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Abstract—The area of Neurosymbolic Artificial Intelligence
(Neurosymbolic AlI) is rapidly developing and has become a
popular research topic, encompassing sub-fields such as Neu-
rosymbolic Deep Learning (Neurosymbolic DL) and Neurosym-
bolic Reinforcement Learning (Neurosymbolic RL). Compared
to traditional learning methods, Neurosymbolic AI offers sig-
nificant advantages by simplifying complexity and providing
transparency and explainability. Reinforcement Learning, a long-
standing AI concept that mimics human behavior using rewards
and punishment, is a fundamental component of Neurosymbolic
RL, a recent integration of the two fields that has yielded
promising results. The aim of this paper is to contribute to the
emerging field of Neurosymbolic RL by conducting a literature
survey. Our evaluation focuses on the three components that
constitute Neurosymbolic RL: neural, symbolic, and RL. We
categorize works based on the role played by the neural and
symbolic parts into three taxonomies, which are further divided
into sub-categories based on their applications. Furthermore, we
analyze the RL components of each research work, including
the state space, action space, policy module, and RL algorithm.
Additionally, we identify research opportunities and challenges
in various applications within this dynamic field.

Impact Statement—Neurosymbolic RL has captured the in-
terest of both the academic and industrial communities, as
researchers strive to develop a reliable and robust model capable
of achieving practical performance. Despite this, there is a
lack of a comprehensive documented survey that delves into
and scrutinizes the field of Neurosymbolic RL as a whole.
While several survey papers devoted to Neurosymbolic AI and
many more concerning RL are available, there has been no
noteworthy contribution that surveys the intersection of these
areas. As a result, the purpose of this article is to bridge
this gap by presenting a broad range of relevant papers that
have been published, with a focus on the three main elements
of Neurosymbolic RL: neural, symbolic, and RL. The article
conducts an analysis, identifies potential research opportunities,
along with the challenges.

Index Terms—Neurosymbolic, Neurosymbolic reinforcement
learning, reinforcement learning
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I. INTRODUCTION

EUROSYMBOLIC Artificial Intelligence (Neurosym-

bolic Al), a budding field of Artificial Intelligence, has
garnered significant attention in recent times as it combines
both neural and symbolic traditions to enhance the perfor-
mance of neural network models. In this context, the term
“neural” pertains to Neural Network (NN) primarily, while
”symbolic” refers to the use of various mathematical logic
and algorithms for symbolic manipulation. Reinforcement
Learning (RL), another emerging area of machine learning,
revolves around agents operating in various environments to
maximize their rewards. It dates back to the early days of
cybernetics and has gained rapid interest in the machine
learning and artificial intelligence communities over the last
five to ten years. RL involves programming agents by reward
and punishment without specifying how to accomplish the
task, and it encompasses statistics, psychology, neuroscience,
and computer science. However, there are significant com-
putational challenges to overcome[l]. Deep Reinforcement
Learning (DRL), which replaces tabular methods of estimating
state values with function approximation, has eliminated the
need to store all state value pairs in the table, enabling
the agent to generalize the value of states that it has never
encountered before. DRL has been utilized in programs that
have defeated the best human players in game of Go[2].
Additionally, an Al agent named AlphaStar[3] beat the world’s
best StarCraft II player.

RL has recently drawn much attention in the context of Neu-
rosymbolic Al for policy synthesis and representation. These
techniques merge planning-style control-flow instructions with
fundamental atomic actions that are learned and represented
through (deep) neural networks. The combination of these
two approaches enables the efficient use of deep reinforce-
ment learning techniques to improve the interpretability and
transparency of an agent’s behavior while also leveraging a
high-level, symbolic representation of the policies learned by
agents. By allowing the neural system to interact with the
knowledge base, the reasoning ability is enhanced, and the
learning ability is enhanced by interacting with the neural
system. This interaction results in better generalization and
transfer of knowledge, improved efficiency and robustness, and
an increase in explanation and interpretability. F'zg.1 illustrates
the general idea of combining Neurosymbolic Al with RL

Further research is needed in Neurosymbolic RL to develop
novel approaches, techniques, and their real-time applications
that best fit real-world use cases such as computer networks,
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healthcare, IoT devices, finance, and other industrial domains.
In this paper, we have analyzed notable works in Neurosym-
bolic RL to date. We have examined the neural and symbolic
component used in each of the research work. Further we ana-
lyzed RL components used in the architecture: RL-algorithms,
state space, action space, and policy module used so that we
can have transparent view of the working of the model. We
have classified these research works into three main categories:
Learning for Reasoning RL model, Reasoning for Learning RL
model, and Learning-Reasoning RL model, which are further
sub-divided according to the significance or role of the model.
After that We move on to provide a comprehensive summary
of the Neurosymbolic RL approaches related to their specific
application cases that need to be developed to meet the needs
of AL Finally, we have presented certain challenges specific to
each application case to employ them in real-world scenarios.

In reviewing the history of Al surveys, no significant work
has been found that specifically focused on the combination of
Neurosymbolic Al with RL. Earlier works are either focused
solely on Neurosymbolic Al or on the field of RL. Negligible
surveys can be found on Neurosymbolic Al[4], [S] few other
provides insight on recent advances[6] and application[7].
A large number of surveys are available on RL on various
aspects:

o RL in general[1], DRL[8], [9], Causal RL[10]

o Safety and Security in RL [11], [12]

e Environment [13]

o Agent [14], [15], [16]

o Application like Natural Language Processing [17], [18],
Communication Network [19], Robotics [20], Healthcare
[21], Transportation [22]

This survey is the first of its kind and the first attempt
to evaluate the combination of these two popular areas as
one (Neurosymbolic RL). In this survey, we provide insights
into all the relevant work done in the past under various
taxonomies, along with possible opportunities to address the
challenges.

