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 Too much of a good thing can be harmful. Choice overload, a compelling paradox in consumer psychology, 
exemplifies this notion with the idea that offering more product options could impede rather than improve 
consumer satisfaction, even when consumers are free to ignore any available option. After attracting intense 
interest in the past decades from multiple disciplines, research on choice overload has produced voluminous 
yet paradoxical findings that are widely perceived as inconsistent even at the meta-analytic level. This paper 
launches an interdisciplinary inquiry to resolve the inconsistencies on both the conceptual and empirical fronts. 
Specifically, we identified a surprising but robust pattern among the existing empirical evidence for the choice-
overload effect and demonstrated through mathematical analysis and extensive simulation studies that the 
pattern would only likely emerge from one specific type of latent mechanism underlying the moderated choice-
overload effect. The paper discusses the research and practical implications of our findings—namely, the broad 
promise of analytical meta-analysis (an emerging area for the use of data analytics) and machine learning to 
address the widely recognized inconsistencies in social and behavioral sciences, and the unique and salient 
role of the information systems community in developing this new era of meta-analysis.  
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Introduction 

The very essence of scientific progress is the systematic 
accumulation of knowledge, yet the viability of doing so is 
being questioned in many disciplines in social and behavioral 
sciences such as psychology (Open Science Collaboration 
2015) and economics (Camerer et al. 2016). Critics point to 
many conflicting findings on the same research question in the 
social and behavioral sciences, echoing a famous quote by 
United States Senator Walter “Fritz” Mondale: “For every 
study that contains a recommendation, there is another, equally 
well documented study, challenging the conclusions of the first” 
(Bangert-Drowns and Rudner 1990, p. 1) Without the ability to 
collectively reason about such conflicting findings, we often see 
tens, even hundreds, of studies examining the same research 
question from different angles, only to make the picture even 
murkier. Choice overload is a “poster child” of such paradoxical 
research questions with notoriously inconsistent findings 
(Scheibehenne et al. 2010). This paper launches an 

 
1 H. R. Rao was the accepting senior editor for this paper. / Xiao Fang served as the associate editor.  

interdisciplinary inquiry into the feasibility of leveraging 
advanced analytical techniques to collectively reason about the 
conflicting findings for the choice-overload effect in the 
behavioral research literature. While most of the current paper 
focuses on choice overload as the case study, our broader goal, 
as elaborated in the discussion section, is to demonstrate the 
power of analytical meta-analysis, the use of data analytics and 
machine learning techniques in synthesizing the inconsistent 
findings of behavioral research, and to highlight the unique and 
salient role the information systems (IS) community may play 
in building and expanding its methodological arsenal. 

In the rest of the introduction, we first review the remarkable 
inconsistencies in the literature of choice overload, before 
providing an overview of our novel analytical approach. We 
conclude the section with a summary of the intended 
contributions of the paper from both substantive and 
methodological perspectives. 
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Inconsistencies in the Choice-Overload 
Literature 

Choice overload is a compelling paradox in consumer 
psychology that has attracted intense research interest in the past 
decades. It captures the idea that offering more options could 
impede rather than improve consumer satisfaction, even when 
consumers are free to ignore any available option. Following 
the dramatic evidence of choice overload in the marketing 
context (Iyengar and Lepper 2000), a series of studies ensued in 
psychology (e.g., Inbar et al. 2011), marketing (e.g., Chernev 
2003), and IS (e.g., He et al. 2019), only to present a complex 
picture with widely dispersed effect sizes and paradoxical 
findings even at the meta-analytic level. While some meta-
analyses found strong evidence of the choice-overload effect 
and identified its moderators (Chernev et al. 2015; McShane 
and Böckenholt 2018), others contended a failure of replication 
and a general lack of empirical support for the effect 
(Scheibehenne et al. 2010; Simonsohn et al. 2014). These 
contradictory results leave the empirical understanding of 
choice overload in a fragmented state. 

