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Abstract 
The COVID-19 pandemic was responsible for the cancellation of both the men’s and women’s 2020 
National Collegiate Athletic Association (NCAA) Division I basketball tournaments. Starting from the 
point when the Division I tournaments and unfinished conference tournaments were canceled, we 
deliver closed-form probabilities for each team of making the Division I tournaments, had they not 
been canceled, under a simplified method for tournament selection. We also determine probabilities 
of a team winning March Madness, given a tournament bracket. Our calculations make use of 
conformal win probabilities derived from conformal predictive distributions. We compare these 
conformal win probabilities to those generated through linear and logistic regression on college 
basketball data spanning the 2011-2012 and 2022-2023 seasons, as well as to other publicly available 
win probability methods. Conformal win probabilities are shown to be well calibrated, while requiring 
fewer distributional assumptions than most alternative methods.  

Keywords: Conformal inference, predictive distributions, sports analytics, 

uncertainty quantification, March Madness, ranking, Elo, Kaggle.  
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1 Introduction 

Two of the most popular tournaments in the world are the men’s and women’s 

National Collegiate Athletic Association (NCAA) Division I basketball 

tournaments, colloquially known as March Madness. In college basketball, teams 

are grouped into conferences. During the regular season, teams compete against 

opponents within their own conference as well as teams outside their conference. 

Following the regular season, better performing teams within each conference 

compete in a conference tournament, with the winner earning an invitation to play 

in the Division I (DI) tournament. The invitation for winning a conference 

tournament is called an “automatic bid”. Historically, sixty-four teams are selected 

for the women’s tournament. Thirty-two of the sixty-four teams are automatic 

bids, corresponding to the thirty-two conference tournament winners. The other 

thirty-two teams are “at-large bids”, made up of teams failing to win their 

respective conference tournament. At-large bids are decided by a selection 

committee, which uses both subjective guidelines and strict constraints to choose 

the teams invited to the tournament and how to set the tournament bracket, 

which defines who and where each team will play initially and could play 

eventually. Teams that earn an automatic bid or an at-large bid are said to have “

made the tournament”.  

As a result of the COVID-19 pandemic, the NCAA canceled both the men’s and 

women’s 2020 NCAA tournaments. A majority of college athletic conferences 

followed by cancelling their own conference tournaments, leaving many 

automatic bids for March Madness undecided. These cancellations raise natural 

questions about which teams might have made the March Madness field and 

which teams might have won the tournament. Using data from the 2019-2020 

men’s and women’s collegiate seasons, we deliver probabilistic answers to these 

questions.  

Specific to the 2019-2020 NCAA DI season(s), we contribute the following: 1) an 

overall ranking of the top Division I teams, as well as estimates of each team’s 
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strength, based on 2019-2020 regular season data, 2) closed-form calculations 

for probabilities of teams making the 2019-2020 March Madness field under a 

simplified tournament selection process, calculated from the point when each 

conference tournament was canceled, and 3) closed-form calculations of 

probabilities of teams winning March Madness, given each of several potential 

brackets.  

The calculation of probabilities for teams making the 2019-2020 March Madness 

field considers each conference tournament’s unfinished bracket as well as our 

estimates of DI team strengths, which we fix following the culmination of the 

regular season. The closed-form nature of the probabilities also reduces the 

computational load and eliminates error inherent to simulation-based 

approaches. To our knowledge, this is the first closed-form approach to take into 

account partially completed conference tournaments when generating 

probabilities of making the March Madness field.  

Estimating March Madness win probabilities prior to the selection of the 

tournament field and the determination of the March Madness bracket is a 

difficult problem. If we define all the potential brackets as the set  and 
{ 1}uW 

 

as the event where team u wins March Madness, we can decompose 
( 1)uW 

 

as  

( 1) ( 1 | ) ( ) .u u
B

W W B B


    (1)  

However, calculations for all possible brackets within  are intractable. For a set 

of, say, 350 teams, there are 

3 5 0

6 4

 

 
   ways to select a field of teams to compete in 

a 64-team tournament. Given a tournament field of 2 JN   teams, where J is the 

number of rounds in the tournament (J = 6 for a 64-team tournament), the 

number of unique brackets for a single-elimination tournament is  
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



 

 
 

   

which grows rapidly as N increases. An 8-team tournament results in 315 

potential brackets, while a 16-team tournament results in 638,512,875 potential 

brackets. In the case of March Madness, the size of the set  is enormous.  

Of course, some brackets are more likely than others due to the set of 

constraints used by the selection committee. Even if the set of plausible brackets 

for March Madness was small relative to the complete set  when the 

tournaments were canceled in 2020, estimating ( )B  in (1) for any given bracket 

B depends on the complex and, ultimately, subjective decision making process 

used by the NCAA selection committee.  

While we can explicitly construct ( )B  under the simplified tournament selection 

process outlined in this paper, the calculation is often computationally difficult. 

Thus, we make no attempt to calculate ( )B  for any bracket B. Instead, in this 

paper, we focus on the construction of the marginal probability of each team 

making the March Madness field. Additionally, using brackets suggested by 

experts, along with brackets we construct, we compare March Madness win 

probabilities, 
( 1 | )uW B

 for all teams u, across different brackets B. We find 

that the win probabilities for teams most likely to win are relatively stable across 

brackets. Baylor, South Carolina, and Oregon each had more than a 20% win 

probability for most of the brackets we considered for the women’s tournament. 

On the men’s side, Kansas was the most likely to win the tournament regardless 

of the bracket.  

Another contribution of the paper is the novel application of conformal predictive 

distributions (Vovk et al. 2019) for the estimation of win probability, aptly named 

conformal win probability. Conformal predictive distributions allow for the 

construction of win probability estimates under very mild distributional 

assumptions, reducing dependence on, say, normality assumptions, for our 
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results. When compared using both men’s and women’s post-season NCAA 

basketball spanning the 2011-2012 and 2022-2023 seasons, we find that 

conformal predictive distributions provided win probability estimates that often 

performed better than other methods, including well-performing, publicly 

available models.  

Section 2 provides background on constructing overall win probabilities for 

single-elimination tournaments and introduces the closed-form calculation of 

probabilities related to March Madness. Section 3 describes three methods for 

generating win probabilities of individual games, including the construction of 

conformal win probability estimates. Section 4 describes the overall results, 

including a ranking of the top teams, conference tournament and March Madness 

win probabilities associated with the 2019-2020 NCAA DI basketball season and 

a comparison of win probability generation methods. Section 5 concludes the 

paper. All of the R code and data sets used in this research are available at  

https://github.com/chancejohnstone/marchmadnessconformal.  

2 Probabilities for March Madness 

In this section, we describe win probability as it relates to single-elimination 

tournaments like March Madness. We also introduce the probability of a team 

making the March Madness field, given a collection of conference tournament 

brackets, team strengths and game-by-game win probabilities. We limit our 

discussion scope in this section primarily to the women’s tournament, but the 

general construction reflects the men’s tournament also.  