The following is the document’s structure: Section II pro-
vides an overview of milestones in the Al field from its
inception to the present day. In Section III, we present an
overview of Neurosymbolic Al and RL, covering relevant
literature and significant research findings. Section IV is ded-
icated to Neurosymbolic Reinforcement Learning, including
workable architectures and requirements. In Section V, we
summarize notable research in Neurosymbolic RL under vari-

ous headings. In Section VI, we discuss opportunities that have
emerged from Neurosymbolic RL. Section VII is devoted to
the challenges of implementing proposed Neurosymbolic RL
applications. We identify the obstacles and challenges that may
arise. Finally, in Section VIII, we offer concluding remarks on
our survey paper.

II. MILESTONE IN REINFORCEMENT LEARNING

Reinforcement Learning (RL) has a rich history dating
back to the 1940s when B.F. Skinner introduced the concept
of operant conditioning in psychology, while Walter Pitts
and Warren McCulloch[23] presented a computational model
based on the functioning of the human brain. Donald Hebb’s
Hebbian Learning Rule[24] also formed the basis for modern
neural networks. In the late 1950s, Frank Rosenblatt developed
the perceptron, which could learn based on associationism.
Grigoryevich[25] used complex polynomial equations to sta-
tistically analyze network elements, selecting the best ones
for the next layer, laying the groundwork for what would
become deep learning. During this time, Richard Bellman also
developed the mathematical formulation of RL and introduced
the Bellman equation for dynamic programming[26]. Later,
Temporal Difference Learning (TD Learning)[27] was intro-
duced, which enabled agents to learn from delayed rewards
and gradually update their value estimates. In the 1970s,
the field of reinforcement learning experienced a reduction
in funding, leading only a few scientists to continue their
work independently. Nonetheless, during this time, significant
progress was achieved. Fukushima developed the Neocogni-
tron neural network[24], which utilized a hierarchical multi-
layer architecture to enable computers to learn visual patterns.
The Neocognitron later served as a basis for the convolutional
neural network that is widely used today. Additionally, Paul
Werbos introduced the backpropagation algorithm[24], which,
although not widely used at the time, raised questions in
cognitive psychology regarding the role of symbolic logic in
human comprehension.

The 1980s saw the emergence of the field of RL with the
introduction of Actor-Critic Algorithms and Q-learning[28].
In the following decade, the field continued to evolve with
the introduction of core algorithms such as REINFORCE and
SARSA. A pivotal breakthrough occurred in 1999 with the
invention of the Graphics Processing Unit (GPU), which en-
abled RL to tackle more complex environments. This was fur-
ther enhanced by the parallel computing power of NVIDIA’s
Compute Unified Device Architecture (CUDA) on GPUs.

The 2010s proved to be a remarkable decade for RL. In
2012, the introduction of the Arcade Learning Environment
(ALE) opened the gateway to the use of RL in gaming
environments. Deep RL, which combines neural networks with
RL to learn high-dimensional state-action value functions,
was introduced, leading to breakthroughs in game playing
and robotics, such as the Deep Q-Network (DQN). Many
researchers became active in modifying existing algorithms,
resulting in the development of numerous new algorithms in
the RL domain, such as Trust Region Policy Optimization
(TRPO), Deep Deterministic Policy Gradient (DDPG)[29],
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Soft Actor Critic(SAC)[30], Quality Value Iteration Optimiza-
tion (QT-Opt)[31] and various variations of DQN, including
Double DQN, Dueling DQN[32], and Rainbow DQN[33].
The introduction of OpenAl Gym, an open-source toolkit for
developing and comparing reinforcement learning algorithms,
opened the door for exploring RL algorithms among the
RL community members. In 2016, RL achieved a significant
milestone in the history of Al by defeating the world champion
in the game of Go. RL continued to conquer many other games
against humans, such as Dota 2 and Starcraft II. In 2017,
AlphaZero was introduced, which empowered RL models and
beat humans in chess, shogi, and Go with a significant margin
without human training[34].

As we have progressed into the 2020s, RL continues to
be a dynamic field of research, with researchers exploring
novel algorithms and applications, such as multi-agent RL,
meta-RL, and RL for safety-critical systems. In addition, Alp-
hazero has been successful in discovering faster multiplication
algorithms[35] which showed that RL can also contribute in
other field also as a superhuman. Recently, in late 2022, Ope-
nAl released ChatGPT, a chatbot that utilizes RL techniques to
be trained and generate diverse responses to various inquiries
and concerns. Other major technology companies are also
in the race to develop their own innovative Al solutions. A
summary of significant milestones in the history of RL is
presented in F'ig.2.

III. BACKGROUND AND PRELIMINARIES

In this section, we keep focus on the background informa-
tion related to the topics Neurosymbolic Al followed by RL.

A. Neurosymbolic Al

The field of artificial intelligence has been centered around
the goal of developing machines that can achieve human-
like levels of intelligence. Two major approaches have been
pursued in this effort. The first, symbolic Al, is a rule-based
approach that was prevalent from the 1950s to the 1980s.
The second approach is a data-based approach known as con-
nectionist AI. While symbolic Al requires a large amount of
information to be supplied, it can learn from this information
on its own. The primary disadvantage of connectionist Al is its
inability to explain the reasoning or logical processes behind
the model, leading to these models being referred to as black
boxes. Symbolic reasoning provides an explainable inference
process and employs powerful declarations to represent knowl-
edge, as well as offering benefits such as fast initial coding,
explicit method control, and abstraction of knowledge[36].
However, this approach is limited in its ability to handle vast
amounts of incomplete data and to generalize from such data.
Psychologist Daniel Kahneman has distinguished between two
human cognitive processes, system 1 and system 2. System 1 is
fast, automatic, and unconscious, akin to deep learning, while
system 2 is slow, effortful, and conscious, similar to symbolic
AI[37]. In the context of Al, there have been discussions of
ways to combine these two approaches, as the authors of a
study[38] conclude that only a combination of both fields is
likely to enable the development of human-like intelligence.

