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Abstract

The COVID-19 pandemic was responsible for the cancellation of both the men’s and women’s 2020
National Collegiate Athletic Association (NCAA) Division | basketball tournaments. Starting from the
point when the Division | tournaments and unfinished'conference tournaments were canceled, we
deliver closed-form probabilities for each team of making the Division | tournaments, had they not
been canceled, under a simplified method for tournament selection. We also determine probabilities
of a team winning March Madness, given a tournament bracket. Our calculations make use of
conformal win probabilities derived from conformal predictive distributions. We compare these
conformal win probabilities to those generated through linear and logistic regression on college
basketball data spanning the 2011-2012 and 2022-2023 seasons, as well as to other publicly available
win probability methods. Conformal win probabilities are shown to be well calibrated, while requiring
fewer distributional assumptions than‘most alternative methods.

Keywords: Conformal inference, predictive distributions, sports analytics,

uncertainty quantification, March Madness, ranking, Elo, Kaggle.
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1 Introduction

Two of the most popular tournaments in the world are the men’s and women’s
National Collegiate Athletic Association (NCAA) Division | basketball
tournaments, colloquially known as March Madness. In college basketball, teams
are grouped into conferences. During the regular season, teams compete against
opponents within their own conference as well as teams outside their conference.
Following the regular season, better performing teams within each conference
compete in a conference tournament, with the winner earning an invitation to play
in the Division | (DI) tournament. The invitation for winning a conferénce
tournament is called an “automatic bid”. Historically, sixty-four teams are selected
for the women’s tournament. Thirty-two of the sixty-four teams.are automatic
bids, corresponding to the thirty-two conference tournament winners. The other
thirty-two teams are “at-large bids”, made up of teams failing to win their
respective conference tournament. At-large bids are decided by a selection
committee, which uses both subjective guidelines-and strict constraints to choose
the teams invited to the tournament and how:to set the tournament bracket,
which defines who and where each-team will play initially and could play
eventually. Teams that earn an-automatic bid or an at-large bid are said to have “

made the tournament”.

As a result of the COVID=19 pandemic, the NCAA canceled both the men’s and
women’s 2020 NCAA tournaments. A majority of college athletic conferences
followed by cancelling their own conference tournaments, leaving many
automatic bids.for March Madness undecided. These cancellations raise natural
questions about which teams might have made the March Madness field and
which teams might have won the tournament. Using data from the 2019-2020
men’s and women'’s collegiate seasons, we deliver probabilistic answers to these

questions.

Specific to the 2019-2020 NCAA DI season(s), we contribute the following: 1) an

overall ranking of the top Division | teams, as well as estimates of each team’s



strength, based on 2019-2020 regular season data, 2) closed-form calculations
for probabilities of teams making the 2019-2020 March Madness field under a
simplified tournament selection process, calculated from the point when each
conference tournament was canceled, and 3) closed-form calculations of
probabilities of teams winning March Madness, given each of several potential

brackets.

The calculation of probabilities for teams making the 2019-2020 March Madness
field considers each conference tournament’s unfinished bracket as well.as our
estimates of DI team strengths, which we fix following the culmination of'the
regular season. The closed-form nature of the probabilities also reduces the
computational load and eliminates error inherent to simulation-based
approaches. To our knowledge, this is the first closed-form approach to take into
account partially completed conference tournaments when generating

probabilities of making the March Madness'field.

Estimating March Madness win probabilities prior to the selection of the
tournament field and the determination of the March Madness bracket is a
difficult problem. If we define all'the potential brackets as the set 5 and . =1
as the event where team v'wins March Madness, we can decompose For, =1
as

Paw, == Par, =ws)¥ ). (1)

BB

However, calculations for all possible brackets within B are intractable. For a set
(350)

L6 )

a 64-team tournament. Given a tournament field of ¥ = 2 teams, where Jis the

of, say, 350 teams, there are ways to select a field of teams to compete in

number of rounds in the tournament (J = 6 for a 64-team tournament), the

number of unique brackets for a single-elimination tournament is
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which grows rapidly as Nincreases. An 8-team tournament results in 315
potential brackets, while a 16-team tournament results in 638,512,875 potential

brackets. In the case of March Madness, the size of the set B iS enormous.

Of course, some brackets are more likely than others due to the set of
constraints used by the selection committee. Even if the set of plausible‘brackets
for March Madness was small relative to the complete set 5 when the
tournaments were canceled in 2020, estimating Y8 i (1) for any given bracket
B depends on the complex and, ultimately, subjective decision.making process

used by the NCAA selection committee.

While we can explicitly construct ) under the.simplified tournament selection
process outlined in this paper, the calculation is often computationally difficult.
Thus, we make no attempt to calculate S(8)\for any bracket B. Instead, in this
paper, we focus on the construction,of the marginal probability of each team
making the March Madness field. Additionally, using brackets suggested by

experts, along with brackets we.construct, we compare March Madness win

probabilities, P(Wu = 118 )tor albteams u, across different brackets B. We find
that the win probabilities forteams most likely to win are relatively stable across
brackets. Baylory”South/Carolina, and Oregon each had more than a 20% win
probability formost.of the brackets we considered for the women’s tournament.
On the men’s'side, Kansas was the most likely to win the tournament regardless
of the bracket.

Another contribution of the paper is the novel application of conformal predictive
distributions (Vovk et al. 2019) for the estimation of win probability, aptly named
conformal win probability. Conformal predictive distributions allow for the
construction of win probability estimates under very mild distributional

assumptions, reducing dependence on, say, normality assumptions, for our



results. When compared using both men’s and women'’s post-season NCAA
basketball spanning the 2011-2012 and 2022-2023 seasons, we find that
conformal predictive distributions provided win probability estimates that often
performed better than other methods, including well-performing, publicly

available models.

Section 2 provides background on constructing overall win probabilities for
single-elimination tournaments and introduces the closed-form calculation of
probabilities related to March Madness. Section 3 describes three methads for
generating win probabilities of individual games, including the construction of
conformal win probability estimates. Section 4 describes the overall results,
including a ranking of the top teams, conference tournamentand March Madness
win probabilities associated with the 2019-2020 NCAA DI basketball season and
a comparison of win probability generation methods. Section 5 concludes the

paper. All of the R code and data sets usedhin this research are available at

https://github.com/chancejohnstone/marchmadnessconformal.