Throughout this paper, we use the common verbiage that a team is ranked “

higher” than another team if the former team is believed to be better than the 

latter team. Likewise, a “lower” ranking implies a weaker team. We follow the 

common convention that a team of rank r has a higher rank than a team of rank s 

when r < s. Teams ranked 1 to 32 are collectively identified as “high-ranked”. 

Teams ranked below 64 are identified as “low-ranked”. While the colloquial use 
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of the term “bubble teams” is usually reserved to describe a subset of teams near 

the boundary separating teams in and out of the March Madness field, we use 

the term to explicitly describe the teams ranked 33 to 64. In Section 3.3, we 

discuss an approach to rank teams based on observed game outcomes.  

2.1 Win Probability for Single-Elimination Tournaments 

Given a collection of game-by-game win probabilities, one method for providing 

estimates of overall tournament win probability is through simulation. Suppose 

that for a game between any pair of teams u and v in our tournament, we have 

the probability that team u defeats team v, defined as puv. While the true value of 

puv is not known in practice, we describe methods for estimating the probability 

for any match-up in Section 3. We can simulate the outcome of a game between 

team u and team v by randomly sampling from a standard uniform distribution. A 

value less than puv corresponds to a victory for team u, while a value greater than 

puv represents a victory for team v. Every game in a tournament can be simulated 

until we have an overall winner. We can then repeat the entire simulation process 

multiple times to get a Monte Carlo estimate of each team’s probability of winning 

said tournament.  

Suppose we have an eight team single-elimination tournament with the bracket 

shown in Figure 1. The highest ranking team, team 1, plays the lowest ranking 

team, team 8, in the first round. Assuming team 1 was victorious in round one, 

their second round opponent could be team 4 or 5. In the third round, team 1 

could play team 3, 6, 2 or 7. After the first round of the tournament, team 8 has 

the same potential opponents as team 1.  

Using the knowledge of a team’s potential opponents in future games, we can 

calculate win probabilities for any upcoming round and, thus, the entire 

tournament. Formalized in Edwards (1991), the tournament win probability for 

team u given a fixed, single-elimination tournament bracket with J rounds is  
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1 1 ,[ ]
u J

u J u J u s sJ
s

q q p q
 



   (2)  

where quj is the probability that team u wins in round 1, ,j J , and u j  is the 

set of potential opponents team u could play in round j. We explicitly set 

11 uu uq p
, where 1u  is team u’s opponent in round one. We can extend (2) to 

single-elimination tournaments of any size or construction as long as we are able 

to determine the set u j  for any team u in any round j.  

2.2 Probability for Making the NCAA Tournament 

With (2) we can generate an overall tournament win probability for each team in 

a tournament exactly, given a fixed tournament bracket and game-by-game win 

probabilities. However, following the regular season, but prior to the culmination 

of all conference tournaments, the field for March Madness is not fully known. 

Thus, we cannot utilize (2) directly for estimating team win probabilities for the 

2020 March Madness tournament. We first turn our attention to estimating each 

women’s team’s probability of making the 2020 March Madness field, made up of 

thirty-two automatic bids and thirty-two at-large bids. Although the closed-form 

calculations reflect probabilities related to the 2019-2020 women’s March 

Madness tournament, which would have included sixty-four teams, only slight 

changes are required to reflect the inclusion of sixty-eight teams, i.e., to account 

for the “First Four” play-in games in both the men’s and women’s tournaments. 

We include a description of the First Four play-in system in Supplementary 

Materials. A sixty-eight team tournament is used for results pertaining to the 

2019-2020 men’s March Madness tournament contained in Supplementary 

Materials.  

We define Fu as the indicator variable for whether or not the u-th ranked team 

makes the NCAA tournament field. Knowing that the NCAA tournament is made 

up of automatic and at-large bids, we define two relevant indicator variables Cu 

and Lu associated with a team receiving one of these bids, respectively. Cu is one 
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if team u wins its conference tournament and zero otherwise. We define Lu as the 

number of conference tournaments won by teams ranked below team u. Then, 

under the assumption that higher-ranked at-large bids make the March Madness 

field before lower-ranked at-large bids, for any team u, the probability of making 

the NCAA tournament is  

( 1) ({ 1} { }) ( 1) ( ) ( 1, ) ,u u u u u u u u u uF C L t C L t C L t             (3)  

where 
6 4ut u 

 is the maximum number of teams ranked below team u that can 

receive an automatic bid without preventing team u from receiving an at-large 

bid. Because there are 32 conference tournaments, 
( 3 2 ) 1uL  

. Thus, with the 

current construction, teams ranked 32 (64–32) or higher always make the NCAA 

tournament. For low-ranked teams, (3) reduces to 
( 1)uC 

; weaker teams must 

win their conference tournament to get an invite to March Madness.  

We can decompose the intersection probability of (3) into  

( 1, ) ( | 1) ( 1).u u u u u u uC L t L t C C       (4)  

To explicitly describe the probabilities in (4), we split the teams in each 

conference into two sets, 
u
k  and 

u
k , defining 

u
k  as the set of teams in 

conference 1, ,k K  ranked higher than or equal to team u and 
u
k  as the set 

of teams in conference k ranked lower than team u. We reference lower or 

higher-ranked teams in the same conference as team u using k(u) instead of k. 

Note that team ( )
u
k uu 

. Let 
1u

k

C 
 if a team in 

u
k  wins conference tournament 

k and 0 otherwise. 
u
k

C
 is defined in a similar manner for teams in 

u
k .  

We assume that the outcome of any conference tournament is independent of 

the outcome of any other conference tournament. Thus, we can describe Lu as a 

sum of independent, but not identically distributed, Bernoulli random variables,  
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1

.u
k

K

u
k

L C


   

If 
u
k

C
 were identically distributed for all conferences, then Lu would be a binomial 

random variable. Because this not the case, Lu is instead a Poisson-binomial 

random variable with cumulative distribution function  

0

( ) (1 ) ,{ }
C

m

l

u s s
s Am A s A

L l p p
  

      (5)  

where pk is the probability of a team in 
u
k  winning conference tournament k, and 

m  is the set of all unique m-tuples of {1, , 3 2} . With (5) known, the conditional 

portion of (4) is a new Poisson-binomial random variable where ( ) 0k up 
; we 

condition on team u winning their conference tournament. Thus, the probability of 

team u making the tournament is  

( ) ( )

0

( 1) ( ) (1 ) ,( { } )
u

k u k u
C

m

t

u u J u u s s u J
s Am A s A

F q L t p p q
  

            (6)  

where kp 
 is equal to pk when k is not equal to k(u) and zero otherwise, and ( )k uJ

 

is the number of rounds in the conference tournament for conference k(u).  