Neurosymbolic Al is a subfield of Al that combines two
historically prominent approaches: connectionist Al and sym-
bolic Al This integration enables more efficient derivation
of knowledge and general concepts from data, focusing on
learning from experience and reasoning about what has been
learned from uncertain environments. Hybrid Neurosymbolic
systems require less training data and are capable of tracking
the steps required to draw conclusions and make inferences
which is the reason Neurosymbolic Al has been regarded as
the 3"¢ wave of AI[39]. By combining symbolic reasoning
with deep learning, ideal results can be obtained with a limited
number of datasets, error correction with recoveries, and en-
hanced explanatory capabilities that are not possible with deep
learning alone[40]. Numerous applications necessitate both
learning and reasoning abilities. On the neural aspect, models
learn from data provided to them, while the symbolic aspect
seeks to retain the innate explanatory power of these systems.
The Neurosymbolic Al domain, as previously discussed, can
be employed to develop various applications across differ-
ent fields, such as medical diagnostic systems, recommender
systems, and text mining[41]. By incorporating deep human
expert knowledge into the system’s design and function,
Neurosymbolic Al can be leveraged to its fullest potential
in creating such applications.F'7g.3 depicts the evaluation of
the Neurosymbolic Al process within a model design that
integrates neural network and symbolic artificial intelligence,
harnessing the full strength of both fields in hybrid models.
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Numerous researchers have provided insights into how the
fields of neural and symbolic Al can be combined practi-
cally. Three noteworthy works have contributed significantly
to organizing the research in Neurosymbolic systems. The
first notable work was a survey paper published in 2005 by
Sebastian and Pascal [42]. They identified three main axes
of Neurosymbolic integration: Interrelation, Language, and
Usage. Each of these axes was further divided into several
sub-divisions. F'ig.4 provides a simplified visualization of the
eight dimensions along with their axes. Another researcher,
Henry Kautz[43], proposed a way to classify Neurosymbolic
systems into six different categories. He gave them distinctive
names, which are detailed in Table 1. In a recent survey[6],
Neurosymbolic systems were analyzed based on three param-
eters: efficiency, generalization, and interpretability. The au-
thors proposed a novel taxonomy consisting of three different
classes: learning for reasoning, reasoning for learning, and
learning-reasoning. Table II provides detailed descriptions of
each of these classes.

Language
A

. - Usage
Propositional ———» First Order

Symbolic «— > Logical

Repi

Reasoning  <—— Learning

5. Interrelation

Standard «————>» Non-standard
Distributed €——>» Local

Neuronal «————>» Connectionist
Integrated +———>» Hybrid

Fig. 4. Classification by Sebastian and Pascal[42]

TABLE I
CLASSIFICATION BY HENRY KAUTZ[43]

Classification Characteristic Features

Symbolic input is converted to feature
vectors for the neural networks which give
final results in the symbolic form

Symbolic Neuro symbolic

Neural pattern recognition subroutine

Symbolic[Neuro] within a symbolic problem solver

A cascade from neural network into

Neuro | Symbolic .
symbolic reasoner

Symbolic rules are input which are
compiled so that their knowledge
end up in the neural network

Neuro: Symbolic — Neuro

Uses direct encodings of logical statements

Neuro_{Symbolic} into neural structures

Embed symbolic reasoning inside neural
engine to enable both superhuman and
super combinatorial reasoning

Neuro[Symbolic]

TABLE 1T
CLASSIFICATION BY D. YU AND ET AL. [6]

Classification Characteristic Features

Neural network play the role of the helper, it
extracts the important symbols and
information so that the search space of the
symbolic system narrowed down

Learning for reasoning

Symbolic system act as a helper, it
provides symbolic knowledge to the neural
network from where the final decision is made

Reasoning for learning

Uses symbolic and neural systems as an
alternate process. They both complement each
other to give the final results

Learning-reasoning

B. Reinforcement Learning

The fast-learning algorithms and wide-ranging applications
of RL have made it increasingly popular in academia and
industry, thanks to significant technological advancements
[44], [45]. In earlier literature, RL was described as a class of
problems that an agent encounters in a dynamic, unpredictable
environment and solves through trial and error. Nowadays,
RL is viewed as a machine learning paradigm that trains an
agent to make decisions based on its immediate surroundings
to optimize rewards. The training process involves a loop
of interaction with the environment, including observing,
receiving rewards, making decisions, and obtaining feedback
signals [46]. RL has proven its ability to solve complex real-
world problems, such as natural language processing, image
classification, speech recognition, and decision-making, which
has improved planning and perception in various applications
[47].RL is an essential component of autonomous driving cars
and robots, which can perform tasks such as food preparation
without human intervention or specific programming. RL-
based strategies could play a crucial role in enabling fully
autonomous systems in the future [48]. RL employs algorithms
and methods to enable an agent to obtain optimal control
in an environment, and the agents in RL can range from a
game player to a stock trading bot. Another field which is
similar to RL is Intrinsic Motivation(IM) but it lack feedback
mechanism. Many research papers in RL have utilized IM to
address complex problems in sparse reward platforms [49],
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[50]. The interactions that occur between an agent and its
environment are typically modeled as a Markov Decision
Problem (MDP)[51], or a Partially Observable Markov De-
cision Process (POMDP). An MDP is a framework used for
sequential decision-making in Markovian dynamical systems,
which extends the Multi-Armed Bandits (MAB) framework
by allowing the system state to stochastically change based
on the actions taken and their resulting outcomes. On the
other hand, a POMDP is a newer version of MDP, where
the system state is not directly observable. In certain cases,
MDPs can be solved analytically, while in many cases, they
can be solved iteratively through the use of dynamic or
linear programming. When no model is present, RL methods
can be employed to obtain sample trajectories and directly
interact with the system[52]. As the number of computing
devices continues to increase rapidly, it is expected that the
number of devices capable of handling complex and dynamic
systems with minimal programming will grow exponentially,
potentially reaching billions.