The conceptual underpinning of choice overload is similarly 
fragmented. On the one hand, the presence of choice overload 
naturally makes the option-satisfaction relation2 into a 
curvilinear inverted-U model (Grant and Schwartz 2011; 
Reutskaja and Hogarth 2009) because offering more options 
would be beneficial to consumer satisfaction up to a point 
before becoming negative. On the other hand, most existing 
studies have conceptualized the choice-overload effect no 
differently than a linear relation and examined it through a 
classic two-group experimental design.3 Further, moderation in 
choice overload4 has been exclusively modeled using a linear 
mechanism without discerning the two theoretically distinct yet 
equally prevalent moderation types for a curvilinear 
relationship: whether the moderator steepens/flattens the curve, 
or shifts the turning point5 of the curve left/right6 (Haans et al. 
2016). Like the fragmented view at the empirical level, the 
theoretical understanding of choice overload is similarly 
fragmented, representing a considerable gap in the literature. 

 
2 That is, the relationship between the number of available options and 
consumer satisfaction. 
3 With such a design, a researcher compares the satisfaction of two groups 
of individuals treated with two assortment sizes (small vs. large), 
respectively. All primary studies included in the recent meta-analyses of 
choice overload (e.g., McShane and Böckenholt 2018) belong to this 
category. 
4 The existing literature has noted many potential moderators for choice 
overload. For example, (Chernev 2003) identified a consumer’s familiarity 
with the available options as a moderator variable, as an increasing level of 
familiarity likely attenuates the choice-overload effect. 

Given the practical implications of choice overload in an e-
commerce context (e.g., its importance in illuminating how 
consumer satisfaction may vary with the number of products 
displayed on an online browsing interface; Johnson et al. 
2012), it has also received considerable attention in the IS 
literature. For example, cognitive overload in information 
processing has long been noted in IS research (Doll and 
Torkzadeh 1988; Driver and Streufert 1969), even before the 
emergence of choice overload in the marketing literature. 
Nonetheless, most existing IS studies have approached the 
issue from the perspective of information quality (Doll and 
Torkzadeh 1988; Geva et al. 2019; Jones et al. 2004), which 
is of paramount importance for the design and processing of 
complex information but does not afford direct guidance on 
the number of options to offer in an e-commerce context. 
Indicatively, some studies (e.g., Pan et al. 2013) contend that 
more options are always preferred in online browsing (i.e., 
choice overload does not exist), citing the inconsistent meta-
analytic findings discussed earlier (Scheibehenne et al. 2010); 
while others assume a detrimental effect of having too many 
options displayed on the interface (e.g., Geva et al. 2019). In 
sum, the conflicting views of choice overload in consumer 
psychology are also present in IS research. 

A Novel Analytical Approach 

The fragmented views of choice overload directly result from 
the paradoxical combination of an obviously nonlinear (i.e., 
inverted-U) conceptualization of the effect and a 
methodological deficit at the empirical front to examine such an 
effect, most prominently the lack of a meta-analytic method that 
can synthesize the results of two-group experiments to probe 
the characteristics of a nonlinear relationship. Thus, we premise 
the reconciliation of the fragmented views on developing a 
novel analytical link between the conceptual underpinning of 
choice overload—i.e., the notion of the option-satisfaction 
relation being an inverted-U if choice overload exists and 
monotonic if it does not—with the unique analytical patterns 
discernible from the observed inconsistencies of the existing 
empirical findings. Ideally, such a link should explicate the 

5 The turning point is the point at which the inverted-U curve reaches its 
maximum. It has also been referred to as the “inflection point” in the 
literature (Grant and Schwartz 2011). Since mathematically an inverted-U 
function reaches its peak at the turning point (where the first derivative 
equals zero), not the inflection point (where second derivative equals zero), 
we use the term “turning point” throughout this paper for the purpose of 
consistency. 
6 This conceptual discrepancy is particularly perplexing in the context of 
choice overload, given that differentiating the two moderation types is 
salient for firms to assess the importance and feasibility of finding the 
“right” number of options in their product design. Specifically, the 
importance of choice overload is directly linked to the steepness of the 
curve, while the feasibility of finding a “right” assortment size is linked to 
the left/right variation of the turning point. 
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mechanisms through which the former entails the latter, 
enabling us to address the fragmented empirical view by 
elucidating how an underlying conceptual model could actually 
explain and account for the empirical inconsistencies. Similarly, 
we would reconcile the fragmented conceptual view by leaning 
on the coalescent existing empirical evidence to statistically 
unpack the underlying option-satisfaction relation, determining 
whether it is monotonic or an inverted-U and delineating the 
type(s) of moderation that should be expected. 