While the above derivation provides a closed-form calculation for probabilities of 

making the March Madness field, it does not describe any team’s probability of 

winning March Madness. To do this, we must also derive closed-form probability 

calculations for specific tournament brackets. However, as discussed in Section 

1, it is difficult to explicitly construct calculations for this task due to the inherent 

subjectivity associated with the seeding of teams. For this reason, we focus on 

the probability of each team making the March Madness field and, given a March 

Madness bracket, the probability of each team winning the March Madness 

tournament. Additionally, we emphasize that while a primary focus of this paper 

is to explore the canceled 2020 tournaments, the results laid out in this section 
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can be be applied to any post-season in progress, allowing for March Madness 

field probability updates as teams are eliminated from their respective conference 

tournaments.  

3 Win Probabilities for Individual Games 

Determining win probability in sports primarily began with baseball 

(Lindsey 1961). Since then, win probability has permeated many sports and 

become a staple for discussion among sports analysts and enthusiasts. 

Applications of win probability have been seen in sports such as basketball 

(Loeffelholz et al. 2009), hockey (Gramacy et al. 2013), soccer (Robberechts 

et al. 2019), football (Stern 1991, Lock & Nettleton 2014), darts (Liebscher 

& Kirschstein 2017), rugby (Lee 1999), cricket (Asif & McHale 2016), table tennis 

(Liu et al. 2016) and even video games (Semenov et al. 2016), among others.  

These methods typically use some form of parametric regression to capture 

individual and/or team strengths, offensive and/or defensive capabilities or other 

related effects. We continue the parametric focus by using a linear model to 

estimate team strengths, but our approach makes minimal distributional 

assumptions.  

Initially, suppose that  

,i i iy x     (7)  

where yi represents the response of interest for observation i, xi is a length p 

vector of covariates for observation i, β is the vector of parameter values and ϵi is 

a mean-zero error term. We define 1( , , )ny y y 
 and 1  ( , , )nX x x 

, where 

the vector y and matrix X make up our n observations 1{ ( , )} n
n i i iD x y




. In 

subsequent sections, the response values in y will be margin of victory (MOV), 

and the elements of β will include team strength parameters. However, at this 

stage a slightly more general treatment is useful.  
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We next discuss event probability estimation via three different methods: 

conformal predictive distributions based on model (7), linear regression with 

model (7) and an added assumption of mean-zero, independent and identically 

distributed normal errors, and logistic regression.  

3.1 Event Probability with Conformal Predictive Distributions 

Predictive distributions (Lawless & Fredette 2005) provide a method for 

estimating the conditional distribution of a future observation given observed 

data. Conformal predictive distributions (CPDs) (Vovk et al. 2019) provide similar 

results using a distribution-free approach based on conformal inference 

(Gammerman et al. 1998). The next section contains a general treatment of 

conformal inference, followed by an introduction to conformal predictive 

distributions.  

3.1.1 Conformal Inference 

In a regression context, conformal inference (Gammerman et al. 1998, Vovk 

et al. 2005) produces conservative prediction regions for some unobserved 

response 1ny   through the repeated inversion of some hypothesis test, say  

0 1 1: vs. : ,n c a n cH y y H y y
 
   (8)  

where 1ny   is the response value associated with an incoming covariate vector 

1nx  , and yc is a candidate response value (Lei et al. 2018). The only assumption 

required to achieve valid prediction intervals is that the data Dn combined with 

the new observation 1 1( , )n nx y
   comprise an exchangeable set of observations.  

The inversion of (8) is achieved through refitting the model of interest with an 

augmented data set that includes the data pair 1( , )n cx y
 . For each candidate 

value, a set of conformity scores is generated, one for each observation in the 

augmented data set, which measure how well a particular data point conforms to 

the rest of the data set; traditionally a conformity score is the output of a function 
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of the data pair (xi, yi) and the prediction for yi, denoted 
ˆ ( )i cy y

, as arguments. 

While the prediction 
ˆ ( )i cy y

 is dependent on both 1( , )n cx y
  and Dn, we omit 

dependence on 1nx   and Dn in our notation. We define  

1

1 1
1

1
( , ) { ( ) ( )} { ( ) ( )} ,

1
[ ]

n

c i c n c i c n c
i

y R y R y R y R y
n

  



 



   


   

where, for 
1, , , ( )i ci n R y

 is the conformity score for the data pair (xi, yi) as a 

function of 1 1( , ) , ( )n c n cx y R y
   is the conformity score associated with 1( , )n cx y

 , 

and τ is a U(0, 1) random variable.  

In hypothesis testing we determine a p-value as the probability of a value as or 

more extreme than the observed test statistic under the assumption of a 

specified null hypothesis. With the construction of 
( , )cy 

, we generate an 

estimate of the probability of an observation less extreme (or of equal 

extremeness) than the candidate value yc. Thus, 
1 ( , )cy 

 provides a p-value 

associated with (8) (Lei et al. 2018). The inclusion of the random variable τ 

generates a smoothed conformal predictor (Vovk et al. 2005).  

For a fixed τ, we can construct a conformal prediction region for the response 

associated with 1nx  ,  

1 , 1( ) { : ( 1) ( , ) (1 )( 1) } ,n c cC x y n y n
 

  
 

         

where 1   is the nominal coverage level. When τ is one, 
( ,1)cy

 is the 

proportion of observations in the augmented data set whose conformity score is 

less than or equal to the conformity score associated with candidate value yc. 

Regardless of the conformity score or the model used to generate point 

predictions, a conformal prediction region with nominal coverage level 1   is 

conservative. Thus, for some new observation 1 1( , )n nx y
  ,  

1 1 , 1( ) 1 .( )n ny C x
 


  
    
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3.1.2 Conformal Predictive Distributions 

One commonly used conformity score in a regression setting is the absolute 

residual, 
ˆ| ( ) |i i cy y y

, which leads to symmetric prediction intervals for 1ny   

around a value y  satisfying 1
ˆ ( )ny y y




. The traditional residual associated with a 

prediction, 
ˆ ( )i i cy y y

, results in a one-sided prediction interval for 1ny   of the 

form 1, ( , )( )n nu D x



. Additionally, the selection of the traditional residual as our 

conformity score turns 
( , )cy 

 into a conformal predictive distribution (Vovk 

et al. 2019), which provides more information with respect to the behavior of 

random variables than, say, prediction intervals. For example, with a CPD, we 

can provide an estimate of the probability of the event 
*

1ny y



. For the the 

remainder of this paper we construct ( · , )   using the conformity score 

ˆ( ) ( )i c i i cR y y y y 
.  

As previously stated, 
1 ( , )cy 

 provides a p-value associated with (8). Thus, 

1 ( ,1 / 2 )cy
 is analogous to the mid p-value, which acts a continuity correction 

for tests involving discrete test statistics. We point the interested reader to 

Lancaster (1961) and Barnard (1989) for additional details on the mid p-value. 

We set 1 / 2   for the computation of our conformal predictive distributions 

throughout the remainder of this paper.  

While we have generalized conformal predictive probabilities for the event 
*

1ny y



, we focus on the case where 

*y  is equal to zero in later sections and 

instead describe probabilities associated with the event 1 0ny 


, which represent 

win probabilities when 1ny   is a margin of victory.  

