P , within each wnd, by

#V oiced−nonCN
#CN+#Unvoiced−nonCN+#V oiced−nonCN ∗ 100%. Third, if
the observed V P is larger than 50%, the talking state is
inferred; otherwise, the state is inferred as listening.

Finally, we infer the time for this call conversation as
follows. The conversation starts when the talking or listening
state is identified at the first time, which is more robust than
detecting the first PDCP packet over this target DRB. The
conversation ends when the last PDCP packets is sent/received
over this target DRB. Note that time inference may be slightly
inaccurate because the call is officially established or termi-
nated by SIP, which is delivered over SRB, not DRB.

D. Evaluation on 5G/4G Call Inference

We have conducted extensive experiments with those three
US operators to evaluate the accuracy of the proposed side-
channel inference techniques, in terms of VoIMS call detec-
tion, and call state and time inference. We have tested with
four 4G/5G smartphones, including Samsung Galaxy S5, LG
G3, Google Pixel 3, and Google Pixel 5 and two mainstream
VoIMS services, VoLTE and VoNR (Google Pixel 5 only).
There are 20 runs for each experiment setting (operator, phone
model, VoIMS service). In each run, a victim VoIMS call
takes 30 seconds with 10s for alerting time, 10s for talking,
and 10s for listening. In the meanwhile, other participating
smartphones (not the victim) run various accompanying traffic
including non-VoIMS Internet applications and VoIMS calls.
Here, we use fixed 10s intervals in the evaluation experiments
as they are sufficient for us to examine all different call
state transitions. The call inference with varying intervals and
multiple pauses will be evaluated in §V.

Table III shows that side-channel call inference works well
in both cross-carrier and cross-phone cases. Due to space
limits, we present the results with all operators using Samsung
S5 and the results with all phone models using OP-III. We
have three findings. First, all the VoIMS calls and states



are successfully detected, while non-VoIMS traffic is never
mistakenly recognized as VoIMS calls. Second, all the average
time errors are below 9%, except the inference using S5 over
OP-III. Specifically, they ranged in 0.3-0.57s (1.5%∼2.85%),
0.14-0.89s (1.4%∼8.9%), and 0.31-0.76s (3.1%∼7.6%) for
conversation (20s), talking (10s), and listening (10s), respec-
tively. Third, in the experiments using S5 with OP-III, CN
packets are transmitted at a low rate (i.e., ≤7 pkt/s) to the
cellular infrastructure. Such a low rate is much lower than
the rate stipulated by the standard (i.e., 50 pkt/s) [8], thereby
resulting in a longer call state inference and higher error rates.

V. CROSS-DOMAIN IDENTITY LINKAGE ATTACK

Motivation. Identity leakage is a big privacy concern for
mobile users; two kinds of identities are mainly considered,
namely user identity and cellular identity. The user identity,
e.g., name, phone number, can be used to identify an indi-
vidual uniquely, whereas the cellular identity, e.g., Interna-
tional Mobile Subscriber Identity (IMSI), and Radio Network
Temporary Identity (RNTI), can identify a mobile user in
cellular networks. However, if a mobile user’s user and cellular
identities can be inferred and linked successfully, many power-
ful cellular-identity-based cyberattacks (e.g., IMSI-based DoS
attacks [19]) can be launched against high-value victims rather
than randomly selected ones.
The existing works and their limitations. Many studies
(e.g., [20], [21]) have shown that the adversary can easily
steal the user identities, including both name and phone num-
ber, of a mobile user through online payment services (e.g.,
PeopleLooker [22]), social network platforms (e.g., [20]),
and data breaches from online service providers [23]. For the
cellular identities, several methods [24]–[26] have been also
proposed to infer them or link them to each other (e.g., forcing
a device to immediately transmit its IMSI, linking RNTIs to
an IMSI [26]). However, there are currently no studies which
can stealthily link the user identities to the cellular ones for a
mobile user. Even though some works have shown that such
linkage is feasible, their schemes are not stealthy. For example,
for the linkage, Hussain et al. [25] need to dial multiple calls
to the victim with knowing his/her number in advance. Note
that compromising carriers’ infrastructure is not considered in
the threat model in §III.
Proposed Approach. We thus develop a novel Cross-domain
Identity Linkage attack, CrossIL, which exploits precise call
state inference and correlates inferred call states with related
motions extracted from the visualization domain (say, video
recordings). Figure 6 shows the basic attack idea.