2 Probabilities for March Madness

In this section, we describe win probability as it relates to single-elimination
tournaments like March/Madness. We also introduce the probability of a team
making the March Madness field, given a collection of conference tournament
brackets, team strengths and game-by-game win probabilities. We limit our
discussion scope In this section primarily to the women’s tournament, but the

general construction reflects the men’s tournament also.

Throughout this paper, we use the common verbiage that a team is ranked “
higher” than another team if the former team is believed to be better than the
latter team. Likewise, a “lower” ranking implies a weaker team. We follow the
common convention that a team of rank rhas a higher rank than a team of rank s
when r< s. Teams ranked 1 to 32 are collectively identified as “high-ranked”.

Teams ranked below 64 are identified as “low-ranked”. While the colloquial use


https://github.com/chancejohnstone/marchmadnessconformal

of the term “bubble teams” is usually reserved to describe a subset of teams near
the boundary separating teams in and out of the March Madness field, we use
the term to explicitly describe the teams ranked 33 to 64. In Section 3.3, we

discuss an approach to rank teams based on observed game outcomes.

2.1 Win Probability for Single-Elimination Tournaments

Given a collection of game-by-game win probabilities, one method for providing
estimates of overall tournament win probability is through simulation. Suppose
that for a game between any pair of teams v and vin our tournament,we have
the probability that team v defeats team v, defined as p... While the true value of
Puvis not known in practice, we describe methods for estimating the probability
for any match-up in Section 3. We can simulate the outcome of a game between
team v and team v by randomly sampling from a standard uniform distribution. A
value less than p., corresponds to a victory for teamyu, while a value greater than
Puvrepresents a victory for team v. Every game in a tournament can be simulated
until we have an overall winner. We can then repeat the entire simulation process
multiple times to get a Monte Carloestimate of each team’s probability of winning

said tournament.

Suppose we have an eightteamssingle-elimination tournament with the bracket
shown in Figure 1. The‘highest ranking team, team 1, plays the lowest ranking
team, team 8, in the firstrround. Assuming team 1 was victorious in round one,
their second round opponent could be team 4 or 5. In the third round, team 1
could play team 3, 6, 2 or 7. After the first round of the tournament, team 8 has

the same_ potential opponents as team 1.

Using the knowledge of a team’s potential opponents in future games, we can
calculate win probabilities for any upcoming round and, thus, the entire
tournament. Formalized in Edwards (1991), the tournament win probability for

team v given a fixed, single-elimination tournament bracket with Jrounds is



G =0, pud,. ] (2)
.\'E(/)uj

: o
where gy is the probability that team vwinsinround /=57 'and  is the

set of potential opponents team v could play in round /. We explicitly set

- D o ,
90 = P, 'where  is team ¢'s opponent in round one. We can extend (2) to

single-elimination tournaments of any size or construction as long as we are able

o
to determine the set + for any team «in any round /.

2.2 Probability for Making the NCAA Tournament

With (2) we can generate an overall tournament win probability for each team in
a tournament exactly, given a fixed tournament bracket and.game-by-game win
probabilities. However, following the regular season, but prior to the culmination
of all conference tournaments, the field for March Madness is not fully known.
Thus, we cannot utilize (2) directly for estimating team win probabilities for the
2020 March Madness tournament. We {irst turn,our attention to estimating each
women’s team’s probability of making the 2020 March Madness field, made up of
thirty-two automatic bids and thirtystwo,at-large bids. Although the closed-form
calculations reflect probabilities related to the 2019-2020 women’s March
Madness tournament, which'would have included sixty-four teams, only slight
changes are required to reflect the inclusion of sixty-eight teams, i.e., to account
for the “First Four” play-in games in both the men’s and women’s tournaments.
We include a description of the First Four play-in system in Supplementary
Materials. A sixty-eight team tournament is used for results pertaining to the
2019-2020 men’s March Madness tournament contained in Supplementary

Materials.

We define F, as the indicator variable for whether or not the «-th ranked team
makes the NCAA tournament field. Knowing that the NCAA tournament is made
up of automatic and at-large bids, we define two relevant indicator variables C,

and L, associated with a team receiving one of these bids, respectively. C,is one



if team v wins its conference tournament and zero otherwise. We define L, as the
number of conference tournaments won by teams ranked below team v. Then,
under the assumption that higher-ranked at-large bids make the March Madness
field before lower-ranked at-large bids, for any team v, the probability of making
the NCAA tournament is

Por=ny=Fuc =1yu <ehH =P, =n+Px <) -Pc =1, <t), (3)

64 —u

where “« = is the maximum number of teams ranked below team\t that can

receive an automatic bid without preventing team v from receiving.an at-large

- P <32)£1 :
bid. Because there are 32 conference tournaments, u . Thus, with the
current construction, teams ranked 32 (64-32) or higher always'make the NCAA

(c

P _
tournament. For low-ranked teams, (3) reduces to R sweaker teams must

win their conference tournament to get an invite to‘'March Madness.

We can decompose the intersection probability of(3) into
Pae =0 <e)=P <ejc, =P =18, @)

To explicitly describe the probabilities+in (4), we split the teams in each
Hu Lo Hou
conference into two sets, ““wand «, defining * as the set of teams in

. L
conference ¥ =1.""-K_rapnked higher than or equal to team vand * as the set
of teams in conference Ak ranked lower than team u. We reference lower or

higher-ranked«teams in the same conference as team v using A(v) instead of 4.

H c,. =1 OHe o
Note thatteam=" = «w  Let ™ if ateamin * wins conference tournament

) C.. . ) ) . . Lo
kand 0 otherwise. “ is defined in a similar manner for teams in  * .

We assume that the outcome of any conference tournament is independent of
the outcome of any other conference tournament. Thus, we can describe L, as a

sum of independent, but not identically distributed, Bernoulli random variables,



C
If " were identically distributed for all conferences, then L, would be a binomial
random variable. Because this not the case, L, is instead a Poisson-binomial

random variable with cumulative distribution function

]P’(L“sl)zzl:{z HP.\-HV(I_I’»-)}’ )

m=0 Ae’, se4

Lu
where px is the probability of ateam in  * winning conference tournament 4, and

F
» is the set of all unique mrtuples of > »32} _With (5) known,the conditional

portion of (4) is a new Poisson-binomial random variable where’ "+« = 0 ; we
condition on team v winning their conference tournament.»Thus, the probability of

team v making the tournament is

Fer,=n=q, +Fa,<)-(T{T [Tl -2 08 )xa,, . (6)

m=0 Ae"’(m sed

where ?'« is equal to px when ks not‘equal to A(v) and zero otherwise, and e

is the number of rounds in the conference tournament for conference A(v).