Additionally, our paper focuses on models of the form shown in (7); it is important 

to note that conformal predictive distributions can be obtained with any other 

model and within other applications. In fact, they can be paired with any 

regression approach to generate estimates of uncertainty. Specific to the win 
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probability application, conformal win probabilities can be utilized with any model 

where MOV is the response of interest to provide win probability estimates.  

3.2 Other Event Probability Methods 

We specifically outline two competing methods to conformal predictive 

distributions: event probability through linear regression with normal errors and 

event probability through logistic regression. Other popular methods for 

generating win probabilities include Poisson modeling (Maher 1982), Bayesian 

methods (Santos-Fernandez et al. 2019), rank-based (Trono 2010) and spread-

based approaches (Carlin 2005), quantile regression (Bassett 2007), and 

nonparametric methods (Soto Valero 2016, Elfrink 2018), among others. For a 

comprehensive review and comparison of both win probability and outcome 

predictions methods, we point the interested reader to Horvat & Job (2020) and 

Bunker & Susnjak (2022).  

3.2.1 Event Probability Through Linear Regression 

We can estimate the expected value of some new observation 1ny   using (7), but 

additional assumptions are required to provide event probabilities. In linear 

regression, the error term ϵi is traditionally assumed to be a mean-zero, normally 

distributed random variable with variance 
2

   . Together, these assumptions 

with independence among error terms make up a Gauss-Markov model with 

normal errors (GMMNE).  

A least-squares estimate for the expectation of 1 1
ˆ,n ny y

  , is 1
ˆ

nx 



 where 

1ˆ ( )X X X y


    when X is a full rank n × p matrix of covariates. Given the 

assumption of a GMMNE, 1
ˆ
ny   is normally distributed with mean 1nx 




 and 

variance 
2 1

1 1( ( ) )n nx X X x


 
 

. The prediction error for observation n + 1, 

1 1 1
ˆ

n n nr y y
  
 

, is also normally distributed with mean zero and variance 
2 1

1 1(1 ( ) )n nx X X x


 
  

. Dividing 1nr   by its estimated standard error then yields a 
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t-distributed random variable. Thus, we can describe probabilities for events of 

the form 1ny s



 using the standard predictive distribution  

1
1 ,

1 1

ˆ
( ) 1 ,

ˆ 1 ( )

n
n t n p

n n

s y
y s F

x X X x



 


 

 
    

   

 (9)  

where 
2 1ˆ ( ( ) / ( )y I X X X X y n p


        is the usual unbiased estimator of the 

error variance 
2

 , and ,t n pF
  is the cumulative distribution function for a t-

distributed random variable with n – p degrees of freedom (Wang et al. 2012).  

3.2.2 Event Probability Through Logistic Regression 

While linear regression allows for an estimate of 1( 0 )ny 


 based on 

assumptions related to the random error distribution, we can also generate 

probability estimates explicitly through logistic regression. Suppose we still have 

observations Dn. We define a new random variable zi such that 
{ 0}i iz y 

. 

Instead of assumptions related to the distribution of the random error term ϵi, we 

assume a relationship between the expectation of zi, defined as pi, and the 

covariates xi such that 

lo g
1

( )i
i

i

p
x

p
 


. Then, we can then derive an estimate 

for pi as 
ˆ ˆ

ˆ / 1( )i ix x

ip e e  
 

, where ̂  is the maximum-likelihood estimate for β 

under the assumption that 1 , , nz z
 are independent Bernoulli random variables.  

3.3 Application to Win Probability in Sports 

We now extend the methods outlined in Section 3.1 and Section 3.2 to a sports 

setting for the purpose of generating win probabilities. Specifically, we wish to 

identify win probabilities for some future game between a home team u and away 

team v. Note that we selected each of these methods for comparison due to their 

inherent probabilistic interpretations.  

The methods of generating win probabilities in our case are made possible 

through the estimation of team strengths. One of the earliest methods for 
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estimating relative team strength comes from Harville (1977), which uses the 

MOV for each game played. We focus on the initial linear model  

,uv u v uvy        (10)  

where yuv represents the observed MOV in a game between team u and v ( u v

), with the the first team at home and the second away, θu represents the relative 

strength of team u across a season, μ can be interpreted as a “home court” 

advantage parameter, and ϵuv is a mean-zero error term. Extensions to (10) have 

been utilized in Harville & Smith (1994), Schwertman et al. (1996), and 

Zimmerman et al. (2021), among others, with the two latter works focusing on 

win probability related to March Madness tournament seeding. Niemi 

et al. (2008) and Kaplan & Garstka (2001) both explore strategies for optimal 

team selection to win March Madness bracket pools. While not the focus of our 

paper, player effects on March Madness performance are explored in Pifer 

et al. (2019), again using models similar in form to (10).  

We can align (10) with (7) and identify games across different periods, e.g., 

games happening in a given week, by assuming  

,uvw uvw uvwy x     (11)  

where yuvw is the observed MOV in a game between team u and v in period w, β 

is the parameter vector 1 1( , , , )p  



, ϵuvw is a mean-zero error term, and xuvw is 

defined as follows. For 1, ,i p , let et be the t-th column of the p × p identity 

matrix, and let 1pe   be the p-dimensional zero vector. Then, 1 1 1uvw u vx e e e
 

  
 for 

a game played on team u’s home court; 1 1uvw u vx e e
 

 
 for a game played at a 

neutral site.  

Without loss of generality, we estimate team strengths under model (11) relative 

to an arbitrarily chosen baseline team. Let 
ˆ
u  be element u + 1 of the least 

squares estimate for β under model (11), and define 
ˆ 0p 

. Then, 
ˆ ˆ
u v 

 is the 
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estimated MOV for team u in a neutral-site game against team v, and 1
ˆ ˆ, , p 

 

serve as estimated strengths of teams 1, , p , respectively. The rank order of 

these estimated team strengths provides a ranking of the p teams.  

By the definition of yuvw, the probability that yuvw is greater than zero is the 

probability of a positive MOV, representing a win for the home team. Thus, with 

the assumption of (11), we can now describe the event probability methods 

outlined in Section 3.1 and Section 3.2 as they relate to win (and loss) 

probabilities in sports.  

The different model assumptions do not change the inherent construction of 

event probability estimates with CPDs. We can align CPDs with model (11) by 

defining  

1 1
( , , )

1
( , ) { ( ) ( )} { ( ) ( )} ,

1
[ ]

w ww c u vw c n c u vw c n c
u v ww

y R y R y R y R y
n

  
 

   


  

where nw is the number of observations up to and including period w, 1wn
x

  is the 

covariate vector associated with our game of interest, 
( )uvw cR y

 is constructed 

using the using the prediction 
ˆ ( )uvw cy y

 and 1 ( )
wn cR y
  is the conformity score 

associated with 1( , )
wn cx y
 . We call the construction of win probability through 

CPDs conformal win probability. As discussed in Section 3.1.2, we use a mid p-

value approach, selecting 1 / 2   for our work.  

