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Abstract—Deep Learning (DL) and Deep Neural Networks
(DNNs) are widely used in various domains. However, adversarial
attacks can easily mislead a neural network and lead to wrong
decisions. Defense mechanisms are highly preferred in safety-
critical applications. In this paper, firstly, we use the gradi-
ent class activation map (GradCAM) to analyze the behavior
deviation of the VGG-16 network when its inputs are mixed
with adversarial perturbation or Gaussian noise. In particular,
our method can locate vulnerable layers that are sensitive to
adversarial perturbation and Gaussian noise. We also show that
the behavior deviation of vulnerable layers can be used to detect
adversarial examples. Secondly, we propose a novel NoiseCAM
algorithm that integrates information from globally and pixel-
level weighted class activation maps. Our algorithm is highly
sensitive to adversarial perturbations and will not respond to
Gaussian random noise mixed in the inputs. Third, we compare
detecting adversarial examples using both behavior deviation and
NoiseCAM, and we show that NoiseCAM outperforms behavior
deviation modeling in its overall performance. Our work could
provide a useful tool to defend against certain types of adversarial
attacks on deep neural networks.

I. INTRODUCTION

Artificial intelligence and deep learning have great potential
to tackle a wide range of engineering and scientific challenges.
For example, Deep Learning have been widely applied in
medical imaging to reduce delay and human efforts in disease
diagnoses [1]. In addition, deep neural networks are extremely
good at dealing with complicated scenarios, making DL a
promising tool for safety and security domains where com-
plicated patterns are difficult to define explicitly [2], [3].

However, the robustness and reliability of Deep Neural
Networks (DNNs) have raised concerns among researchers.
Studies have shown that these networks, such as the VGG-
16 model [4], can be fooled by manipulated images that
are undetectable to the human eye [5]-[7]. In such cases,
the altered pixels possess pseudo-random properties, leading
to doubts about the reliability and confidence of DNNs in
environments with natural Gaussian noise [8], [9].

For mitigation, on the one hand, some solutions are pro-
posed to increase the robustness of DNNs by augmenting their
training with perturbed samples or introducing a robust loss
term [10]—[12]. These approaches encourage DNNs to treat a
slightly perturbed image as its origin. In this context, finding
and incrementally training DNNs with adversarial examples is
analogous to fuzzy testing. Some representative frameworks
have been proposed, such as DLFuzz [13], DeepXplore [5],
DeepHunter [14], and TensorFuzz [15]. In particular, in one
of our previous works of a white-box fuzz testing framework,
DLFuzz, we derive adversarial perturbation by misleading
the neural classifier and maximizing the neuron coverage
simultaneously.

One common feature of these adversarial example-enabled
neural network fuzzy testing frameworks is that they not only
discover adversarial examples but also try to maximize the
activation rates of neurons, also known as neuron coverage
[16], [[17]. The neuron coverage ratio describes how many
neurons are activated during a prediction. DLFuzz [13] adapts
this concept from DeepXplore [5] and tries to optimize this
metric by generating adversarial examples and maximizing the
prediction difference between the original and the adversarial
images. Higher neuron coverage usually contributes positively
to the robustness of DNNs.

However, training DNNs on perturbed samples incremen-
tally is computationally expensive and can reduce classifi-
cation accuracy |[18]]. Moreover, it is difficult to find a bal-
ance between accuracy and adversarial robustness. Defending
existing DNNs against adversarial examples without specifi-
cally retraining them is preferred. Defense-GAN [19] trains
a defensive generative adversary network (GAN) on natural
inputs. A noticeable behavior deviation can be detected when
adversarial examples are fed into the defensive GAN. Instead
of modeling the inputs directly, I-Defender [20] models the
output distributions of fully connected hidden layers for each
class. Then it uses statistical testing to reject adversarial exam-
ples. Adversarial perturbations can be treated as additive noise.
Therefore, similar approaches, such as denoising autoencoders,
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can be used to purify the input of DNNs [21]-[24].