While the above derivation-provides a closed-form calculation for probabilities of
making the March"Madness field, it does not describe any team’s probability of
winning March'Madness. To do this, we must also derive closed-form probability
calculations forspecific tournament brackets. However, as discussed in Section
1, it is difficult to explicitly construct calculations for this task due to the inherent
subjectivity associated with the seeding of teams. For this reason, we focus on
the probability of each team making the March Madness field and, given a March
Madness bracket, the probability of each team winning the March Madness
tournament. Additionally, we emphasize that while a primary focus of this paper

is to explore the canceled 2020 tournaments, the results laid out in this section



can be be applied to any post-season in progress, allowing for March Madness
field probability updates as teams are eliminated from their respective conference

tournaments.

3 Win Probabilities for Individual Games

Determining win probability in sports primarily began with baseball

(Lindsey 1961). Since then, win probability has permeated many sports and
become a staple for discussion among sports analysts and enthusiasts.
Applications of win probability have been seen in sports such as basketball
(Loeffelholz et al. 2009), hockey (Gramacy et al. 2013), soccer (Robberechts

et al. 2019), football (Stern 1991, Lock & Nettleton 2014), darts (Liebscher

& Kirschstein 2017), rugby (Lee 1999), cricket (Asif & McHale 2016), table tennis

(Liu et al. 2016) and even video games (Semenov et-al. 2016), among others.

These methods typically use some form of parametric regression to capture
individual and/or team strengths, offensive and/or defensive capabilities or other
related effects. We continue the parametric focus by using a linear model to
estimate team strengths, but our appreach makes minimal distributional

assumptions.

Initially, suppose that
Vi = xi,ﬂ+ 61” (7)

where y;represents the response of interest for observation / x;is a length p

vector of covariates for observation /, Bis the vector of parameter values and €;is

X

a mean-zero error term. We define ¥ = (Vv gnd ¥ = (3 %) where

the vector yand matrix X' make up our n observations D, =A(x,y)h0, .In
subsequent sections, the response values in y will be margin of victory (MOV),
and the elements of Swill include team strength parameters. However, at this

stage a slightly more general treatment is useful.



We next discuss event probability estimation via three different methods:
conformal predictive distributions based on model (7), linear regression with
model (7) and an added assumption of mean-zero, independent and identically

distributed normal errors, and logistic regression.

3.1 Event Probability with Conformal Predictive Distributions

Predictive distributions (Lawless & Fredette 2005) provide a method for
estimating the conditional distribution of a future observation given observed
data. Conformal predictive distributions (CPDs) (Vovk et al. 2019) provide. similar
results using a distribution-free approach based on conformal inference
(Gammerman et al. 1998). The next section contains a general treatment of
conformal inference, followed by an introduction to conformal predictive

distributions.

3.1.1 Conformal Inference

In a regression context, conformal inference (Gammerman et al. 1998, Vovk

et al. 2005) produces conservativeqprediction regions for some unobserved

response ”»+' through the repeated inversion of some hypothesis test, say
H oy =y, vs. H 1y  # ¥, (8)

where ”»+ is the responsevalue associated with an incoming covariate vector

*+1 and y.is a/candidate response value (Lei et al. 2018). The only assumption

required to achieve valid prediction intervals is that the data D, combined with

the new observation (¥ Y1) comprise an exchangeable set of observations.

The inversion of (8) is achieved through refitting the model of interest with an

augmented data set that includes the data pair (x,..-7)  For each candidate
value, a set of conformity scores is generated, one for each observation in the
augmented data set, which measure how well a particular data point conforms to

the rest of the data set; traditionally a conformity score is the output of a function



of the data pair (x; y) and the prediction for y;, denoted 7D as arguments.
While the prediction *(*<) is dependent on both *+*¥<) and D,, we omit

dependence on *++' and D, in our notation. We define

n+l

MR D <R, (or+ MR G D =R, (1]

n+1°7,

7(y,,7)=

1’...

where, for ' = 1 R,(v.) s the conformity score for the data pair (x; y) as.a

function of (¥r-17) &, (V) i the conformity score associated with® (¥ 7<),

and ris a U0, 1) random variable.

In hypothesis testing we determine a p-value as the probability-of a value as or

more extreme than the observed test statistic under the assumption of a

specified null hypothesis. With the construction of ZV%2)""we generate an

estimate of the probability of an observation /ess extreme (or of equal

extremeness) than the candidate valuey. Thus, | *V ™) provides a p-value
associated with (8) (Lei et al. 2018). The inclusion of the random variable r

generates a smoothed conformal predictor (Vovk et al. 2005).

For a fixed 7, we can constructa conformal prediction region for the response

associated with *»+1
Co. . (x, )=ty @R MadDa(y 0)<[1-a)n+ D],

whered.- ¢ ‘is the nominal coverage level. When ris one, (¥ s the
proportion of observations in the augmented data set whose conformity score is
less than or equal to the conformity score associated with candidate value y..
Regardless of the conformity score or the model used to generate point

predictions, a conformal prediction region with nominal coverage level ! - « is

conservative. Thus, for some new observation (% Yar) ,

P(y’”] € lea,r(xnﬂ)) 21-ca.



3.1.2 Conformal Predictive Distributions

One commonly used conformity score in a regression setting is the absolute
residual, |71 ~ 7.y , Which leads to symmetric prediction intervals for
around a value ¥ satisfying » ~ 7" The traditional residual associated with a

prediction, ”~ ¥/(¥<) results in a one-sided prediction interval for *++ of the

(—oo,u(Dn,x

form ) . Additionally, the selection of the traditional residual as our

conformity score turns 7(¥-7) into a conformal predictive distribution (Vovk
et al. 2019), which provides more information with respect to the behavior.of

random variables than, say, prediction intervals. For example, with 22.CPD, we

can provide an estimate of the probability of the event *»+ < For the the

remainder of this paper we construct 7 (%) using the conformity score

Ri(yc): y,'_ );,'(y(,) .

As previously stated, | = *(?>?) provides a p-value associated with (8). Thus,

L=72(y.172) g analogous to the mid p-value, which acts a continuity correction

for tests involving discrete test statistics. We point the interested reader to
Lancaster (1961) and Barnard (1989) for additional details on the mid p-value.
We set 7 =1/2 for the computation of our conformal predictive distributions

throughout the remainder of this paper.