Looking at the bigger picture, RL can be classified as a type
of sample-based approach for solving MDP problems. The RL
technique uses sample trajectories and the agent’s interaction
with the system, which can be obtained from a simulation.
This approach is quite common in practical applications, where
a simulation is available, and a clear transition-probability
model is not required. In such scenarios, dynamic or linear
programming may not be suitable, making the RL method a
more practical option[53].Main Components of Reinforcement
Learning are:

o Policy: It refers to the way an agent behaves at a given
time, which is generally a mapping from perceived states
to the action that needs to be taken when in those
states of the environment. The goal of the policy is to
maximize the expected cumulative reward received by
the agent over time. There are various types of policies,
including deterministic policies and stochastic policies,
which define the agent’s behavior in different ways.

o Reward Signal: It refers to the objective or goals of the
problem and is a number delivered to the agent by the
environment at each time step. The reward signal is used
to train the agent to learn a behavior that maximizes the
cumulative reward over time. It is a crucial component as
it guides the agent to take actions that lead to achieving
the desired goals.

Learn the
model

o Value Function: It represents the expected long-term
cumulative reward that an agent can obtain by following
a specific policy. It estimates the value of each state
or state-action pair, which allows the agent to choose
the best action in each state. The value function can
be expressed mathematically as the expected sum of
discounted future rewards starting from a given state or
state-action pair. The estimation of the value function
can be done through various methods, such as Monte
Carlo methods, Temporal Difference learning, or Bellman
equations.

o Model of the Environment: It refers to the representation
of how the environment behaves in response to the actions
taken by the agent. It allows the agent to predict the
next state and reward given the current state and action.
The model can be either known or unknown, and the
goal is to use it to optimize the agent’s behavior. In
cases where the model is known, dynamic programming
techniques can be used to find the optimal policy. The
model can be represented in different forms, including
transition probabilities, state-transition diagrams, or func-
tion approximators.

Reinforcement Learning (RL) can be categorized into vari-
ous types based on different parameters, such as the environ-
ment, policy, model, and others. These categories provide a
framework to understand and classify different RL approaches.
Fig.5 summarizes the various types of RL based on these
parameters, including environment type, horizon type, opti-
mization type, and more.

The success of RL largely depends on the quality of its
algorithm. Numerous RL algorithms have been developed,
tailored to specific contexts, and based on various parameters
such as environment type, action space type, and model
type. These algorithms are continuously modified to improve
their performance and expand their scope of applications[54].
Fig.6 provides a brief overview of the various types of RL
algorithms that have been used to date.

IV. NEUROSYMBOLIC REINFORCEMENT LEARNING

RL, a long-standing topic in the field of AIl, has faced
the curse of dimensionality, but the introduction of DRL
solved this problem. However, DRL has several limitations.
For instance, DRL can be extremely data-inefficient. In a paper
by Deepmind [33], they demonstrated that the Rainbow DQN
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method can achieve state-of-the-art performance in terms of
both performance and data efficiency. Nevertheless, it required
almost 83 hours (about 3 and a half days) of playtime in
addition to the training time. Conversely, many people can
achieve this level of performance in just a few minutes.
Another issue with DRL is that, except for rare scenarios,
domain-specific algorithms work better than DRL. In the field
of robotics, Boston Dynatmics1 is a leading research institution
that focuses mainly on classical robotics techniques such
as time-varying Linear Quadratic Regulator(LQR), Quadrtic
Programming(QP) solvers, and convex optimization. Another
main issue with RL is the reward system, which can be easily
functionalized, but the challenge arises when trying to encour-
age appropriate behavior while still making it learnable. Sparse
rewards are problematic because they only supply rewards in
the goal state, making them difficult to shape. Shaped rewards
are easier to learn because they provide positive feedback
even when the whole solution has not yet been figured out.
However, the problem with shaped rewards is that they are
biased. The agent becomes focused on maximizing the reward

Uhttps://www.bostondynamics.com/research
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Fig. 7. Learning for Reasoning RL model

instead of finding the complete solution. For example, in a
study on text summarization [55], the RL model focused on
increasing the ROUGE score, which it succeeded in doing.
However, it failed to achieve the actual task of generating
readable summaries. In contrast, summarized text generated
by the model with lower ROUGE scores was found to be
more readable and efficient.

The combination of Neurosymbolic systems and RL appears
to be a solution to many of the issues identified in previous
DRL methods. This approach not only adds reasoning and ex-
plaining capabilities to DRL but also provides a breakthrough
in the field of RL. There are multiple ways in which the
Neurosymbolic counterpart can be combined with RL, each
with its own unique features. In this context, we will discuss
three different approaches.

A. Learning for Reasoning RL model

The Learning for Reasoning RL model combines a neural
component with a symbolic system to improve reasoning
capabilities. The neural component functions as a co-actor,
while the symbolic system handles the problem of reasoning.
The DNNs in the model help to reduce the symbolic space,
leading to faster convergence and improved performance. In
cases where the data presented to the model are unstructured,
DNNs can transform them into a symbolic form that the
symbolic system can utilize. Furthermore, DNNs can also
distill the learning policy to the symbolic system, which
enhances verifiability. Serialization characterizes the neural
and symbolic counterparts in this model, as shown in F'ig.7.

B. Reasoning for Learning RL model

The Reasoning for Learning RL model is a different ap-
proach that utilizes symbolic models to guide the output of
the neural network. By incorporating structured knowledge
from the symbolic system, the performance and interpretability
of the DNNs can be improved. The symbolic model can
also help with reward shaping to enable faster convergence
and improved performance of the DNNs agent. Additionally,
the symbolic system can aid in generating the programmatic
policy, making the RL model more interpretable and explain-
able. This type of model is characterized by parallelization, as
shown in F'ig.8.
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C. Learning-Reasoning RL model

In the Learning-Reasoning RL model, the neural and sym-
bolic components work bidirectionally, where the output of
one can be the input of the other. This approach combines the
benefits of both the Learning for Reasoning RL and Reasoning
for Learning RL models, resulting in a balanced combination
of interpretability and reasoning capacity. The symbolic part
provides the structured knowledge to DNNs to enhance their
interpretability and performance, while the neural component
reduces the symbolic space, enabling the symbolic counterpart
to achieve faster convergence. Moreover, the two parts work
together which make the RL model more interpretable and ex-
plainable. This type of model is characterized by bidirectional
communication, as depicted in Fig.9.