To provide further intuition for the the use of conformal win probability, consider a 

women’s basketball game between home team South Carolina and away team 

Oregon State, two highly ranked teams during the 2019-2020 season (see 

Section 4 for more results related to the top women’s teams). For a specific MOV 

for this match-up, e.g., a MOV of five, 
(5, )w 

 is a probability estimate of the 

event 1 5ny 


, which represents a MOV of less than or equal to five. Additionally, 
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an estimate for the probability that South Carolina wins, i.e., the MOV is greater 

than zero, is 
1 (0, )w 

.  

Figure 2 shows the MOV conformal predictive distribution for South Carolina 

vs. Oregon State for the 2019-2020 season. This distribution has jumps that are 

too small to be visible. Thus, the distribution is nearly continuous. It is 

straightforward to reassign probability so that the support of the conformal 

predictive distribution lies entirely on non-zero integers to match the MOV 

distribution. However, our reassignment does not affect our win probability 

estimate, so we omit the details here.  

With the additional assumptions of mean-zero, independent, normally distributed 

error terms under (11), the probability construction shown in (9) becomes  

, 1
1 1

ˆ
( 0 ) 1 ,

ˆ 1 ( )
w

u vw
u vw t n p

u vw w w u vw

y
y F

x X X x




 

 
    

   

  

where Xw is the matrix of covariates up to and including period w.  

For logistic regression, we could instead assume  

lo g ,
1

u vw
u vw

u vw

p
x

p


 
 

 
 

 (12)  

where puvw is the probability that yuvw is greater than to zero. Then, puvw is the 

probability that home team u wins against away team v in period w. Similar 

approaches to (12) are seen in Bradley & Terry (1952) and Lopez 

& Matthews (2015). The interpretation for u v 
 under model (12) is no longer 

the strength difference between teams u and v in terms of MOV, but rather the 

log-odds of a home team victory when home team u plays away team v at a 

neutral site. As in linear regression, the rank order of the estimates of the θ 

parameters obtained by logistic regression provides a ranking of the teams.  
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Note that MOV predictions associated with conformal win probability using model 

(11) are identical to those for our GMMNE; only the approach to translate the 

predicted MOV to win probability differs. Additionally, logistic regression does not 

provide predicted MOV. Thus, we focus on the comparison of win probabilities 

rather than predicted MOV for these three methods.  

3.3.1 Potential Betting Scenario 

The focus on win probabilities can also be extended to a betting scenario. In this 

paper, the event probability of interest is a win (or loss) for a specific team, which 

corresponds to a “moneyline” bet in sports betting, i.e., betting on a specific team 

to win a game. Another type of bet is the “spread” bet, which accounts for 

differences in the strengths of two teams, either through the adjustment of a point 

spread or the odds associated with a particular team. The spread is chosen by 

bookmakers so that the total amount of money bet on the spread of the favorite is 

near that bet against favorite (as opposed to being representative of, say, the 

expected margin of victory). We can utilize conformal win probabilities (or any of 

the other competing methodologies discussed) in order to determine whether to 

bet on the favorite or the underdog in a spread bet. For conformal win 

probabilities specifically, calculating 1 ( ,1 / 2 )s  , where s is the spread for a 

game of interest, generates an estimate of the probability that the MOV (favorite 

score - underdog score) will be greater than – s.  

3.3.2 Discussion on Other Rating Methods 

In later sections, we compare the ratings generated using the Harville method to 

other rating methods, including Associated Press (AP), NCAA Evaluation Tool 

(NET), KenPom (KP), Ratings Percentage Index (RPI) and College Sports 

Madness (CSM). While AP is subjective, NET, KP and CSM are proprietary, with 

only some elements of their construction made public. Of the rating methods we 

compare to, RPI is the only approach where the construction is known.  
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In contrast to RPI, while the main components of NET are known to the public, 

i.e., team value index and net efficiency, the inherent construction of the rankings 

is not. Thus, we can neither reproduce the NET rankings from recent seasons 

nor compute them for seasons prior to 2018. KP and CSM ratings suffer from the 

same lack of transparency.  

The lack of transparency for NET, KP and CSM rating methods is one reason we 

chose the Harville method as our main approach of interest. Additionally, NET 

rankings have no inherent win probability associated with the respective ranks of 

two teams playing; we gain a probabilistic interpretation of margin of victory, 

through win probability, with the three approaches we use in this work, i.e., a 

linear model with normal errors, logistic regression, and conformal win 

probability. We note win probabilities based on KP ratings are constructed under 

the assumption of normality of the expected margin of victory, with a fixed 

standard deviation of 11, which is not unlike our linear model with normal errors.  

We point the interested reader to Jacobs (2017), Malloy (2023), and 

Pomeroy (2014) for discussions on the construction of RPI, NET, and KP 

rankings, respectively. Additionally, Barrow et al. (2013) provides a thorough 

comparison of a collection of ranking methods across multiple seasons for 

multiple sports.  

Another reason for the selection of the Harville method is a product of our data 

set. While richer data sets, e.g., ones including field goal percentage, three-point 

percentage, and offensive efficiency, could be obtained for some previous 

seasons, we chose to construct a data set, for many games and seasons, with 

just the two teams playing and the MOV for the home team. The methods we 

consider in our paper are well-suited for this MOV data set. Differences between 

the ranks associated with the Harville method and NET can be attributed to 

different information being used within each ranking approach.  
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4 Application to March Madness 

We first provide exploration of the 2019-2020 NCAA DI basketball season, to 

include the canceled 2020 tournaments. Estimates of team strengths constructed 

from regular season data for the top ten women’s and men’s teams during the 

2019-2020 season are shown in Table 1 and Table 2, respectively. Additional 

2019-2020 rankings from different sources are included for comparison; the 

additional rankings include Associated Press (AP), NCAA Evaluation Tool (NET), 

KenPom (KP), Ratings Percentage Index (RPI) and College Sports Madness 

(CSM).  

The large difference between strengths for the top men’s and women’s team is 

due to the difference in team parity between the two leagues, i.e., the gap in 

strength between the stronger and weaker women’s teams is much larger than 

the gap between the stronger and weaker men’s teams. Differences in team 

ranks between ranking systems can be attributed to subjectivity, e.g., AP, or the 

use of different information, e.g., RPI, NET and KP.  

The remainder of this section is dedicated to constructing probabilities of making 

the March Madness field and tournament win probabilities for the canceled 2019-

2020 tournaments. We follow this discussion with a comparison of the win 

probability methods outlined in Section 3 using our historical data set based on 

the twelve seasons from 2011-2012 through 2022-2023. The data set utilized 

was compiled from two sources: masseyratings.com and ncaa.com. We 

include sample sizes for the training (regular season games) and validation 

(post-season games) data sets in Table 3.  