While we have generalized conformal predictive probabilities for the event
Yo =V werfocus-on the case where v is equal to zero in later sections and
instead describé probabilities associated with the event »»+1 ~ % which represent

win probabilities when ”++ is a margin of victory.

Additionally, our paper focuses on models of the form shown in (7); it is important
to note that conformal predictive distributions can be obtained with any other
model and within other applications. In fact, they can be paired with any

regression approach to generate estimates of uncertainty. Specific to the win



probability application, conformal win probabilities can be utilized with any model

where MOV is the response of interest to provide win probability estimates.

3.2 Other Event Probability Methods

We specifically outline two competing methods to conformal predictive
distributions: event probability through linear regression with normal errors and
event probability through logistic regression. Other popular methods for
generating win probabilities include Poisson modeling (Maher 1982), Bayesian
methods (Santos-Fernandez et al. 2019), rank-based (Trono 2010) and spread-
based approaches (Carlin 2005), quantile regression (Bassett 2007);.and
nonparametric methods (Soto Valero 2016, Elfrink 2018), ameng,others. For a
comprehensive review and comparison of both win probability and outcome
predictions methods, we point the interested reader to, Horvat & Job (2020) and
Bunker & Susnjak (2022).

3.2.1 Event Probability Through Linear Regression

We can estimate the expected value of some new observation ”++ using (7), but
additional assumptions are required to provide event probabilities. In linear
regression, the error term g;is/traditionally assumed to be a mean-zero, normally
distributed random variable with, variance ¢ < = . Together, these assumptions
with independence among error terms make up a Gauss-Markov model with
normal errors (GMMNE).

A least-squares estimate for the expectation of V1> Yu1 | is * 17 where

B =(X'X0" X"y when Xis a full rank 1 x p matrix of covariates. Given the

assumption of a GMMNE, Vi is normally distributed with mean *a? and

2

’ ’ -1
variance ¢ (¥ (X7 X)) x

) The prediction error for observation n+ 1,

i = Y ™ Yua s also normally distributed with mean zero and variance

o (+ ', (X'X)x,0) Dividing " by its estimated standard error then yields a



tdistributed random variable. Thus, we can describe probabilities for events of

N

the form ”»+1 > * using the standard predictive distribution

( \
| —1. 9
k&\/1+x'n+l(X'X) X, )

S_yn+l

P
Dy >s)=1-F

4

where 6 = »'(I = X' (X'X)"' X'y /(n = p) is the usual unbiased estimator of the

. 2 F . . . . . .
error variance ¢ , and ‘"’ is the cumulative distribution function for a .&

distributed random variable with n— p degrees of freedom (Wang et al. 2012).

3.2.2 Event Probability Through Logistic Regression

While linear regression allows for an estimate of Y020 based on
assumptions related to the random error distribution,.we'can also generate
probability estimates explicitly through logistic regression. Suppose we still have
observations D, We define a new random variable 'z such that * = REA) .

Instead of assumptions related to the distribution of the random error term €;, we

assume a relationship between the ‘expectation of z, defined as p;, and the

D, ,
log(1 ) =0, p
covariates x;such that ~ P . Then, we can then derive an estimate

ex"/; / (1 + ex"/})

for pias Pi= swhere # is the maximum-likelihood estimate for 3

z

under the assumption that'”>  >“: are independent Bernoulli random variables.

3.3 Application to Win Probability in Sports

We now extend'the methods outlined in Section 3.1 and Section 3.2 to a sports
setting for the purpose of generating win probabilities. Specifically, we wish to
identify win probabilities for some future game between a home team v and away
team v. Note that we selected each of these methods for comparison due to their

inherent probabilistic interpretations.

The methods of generating win probabilities in our case are made possible

through the estimation of team strengths. One of the earliest methods for



estimating relative team strength comes from Harville (1977), which uses the

MOV for each game played. We focus on the initial linear model

Y, = ,u+t9” —0V+Cw, (10)

where y.v represents the observed MOV in a game between team vand v (v #* v
), with the the first team at home and the second away, 8, represents the relative
strength of team v across a season, p can be interpreted as a “home court”
advantage parameter, and €., is a mean-zero error term. Extensions to (10).have
been utilized in Harville & Smith (1994), Schwertman et al. (1996), and
Zimmerman et al. (2021), among others, with the two latter works focusing on
win probability related to March Madness tournament seeding..Niemi

et al. (2008) and Kaplan & Garstka (2001) both explore strategies for optimal
team selection to win March Madness bracket pools. While'not the focus of our
paper, player effects on March Madness performance,are explored in Pifer

et al. (2019), again using models similar in form to«10).

We can align (10) with (7) and identify games across different periods, e.g.,

games happening in a given week, by assuming
Voow = X B+ (11)

where yuw is the observed-MOV in a game between team v and vin period w, G

(1.0, .0, )

is the parameter vector , Eww IS @ mean-zero error term, and xuuw is

— ],‘..

defined as féllows.For ° P | let erbe the £th column of the p x pidentity

X =e +e
uvw 1 u

matrix, and'let “»*' be the p-dimensional zero vector. Then, a1~ % for

= e

a game played on team «/s home court; *«» = ¢~ %1 for a game played at a

neutral site.

Without loss of generality, we estimate team strengths under model (11) relative
to an arbitrarily chosen baseline team. Let %. be element v+ 1 of the least

squares estimate for Sunder model (11), and define f,=0, Then, % =% is the



estimated MOV for team v in a neutral-site game against team v, and 0.0,
serve as estimated strengths of teams '* - 7 | respectively. The rank order of

these estimated team strengths provides a ranking of the p teams.

By the definition of y.wu, the probability that y.ww is greater than zero is the
probability of a positive MOV, representing a win for the home team. Thus, with
the assumption of (11), we can now describe the event probability methods
outlined in Section 3.1 and Section 3.2 as they relate to win (and loss)

probabilities in sports.

The different model assumptions do not change the inherent construction of
event probability estimates with CPDs. We can align CPDs with.model (11) by
defining

7, (y,.1) = > MR, (vo<r, e Ra =R, (y)r].

(u,v,w)

n +1
w

where ny is the number of observations upito and including period w, “*-*' is the
covariate vector associated with our game of interest, R (V) is constructed
using the using the prediction 7. @ and %) s the conformity score

associated with “.+"?:?" We €all the construction of win probability through
CPDs conformal win probability. As discussed in Section 3.1.2, we use a mid p-

value approachj selecting 7 =1/2 for our work.