V. RELATED WORKS

Neurosymbolic Reinforcement Learning (RL) is an emerg-
ing area of Al that is currently lacking in literature. This
section aims to provide an overview of the implementation
stages of Neurosymbolic RL, including the state of the art,
current trends, and proposed research studies. Various notable
works have been analyzed, detailing the neural and symbolic
components used in Table III, and information about the RL
algorithm, reward space, action space, and policy module in
Table IV. These works have been classified into three main
RL models: Learning for Reasoning, Reasoning for Learning,
and Learning-Reasoning, and further sub-divided according to

their areas of application. A summary of this classification
can be found in Table V. The classification and analysis of
these works provides insights into the use of Neurosymbolic
RL models and their potential for further development in the
future.

A. Learning for Reasoning RL model

This particular Neurosymbolic RL model involves the use of
a neural network as an auxiliary tool to extract crucial symbols
and information, which helps to reduce the search space of
the symbolic system. This results in a faster problem-solving
process, making it especially useful for problems that require
reasoning. This architecture has been used for the following
primary goals:

1) Transforming unstructured data into a symbolic repre-
sentation: Symbolic systems, which rely on logical rules and
representations of symbolic data, are often limited in their
ability to process unstructured data such as images, videos,
and natural language text. Most of the real world data are
inherently present in the unstructured form so there must
be a model to transform them to the symbolic form before
being processed by the symbolic models. DNNs have been
shown to be very effective in processing and generating such
unstructured data and can be used to generate structured data
that can be used as input to a symbolic system.

Deep Symbolic Reinforcement Learning (DSRL)[56] con-
sists of two main components: a deep neural network that
learns a low-level continuous representation of the state space
and map it to low-dimensional symbolic space, and a symbolic
model that distills the learned policy into a more interpretable
form by mapping symbolic representation to action. The
authors use this framework to learn policies for a range of
environments, and demonstrate that their system outperforms
traditional reinforcement learning algorithms in terms of inter-
pretability, generalization, and efficiency.Symbolic Reinforce-
ment Learning with Common Sense (SRL+CS)[57] a novel
extension of DSRL where the authors create a meaningful
symbolic representation of the world using sub-states before
applying learning and decision-making algorithms. They have
two modification in Q-value function: restricting the updates
to specific sub-state and assigning importance on the basis of
distance of the objects. This approach provides better gener-
alization and explainability. Neural Symbolic Reinforcement
Learning (NSRL)[58], includes a reasoning module based on
neural attention networks, which performs relational reasoning
on symbolic states and induces the RL policy, enabling end-
to-end learning with prior symbolic knowledge. It can extract
the logical rules selected by the attention modules instead of
storing all the rules, saving memory budget and improving
scalability.Deep Symbolic Policy[59], uses an autoregressive
recurrent neural network to generate symbolic policies, which
are optimized using a risk-seeking policy gradient. To scale
to environments with multi-dimensional action spaces, the au-
thors propose an “anchoring” algorithm that distills pre-trained
neural network-based policies into fully symbolic policies.
The authors also introduce two novel methods to improve
exploration in DRL-based combinatorial optimization which
are hierarchical entropy regularizer and a soft length prior.
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Detect, Understand, Act (DUA) [60], composed of three
components: Detect, which consists of a traditional computer
vision object detector and tracker, Understand, which provides
an answer set programming (ASP) paradigm for symbolically
implementing a meta-policy over options, and Act, which
houses a set of options that are high-level actions enacted
by pre-trained DRL policies. The paper evaluates the DUA
framework on the Animal-Al (AAI) competition testbed and
achieves state-of-the-art results in multiple categories. It is
modular approach, allowing for straightforward generalization
and transfer to other complex tasks. Another study, Symbolic
Options for Reinforcement Learning (SORL)[61], proposes
a method for automatically discovering and learning sym-
bolic options, which are higher-level actions with specified
preconditions and postconditions, to assist deep reinforce-
ment learning (DRL) agents in complex environments. It was
successful in mitigating the problem of sparse and delayed
reward along with improving efficiency.Neurosymbolic Logic
Neural Network (LNN) for RL algorithm[62], supplies fast
convergence and interpretability for RL policies in text-based
interaction games by extracting first-order logical facts from
text observation using semantic parser(ConceptnNet) and his-
tory, then trains the symbolic rules with logical functions in
the neural networks.

2) Knowledge Graph Reasoning: Knowledge Graph (KG)
reasoning is the task of inferring new information from a given
KG, which consists of a set of entities and their relationships.
KG reasoning is important for a wide range of applications,
including question answering, information retrieval, and rec-
ommender systems.

DeepPath[63], uses a policy-based agent with continuous
states based on knowledge graph embeddings to sample the
most promising relation and extend the multi-hop relational
path. The authors demonstrate that their method outperforms
path-ranking based algorithms and knowledge graph embed-
ding methods on two standard reasoning tasks on Freebase
and Never-Ending Language Learning datasets. Meander-
ing In Networks of Entities to Reach Verisimilar Answers
(MINERVA)[64]outperforms DeepPath, as Deeppath cannot
be applied to query answering tasks where the second entity is
unknown.It uses neural reinforcement learning to learn how to
navigate the knowledge graph conditioned on the input query
to find predictive paths.

3) Verification: The process of verification aims to deter-
mine if a model meets a particular desired property, and can
play a key role in enhancing quality and safety. In the context
of reinforcement learning (RL), it is important to verify a
model’s convergence, correctness, and robustness to ensure it
functions effectively.