Besides the success of VoIMS call state inference in the cel-
lular radio domain, the proposed CrossIL attack is motivated
by two rationales in the visualization domain: (1) the user pos-
tures of using the VoIMS services (e.g., holding a phone next
to an ear) are usually different from those of the other mobile
services (e.g., Internet surfing and texting), which provides a
special feature distinguishing call activities from others. We
conducted an online questionnaire studying the phone call

Fig. 6: Overview of CrossIL attack.

access behavior; most participants are college students. From
83 collected responses, 53 participants prefer to place phones
to their ears when making phone calls in public locations,
whereas 30 participants do not (e.g., using earphones); and
(2) face recognition techniques are getting increasingly ma-
ture; several studies (e.g., [27], [28]) have demonstrated that
adversaries can successfully recognize people’s faces with a
high accuracy (>90%) in video frames even when faces are
small/tiny. With recognized face images, adversaries can first
discover their owners’ names by reverse image search engines
(e.g., PimEyes [29]) and then obtain their phone numbers by
paid online services (e.g., PeopleLooker and Spokeo).
Practical Attack? Critics may argue that the proposed
CrossIL faces three limitations: (1) adversaries have to install
cellular radio sniffers and surveillance cameras in public areas;
(2) multiple users may have VoIMS calls at similar times; and
(3) there may be no VoIMS users with ongoing calls during
surveillance. However, we contend that these issues can be ad-
dressed without significant technical challenges. Specifically,
modern hidden cameras [30] are unobtrusive with extended
battery life and ample storage capacity, while portable sniffers
can support more than 1 km coverage [24], thereby allowing
adversaries to operate covertly. Our precise call state inference
mechanism can distinguish between multiple VoIMS users
with concurrent calls. Moreover, CrossIL specifically targets
VoIMS users, but not all mobile users without accessing
VoIMS services. Adversaries can strategically deploy the snif-
fers and cameras at selected public locations, such as airports
and hotel lobbies, where phone calls are frequent. With many
people throughout the day, it is likely to observe individuals
making calls within the surveillance coverage.
Attack design. The high-level attack idea is to obtain cellular
identities from radio traces (via VoIMSAnalyzer) and user
identity from the visualization domain (via VideoAnalyzer),
and then link them by correlating the victim’s call states
and related motions. The biggest challenge of launching this
attack is to accurately detect when a voice conversation starts
from recorded videos. Specifically, it is hard to distinguish the
following two scenarios: (1) the user dials an outgoing call and
waits for the called party to answer; and (2) the user answers
an incoming call and listens to the caller without speaking
at all. In both scenarios, the user has the same behaviors: the
user moves a phone to his/her ear and has no lip motions for a
while. This issue results in non-negligible inference errors in
the visualization domain, thereby significantly downgrading
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Fig. 7: Three steps for cross-domain identity linkage.

the attack effectiveness. We thus develop a novel approach,
cross-domain indeterministic call state correlation to address
the issue by adding an indeterministic state L′ to present these
two scenarios. We next present its three key components.
◦ VoIMSAnalyzer. The new function added for this attack

is to extract cellular radio identity of each VoIMS call (i.e.,
RNTI, IMSIs, TMSIs, GUTIs), if there are any. That is to say,
VoIMSAnalyzer not only discovers cellular identities but also
infers each identity’s corresponding VoIMS call states (e.g.,
talking and listening times) over ciphered radio traces.
◦ VideoAnalyzer. It leverages increasingly mature face