Most current efforts view DNNs as black-box models and
fail to analyze adversarial attacks in an explainable manner.
In our prior work [25], we used ImageNet database [26] and
then manipulate them with DLFuzz [13]] to generate white-box
adversarial attacks examples. We also used Grad-CAM [27]
enabled class activation maps in VGG-16 [4]. We compare
the model’s responses to adversarial and statistically similar
Gaussian noise mixed images, revealing the potential of class
activation maps for detecting adversarial examples. This paper
examines the potential of modeling behavior deviation in
vulnerable VGG-16 layers to identify adversarial examples
and introduces NoiseCAM, a novel method that integrates
GradCAM++ [28] and LayerCAM [29] to detect adversarial
examples in an interpretable manner. NoiseCAM is more
effective than our behavior modeling method in detecting
adversarial examples. The contributions of our work are as
follows.

« We propose an interpretable method for detecting com-
promised layers in a neural network under adversarial
attacks by modeling behavior deviation. Our findings
show that the deeper layers in VGG-16 are more sensitive
to adversarial perturbations and Gaussian random noise.

« We investigate the use of behavior deviation modeling
in vulnerable convolution layers under non-adversarial
scenarios to obtain decision thresholds for detecting ad-
versarial examples, but found it to be unreliable.

« We propose NoiseCAM, a new algorithm for detecting
adversarial attacks on DNNs in an interpretable manner.
Our experiments demonstrate that NoiseCAM is highly
sensitive to adversarial noise while being impervious to
Gaussian random noise even when they have statistically
similar properties.

The remainder of this paper is organized as follows: A
literature review of related work is presented in Section
We present the methodology in Section Evaluation and
discussion are presented in Section and conclusions in
Section

II. RELATED WORK

Fuzzy Testing Enabled Adversarial Example Generation
on DNNs: Given a network model, an adversarial example
is generated by introducing small and imperceptible pertur-
bations to a given seed image to cause misclassifications.
There are several procedures, such as FGSM [30], to generate
adversarial examples. In general, this is a white-box fuzzy
testing procedure, one has to know the parameters of the
target neural classifier and then solve the optimization problem
so that the perturbations should maximize the classification
loss and minimize the difference between the perturbed and
original image. Defending DNN’s against adversarial examples
can increase the robustness of the model.

Explainalbe Al (XAl) for Visual Explanations of DNNs: Ex-
plainable AI (XAI) methods such as Gradient-weighted Class
Activation Maps (Grad-CAMs) [31] and Local Interpretable
Model-Agnostic Explanations (LIME) [32] aim to improve the

Prediction: matchstick Prediction: matchstick

Prediction: volcano

Fig. 1. The effect of an adversarial noise removal filter on VGG-16 model
classification accuracy. We apply a Gaussian Blur filter with radius 1.5 to
three distinct scenarios: a) an adversarial input, b) an input with Gaussian
noise, and c) the original input (labeled as Space Shuttle). All three inputs
subjected to the Gaussian Blur filter are incorrectly predicted by the VGG-16
network.

interpretability of DNNs. They have the ability to explain the
prediction of black-box models and can therefore improve their
trustworthiness. Grad-CAM calculates a heatmap highlighting
different areas of an image in different colors. These colors
visualize how much an area positively contributes to a certain
prediction. LIME highlights pixels that contribute positively
or negatively based on a threshold. These pixels can be
represented in different colors, as in Grad-CAM. With Grad-
CAM, it is possible to identify not only which areas contribute
positively and negatively to a certain prediction, but also how
much an area influences a decision [33]. Numerous efforts
use these methods to increase confidence in machine learning
models [34] [35] [36].

Countermeasures for Adversarial Attacks: The defense
against adversarial attacks has been extensively studied with
several methods summarized in [|37]. The traditional method to
defend test-time evasion (TTE) attacks is to remove all poten-
tial perturbations for the input images, representative methods
are: Principal Component Analysis (PCA), blur filters, and
autoencoders. However, these methods can also potentially
decrease the accuracy of the DNN classifier.