4.1 Probabilities of Making March Madness Field for 2019-2020 Season 

Following the cancellation of the 2020 NCAA basketball post-season, there were 

20 men’s and 18 women’s automatic bids still undecided. Knowing the results of 

the (partially) completed conference tournaments allows for estimation of the 

probabilities of making the March Madness field as outlined in Section 2.2. We 
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use regular season data as well as conference tournament progress to update 

every team’s chances of making the tournament at the time of cancellation. We 

include the tournament winners of completed conference tournaments for NCAA 

women’s basketball in Supplementary Materials. These teams have probability 1 

of making the March Madness field.  

With the additional information provided by the outcomes of the completed 

conference tournaments, there are five different situations for teams as it relates 

to making the March Madness tournament:  

1. A team has already made the tournament.  

2. To make the tournament, a team must win their conference tournament or 

rely on few teams ranked below them winning their respective conference 

tournament.  

3. To make the tournament, a team has already been eliminated from their 

conference tournament and relies on few teams ranked below them 

winning their respective conference tournaments.  

4. A team must win their conference tournament to make the tournament.  

5. A team cannot make the tournament. 

Table 4 shows the situations for women’s teams ranked from 33 to 64. Recall 

that due to our simplified selection process, teams ranked from 1 to 32 have 

already made the tournament.  

When using the rankings constructed with regular season data and model (11), 

the Big 12 conference tournament was the only undecided tournament involving 

bubble teams, resulting in Kansas State being the sole team in Situation 2 and 

Texas Tech, West Virginia and Oklahoma as the only teams in Situation 4. Table 

5 shows the March Madness tournament field probabilities for teams in Situations 

2, 3 and 4, constructed with (6) and conformal win probability.  
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While not listed in Table 5, there is a large number of women’s teams ranked 

below 64 that also fall into Situation 4. Probabilities of making the tournament for 

the men’s teams in Situations 2, 3, and 4 are shown in Supplementary Materials.  

4.2 March Madness Win Probabilities 

Even with the results of the completed conference tournaments, the number of 

potential tournament brackets remains extremely large. Thus, we forgo 

enumeration of all potential brackets and instead focus on three exemplar 

brackets and three expert brackets to generate March Madness win probabilities. 

We represent two extremes; Bracket 1 maximizes tournament parity by including 

the strongest remaining team from each conference tournament bracket, while 

Bracket 2 includes the weakest remaining team. Bracket 3 is constructed by 

randomly selecting teams based on their conference tournament win 

probabilities. For each of Bracket 1, 2 and 3, we use the S-curve method 

(NCAA 2021) to assign teams in the field to each bracket position as detailed in 

Section ?? of Supplementary Materials. We compare these brackets, and the 

March Madness win probabilities for the top teams included in these brackets, to 

those generated by subject matter experts.  

We include projected women’s brackets from basketball expert Michelle Smith 

(Northam 2020), College Sports Madness (2020) and RealTimeRPI.com (2020). 

Table 6 shows the different bracket win probabilities for the top ten women’s 

teams, ranked using the ranking method outlined in Section 3.3. Exemplar 

bracket results for the men’s 2019-2020 season are included in Supplementary 

Materials; we also include results for the brackets generated by NCAA basketball 

experts Andy Katz (Staats & Katz 2020), Joe Lunardi (Lunardi 2020) and Jerry 

Palm (Palm 2020). All subject matter expert brackets for the 2019-2020 

tournaments are publicly available. Figure 3 shows win probabilities across the 

expert generated brackets and a comparison of cumulative NCAA tournament 

win probabilities across brackets for the top ten women’s teams. A similar figure 

for the top ten men’s teams is included in Supplementary Materials.  
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In general, tournament win probabilities do not change drastically across 

brackets. However, there are some noteworthy differences. Specifically, the 

tournament win probability for Baylor, the second-highest ranked team with 

respect to our ranking, drops to 0.216 with the RTRPI expert bracket, compared 

to 0.294 and 0.286 for the Smith and CSM brackets, respectively. Additionally, 

the tournament win probability for South Carolina increases to 0.239 with the 

RTRPI bracket; their win probability is 0.199 and 0.215 for the Smith and CSM 

brackets, respectively. Figure 4 shows round-by-round win probabilities for 

Baylor and South Carolina for each expert bracket.  

We see that Baylors’s RTRPI round-by-round win probability becomes lower than 

South Carolina’s during the Sweet Sixteen, dropping to 0.884, compared to 

South Carolina’s 0.929. The largest decrease occurs during the Elite Eight, 

where Baylor’s probability of moving on from the Elite Eight (under the RTRPI 

bracket) is 0.633, compared to South Carolina’s 0.821. This is due to Connecticut

’s placement in the same region as Baylor, with each team seeded as the 1-seed 

and 2-seed, respectively. In the other expert brackets, Connecticut was placed in 

the same region as Maryland, which keeps the round-by-round win probabilities 

for these two teams relatively stable.  

4.3 Win Probability Calibration 

While our discussion has explored the 2019-2020 NCAA D1 season and 

canceled tournaments, we also wish to assess the effectiveness of conformal win 

probability more broadly. In order to assess conformal win probability estimates, 

as well as the other win probability methods outlined in Section 3, we compare 

estimates for previous NCAA basketball seasons, including the shortened 2019-

2020 season. We use the regular season games to estimate the team strengths 

and then construct win probabilities for each game of post-season play.  

Ideally, the estimated probability for an event occurring should be calibrated. A 

perfectly calibrated model is one such that  
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ˆ ˆˆE | 0 ,[ | ( ) |]p z z p p p     (13) 

where z is an observed outcome, ẑ  is the predicted outcome, p̂  is a probability 

estimate for the predicted outcome, and p is the true outcome probability (Guo 

et al. 2017). In the NCAA basketball case (13) implies that if we inspect, say, 

each game with an estimated probability of 40% for home team victory, we 

should expect a home team victory in 40% of the observed responses. We can 

assess calibration in practice by grouping similarly valued probability estimates 

into a single bin and then calculating the relative frequency of home team 

victories for observations within each bin. For visual comparison of calibration, 

Figure 5 shows a reliability plot for the win probability estimates generated using 

the methods outlined in Section 3 with bin intervals of width 0.025.  

From Figure 5 we can see that while the methods are comparable for higher win 

probability estimates, the conformal win probability approach is much better 

calibrated for lower win probability estimates. A majority of observed relative 

frequencies for conformal win probabilities fall closer to the dotted line, signifying 

better calibration than the other two methods.  

To provide a numerical summary of calibration, we compare the win probability 

estimation approaches from Section 3 using log-loss; the log-loss for a single 

observation is defined as the negative log-likelihood of the independent Bernoulli 

trial evaluated at the win probability estimate. The log-loss for a set of estimates 

is a sum of terms of the form 
ˆ ˆlo g ( ) (1 ) lo g (1 )z p z p    , with one such term for 

each game. This log-loss incorporates a loss for each individual win probability 

estimate rather than a group of binned estimates. Figure 6 shows the relative log-

loss, i.e., the ratio of the log-loss for one method to the minimum log-loss across 

all methods, broken up by season and league. We include raw log-loss plots in 

Supplementary Materials.  