recognition techniques which can successfully recognize peo-
ple’s faces with a high accuracy (>90%) in video frames
even when faces are small/tiny [27], [28]. It also exploits
public image reserve searching engines that search people by
face images (e.g., PimEyes.com [29]). VideoAnalyzer extracts
each user identity’s call-related motions and then generates
estimated call statistics from video recording. VideoAnalyzer
contains three sub-modules: (1) call motion detector, which
detects two voice-call-specific human activities (i.e., moving
a phone close to/away from an ear) to identify call start
and end times, respectively; (2) lip motion detector, which
identifies the start and end times of each talking or listening
interval by analyzing human lip motions using the recurrent
neural network (RNN) model [31]; and (3) face detector and
recognizer, which locates each user’s face and discovers the
corresponding user identity (e.g., name) using the Dual Shot
Face Detector (DSFD) [32] and ResNet50 [33]. For each
identified user identity, VideoAnalyzer outputs the start and
end times of each call conversation, and the call’s talking and
listening time intervals, which may be interleaved.
◦ Cross-domain identity linkage. This component associates

a cellular radio identity with a user identity by correlating
their corresponding call event sequences generated by VoIM-
SAnalyzer and VideoAnalyzer. Figure 7 shows three steps for
cross-domain indeterministic call state correlation.

Step 1. Given a video-induced call record produced by
VideoAnalyzer, the correlator searches through all radio-
induced call records and checks whether any of them overlaps
with it based on their call start and end times.

Step 2. Due to the indeterminacy of L′, which indicates
listening to the other call party or waiting for the called party
to answer, the video-induced call event sequence, designated
as CESeqvideo, is not a deterministic form. We thus expand
CESeqvideo to multiple deterministic call event sequences by
exploring all possible states of L′ in practice. For example, a
video-induced call event sequence, “S, L′, L′, T, T, L, E”, can
be expanded into three sequences: (1) “S, L, L, T, T, L, E”;
(2)“S, L, T, T, L, E”; and (3) “S, T, T, L, E”, which outputs

all possible call event sequences.
Step 3. We calculate matching scores between each of

the radio-induced call event sequences and all the sequences
expanded from the given video-induced call event sequence;
the correlation with the highest matching score is chosen. We
calculate the Edit distance (i.e., Levenshtein distance), which
quantifies the similarity between two strings, between two
selected call event sequences and obtain their matching score
as 1 − Edit distance

|Longest call event sequence| . For example, the Edit distance
between “S, T, T, L, E” and “S, L, T, T, L, E” is 1, and their
matching score is 0.83 (1− 1

6 ).
Attack implementation. We implement VoIMSAnalyzer using
Python3 on a PowerSpec computer with Ubuntu 16.0, 8 Intel
i7-9900k CPUs, and 15GB RAM. We implement VideoAna-
lyzer using Python3 on HPCC servers with the following li-
braries: Keras (Mask R-CNN and RNN lip movement model),
Pytorch (DSFD), keras vggface (ResNet50), scipy (Cosine
Similarity), and cv2 libraries. Notably, we did not need to
collect a large-scale dataset, since all used models were pre-
trained [34]. Correlator was implemented in Python3 using
timestamps recorded in radio traces and videos.
Attack evaluation. We run experiments at public places cov-
ered by three U.S. major carriers in a responsible manner. All
recording experiments conform to the United States Recording
Laws [35]; we record videos only with our participants.
We record videos without capturing their conversations when
several participants are speaking. More specifically, the attack
evaluation is performed in both controlled (without passersby)
and wild (with passersby) environments. The controlled exper-
iment was conducted in a classroom, where only experiment
participants were on campus during holidays, whereas the
wild experiment was carried out in the lobby of a dormitory
with passersby. There were 7 participants, and each of them
was required to freely dial/receive 15 VoIMS calls within
two hours under the surveillance of two cameras (iPhone 12).
The participants can make phone calls simultaneously. In the
experiment, we gauged the inference accuracy in terms of
call start time, call end time, talking/listening times, and the
association between the cellular and user identities.