Verifiability via Iterative Policy ExtRaction(VIPER)[65],is
a modification of Q-DAGGER algorithm used for verifying
the correctness of deep reinforcement learning policies. The
approach involves extracting a small, interpretable model from
a deep neural network policy, which can then be verified using
existing verification techniques. The extracted model approx-
imates the original policy well and can be used to analyze
the policy’s convergence, correctness, and robustness.Another
model, Reinforcement Learning with Verified Exploration

TABLE III
NEURAL AND SYMBOLIC COMPONENTS IN RELATED WORKS

Research NN Knowledge Base
[56] CNN First Order Logic
[57] CNN First Order Logic
[58] Transformer First Order Logic
[59] RNN Decision Tree
[60] DNN Answer Set Programming
[61] DNN Propositional Logic
[62] LNN First Order Logic
[63] DNN Knowledge Graph
[64] LSTM Knowledge Graph
[65] DNN Decision Tree
[66] DNN Symbolic Policies
[67] DNN Decision Tree
[68] CNN Finite Trace Linear Temporal Logic
[69] CNN Finite Trace Linear Temporal Logic
[70] DNN Omega Regular Language
[71] DNN Programmatic Policy
[72] DNN Programmatic Policy
[73] NN State Machines
[74] RNN Programmatic Policy
[75] DNN Deterministic Finite Automaton
[76] DNN Propositional Logic
[77] CNN First Order Logic

(REVEL)[66], incorporates a differentiable symbolic planner
that generates a set of safe exploration actions, which the
RL agent executes to find optimal policies while avoiding
potentially unsafe states. The proposed framework is formally
verified using the Coq proof assistant, which ensures that the
system is free from runtime errors and satisfies desired safety
properties.

4) Gaming: Neurosymbolic RL is a promising approach in
the field of game playing, where the goal is to develop agents
that can learn to play games at a human-like level or beyond. It
involves combining neural networks and symbolic systems to
develop agents that can learn the rules of the game and develop
strategies to play the game effectively. By combining symbolic
reasoning with deep learning, Neurosymbolic RL models can
provide explanations for the decisions made by the agent,
making it easier for humans to understand and evaluate the
agent’s performance.AlphaGo Zero[67], achieves superhuman
performance in the game of Go without using human data
or domain knowledge. The system is based on a combination
of deep neural networks and Monte Carlo tree search, with
the neural networks trained through a reinforcement learning
process using self-play. It beats the older AlphaGo version in
game Go with score of 100-0.

B. Reasoning for Learning RL model

In this type of Neurosymbolic RL model, symbolic system
acts as a helper, it provides symbolic knowledge to the neural
network from where the final decision is made. This approach
is particularly useful in complex applications, such as robotics,
where the environment is often uncertain and dynamic, and
where the use of symbolic knowledge can facilitate high-
level reasoning and decision-making. It has been used in the
following application area:

1) Reward Shaping: In the field of RL, one of the primary
challenges is dealing with sparse rewards. One solution to
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this problem is reward shaping, which involves incorporating
domain knowledge. Rather than relying on a single, final
reward, intermediate rewards are provided to the agent for
exhibiting desirable behavior. This encourages the agent to
take effective actions early on in the learning process, leading
to faster convergence.

Monte Carlo Tree Search with Automaton-Guided Reward
Shaping (MCTS-A)[68], helps to improve the learning pro-
cess and final performance of the agent in domains with
sparse rewards. The method introduces an automaton that
guides the reward shaping process, allowing for a dynamic
and flexible approach. The automaton’s states correspond to
the different learning phases of the agent, and each state
has its own shaping rules that change over time. Transfer
learning between the two different environments with the
same objective is also eased with this approach. Authors
in[69], extended the work by introducing Multiagent Tree
Search Algorithm with reward shaping(MATS-A) so that it
can be applied to multi-agent scenario and can handle both
stochastic and deterministic transition in Multi-agent Non-
Markovian Reward Decision Process. They prove that sharing
the same search tree and DFA objective can be used to develop
competitive and cooperative behavior among the agents, within
and across the team.Research work [70] first converts an
omega-regular specification into a Buchi automaton. It is then
used to construct an average reward objective which can then
be optimized by standard RL algorithms.The authors prove
that the learned policy converges to the optimal policy and
demonstrate the effectiveness of the method.

2) Programmatic Policy Design: A programmatic policy
refers to a decision-making algorithm that governs the behav-
ior of an agent that can make decisions. The programmatic
policy takes inputs from the environment and computes a set
of actions that the agent should take in response.The design
of programmatic policies can vary based on the complexity
of the task and available data, including decision trees, state
machines, and programs.

Imitation-Projected Programmatic Reinforcement Learning
(PROPEL)[71], proposes a new approach for combining imi-
tation learning with reinforcement learning, called imitation-
projected programmatic reinforcement learning (IP-PRL). The
approach uses a programmatic policy to encode a priori
knowledge about the task and trains an agent through a
combination of imitation learning and reinforcement learning.
The agent first learns to imitate an expert’s behavior through
supervised learning, and then the agent’s policy is updated
through reinforcement learning while being constrained to
stay close to the expert’s policy. IP-PRL outperforms both
pure imitation learning and pure reinforcement learning in
terms of sample efficiency and final performance. Another
work Programmatically Interpretable Reinforcement Learn-
ing (PIRL)[72], uses Neurally Directed Program Synthesis
(NDPS) algorithm to generate interpretable neural policies
which can be verified through the symbolic approach. It
first learn a neural policy network using deep reinforcement
learning and then performing a local search over programmatic
policies that seeks to minimize the distance from this neural or-
acle. [73] proposes a novel approach for synthesizing policies

for automated decision-making systems that can generalize
to new situations. The authors use inductive programming
techniques, specifically “program synthesis by example”, to
generate policies that satisfy a set of example-based specifi-
cations. Framework([74] synthesize programmatic policies that
are more interpretable and generalizable than neural network
policies produced by deep reinforcement learning methods.
It uses a program representation and only requires minimal
supervision compared to prior programmatic reinforcement
learning and program synthesis works. It learns a program
embedding space that parameterizes diverse behaviors in an
unsupervised manner and then searches over this space to find
a program that maximizes the return for a given task.

3) Task Segmentation: Main goal or task is broken down in
to the smaller task with their own set of rewards so that the task
become more generalizable and reasonable. DeepSynth[75],
uses automata synthesis to automatically segment a task. A
task was broken down into smaller subgoals, each with its
own reward. The proposed approach learns a model of an
automaton that represents the state machine of a task and uses
it to segment the task into subgoals. The learned automaton is
then used to guide the agent in finding the optimal policy for
the task.