To provide further intuition for the the use of conformal win probability, consider a
women’s basketball game between home team South Carolina and away team
Oregon State, two highly ranked teams during the 2019-2020 season (see

Section 4 for more results related to the top women’s teams). For a specific MOV

7, (5,7)

for this match-up, e.g., a MOV of five, is a probability estimate of the

<5
n+1

event ¥ , Which represents a MOV of less than or equal to five. Additionally,



an estimate for the probability that South Carolina wins, i.e., the MOV is greater
-7 (0,7) '

than zero, is '
Figure 2 shows the MOV conformal predictive distribution for South Carolina
vs. Oregon State for the 2019-2020 season. This distribution has jumps that are
too small to be visible. Thus, the distribution is nearly continuous. It is
straightforward to reassign probability so that the support of the conformal
predictive distribution lies entirely on non-zero integers to match the MOV
distribution. However, our reassignment does not affect our win probability

estimate, so we omit the details here.

With the additional assumptions of mean-zero, independent,.normally distributed

error terms under (11), the probability construction shown in(9) becomes

{ ~
_yl(\’M'
Yivw = 0) = I—Fm“_p‘ R Q K
Lolex (X, x, i,

wyw

P

where Xy, is the matrix of covariates,up to and including period w.

For logistic regression, we could instead assume

)
J =x,.'B, (12)

where puw is.the probability that yuww is greater than to zero. Then, puw is the
probability that home team v wins against away team vin period w. Similar

approaches to (12) are seen in Bradley & Terry (1952) and Lopez

& Matthews (2015). The interpretation for 9.~ % under model (12) is no longer
the strength difference between teams v and vin terms of MOV, but rather the
log-odds of a home team victory when home team v plays away team vat a
neutral site. As in linear regression, the rank order of the estimates of the 8

parameters obtained by logistic regression provides a ranking of the teams.



Note that MOV predictions associated with conformal win probability using model
(11) are identical to those for our GMMNE; only the approach to translate the
predicted MOV to win probability differs. Additionally, logistic regression does not
provide predicted MOV. Thus, we focus on the comparison of win probabilities

rather than predicted MOV for these three methods.

3.3.1 Potential Betting Scenario

The focus on win probabilities can also be extended to a betting scenarioxln this
paper, the event probability of interest is a win (or loss) for a specific team, which
corresponds to a “moneyline” bet in sports betting, i.e., betting on.a specific team
to win a game. Another type of bet is the “spread” bet, which.accounts for
differences in the strengths of two teams, either through the adjustment of a point
spread or the odds associated with a particular team..The spread is chosen by
bookmakers so that the total amount of money bet on the spread of the favorite is
near that bet against favorite (as opposed to,being representative of, say, the
expected margin of victory). We can utilize conformal win probabilities (or any of
the other competing methodologies\discussed) in order to determine whether to
bet on the favorite or the underdog in aispread bet. For conformal win
probabilities specifically, calculating ! = 7(=%:1/2) ' where sis the spread for a
game of interest, generates an estimate of the probability that the MOV (favorite

score - underdog score) will.be greater than — s.

3.3.2 Discussion on Other Rating Methods

In later. sections, we compare the ratings generated using the Harville method to
other rating methods, including Associated Press (AP), NCAA Evaluation Tool
(NET), KenPom (KP), Ratings Percentage Index (RPI) and College Sports
Madness (CSM). While AP is subjective, NET, KP and CSM are proprietary, with
only some elements of their construction made public. Of the rating methods we

compare to, RPI is the only approach where the construction is known.



In contrast to RPI, while the main components of NET are known to the public,
i.e., team value index and net efficiency, the inherent construction of the rankings
is not. Thus, we can neither reproduce the NET rankings from recent seasons
nor compute them for seasons prior to 2018. KP and CSM ratings suffer from the

same lack of transparency.

The lack of transparency for NET, KP and CSM rating methods is one reason we
chose the Harville method as our main approach of interest. Additionally, NET
rankings have no inherent win probability associated with the respective ranks of
two teams playing; we gain a probabilistic interpretation of margin of victory,
through win probability, with the three approaches we use in this work, i.e., a
linear model with normal errors, logistic regression, and conformal win
probability. We note win probabilities based on KP ratings are constructed under
the assumption of normality of the expected margin of victory, with a fixed

standard deviation of 11, which is not unlike.our linear model with normal errors.

We point the interested reader to Jacobsy(2017), Malloy (2023), and
Pomeroy (2014) for discussions onsthe construction of RPI, NET, and KP
rankings, respectively. Additionally, Barrow et al. (2013) provides a thorough
comparison of a collection of ranking methods across multiple seasons for

multiple sports.

Another reason for the.selection of the Harville method is a product of our data
set. While richer data sets, e.g., ones including field goal percentage, three-point
percentage, and offensive efficiency, could be obtained for some previous
seasons, we chose to construct a data set, for many games and seasons, with
just the two teams playing and the MOV for the home team. The methods we
consider in our paper are well-suited for this MOV data set. Differences between
the ranks associated with the Harville method and NET can be attributed to

different information being used within each ranking approach.



4 Application to March Madness

We first provide exploration of the 2019-2020 NCAA DI basketball season, to
include the canceled 2020 tournaments. Estimates of team strengths constructed
from regular season data for the top ten women’s and men’s teams during the
2019-2020 season are shown in Table 1 and Table 2, respectively. Additional
2019-2020 rankings from different sources are included for comparison; the
additional rankings include Associated Press (AP), NCAA Evaluation Tool (NET),
KenPom (KP), Ratings Percentage Index (RPI) and College Sports Madness
(CSM).

The large difference between strengths for the top men’s and-women’s team is
due to the difference in team parity between the two leagues,.i.e., the gap in
strength between the stronger and weaker women’s.teams.s much larger than
the gap between the stronger and weaker men’s.teams. Differences in team
ranks between ranking systems can be attributed to subjectivity, e.g., AP, or the

use of different information, e.g., RPIl, NET.and KP.

The remainder of this section is dedicated to constructing probabilities of making
the March Madness field and tournament win probabilities for the canceled 2019-
2020 tournaments. We follow,this discussion with a comparison of the win
probability methods outlined in Section 3 using our historical data set based on
the twelve seasonsfrom 2011-2012 through 2022-2023. The data set utilized
was compiled from two sources: masseyratings.comand ncaa.com. We
include sample sizes for the training (regular season games) and validation

(post-season‘games) data sets in Table 3.