Table IV summarizes the experimental results. We have
four observations. First, the success rates of linking cellular
identities to user identities are 59/60 (98%) and 40/45 (89%)
in controlled and wild environments. Such high success rates
are achieved even when VideoAnalyzer has up to 17.3%
error in estimating talking and listening times. Second, most
estimation errors from VideoAnalyzer in the wild environment
are obviously larger than those in the controlled environ-
ment. There are two reasons: (1) cameras were occasion-
ally blocked by passersby (1/45 phone calls), and (2) the
brightness of natural light is not always stable; specifically,
14/45 phone calls experienced short-time (a few seconds)
underexposure/overexposure issues. Third, VideoAnalyzer can
precisely recognize the faces of participants for all the VoIMS
calls and then discover their names from our database. Fourth,
VoIMSAnalyzer in the controlled experiment has similar errors



Module Performance Metrics Controlled Settings Wild Settings
User1 User2 User3 User4 User5 User6 User7

RadioAnalyzer Call Events Time Estimation
call start error 0.92s 0.32s 0.85s 0.85s 1.20s 1.43s 1.60s
call end error 0.18s 0.27s 0.32s 0.37s 0.32s 0.15s 0.28s

talking & listening time error 1.8s (4.6%) 1.4s (2.8%) 2.3s (4.9%) 1.6s (3.9%) 1.5s (2.8%) 2.88s (6.5%) 2.65s (6.3%)

VideoAnalyzer
Call Events Time Estimation

call start error 1.87s 2.53s 1.99s 2.0s 6.42s 3.09s 2.85s
call end error 2.15s 3.74s 3.97s 2.14s 3.01s 4.95s 1.18s

talking & listening time error 3.2s (8.2%) 4.12s (8.3%) 2.15s (4.6%) 2.23s (5.4%) 9.25s (17.3%) 6.67s (15.1%) 4.37s (10.4%)
Face Detection and Recognition Accuracy 100% 100% 100% 100% 100% 100% 100%

Correlator Cellular ID and User Linkage Accuracy 100% 93.5% 100% 100% 86.7% 86.7% 93.5 %
( 15/15) ( 14/15) ( 15/15) ( 15/15) ( 13/15) ( 13/15) ( 14/15)

TABLE IV: Summary of cross-domain identity linkage attack performance.
in estimating call start and end times as in the wild experiment,
whereas its estimation on talking and listening times in the
wild setting has higher errors (2.8%∼6.5%) than that in
the controlled setting (2.8%∼4.9%). The reason is that the
background noise of the wild environment is larger than that
of the controlled one.
Current prototype limitations. Although the proposed attack
is effective in our experiments, the current prototype has
several limitations: (1) video recordings at 1080P or higher
are required; (2) skewed, crooked, and blurred faces cannot be
well recognized; (3) video call and earphone users are immune
to this attack; and (4) it only considers the locations with good
cellular signals. Some techniques can be used to improve the
prototype. For example, [36] and [37] can be applied to recog-
nizing faces from low-resolution video recordings and dealing
with the skewed/crooked face recognition, respectively. We
leave these potential improvements to our future work.

VI. SOLUTION

We propose to add paddings to compressed CN packets so
that there are no tiny packets. Specifically, we would like to
control paddings below IP (at the PDCP layer), rather than
above IP. Adding paddings above IP results in two practical
issues. First, users need to pay for additional paddings, be-
cause they are charged based on the volume of data usage.
Second, IMS media gateways suffer with increasing loads
while handling extra paddings in VoIMS packets. Specifically,
we propose to develop a singular rectifier (SR) at the PDCP
layer, which is implemented on the UE and the base stations,
without reaching the core network. By this means, users do not
need to pay for extra paddings and handling extra paddings is
distributed among front-end base stations, which is acceptable.
Prototype. We prototype the proposed solution over an open-
sourced cellular network. We use srsUE, srsLTE, Open IMS
Core [38], and UCT IMS Client 1.0.14 [39] to serve as the
4G UE, the 4G infrastructure, the IMS core with a VoLTE
server, and the VoLTE client app, respectively. We implement
SR@PDCP by modifying the PDCP layer at both the UE
and the eNB to handle necessary paddings of the VoIMS
packets. In particular, we add paddings to all the PDCP packets
whose payload lengths are smaller than 20 bytes and increase
the size to 42 bytes, which can be observed from many
non-VoIMS applications (Table I). The inserted paddings are
removed at the PDCP layer before the corresponding packets
are forwarded to the upper layer or next network element (e.g.,
the 4G gateway and 5G UPF).