Methodological research in adjacent fields has illustrated how 
curvilinearity can be linked to the paradoxical findings of 
correlational studies when range restrictions occlude the 
underlying effect (Pierce and Aguinis 2013). Still 
underdeveloped in the literature, however, is the analytical 
link between curvilinear relations and the outcomes of two-
group experimental designs, like those used in the existing 
empirical studies of choice overload. We submit that the 
existence of this gap speaks to the interdisciplinary challenge 
facing the development of the analytical link. On the one hand, 
researchers in disciplines such as mathematics are oblivious to 
the gap as they rarely use behavior research methods like two-
group experiment designs. On the other hand, behavioral 
researchers lack the analytical tools necessary to identify 
nonlinear effects from the findings of two-group experiments. 
In this paper, we tackle this interdisciplinary challenge by 
developing a novel analytical pattern of inconsistencies 
among the outcomes of two-group experiments that can only 
emerge if both of the following two conditions are met: First, 
the underlying option-satisfaction relation must be an 
inverted-U rather than monotonic (e.g., linear or curvilinear-
yet-monotonic). That is, the choice-overload effect must exist. 
Second, the moderation of the option-satisfaction relation 
must substantially shift the turning point of the inverted U 
left/right, instead of merely steepening/flattening the curve. 
We prove the identifiability of the pattern mathematically and 
demonstrate its statistical power through extensive simulation 
studies, before confirming its presence in the empirical 
evidence for the choice-overload effect. 

Summary of Contributions 

For the specific phenomenon of choice overload, this paper 
makes substantive contributions by clarifying the basis for 
expecting the emergence of inconsistent findings from two-
group experimental designs examining the choice-overload 
effect. We also offer strong evidence that the choice-overload 
effect does exist since a monotonic option-satisfaction relation 
could not have produced the pattern of inconsistencies in the 
existing empirical evidence. Further, we take care to specify 
how the two conceptually distinct moderation types manifest as 
clearly distinguishable patterns among the experimental 
findings. Given the voluminous evidence of moderation in 

choice overload, the appreciation of how moderation operates 
is not only of practical pertinence but also crucial for the design 
of future research. 

This paper also contributes methodologically to the broader 
research agenda of analytical meta-analysis, i.e., the use of 
data analytics and machine learning techniques to enable the 
collective reasoning of (potentially inconsistent) findings in 
the literature of social and behavioral sciences (Zhang et al. 
2020). To this end, we provide one of the first analytical 
methods that can establish the presence of an inverted-U 
relationship and its moderation type based on experimental 
studies that were not specifically designed to test a curvilinear 
relation. This affords behavioral researchers an opportunity to 
leverage the existing empirical evidence in exploring, 
theorizing, and testing curvilinear relations before new 
experiments dedicated to the examination of curvilinearity can 
be conducted and accumulated over time (to allow for a 
comprehensive meta-analysis in the future). Further, the 
effectiveness of the analytical method developed in the paper 
demonstrates the promise of casting an analytics lens into the 
collective reasoning of conflicting findings in empirical 
studies. It is our belief that, as a scholarly community with a 
diverse set of methodological roots, IS researchers are 
uniquely positioned to contribute to the development of 
analytical meta-analysis and to accelerate the systematic 
accumulation of knowledge in a broad range of behavioral 
research. 

Conceptual Development 

In this section, we develop the conceptual foundation linking 
the theoretical underpinning of the choice-overload effect and 
its moderation to the empirical outcomes of two-group 
experiments. The mathematical model and simulation studies 
for the conceptual arguments will be presented in the sections 
that follow. Since the presence of choice overload would 
imply an inverted-U option-satisfaction relation, we first 
review the conceptualization of an inverted-U relationship, 
including its two distinct moderation types, in the literature. 
Then, we outline the alternative conceptualizations for choice 
overload, and link each of them to the empirical outcomes of 
two-group experiments, before developing a unique pattern of 
inconsistencies among the empirical outcomes that could have 
emerged from only one of the alternative conceptualizations. 