In all but one of the year-league combinations, conformal win probabilities result 

in lower log-loss than the other two methods. It should be noted however that 
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log-loss for the other methods was within five percent of conformal win probability 

log-loss for most year-league combinations. Table 7 shows the results for the 

three win probability methods within each league when log-losses are summed 

across all twelve seasons. We also include accuracy results (proportion of game 

outcomes correctly predicted) for each method by league in Table 8.  

4.4 Comparison to Publicly Available Methods 

In an effort to further compare conformal win probability based on model (11) to 

other modeling approaches not included in this paper, we point the interested 

reader to Bunker & Susnjak (2022), which provides a survey of model accuracy 

results for a suite of methods for generating game-by-game win probabilities in 

basketball. Bunker & Susnjak (2022) consider methods developed for both NCAA 

and National Basketball Association (NBA) games. Reported accuracies on data 

sets different from ours range 0.67 to 0.83 for methods that include naive Bayes, 

logistic regression, neural networks and decision trees. Most of the methods 

considered by Bunker & Susnjak (2022) use richer feature sets than our 

approach, which only uses only the home team and away team identities as 

predictors. Details of these other methods can be found in Thabtah et al. (2019), 

Ivanković et al. (2010), Loeffelholz et al. (2009), Shi et al. (2013), Zdravevski 

& Kulakov (2009), Cao (2012) and Miljković et al. (2010).  

As another avenue of comparison, we also utilize results from recent Kaggle 

March Machine Learning Mania (KMMLM) competitions. We first compare our 

results using the conformal win probability approach outlined in this paper to the 

KMMLM leaderboards for the 2015 to 2022 iterations. These results are shown in 

Table 9, with better performing models having a higher percentile.  

Based in the results in Table 10, conformal win probabilities generated with the 

Harville method do not seem to be competitive when compared to other KMMLM 

models. This can be partially attributed to use of additional covariates with in 

these models.  

Acc
ep

ted
 M

an
us

cri
pt



Thus far, we have considered the performance of conformal win probabilities 

derived from the relatively simple linear model in (11). However, as noted in 

Section 3.1, the conformal approach can be used with any MOV prediction 

method to obtain win probability estimates. We now seek to determine if strong 

performing KMMLM approaches can be improved by conformal inference.  

We consider the subset of KMMLM models from the men’s and women’s 

competition that meet the following criteria: 1) occurred within the last five most 

recent iterations of the competition, 2) finished the competition in first or second 

place, and 3) had minimum viable code to reproduce their results completely in 

R. The three publicly available solutions that met this criteria, the league to which 

they were applied (men and/or women) and the code repository are shown in 

Table 10.  

Kaggle user raddar provided the top solution for the 2018 women’s iteration of 

KMMLM through the use of XGBoost. Additionally, nonparametric regression was 

utilized to transform expected margins of victory generated using XGBoost to win 

probabilities; we included additional adjustments to constrain the output from the 

nonparametric regression to the interval (0, 1). We note that this solution has 

been utilized with great success for both the men’s and women’s tournament in 

more recent years, with many top performers referencing this model as their 

starting point. Gdub provided the second place solution in the 2019 iteration of 

the KMMLM men’s competition through logistic regression with eight covariates, 

which include seed differences, adjusted offensive and defensive efficiency, 

strength of schedule, team ranks, turnovers and free-throw percentage. We use 

the same covariates, but adjust the model to estimate MOV, as opposed to 

generating probability estimates explicitly; conformal win probability estimates 

were then constructed based on the fitted predictors as described in Section 3. 

The third model of interest, provided by Sapper, is a random forest-based 

approach. We utilize each of these methods to generate win probabilities for the 

2015 to 2023 tournament iterations. We then compare those results to the same 
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methods but with win probabilities determined via conformal inference as 

described below.  

A comparison of conformal win probability to the other methods for the 2015-

2023 women’s and men’s tournaments (with respect to log-loss) are shown in 

Table 11 and Table 12, respectively. We note that the raddar model was readily 

applicable to both NCAAW and NCAAM tournaments, but the GDub and Sapper 

models were only applicable to the NCAAM tournaments. We lack an application 

of the Sapper model to the 2023 iteration of the men’s tournament due to 

unavailable data.  

In Tables 11 and 12, we underline the best performing method for each pairwise 

comparison between a Kaggle top performer and its conformal counterpart. We 

also bold the results for the best performing method overall within each league. 

For each combination of league and Kaggle method, conformalization led to an 

improvement over the original method for a majority of seasons.  

5 Conclusion 

The 2020 March Madness cancellation was disappointing for many fans and 

athletes. We explored win probabilities related to the NCAA tournament, 

delivering closed-form calculations for probabilities of making the tournament, 

given a set of team strengths estimated from game outcomes. We also identified 

the most likely winners of the men’s and women’s tournaments. We introduced 

conformal win probabilities, which compared favorably with win probabilities 

derived from logistic and linear regression assuming normally distributed, 

independent, mean-zero errors. While we focused primarily on conformal win 

probabilities derived from a relatively simple linear model, we also showed that 

more complex methods can be improved via conformal inference.  

One simplification we utilize in this paper is that estimated team strength does 

not change following the regular season. Thus, we eliminate the potential for 

teams to receive a higher (or lower) overall rank based on their conference 
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tournament performance. While this simplifies the analysis, allowing for teams to 

move up or down in rank might more closely match the March Madness selection 

committee’s actual process. We utilize “full” conformal predictive distributions to 

generate our conformal win probabilities. It would be interesting to see how 

variants of conformal predictive distributions, e.g., split or Mondrian, perform as 

well.  

We provide additional exploration of the 2019-2020 March Madness tournament 

in Supplementary Materials. The Supplementary Materials include discussion 

related to the men’s tournament, including results with the inclusion of a First 

Four, as well as a set of exemplar and expert brackets, and tournament win 

probability estimates constructed based on conformal win probabilities. We also 

include further comparison of each of the win probability methods we focused on 

to a version of the Elo method (Elo 1961).  
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Fig. 1 Bracket for eight-team single-elimination tournament. 
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Fig. 2 MOV conformal predictive distribution for South Carolina vs. Oregon State 

with 1 / 2   using regular season data from 2019-2020 NCAA women’s 

basketball season. The blue dotted line identifies a MOV for South Carolina of 5, 

i.e., South Carolina (home) beating Oregon State (away) by five points, with 

(5 ,1 / 2 ) 0 .1 6 0   identified by the red dashed line. 
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Fig. 3 Expert bracket win probabilities (left) and cumulative win probabilities (right) 

for top ten women’s teams during the 2019-2020 season. 
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Fig. 4 Round-by-round win probabilities for Baylor and South Carolina constructed 

with expert brackets from Michelle Smith (top left), College Sports Madness (top 

right) and RTRPI (bottom middle). The values shown indicate the probabilities of 

a team moving on from a particular round. 
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Fig. 5 Empirical calibration comparison for NCAA women’s and men’s basketball 

for 2011-2012 to 2022-2023 post-seasons for methods outlined in Section 3. 
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Fig. 6 Relative log-loss comparison for NCAA women’s and men’s basketball for 

win probability estimates associated with 2011-2012 to 2022-2023 post-seasons 

for methods outlined in Section 3. 
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Table 1 Top 10 NCAA women’s teams for 2019-2020 season 