For example, in Figure|l1| we applied a Gaussian Blur filter
with radius 1.5 to three different scenarios to protect the VGG-
16 model against adversarial examples: a) an adversarial input,
b) input with Gaussian noise and c) the original input. All
three inputs with Gaussian Blur filter are erroneously predicted
by the VGG-16 network. One reason is that DNN classifiers
compress the input image into a relatively low resolution; e.g.,
VGG-16 compresses the input into 224x224. When we apply a
blur filter or PCA to input images, the loss of information will
lead to incorrect predictions. Although traditional methods can
easily eliminate the perturbation, it also affect the classification
results.

III. METHODOLOGY
A. Problem Definition

In order to safeguard DNNs against adversarial attacks, it is
crucial to understand how these examples lead to misclassifica-
tions. To achieve this, we utilize XAl techniques to analyze the
classification decision process of the VGG-16 model, layer by
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layer. Figure@provides a concise overview of our investigation
method.
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Fig. 2. Data pre-processing and analysis procedure |25]

B. Data Preparation

We used randomly selected images as seeds from the
ImageNet validation dataset, and we derive their adversarial
perturbations, or adversarial noise, denoted as:

N, = ADV(S, ¢) (D

where ADV (+) is the adversarial perturbation function, & is the
strength of the perturbation, and S denotes a seed image. In this
work, DLFuzz is configured to generate adversarial noise and
maximize neuron coverage simultaneously. We generate the
same amount of Gaussian noise N, defined as random noise,
with statistical properties similar to adversarial perturbations.
Consequently, we use the expected value, standard deviation
and shape of N,, to generate N as:

Ng ~ N(,Ua, Za) (2)

where N(:) denotes a normal distribution, y, denotes the
expected value, and X, denotes the standard deviation. We
let u, = N, and 3, = o(N,). Based on this distribution, we
generate random noise N represented as a matrix with the
same shape as N,. In this way, the augmented input I to the

DNN becomes:
I={S,S+N,,S+Ng} 3)

where S + N, and S + N, are adversarial examples and the
noisy version of the seed image.

C. Adversarial Example Generation

We use DLFuzz [13] to calculate perturbations and apply
it to images from the ImageNet [38] dataset. Mathematically,
we are conducting a white-box attack on the neural network.
The procedure of deriving additive perturbations is regarded
as an optimization problem:

K

argmax Z ci—c+A i n; 4)
i=0

Na, |INall<0 i=1

where ¢ restricts the magnitude of the adversarial perturbation,
c is the prediction on a given seed image, c; is one of the top

K candidate predictions, n; is one of the activation values in
the m selected neurons, and A is a constant to balance between
activating more neurons and obtaining adversarial examples.

DLFuzz manipulates the perturbations to mislead a tested
network to make wrong predictions and simultaneously ac-
tivate the selected neurons. DLFuzz ensures that adversarial
examples are generated more efficiently during a test by
maximizing neuron coverage. This is based on the assumption
that this will trigger more logic in the network and thus
provoke and detect more erroneous behaviors [5].

After obtaining an effective adversarial perturbation for each
seed, we amplify the perturbations with a total of five different
ratios, defined as the perturbation strength. These are 25%,
50%, 100%, 200% and 400%.

The additive perturbation is then added to the original image
to form adversarial examples. Unlike the Gaussian random
noise that is evenly distributed on the image, adversarial
perturbations are usually presented clustered with a certain
pattern. These adversarial perturbations can lead to the mis-
activation of the wrong convolutional filters and can even be
visualized on class activation maps.

D. Network Behavior Deviation Modeling

For a given convolution layer [, its response to an input
image, e.g., a seed image, can be visualized using its grad-
CAM heatmap, defined as:

H(S) =R [sign (Jﬂ(_és?l))] (5)

where J(S) denotes the classification score of a selected
category S and 6 denotes the parameters of layer /. The func-
tion R(-) denotes the operation that reshapes and interpolates
the derived gradients to the same dimension and size as S.
The derivative values display the focal areas of / in S. Our
hypothesis is that the focal regions under attack in the neural
network could differ under adversarial and natural images.
Moreover, we use cosine similarity to calculate the degree of
behavior deviation as:

_ vec(H(Sy)) - vec(H(Sz))
CISu 82 = o ms - vecmsyy) @

where H(S;) and H(S;) denote Grad-CAM heatmaps of
different images. These are vectorized and normalized for
similarity calculation. For a specific layer and a seed image
S, we calculate and compare two types of behavior deviation.