Conceptualization of an Inverted-U Relationship 

A relationship is an inverted-U if the dependent variable 𝑌 
first increases with the independent variable 𝑋 and then 
decreases once 𝑋 reaches the “turning point.”  
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Note: In all subplots, the 𝑥-axis represents the assortment size, and the 𝑦-axis represents the utility derived by a consumer from being offered 
the assortment to choose from. Column (a) depicts examples of the benefit function, Column (b) depicts examples of the cost function, while 
Column (c) depicts the inverted-U functions formed by combining the functions in Columns (a) and (b). Columns (d) and (e) depict the two types 
of moderation for an inverted-U relation: Type 1 steepens/flattens one or both sides of the curve without changing the turning point, while Type 
2 shifts the turning point left/right. 

Figure 1. Illustrations of the Countervailing Forces Resulting in an Inverted-U Relationship 

 
For the option-satisfaction relation, the assortment size and 
the satisfaction of consumers are the independent and 
dependent variables, respectively. Since the psychology 
literature has unequivocally confirmed people’s preferences 
of having some options (e.g., 𝑋 = 2) over no option at all 
(i.e., 𝑋 = 1), the option-satisfaction relation would be 
destined to be an inverted-U should choice overload exist 
(Coombs and Avrunin 1977; Grant and Schwartz 2011; 
Reutskaja and Hogarth 2009). 

An inverted-U relationship is often conceptualized as “the 
resultant of two opposed mediating processes, both 
monotonic” (McGuire 1997, p. 23) so as to explicate the two 
countervailing forces that jointly constrain and influence the 
relation. For the option-satisfaction relation, the 
monotonically increasing function captures the benefits 
associated with a larger assortment, such as the potential to 
offer consumers a better match with their personal preferences 
(Baumol and Ide 1956), to accommodate consumers’ variety-
seeking behavior (Levav and Zhu 2009), to create a perception 
of freedom of choice (Kahn et al. 1987), etc. The 
monotonically decreasing function, on the other hand, 
captures the negative implications of a larger assortment, e.g., 
by triggering “buyer’s remorse” (Schwartz et al. 2002), by 
requiring additional cognitive costs for evaluating the 
alternatives (Roberts and Lattin 1991), by inflating 
consumers’ (unreasonable) expectations of finding an “ideal” 
option (Diehl and Poynor 2010), etc. Figure 1(a)-(c) illustrates 
several examples of how two monotonic functions can be 
additively combined to form an inverted-U relationship. As 

 
7 Since shifting a linear relation left/right does not change the slope, its 
theoretical impact on the effect size is zero. 

can be seen from the figure, the two monotonic functions 
could follow a variety of shapes, from linear functions to 
functions of diminishing returns or accelerating losses. 

In terms of the moderation of an inverted-U relationship, 
Haans et al. (2016) developed a typology of two different 
types of moderating effects, which are illustrated in 
Figure 1(d) and (e), respectively. It is important to note that 
the two types of moderations often operate in tandem in 
practice. The first type steepens or flattens the curve, like how 
moderation in a linear mechanism increases or decreases the 
slope. More flexible than the linear case though, a moderating 
effect on an inverted-U relationship could steepen/flatten both 
sides of the inverted-U, or flatten one side while steepening 
the other, as can be seen from Figure 1(d). The second type of 
moderation shifts the inverted-U curve (and its turning point) 
left or right. Unlike the linear case in which a left/right shift 
has no influence on the observed effect,7 shifting an inverted-
U left or right could vary the observed effect considerably due 
to the change of the turning point. 