Team  Estimated Strength Rank AP RPI CSM 

Oregon  42.42  1  2  2  2  

Baylor  41.92  2  3  4  4  

South Carolina 40.18  3  1  1  1  

Maryland  39.29  4  4  3  6 

Connecticut  36.79  5  5  4  3  

Stanford  29.54  8  6  6  7  

Mississippi St.  28.93  7  9  10  12  

Louisville  28.11  8  6  7  6  

Indiana  27.48  9  20  14  19  

Oregon State  26.24  10  14  20  17  
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Table 2 Top 10 NCAA men’s teams for 2019-2020 season 

Team  Estimated Strength Rank AP NET KP 

Kansas  24.96  1  1  2  1  

Gonzaga  22.87  2  2  1  2 

Duke  22.22  3  11  6  5  

Michigan State  21.09  4  9  7  7 

Baylor  20.23  5  5  5  3  

Arizona  19.27  6  -  14  19  

San Diego State 18.87  7  6  4  6  

Ohio State  18.81  8  19  16  8  

Dayton  18.37  9  3  3  4  

West Virginia  17.92  10  24  17  10  

      

Table 3 Training and validation set sample sizes spanning 2011-2012 and 2022-

2023 seasons. 

  Season  

  

201

1-

201

2 

201

2-

201

3 

201

3-

201

4 

201

4-

201

5 

201

5-

201

6 

201

6-

201

7 

201

7-

201

8 

201

8-

201

9 

201

9-

202

0 

202

0-

202

1 

202

1-

202

2 

202

2-

202

3 

Wom

en Train  

424

7  

433

6  

428

9  

474

5  

476

1  

478

5  

475

8  

480

0  

480

3  

295

7  

461

2  

492

7  

 

Validati

on 358  319  369  465  494  475  491  486  352  425  504  575  

Men  Train  475 484 480 483 483 486 489 496 497 327 482 507
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  Season  

0  2  2  1  6  1  5  7  2  2  4  9  

 

Validati

on 501  502  479  541  549  546  545  552  300  455  568  583  
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Table 4 Situations for women’s bubble teams 

Situation Teams  

1  Texas, Alabama, Arizona St., Missouri St., TCU, 

 Drake, James Madison, Oklahoma St.  

2  Kansas St.  

3  LSU, Marquette, North Carolina  

4  Texas Tech, West Virginia, Oklahoma  

5  all other bubble teams  

  

Table 5 Probabilities of making NCAA tournament field for women’s bubble teams 

for 2019-2020 season. 

Team  Situation Overall Rank Probability  

LSU  3  41  >0.999 

Marquette  3  42  0.989 

Kansas St.  2  43  0.873  

North Carolina 3  44  0.456  

Texas Tech  4  50  0.003  

West Virginia  4  52  0.004  

Oklahoma  4  62  <0.001 
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Table 6 March Madness win probabilities given exemplar brackets for top ranked 

women’s teams. 

Team  Bracket 1 Bracket 2 Bracket 3 Smith CSM RTRPI 

Oregon  0.308  0.308  0.308  0.307  0.284 0.296 

Baylor  0.295  0.295  0.295  0.294  0.286 0.216  

South Carolina 0.197  0.197  0.197  0.199  0.215 0.239  

Maryland  0.123  0.124  0.124  0.130  0.130 0.175 

Connecticut  0.057  0.057  0.057  0.055  0.065 0.056  

Stanford  0.007  0.007  0.007  0.008  0.007 0.007  

Mississippi St.  0.004  0.004  0.004  0.003  0.003 0.005  

Louisville  0.002  0.002  0.002  0.001  0.003 0.002  

Indiana  0.002  0.002  0.002  0.001  0.002 0.001  

Oregon St.  0.001  0.001  0.001  0.000  0.001 0.001  

       

Table 7 Relative log-loss for NCAA men’s and women’s basketball win probability 

estimates by league. 

League Conformal Linear Logistic 

Women 1.000  1.016  1.023  

Men  1.000  1.026  1.033  
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Table 8 Proportion of games correctly predicted for 2011-2022 seasons. 

League Conformal Linear Logistic 

Women 0.751  0.743  0.743  

Men  0.713  0.699  0.699  

Overall 0.731  0.719  0.719  

    

Table 9 log-loss performance of conformal win probabilities based on model (11) 

to Kaggle March Madness leaderboards for men’s March Madness, with higher 

percentiles indicating better performance. 

Season  2015 2016 2017 2018 2019 2020 2021 2022 

log-loss  0.516 0.570 0.497 0.716 0.469 -  0.631 0.670 

Percentile  0.458 0.697 0.739 0.193 0.816 -  0.492 0.405 

# of Submissions 345  598  441  934  863  -  707  930  

         

Table 10 Kaggle methods used for comparison to conformal win probability. 

Kaggl

e User League  Method  Repository  

raddar  

NCAAW/NCAA

M XGBoost  

https://github.com/fakyras/ncaa_women_201

8  

Gdub  NCAAM  

Logistic 

Regressio

n 

https://github.com/gjwierz/NCAA_Kaggle_20

19  

Sappe

r  NCAAM  

Random 

Forest  

https://github.com/dusty-

turner/ncaa_tournament_2021_beat_navy 
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Kaggl

e User League  Method  Repository  

    

Table 11 log-loss comparison of conformal win probabilities to well performing 

KMMLM competition models for 2015-2023 NCAAW March Madness 

tournaments. 

Kaggle 

User Model  2015  2016  2017  2018  2019  2021  2022  2023  

raddar  Base  0.3712 0.5143 0.4387 0.4342 0.3658 0.4764 0.4652 0.4976 

 Conformal 0.3873 0.5076 0.4379 0.4314 0.3763 0.4619 0.4655 0.4893 

          

Table 12 log-loss comparison of conformal win probabilities to well performing 

KMMLM competition models for 2015-2023 NCAAM March Madness 

tournaments. 

Kaggle 

User Model  2015  2016  2017  2018  2019  2021  2022  2023  

Gdub  Base  0.4970 0.5931 0.5244 0.6049 0.5033 0.6637 0.5780 0.6509 

 Conformal 0.4983 0.5890  0.5078  0.6018  0.5103 0.6386  0.5847 0.6370 

raddar  Base  0.5108 0.5871 0.4996 0.6741 0.4884 0.6160 0.6481 0.7031 

 Conformal 0.5212 0.5809 0.5092 0.6052 0.5020 0.6024 0.6304 0.6416 

Sapper  Base  0.5808 0.5611 0.5882 0.6022 0.4605 0.6001 0.7182 -  

 Conformal 0.5318 0.5644 0.5147 0.6001 0.4951 0.6188 0.6274 -  
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