4.1 Probabilities of Making March Madness Field for 2019-2020 Season

Following the cancellation of the 2020 NCAA basketball post-season, there were
20 men’s and 18 women’s automatic bids still undecided. Knowing the results of
the (partially) completed conference tournaments allows for estimation of the

probabilities of making the March Madness field as outlined in Section 2.2. We


file://///chenassoft/SmartEdit/WatchFolder/NormalProcess/JustAccepted/PDF/IN/WordDocument/masseyratings.com
file://///chenassoft/SmartEdit/WatchFolder/NormalProcess/JustAccepted/PDF/IN/WordDocument/ncaa.com

use regular season data as well as conference tournament progress to update
every team’s chances of making the tournament at the time of cancellation. We
include the tournament winners of completed conference tournaments for NCAA
women’s basketball in Supplementary Materials. These teams have probability 1

of making the March Madness field.

With the additional information provided by the outcomes of the completed
conference tournaments, there are five different situations for teams as it relates

to making the March Madness tournament:

1. Ateam has already made the tournament.

2. To make the tournament, a team must win their conference tournament or
rely on few teams ranked below them winning their respective conference
tournament.

3. To make the tournament, a team has alréady been eliminated from their
conference tournament and relies on few teams ranked below them
winning their respective conference tournaments.

4. A team must win their conference tournament to make the tournament.

5. A team cannot make thestournament.

Table 4 shows the situations forwomen’s teams ranked from 33 to 64. Recall
that due to our simplified selection process, teams ranked from 1 to 32 have

already made thetournament.

When using'the rankings constructed with regular season data and model (11),
the Big 12 conference tournament was the only undecided tournament involving
bubble teams, resulting in Kansas State being the sole team in Situation 2 and
Texas Tech, West Virginia and Oklahoma as the only teams in Situation 4. Table
5 shows the March Madness tournament field probabilities for teams in Situations

2, 3 and 4, constructed with (6) and conformal win probability.



While not listed in Table 5, there is a large number of women'’s teams ranked
below 64 that also fall into Situation 4. Probabilities of making the tournament for

the men’s teams in Situations 2, 3, and 4 are shown in Supplementary Materials.

4.2 March Madness Win Probabilities

Even with the results of the completed conference tournaments, the number of
potential tournament brackets remains extremely large. Thus, we forgo
enumeration of all potential brackets and instead focus on three exemplar
brackets and three expert brackets to generate March Madness win_probabilities.
We represent two extremes; Bracket 1 maximizes tournament parity:by including
the strongest remaining team from each conference tournament.bracket, while
Bracket 2 includes the weakest remaining team. Bracket 8.is constructed by
randomly selecting teams based on their conference.tournament win
probabilities. For each of Bracket 1, 2 and 3, we_useithe S-curve method

(NCAA 2021) to assign teams in the field to each bracket position as detailed in
Section ?? of Supplementary Materials. We compare these brackets, and the
March Madness win probabilities for. the top.teams included in these brackets, to

those generated by subject matter experts.

We include projected women'’s brackets from basketball expert Michelle Smith
(Northam 2020), College Sports Madness (2020) and RealTimeRPl.com (2020).
Table 6 shows the different'bracket win probabilities for the top ten women’s
teams, ranked using the ranking method outlined in Section 3.3. Exemplar
bracket results for the men’s 2019-2020 season are included in Supplementary
Materials;sweralso include results for the brackets generated by NCAA basketball
experts Andy Katz (Staats & Katz 2020), Joe Lunardi (Lunardi 2020) and Jerry
Palm (Palm 2020). All subject matter expert brackets for the 2019-2020
tournaments are publicly available. Figure 3 shows win probabilities across the
expert generated brackets and a comparison of cumulative NCAA tournament
win probabilities across brackets for the top ten women’s teams. A similar figure

for the top ten men’s teams is included in Supplementary Materials.



In general, tournament win probabilities do not change drastically across
brackets. However, there are some noteworthy differences. Specifically, the
tournament win probability for Baylor, the second-highest ranked team with
respect to our ranking, drops to 0.216 with the RTRPI expert bracket, compared
to 0.294 and 0.286 for the Smith and CSM brackets, respectively. Additionally,
the tournament win probability for South Carolina increases to 0.239 with the
RTRPI bracket; their win probability is 0.199 and 0.215 for the Smith and CSM
brackets, respectively. Figure 4 shows round-by-round win probabilities for

Baylor and South Carolina for each expert bracket.

We see that Baylors’s RTRPI round-by-round win probability becomes lower than
South Carolina’s during the Sweet Sixteen, dropping to 0.884, compared to
South Carolina’s 0.929. The largest decrease occurs during the Elite Eight,
where Baylor’s probability of moving on from the Elite Eight (under the RTRPI
bracket) is 0.633, compared to South Carolina’s 0.821. This is due to Connecticut
’s placement in the same region as Baylor, withi.each team seeded as the 1-seed
and 2-seed, respectively. In the other expert brackets, Connecticut was placed in
the same region as Maryland, which keeps the round-by-round win probabilities

for these two teams relatively stable.

4.3 Win Probability Calibration

While our discussion has explored the 2019-2020 NCAA D1 season and
canceled tournaments, we also wish to assess the effectiveness of conformal win
probability more’broadly. In order to assess conformal win probability estimates,
as well'as‘the-other win probability methods outlined in Section 3, we compare
estimates for previous NCAA basketball seasons, including the shortened 2019-
2020 season. We use the regular season games to estimate the team strengths

and then construct win probabilities for each game of post-season play.

Ideally, the estimated probability for an event occurring should be calibrated. A

perfectly calibrated model is one such that



EIF(z=z1p=p)-pll=0.  (13)

where zis an observed outcome, ? is the predicted outcome, ? isa probability
estimate for the predicted outcome, and pis the true outcome probability (Guo
et al. 2017). In the NCAA basketball case (13) implies that if we inspect, say,
each game with an estimated probability of 40% for home team victory, we
should expect a home team victory in 40% of the observed responses. We can
assess calibration in practice by grouping similarly valued probability estimates
into a single bin and then calculating the relative frequency of home team
victories for observations within each bin. For visual comparison_of calibration,
Figure 5 shows a reliability plot for the win probability estimates generated using

the methods outlined in Section 3 with bin intervals of width 0.025.

From Figure 5 we can see that while the methods are cemparable for higher win
probability estimates, the conformal win probability:approach is much better
calibrated for lower win probability estimates. A majority of observed relative
frequencies for conformal win probabilities, fall'closer to the dotted line, signifying

better calibration than the other two"methods.