4) Knowledge Initialized Model: Researches has found that
the model give higher convergence rate, reasoning ability
if initialized with knowledge base.Before starting the learn-
ing process, the knowledge base of the agent is initialized
with some prior information instead of starting from zero.
Propositional Logic Nets (PROLONETS)[76].,enables warm
start of learning process by efficient initialization of RL
agents using human-specified policies, without requiring an
Imitation Learning (IL) phase. This approach helps RL agents
to navigate complex environments that pose challenges to
randomly initialized models, and allows for greater explo-
ration. It outperforms baseline RL approaches such as IL and
knowledge-based techniques.

C. Learning-Reasoning RL model

This Neurosymbolic RL model uses symbolic and neu-
ral systems as an alternate process. They both complement
each other by performing abstraction and regularization to
give the final results.Symbolic Deep Reinforcement Learning
(SDRL) [77], uses planner-controller-meta-controller architec-
ture where planner uses prior symbolic knowledge for long
term planning, controller uses DRL algorithms for intrinsic
rewards and meta-controller evaluate training performance of
controller based on extrinsic rewards along with proposing
new intrinsic goals to the planner.

VI. OPPORTUNITIES

Real-world applications strive to minimize errors that can
arise from risky exploration and exploitation, whereas Neu-
rosymbolic RL methods employ a trial-and-error mechanism.
However, to reconcile this contradiction between Neurosym-
bolic RL and real-world applications, a viable approach is
to create an authentic simulator using real data and domain
knowledge of the model dynamics. Subsequently, objectives
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TABLE IV
RL COMPONENTS OF THE RELATED WORKS
Research RL-Algorithm State Space Action Space Policy Module
[56] Q-Learning Multi-dimensional vector Multi-dimensional vector Tabular Q Learning
[57] Q-Learning Multi-dimensional vector Multi-dimensional vector Q-Table
[58] Double DQN Set of Predicates Set of Predicates Multi-layer Perceptron
[59] Policy Gradients Multi-dimensional vector Multi-dimensional vector RNN
[60] PPO Multi-dimensional vector Discrete action space NN
[61] Double Q-Learning High level dimension sapce 5-dimensional vector Option Set
[62] DOQN Multi-dimensional vector Discrete set of 10 different actions LNN
[63] Policy Gradients Entities in Knowledge Graph Relations in Knowledge Graph Fully connected NN
[64] REINFORCE Entities in Knowledge Graph Relations in Knowledge Graph LSTM
[65] VIPER Multi-dimensional vector Leaf nodes in Decision Tree Decision Tree
[66] Policy Gradients Real vector space Real vector space NN
[67] Policy Gradients Muti-dimensional vector Mutli-dimensional vector DNN
[68] MCTS-A Nodes of Automata Transitions of Automata CNN
[69] MATS-A Nodes of Automata Transitions of Automata CNN
[70] Differential Q-Learning Nodes in GFM automaton Relation in GFM automaton DNN
[71] Policy Gradients Continuous Continuous Programatic and Neural
[72] NDPS Unconstrained Policy Space Continuous Programatic and Deterministic
[73] Gradient Based Optimization Continuous Continuous State Machine
[74] REINFORCE Program Embedding Space Program Execution Trace RNN
[75] DOQN Multi-dimensional vector Multi-dimensional vector DNN
[76] PPO 193D and 37D 44D and 10D Decision Tree
[77] Double Q-Learning High dimensional Set of Primitive Action DNN

TABLE V
SUMMARY OF CLASSIFICATION OF RELATED RESEARCHES

RL model Areas of Application Related Researches

Transforming unstructured data into a symbolic representation | [S6][57][58]1[59][60][61][62]
. . Knowledge Graph Reasonin, 63][64

Learning for Reasoning Veriﬁcatiin P g { 65}{6 6}
Gaming [67]
Reward Shaping [68][69] [70]

o _— Programatic Policy Design [71][72]173][74]

Reasoning for Learning Task Segmentation [75]
Knowledge Initialized Model [76]

Learning-Reasoning Task Segmentation [77]

can be designed for the agent, and the policy network can
be trained in the simulator. Finally, the trained policy can be
deployed in the real world with further enhancements. Though
Neurosymbolic RL is in its early stage but it has started
contributing to other RL areas as well. Causal Reinforcement
Learning[78] has been able to produce the significant result
since its collaboration with Neurosymbolic RL model. In this
section, we examine the opportunities of Neurosymbolic RL
methods in various fields.

A. Robotics and Control

Building autonomous embodied robotic systems requires
designing suitable policies that ensure the system operates
within reasonable mechanical constraints while maintaining
safety and data efficiency. RL has been growing in robotics
from very old time[79], [80]. The symbolic method has been
introduced in robotic motion planning and control in 2007[81]
to address these concerns. It is clear that decision-making is a
crucial aspect of robotics control, and there have been various
approaches to address this challenge. One notable technique
is the Neurosymbolic Program Search (NSPS)[82], which
produces interpretable and robust Neurosymbolic programs for
autonomous driving design. Another approach is the decom-
position of decision-making into two levels: what to do and

how to do it[83]. This method utilizes Neurosymbolic skills
and has been shown to be effective in various robotics tasks.
There have also been efforts to construct robotic platforms
for building manipulation environments, such as the open-
source platform CausalWorld[84]. Overall, these methods and
platforms have been shown to improve policy learning and
performance in robotics tasks.

B. Gaming RL

Games are considered as suitable benchmarks with clear-
cut rules and boundaries in the RL community. Over the past
few years, gaming Al has exhibited extraordinary decision-
making abilities, surpassing human-level performance in vari-
ous decision-making games, including card games[85], board
games|[2], and video games[3]. Neurosymbolic RL has primar-
ily been utilized in board games and video games, yielding
state-of-the-art outcomes. It is expected that these models will
also outperform others in card games. However, open-ended
games such as Minecraft and XLand remain unexplored.