For the specific case of choice overload, the existing meta-
analyses (Chernev et al. 2015; McShane and Böckenholt 
2018) synthesized four types of moderator variables: decision 
goal, preference uncertainty, decision task difficulty, and 
choice set complexity. The first two types of moderators, 
decision goal and preference uncertainty, reflect the intrinsic, 
idiosyncratic, factors associated with individual decision 
makers. Specifically, decision goal captures whether 
consumers approach the assortments with the goal of making 
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a choice (i.e., “purchasing”) or merely to understand the 
available options (i.e., “browsing”). In the case of browsing, 
the benefit (i.e., increasing) function is likely less steep, as it 
is now limited to the pleasure from the evaluation process 
(Kahn and Wansink 2004) rather than the gain from making 
the “right” purchase decision. Meanwhile, the pressure 
associated with decision-making also dissipates, flattening the 
cost function as well (Chernev and Hamilton 2009). 
Combining the two changes, we can expect the inverted-U 
curve to be flattened for browsing than for purchasing, despite 
the two curves potentially sharing a similar turning point. In 
other words, the first type of moderation (i.e., 
steepening/flattening) likely dominates the effects of 
moderators in the decision goal category. 

Preference uncertainty refers to the extent to which 
consumers have articulated preferences with respect to the 
selection decision, e.g., whether they are familiar with the 
characteristics of the available product offerings (Chernev 
2003). For consumers who are familiar with the available 
options, the cost function is likely pushed to the right, as their 
familiarity affords them the opportunity to assess a larger 
number of options before incurring an onerous cognitive 
rumination (Mogilner et al. 2008; Morrin et al. 2012). 
Corresponding to this delayed cost, the turning point is also 
shifted to the right, exerting the second type of moderation, 
i.e., a shift of the turning point. 

The latter two types of moderators, decision task difficulty and 
choice set complexity, reflect the extrinsic factors associated 
with the decision task itself. Specifically, decision task difficulty 
captures the structural characteristics of the decision problem; 
while choice set complexity captures the complexity of the 
available choice options. Any time constraint on decision-
making, for example, is a factor that belongs to the category of 
decision task difficulty. Whether there is a dominant option 
among the available choices, on the other hand, belongs to the 
category of choice set complexity. Both factors are likely to 
affect the steepness of the inverted-U curve. Time constraints 
are known to rapidly increase the cognitive load associated with 
decision-making (Bettman et al. 1998), steepening the cost 
function incurred by cognitive overload. On the flip side, having 
a dominant option can ease the decision-making process 
considerably (Huber et al. 1982), flattening the cost function 
instead. While this is consistent with the first type of moderation 
effect, it is important to note that both factors are also likely to 
shift the turning point. Time constraints have been shown to 
incur greater regret when an individual chooses from a larger 
assortment than a smaller one (Inbar et al. 2011), conceivably 

 
8 Throughout this section, we use the term “moderation” in a broad sense, 
encompassing not only theory-predicted moderator variables but also other 
study-level characteristics that could alter the option-satisfaction 
relationship. 

shifting the turning point to the left. On the other hand, 
increasing the assortment size with the presence of a dominant 
option has been shown to enhance the dominance of the option 
and boost consumers’ satisfaction with choosing the dominant 
option (Dhar 1997), suggesting a shift of the turning point to the 
right when a dominant option is introduced. In sum, these latter 
two types of (extrinsic) moderators likely induce both types of 
moderating effects, steepening/flattening the curve while 
simultaneously shifting the turning point. 

The two types of moderation have distinct practical 
implications for the choice-overload effect. The first type of 
moderation reveals the factors that make the effect more (or 
less) important in practice because a flat option-satisfaction 
curve renders the assortment size inconsequential for 
consumer satisfaction. With the aforementioned moderator of 
decision goal, choice overload is clearly more important when 
a firm is designing a website for direct purchase than a 
brochure for casual browsing. The second type of moderation, 
on the other hand, indicates the critical factors to consider in 
designing assortments for product offerings. For example, a 
firm may want to limit the number of product options when 
few consumers are familiar with the product, and gradually 
increase the assortment size when familiarity grows. Since the 
two types of moderation are theoretically and empirically 
distinct, they should be clearly distinguished in theoretical 
development and empirical examinations (Haans et al. 2016). 