To provide a numerical summary of calibration, we compare the win probability
estimation approaches from,Section 3 using log-loss; the log-loss for a single
observation is defingd as the negative log-likelihood of the independent Bernoulli
trial evaluated at'the win probability estimate. The log-loss for a set of estimates
is a sum of térms'ef the form —Z1'0g(2)+ (1= 2)log(l = 1) "\with one such term for
each game. This log-loss incorporates a loss for each individual win probability
estimate rather than a group of binned estimates. Figure 6 shows the re/ative log-
loss, i.e., the ratio of the log-loss for one method to the minimum log-loss across
all methods, broken up by season and league. We include raw log-loss plots in

Supplementary Materials.

In all but one of the year-league combinations, conformal win probabilities result
in lower log-loss than the other two methods. It should be noted however that



log-loss for the other methods was within five percent of conformal win probability
log-loss for most year-league combinations. Table 7 shows the results for the
three win probability methods within each league when log-losses are summed
across all twelve seasons. We also include accuracy results (proportion of game

outcomes correctly predicted) for each method by league in Table 8.

4.4 Comparison to Publicly Available Methods

In an effort to further compare conformal win probability based on model«(1.1)'to
other modeling approaches not included in this paper, we point the interested
reader to Bunker & Susnjak (2022), which provides a survey of medel accuracy
results for a suite of methods for generating game-by-game win probabilities in
basketball. Bunker & Susnjak (2022) consider methods developed for both NCAA
and National Basketball Association (NBA) games. Reported accuracies on data
sets different from ours range 0.67 to 0.83 for methods that include naive Bayes,
logistic regression, neural networks and decision'trees. Most of the methods
considered by Bunker & Susnjak (2022) use richer feature sets than our
approach, which only uses only theshome team and away team identities as
predictors. Details of these other methods can be found in Thabtah et al. (2019),
Ivankovic¢ et al. (2010), Loeffelholzet al. (2009), Shi et al. (2013), Zdravevski

& Kulakov (2009), Cao (2012)and Miljkovi¢ et al. (2010).

As another avenue lof«comparison, we also utilize results from recent Kaggle
March Machine'Learning Mania (KMMLM) competitions. We first compare our
results using the conformal win probability approach outlined in this paper to the
KMMLM leaderboards for the 2015 to 2022 iterations. These results are shown in

Table 9, with better performing models having a higher percentile.

Based in the results in Table 10, conformal win probabilities generated with the
Harville method do not seem to be competitive when compared to other KMMLM
models. This can be partially attributed to use of additional covariates with in

these models.



Thus far, we have considered the performance of conformal win probabilities
derived from the relatively simple linear model in (11). However, as noted in
Section 3.1, the conformal approach can be used with any MOV prediction
method to obtain win probability estimates. We now seek to determine if strong

performing KMMLM approaches can be improved by conformal inference.

We consider the subset of KMMLM models from the men’s and women’s
competition that meet the following criteria: 1) occurred within the last five most
recent iterations of the competition, 2) finished the competition in first.or second
place, and 3) had minimum viable code to reproduce their results completely in
R. The three publicly available solutions that met this criteria, the league to which
they were applied (men and/or women) and the code repeository are shown in
Table 10.

Kaggle user raddar provided the top solution for the 2018 women'’s iteration of
KMMLM through the use of XGBoost. Additionally;" nonparametric regression was
utilized to transform expected margins ofwictory generated using XGBoost to win
probabilities; we included additional-adjustments to constrain the output from the
nonparametric regression to thesinterval (0, 1). We note that this solution has
been utilized with great success.for both the men’s and women’s tournament in
more recent years, with/many top performers referencing this model as their
starting point. Gdub' provided the second place solution in the 2019 iteration of
the KMMLM men’s ecompetition through logistic regression with eight covariates,
which include seed differences, adjusted offensive and defensive efficiency,
strength of'schedule, team ranks, turnovers and free-throw percentage. We use
the same covariates, but adjust the model to estimate MOV, as opposed to
generating probability estimates explicitly; conformal win probability estimates
were then constructed based on the fitted predictors as described in Section 3.
The third model of interest, provided by Sapper, is a random forest-based
approach. We utilize each of these methods to generate win probabilities for the

2015 to 2023 tournament iterations. We then compare those results to the same



methods but with win probabilities determined via conformal inference as

described below.

A comparison of conformal win probability to the other methods for the 2015-
2023 women’s and men’s tournaments (with respect to log-loss) are shown in
Table 11 and Table 12, respectively. We note that the raddar model was readily
applicable to both NCAAW and NCAAM tournaments, but the GDub and Sapper
models were only applicable to the NCAAM tournaments. We lack an application
of the Sapper model to the 2023 iteration of the men’s tournament due to

unavailable data.

In Tables 11 and 12, we underline the best performing method-for each pairwise
comparison between a Kaggle top performer and its conformal counterpart. We
also bold the results for the best performing method overall within each league.
For each combination of league and Kaggle method, conformalization led to an

improvement over the original method for a'majority of seasons.

5 Conclusion

The 2020 March Madness caneellation was disappointing for many fans and
athletes. We explored win probabilities related to the NCAA tournament,
delivering closed-form calculations for probabilities of making the tournament,
given a set of team strengths estimated from game outcomes. We also identified
the most likely winners'of the men’s and women’s tournaments. We introduced
conformal win probabilities, which compared favorably with win probabilities
derived from logistic and linear regression assuming normally distributed,
independent, mean-zero errors. While we focused primarily on conformal win
probabilities derived from a relatively simple linear model, we also showed that

more complex methods can be improved via conformal inference.

One simplification we utilize in this paper is that estimated team strength does
not change following the regular season. Thus, we eliminate the potential for

teams to receive a higher (or lower) overall rank based on their conference



tournament performance. While this simplifies the analysis, allowing for teams to
move up or down in rank might more closely match the March Madness selection
committee’s actual process. We utilize “full” conformal predictive distributions to
generate our conformal win probabilities. It would be interesting to see how
variants of conformal predictive distributions, e.g., split or Mondrian, perform as

well.