D, =G[S,S+N,] (N
D, = G[S,S+N,] ®)

Our observations revealed that both Gaussian noise and
adversarial perturbations can cause behavior deviations, while
Gaussian noise does not easily cause a wrong classification
result. For each layer, we used the median value of its degree
of behavior deviation under Gaussian noise as the reference
threshold to quantify whether it is compromised, i.e., whether
its behavior deviates more severely than when it is under the
same amount and strength of Gaussian noise.
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Fig. 3. Detecting adversarial examples with NoiseCAM

We also employ behavior deviation to detect adversarial
examples. Specific steps are as follows:

Step 1: Image cleaning: Given an input image, I,, we gener-
ated a clean version I, of it using PCA to compress
and retain 99% of its original information.

Noise extraction: We extract the noise component
from the original input as I, = I, — L.

Generating benign noisy samples: We derive the
statistical properties of I, as in Equation (2) and
generate statistically similar Gaussian random noise
N and add it back to L. In this way, we generate a
benign noisy image. The process is repeated at least
50 times to obtain sufficient samples.

Obtaining input-specific statistical model: We let be-
nign noisy samples and I, pass through the model
and obtain the statistical properties of the behavior
deviation of the most sensitive (vulnerable) convolu-
tion layer. In the VGG-16 model, the layer selected
as a probe is the first convolution layer in block 5
according to our experiments in Section [TV-B]
Comparing: We feed the original image into the
model. If the original image compromises the last
convolution layer by causing sufficient drift. We then
decide that this input is an adversarial example.

Step 2:

Step 3:

Step 4:

Step 5:

E. NoiseCAM for Adversarial Example Detection

Along with behavior deviation modeling, we present an
XAl-based algorithm, called NoiseCAM, for detecting adver-
sarial examples as shown in Fig. [3| Our proposed workflow
capitalizes on gradient information from the DNN classifier’s
internal layers. To extract necessary information, we combine
GradCAM++ [28] and LayerCAM [29] as follows:

1) Globally Weighted CAM: We let y¢ be the prediction
score of the DNN classifier of the target category c,
and for a selected convolution layer, Ay is the k-th
output feature map of the layer output tensor. The spatial
gradient gfjc with respect to Ay is as:

gkc _ ayc
ij - k
AL,

©))

where gf]? is the partial derivative of the prediction score
of category ¢ with respect to the pixels of the k-th feature
map of the selected convolution layer. In the NoiseCAM
algorithm, we use the category with the highest prediction
score to generate gl{‘j?. We further process this spatial
gradient tensor using similar method as in GradCAM++
[28]. Specifically, we first compute the enhanced spatial

| |
} Weighting Pixel-wise Pixel-wise |
| co-efficients gradients gradients 1
|
! ke ke key |1
Ll gk relu(g;?) relu(g;;) |
| ij J J |
| |
| |
| |
| |
| v |
! Assign global Spatial ! NoiseCAM spatial k-th Noise class
} weight to all spatial p. I } weights for k-th feature Ek activation map of
| location weights feature map map category ¢
| ke_global wkC | ~ k_noise k e
| 1j | ij ij noise
)l J
Obtain global weight Obtain spatial weights

Fig. 4. The workflow of NoiseCAM
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gradients as:.

ake = (glk’c)z (10)
Y 2(gf)? + Ba X Ak, (gf1)?

where both (a, b) and (i, j) are the spatial location of
the feature map. We then compute the weights of each
channel in the output tensor wi as in Equation .
The final class activation map that captures activations
positively contribute to the classification score Y€ is
obtained by a linear aggregation along all k feature maps

as in Equation
wi = Z Z afjc -relu(gfjc)
J

i

Y

M€ = ReLU(Z w - A% (12)
k

According to our experiments, adversarial perturbations
severely affect feature maps in shallow layers. The global
weights used in Grad-CAM++ algorithm will treat all
activated pixels as equal. In our experiments, the Grad-
CAM++ algorithm generally outperforms Grad-CAM in
deriving wi when multiple objects are in the input.