Evaluation. We evaluate its effectiveness and overhead. We
re-run VoIMS call experiments where a user dials ten VoIMS
calls from the srsUE and the callee answers each incoming call
immediately. Each call lasts for 25 seconds with 10s for talking
and 15s for listening. The result shows that VoIMSAnalyzer
fails to detect any of the calls. Notably, the 4G core network
does not receive any VoIMS packets with additional paddings,
so no additional charges are made.

We evaluate the solution overhead in terms of CPU usage,
memory usage, and processing time. In practice, VoIMS clients
do not keep sending out compressed CN packets during voice
calls. Here, we assess the overhead in an extreme case where
the VoIMS client keeps transmitting 11-byte comfort noise
VoIMS packets to the OpenIMS server. Our experimental
results show that the average CPU and RAM usages slightly
increase by 0.72% and 0.02% when the proposed solution
is enabled. The average processing time at the PDCP layer
increases by 1.46 µs per packet (from 15.24 µs to 16.70 µs).

VII. DISCUSSION

Limited to 4G? People may argue that 5G users should be
immune to the proposed attacks, since mobile devices in the
5G network do not transmit the permanent cellular identity
(e.g., IMSI) in plaintext but in ciphertext (i.e. Subscription
Concealed Identifier (SUCI)), and the cellular identity cannot
be learned. However, it may not be the case since some
researchers have shown the network downgrade attacks [40]
can downgrade 5G mobile devices to legacy 4G networks.
Having more attacks? We mainly use the above proof-of-
concept attack to evaluate the effectiveness and responsiveness
of call inference and applications in real world using wild
experimental settings. Its real-world impact is not limited to
our proof-of-concept attack only. For example, many studies
in sociology and linguistics have leveraged call state infor-
mation to infer user profiles (e.g., residents, visitors [41]),
personality (e.g., extroversion, agreeableness [42]), and social
interactions [43].

VIII. RELATED WORK

4G/5G voice security has attracted increasing attention in
the recent years [14], [44]–[47]. Prior studies focus on other
security problems, such as VoLTE call reliability [44], free data
access by abusing VoLTE signaling [45], DoS attacks [46],
deciphering VoLTE calls [14], and 911 call security [47]. Note
that although [14] claims that the ciphered packets of VoLTE
calls can be decrypted, it leverages a vulnerability that an
encryption key is reused for different VoIMS calls of the same



mobile user. However, it should rarely happen in practice since
the key reuse is explicitly forbidden by 3GPP.

To the best of our knowledge, there are no similar security
studies to infer 5G/4G call information without knowing the
decryption keys and then launching attacks. The most relevant
work is [48], which infers confidential or hidden information
in VoWi-Fi. It infers three call states (ringing, conversation,
and non-conversation) of a VoWi-Fi call by analyzing the
intercepted IPSec packets. However, their inference approach
is not applicable to VoIMS calls. They cannot detect VoIMS
calls in the presence of non-VoIMS traffic; they cannot infer
fine-grained call states and time.

IX. CONCLUSION

5G/4G voice calls are advancing with new optimization
techniques over time. However, the gains are not without a
cost. In this work, we present side-channel call inference over
several 5G/4G call optimization techniques and the resulting
threats against 5G/4G calls. An adversary can infer confiden-
tial call information accurately (whether a call is ongoing, who
is talking and when) without decrypting the encrypted packets
in the air. Such call information can be further exploited to
launch real attacks against 5G/4G call users. We believe
that new techniques never intend to sacrifice security for call
enhancements. However, their security implications are subtle,
resulting in unanticipated side effects. Handling new security
issues raised by evolving technologies in mobile networks is a
big challenge and an endless task. It warrants concerted efforts
from all the stakeholders, including standard makers, carriers,
vendors, and mobile users.
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