We provide additional exploration of the 2019-2020 March Madness tournament
in Supplementary Materials. The Supplementary Materials include discussion
related to the men’s tournament, including results with the inclusion of a'First
Four, as well as a set of exemplar and expert brackets, and tournament win
probability estimates constructed based on conformal win probabilities. We also
include further comparison of each of the win probability,methods we focused on
to a version of the Elo method (Elo 1961).
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r(mov, 1=1/2)

Fig. 2 MOV conformal predictive distribution'for South Carolina vs. Oregon State
with 7 =1/2 using regular season'data from 2019-2020 NCAA women’s
basketball season. The blue.dotted line identifies a MOV for South Carolina of 5,
i.e., South Carolina (home)beating Oregon State (away) by five points, with

7(5,172) = 0.160 jqentifiediby the red dashed line.
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Table 1 Top 10 NCAA women’s teams for 2019-2020 season

Team Estimated Strength||Rank|/AP||RPI|CSM
Oregon 42.42 1 2 12 |2
Baylor 41.92 2 3 |4 |4
South Carolina(40.18 3 111 (1
Maryland 39.29 4 4 I3 |6
Connecticut  ||36.79 5 5 14 |8
Stanford 29.54 8 6 |6 |7
Mississippi St. (|28.93 7 9 |10 |12
Louisville 28.11 8 6 (7 |6
Indiana 27.48 9 20 (14 |19
Oregon State |[26.24 10 ||14./20 17




Table 2 Top 10 NCAA men’s teams for 2019-2020 season

Team Estimated Strength||Rank|/AP|NET||KP
Kansas 24 .96 1 1 12 1
Gonzaga 22.87 2 2 |1 2
Duke 22.22 3 1116 |5
Michigan State [[21.09 4 9 |7 |7
Baylor 20.23 5 515 |3
Arizona 19.27 6 - |14 |19
San Diego State||18.87 7 6 |4 |6
Ohio State 18.81 8 19|16 ||8
Dayton 18.37 9 3 |3 «|4
West Virginia 17.92 10 (24 M7 |10

Table 3 Training and validation set sample sizes spanning 2011-2012 and 2022-

2023 seasons.
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Table 4 Situations for women’s bubble teams

Situation Teams

1 Texas, Alabama, Arizona St., Missouri St., TCU,

Drake, James Madison, Oklahoma St.

Kansas St.

LSU, Marquette, North Carolina

Texas Tech, West Virginia, Oklahoma

(&) B - | BN O I | ()

all other bubble teams

Table 5 Probabilities of making NCAA tournament fieldiforawomen’s bubble teams
for 2019-2020 season.

Team Situation||Overall Rank|{Prebability
LSU 3 41 >0.999
Marquette 3 42 0.989
Kansas St. 2 43 0.873
North Carolina||3 44 0.456
Texas Tech |4 50 0.003
West Virginia™{4 52 0.004
Oklahoma 4 62 <0.001




Table 6 March Madness win probabilities given exemplar brackets for top ranked

women’s teams.

Team Bracket 1||Bracket 2||Bracket 3||Smith|| CSM|RTRPI

Oregon 0.308 0.308 0.308 0.307//0.284(0.296

Baylor 0.295 0.295 0.295 0.294/0.286|0.216

South Carolina||0.197 0.197 0.197 0.199//0.215||0.239

Maryland 0.123 0.124 0.124 0.130//0.130}|0.175

Connecticut  ||0.057 0.057 0.057 0.055||0.065||0.056

Stanford 0.007 0.007 0.007 0.008|/0.007,0:007

Mississippi St. ||0.004 0.004 0.004 0.003|/0.003,0:005

Louisville 0.002 0.002 0.002 0.001{/0:003}|0.002

Indiana 0.002 0.002 0.002 0.001,/0.002/|0.001

Oregon St. 0.001 0.001 0.001 0.0001/0.001{/0.001

Table 7 Relative log-loss for NCAA men’s and women’s basketball win probability

estimates by league.

League||ConformalilLinear||Logistic

Women|[1.000 1.016 ||1.023

Men 1.000 1.026 ||1.033




Table 8 Proportion of games correctly predicted for 2011-2022 seasons.

League|Conformal|Linear|Logistic

Women|0.751 0.743/0.743

Men |0.713 0.699 |0.699

Overall ||0.731 0.7191/0.719

Table 9 log-loss performance of conformal win probabilities based on model(11)
to Kaggle March Madness leaderboards for men’s March Madness,with higher

percentiles indicating better performance.

Season 2015|/12016|120172018|2019|2020{ 2021 || 2022

log-loss 0.516/0.570(0.497|0.716{0.469j- 0.631|(0.670
Percentile 0.458|/0.697||0.739|/04193|0.816||- 0.492|(0.405
# of Submissions|345 ||598 14414934 863 |- 707 1930

Table 10 Kaggle methods_.used,for comparison to conformal win probability.

Kaggl
e User League Method Repository
NCAAW/NCAA https://github.com/fakyras/ncaa_women_201
raddar M XGBoost |8
Logistic
Regressio |https://github.com/gjwierz/NCAA_Kaggle_20
Gdub |[NCAAM n 19
Sappe Random | https://github.com/dusty-
r NCAAM Forest turner/ncaa_tournament_2021_beat_navy
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Kaggl

e User

League

Method

Repository

Table 11 log-loss comparison of conformal win probabilities to well performing
KMMLM competition models for 2015-2023 NCAAW March Madness

tournaments.
Kaggle
User Model 2015 || 2016 || 2017 || 2018 || 2019 || 2021~ 2022 || 2023
raddar |Base 0.3712||0.5143|/0.4387||0.4342||0.3658||0.4764{/0.4652||0.4976
Conformal{|0.3873|/0.5076||0.4379|/0.4314(/0.3763(/0.4619/|0.4655|/0.4893

Table 12 log-loss comparison of conformal win probabilities to well performing
KMMLM competition models for 2015-2023 NCAAM March Madness

tournaments.
Kaggle
User Model | 2015,2016 | 2017 || 2018 || 2019 || 2021 || 2022 || 2023

Gdub |Base 0:4970)/0.5931|0.5244|(0.6049(0.5033|(0.6637(0.5780|/0.6509
Conformall|0.4983||0.5890(0.5078|(0.6018(0.5103|/0.6386(0.5847|/0.6370

raddars, [Base 0.5108(0.5871|/0.4996/(/0.6741/0.4884(/0.6160/0.6481|(0.7031
Conformal||0.5212||0.5809|0.5092|(0.6052(0.5020|(0.6024(0.6304(0.6416

Sapper |Base 0.5808|/0.5611|/0.5882||0.6022|/0.4605|/0.6001{/0.7182||-
Conformal||0.5318|/0.5644/0.5147|(0.6001/0.4951|(0.61880.6274|-