2) Pixel-wisely weighted CAM: This CAM uses the same
mathematical process as in LayerCAM [29]. Each feature

map A{.‘j is first weighted pixel-wisely as:

(13)
(14)

wf-‘jc = relu(glkjc

Ak _ ke Ak

Ay =wij - Ay

where wfjc is the pixel-wise spatial weight matrix that

has the same size with the k-th feature map with respect

to y©. LayerCAM [29] showed that the spatial weight

method could eliminate most of the noise and preserve
fine-grained information.

Our proposed NoiseCAM combines the information from
globally and pixel-wisely weighted CAMs. The brief workflow
of NoiseCAM is given in Fig [4] We first obtain the global
weight of the k-th activation map from shallow layers. Then,
we obtain the pixel-wise spatial weight of the k-th activation
map from the same layer. To obtain the noise weight v?/l’?]r”"i“e,
we first assign the global weight to all spatial locations (i, j)

on the activation map, which is formulated as:

llf]'c_global — Wz . Qk (15)
where QX is an all-one matrix with the same size as the k-

th feature map. Then we subtract wfjc‘gl(’bal with the pixel-

wise spatial weight relu( glf‘l,c) and form a spatial noise weight
~k_noise ’

matrix Wi as:
~k_noise _  kc_global k¢
Wij =Wy Wi
kc_global .
= w7 —relu(gfy) (16)

Origianl Image Gaussian Noise Image Adversarial Image

LayerCAM

Noise-CAM (ours)

Fig. 5. Comparison of adversarial perturbation detection on NoiseCAM and
GradCAM++. Top row: the adversarial example (prediction: lampshade) and
its class activation map and NoiseCAM map. Center row: original image
mixed with Gaussian noise (prediction: space shuttle) and corresponding
maps. Bottom row: original image (prediction: space shuttle) and correspond-
ing maps.

where wf." is defined in Equation (13). A linear summation

can be performed to obtain the final noise activation map with
respect to the target category c.

M i, = ReLU( ) 7o - AF)
k

noise (17)

Mathematically, for an input image with adversarial noise,
a globally weighted CAM contains both adversarial perturba-
tions and fine-grained class activation details, while a pixel-
wisely weighted CAM only contains the fine-grain details
without perturbation noise. Consequently, the subtraction of
the two CAMs could expose adversarial perturbations as in
Figure As depicted, NoiseCAM exposes and highlights
adversarial noise patterns that do not belong to the subject
of interest. On the other hand, NoiseCAM generates a blank
map for input with Gaussian noise and original image input.

Finally, the noise activation map, My, . . is processed by the
DBSCAN [39] clustering algorithm, we extract the number of
effective noise clusters from the noise activation map, if the
number of effective noise cluster exceeds 3, we then judge
that the input is an adversarial example. Specifically, we set
the scanning radius to 2 and the number of neighboring points
to 3 as well.

IV. EVALUATION

This section examines the behavior deviation of the VGG-
16 classifier when subjected to varying degrees of adversarial
attacks and Gaussian noise. The goal is to determine the
boundary between adversarial and natural noise. Moreover,
we compare the efficacy of NoiseCAM and behavior deviation
modeling in detecting adversarial examples.

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on December 21,2023 at 16:52:12 UTC from IEEE Xplore. Restrictions apply.



1.0 T T T T T T T T T T T T T
09r ]
oy
208} .
£ A\ \_~
.GEJ 0.7k —— Perturb level = 0.25 ]
2 —-=--Perturb level = 0.5
© —-— Perturb level = 1
o6p L. Perturb level =2 ]
Perturb level = 4
N A N s
NONTATAYTY TN W WG
Layers
(a)
1.0 T T T T T T T T T T T T T
09r B
Fn
208} .
£
%]
'g 0.7k —— Perturb level = 0.25 ]
2 --=-Perturb level = 0.5
© —-— Perturb level = 1
o6r .. Perturb level =2 ]
Perturb level = 4
0.5 1 1 1 1 1 1 1 1 1 1 1

A

N
NN A o o o WY 0 Y Y
Layers

(b)

Fig. 6. Comparison of behavior deviation on: (a) adversarial examples and
(b) images with Gaussian noise with different attack strength (x-axis 1-1
represents the Block1_Convl layer in VGG-16).