C. Intelligent Question Answering

Neurosymbolic RL has emerged as a powerful tool in
natural language processing for intelligent question answering,
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which involves deducing the answer to a given question based
on the surrounding context, often comprising both text and
images. Although various studies in the context of Neurosym-
bolic RL have focused on knowledge graph reasoning[63], [64]
for this task, combining both text and images remains a rela-
tively unexplored research area. As such, there is considerable
potential for future research to investigate and advance this
topic.

D. Safe Reinforcement Learning

Reinforcement learning (RL) has become popular due to
its ability to learn from experience and make decisions in
complex environments. However, in safety-critical settings
such as autonomous driving, robotics, or medical diagnosis,
the failure of the system can result in severe consequences,
including loss of property or human lives. Ensuring the safety
of RL agents is crucial in such settings. Neurosymbolic RL
has been used for the verification of the RL[65], [66] and it
has given some significant result. But, it is still in its infancy
period, and there are many opportunities for safely exploring
the RL.

E. Optimizing Parameters of RL

The RL framework consists of several components, includ-
ing the environment, the agent, the policy, and the reward
function. Neurosymbolic RL has been applied to different
components of the RL framework, combining symbolic rea-
soning with neural networks to solve complex RL problems. It
has been successful in addressing the issue of sparse rewards
by formulating reward functions that provide more informative
feedback to the agent [68], [69], [70]. It has also been used to
learn programmatic policies that are more generalizable and
flexible to different environments [71], [72], [73], [74]. Addi-
tionally, Neurosymbolic RL has been effective in reducing the
symbolic space, resulting in more efficient representations of
the policy, and improving the agent’s performance [56], [57],
[58], [59], [60], [61], [62].

VII. CHALLENGES

Neurosymbolic RL addresses a variety of issues that were
previously challenges for DRL and has opened up new oppor-
tunities for researchers to develop novel methodologies. In this
section, we outline a list of problems that are still prevalent
with Neurosymbolic RL, including some that are specific to
DRL and others that are more general research gaps.

A. Automated Generation of Symbolic Knowledge

Neurosymbolic RL relies on an environment where the
agent can interact and receive rewards. Typically, these envi-
ronments are represented by symbolic knowledge, as explained
in the previous section. Symbolic knowledge encompasses
both logic rules and knowledge graphs. While research into
the automatic construction of non-logical symbolic part like
knowledge graphs is relatively mature[86], [87], [88], the au-
tomatic learning of logic rules from data remains an underex-
plored area. Typically, domain experts manually construct the

logic which is a time-consuming, laborious, and non-scalable
process. Additionally, achieving end-to-end learning for rules
that describe prior knowledge from data is a challenge for
Neurosymbolic systems. Moreover, the inclusion of intricate
logic, probabilistic relations, or diverse data sources adds
further complexity to the problem. We contend that greater
attention should be given to the comprehensive and automatic
discovery of symbolic knowledge, not only from increasingly
vast data sets but also from networks with rapidly expanding
dimensionality.

B. Verification and Validation

Neurosymbolic RL models have gained popularity across
multiple industries, with their size increasing rapidly to enable
deployment in larger scenarios. These models have achieved
state-of-the-art results and have provided a degree of reasoning
and explainability. However, due to the relative novelty of this
field, there is a lack of validation and verification methods
for these models, which need to be addressed. For instance,
despite Al surpassing humans in the game of Go in 2016,
recent adversarial attacks on the models have exposed their
weaknesses and led to humans defeating similar Al models
in the game[89]. This highlights the significant gap in the
verification field, which requires extensive work to ensure that
Neurosymbolic RL models are thoroughly validated and can
be deployed without any flaws. Some work[65], [66], [90]
has been initiated in this in this direction but prior work
[91], [92] also need expansion so that they can be applied
to Neurosymbolic RL domain.

C. Neurosymbolic RL Algorithms

The combination of neural, symbolic, reinforcement learn-
ing allows for a more comprehensive approach to problem-
solving, as it enables the system to work with both numerical
and symbolic data for RL. This provides a more powerful and
flexible framework for learning, allowing for the integration
of different types of knowledge and reasoning techniques
for the agent.However, in order to effectively combine these
fields, new learning algorithms need to be designed that can
take advantage of the strengths of both symbolic and neural
learning so as to be implemented in RL. The traditional
reinforcement learning algorithms may not be accurate enough
for Neurosymbolic learning, as they do not account for the
complexities and nuances of symbolic reasoning.Therefore,
new algorithms need to be optimized to work under the union
of two sets of knowledge, leveraging the strengths of both
neural and symbolic learning[93]. By doing so, researchers can
develop more accurate and efficient learning algorithms that
can be applied to a wide range of problems in fields such as
natural language processing, robotics, and healthcare, among
others.

D. Balancing Reasoning and Learning in RL

Neurosymbolic RL requires training the neural compo-
nents using meaningful symbolic constraints and allowing the
symbolic components to evolve with high-quality data-driven
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rules. However, transitioning between neural and symbolic
components can lead to a loss of learning or reasoning power,
which presents scalability challenges for the field. One crucial
issue in Neurosymbolic RL is how to align symbolic spec-
ifications with representations learned using neural methods,
known as the symbol grounding problem[94], [95]. This chal-
lenge is well-known in Al, but it is particularly complicated
in Neurosymbolic RL, where symbolic and neural components
can be interwoven in intricate ways.

VIII. CONCLUSION

In recent years, there has been a remarkable growth in the
field of Neurosymbolic Reinforcement Learning (RL). This
survey provides a comprehensive overview of Neurosymbolic
RL, which can be classified into three RL models: Learning for
Reasoning, Reasoning for Learning, and Learning-Reasoning.
We have examined each category’s core area of application
and conducted an in-depth analysis of its various components,
including neural, symbolic, and RL. Additionally, we have
highlighted future opportunities for exploration and the poten-
tial challenges that might arise. Our hope is that this survey
will inspire the AI community to delve deeper into this area
and explore its possibilities.
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