A. Seed Selection

The ImageNet2012 validation dataset [40] contains 5,000
images in 1,000 categories. We use all 5,000 images to derive
their adversarial examples. Unfortunately, not all images can
find their corresponding adversarial examples within the pre-
defined magnitude of perturbation. Ultimately, we derived at
least one adversarial example from 48% of the dataset.

B. Behavior Deviation Under Different Attacks

Using the methods in Section[TII-D] we found that Gaussian
noise and adversarial perturbations can cause deviations in
the VGG-16 model’s behavior. Adversarial perturbations can
further drift the network behavior and play a vital role in
misleading the classifier.

According to Figure[6aand[6b] the comparison of behavior
deviation indicates that adversarial perturbation causes more
severe behavior deviations than statistically similar Gaussian
noise. Although it is generally believed that a stronger ad-
versarial attack strength can cause the behavior of the neural
network to deviate further, our experiments show that the
behavior deviation at perturbation level 0.25 is even more
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Fig. 7. Compromise probability of convolution layers in the VGG-16 network.

significant than at levels 2 and 4. Gaussian noise can cause
a deviation in the behavior of the neural network, but this
deviation is not significant to lead to a classification error.

Further behavior deviations can be observed in deeper layers
of the network, as shown in Figures and However,
we do notice some fluctuations, which indicates that there
are some specific layers that are more vulnerable and easier
to compromise. For example, the first convolution layer in
the fifth block is sensitive to adversarial perturbations and
Gaussian noise simultaneously.

We also discover that the VGG-16 network can be misled
by compromising only a few intermediate layers. We analyze
the probability of compromise on each network layer and
derive Figure 7| As depicted, the adversarial examples with
the lowest attack strength have approximately 40% of the
chance to compromise any layer. This probability increases
significantly and reaches 80% when we increase the attack
strength to be greater than 2 or less than 0.25.

C. Adversarial example detection

We evaluated the adversarial example detection performance
using an augmented dataset consisting of our seed images
and their modifications. This test set comprises seed images
mixed with adversarial perturbations and Gaussian noise of
varying intensities. Our approach involves feeding the input
image into a pre-trained VGG-16 model on the ImageNet
dataset, applying NoiseCAM on the VGG-16 network’s third
convolution layer, and using the behavior deviation modeling
method on the same test set but on the most vulnerable
convolution layer (Block5_1). Figure |§| showcases examples
of adversarial example detection with intermediate results. By
combining the responses of GradCAM++ and LayerCAM,
adversarial perturbations are effectively highlighted. Figure
provides a brief comparison of the two methods, demonstrating
that NoiseCAM has a higher detection accuracy than behavior
deviation analysis, as shown in Figure Notably, the be-
havior deviation modeling method has a lower true positive
rate and a higher true negative rate than NoiseCAM, as seen
in Figure |8| Interestingly, increasing the attack strength from
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Fig. 8. Performance comparison of adversarial example detection

25% to 400% slightly reduces the true positive rate of the
behavior deviation modeling method, but has no significant
impact on the performance of the NoiseCAM approach.

V. CONCLUSION AND FUTURE WORK

In this work, we model the behavior of a VGG-16 model
using an explainable Al approach when its input is mixed
with adversarial perturbations from white-box attacks and
statistically similar Gaussian noise. We proposed two ap-
proaches, behavior deviation modeling and NoiseCAM to

cowboy hat lampshade

airship

Prediction:

detect adversarial examples and prevent the model from being
misled. NoiseCAM can highlight adversarial perturbations
mixed in the input while it’s not sensitive to random noise. We
found that NoiseCAM is more reliable than behavior deviation
modeling. Going forward, we aim to extend our approach as a
vulnerability detection and securing tool for neural networks
across various models and apply it to time-series dataset.
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