Linking Conceptualizations to Existing Empirical 
Evidence 

To reconcile the fragmented views of choice overload, we 
seek to link its conceptual model with the effect sizes reported 
in the literature, in order to explain what type of an option-
satisfaction relation, combined with what type(s) of 
moderation,8 could have caused the observed heterogeneity 
among the existing empirical findings. The emergence of 
heterogeneity is indeed a common issue in meta-analyses. In 
general, when the observed heterogeneity exceeds what could 
be explained by artifactual factors such as sampling error,9 
researchers theorize and test moderator variables to account 
for the residual heterogeneity (Thompson 1994). The unique 
challenge for choice overload, as discussed earlier, is the 
dearth of meta-analytic methods that can probe the 
characteristics of a curvilinear relationship based on the 
reported findings of two-group experiments (Pierce and 
Aguinis 2013). 

9 The presence of such residual heterogeneity has been unequivocally 
established in the meta-analyses for choice overload (e.g., Chernev et al. 
2015; McShane and Böckenholt 2018). 
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To address this challenge, we must extend beyond the simple 
aggregation of existing findings into statistical indicators, but 
develop analytical models that can glean deeper insights about 
how the moderation of a linear or curvilinear relationship 
manifests as the heterogeneity observed in the existing 
findings. In the passages that follow, we first outline the key 
conceptual question we aim to answer from the synthesized 
findings. Then, we develop three analytical models, 
corresponding to three possible answers to the conceptual 
question, respectively. Finally, we identify a unique pattern of 
inconsistencies among the reported effect sizes that could only 
have emerged from one of the three models. We acknowledge 
at the onset that, for the sake of clarity, it is necessary to gloss 
over several operationalization challenges in the conceptual 
development. At the end of this section, we summarize these 
challenges and how they are addressed later in the paper. 

Key Question 

The fragmented conceptual views of choice overload bring to 
the fore two pressing issues that are practically imperative: 
The first is whether the choice-overload effect exists at all 
(cf. Scheibehenne et al. 2010). The importance of this issue 
has long been touted in the literature (e.g., Iyengar and Lepper 
2000), as it informs practitioners whether offering more 
options could adversely impact consumer satisfaction. If 
choice overload does exist, then the second issue that arises is 
whether the turning point of the option-satisfaction 
relationship may be shifted significantly by potential 
moderators. That is, whether the moderation operates only 
through the first type (i.e., steepening/flattening the curve), or 
whether the second type (i.e., turning-point shift) occurs either 
instead of or in addition to the first type. This issue is 
important because the turning point directly implicates the 
number of options one should offer to consumers in practice. 
In other words, by understanding whether the turning point 
shifts in moderation, we would be able to inform practitioners 
whether it is necessary to adjust the number of available 
options under different moderating conditions (e.g., for 
different customers, products, etc.). Considering the two 
issues in tandem, the key research question we aim to answer 
is whether the choice-overload effect exists and, if so, whether 
there is statistical evidence for the second type of moderation 
(i.e., a shift of the turning point). 

Three Models 

There are three possible answers to the key question: (1) the 
choice-overload effect does not exist, (2) the effect exists but 
moderation only operates through steepening/flattening of the 
curve, and (3) the effect exists and there are moderators that 
shift the turning point significantly. To offer an analytical link 
between the conceptual question and the existing empirical 

evidence, we develop three models corresponding to the three 
possible answers, respectively. 

We start with the case in which the choice-overload effect 
does not exist. For this possibility, numerous theories in social 
psychology (e.g., attribution theory, Kelley 1973; reactance 
theory, Brehm 1966) point to the option-satisfaction relation 
forming a monotonic function that may be linear or 
curvilinear-but-monotonic. This provides the underpinning 
for the first analytical model, an example of which is depicted 
in Figure 2(a). Similar to how moderation is commonly 
examined for a linear relationship, with a monotonic option-
satisfaction relation, researchers often hypothesize that a 
change of moderator level triggers a slope change or even a 
sign reversal of the relation, e.g., from the increasing blue line 
to the decreasing red line in Figure 2(a). Indicatively, the 
effect size observed in a two-group experiment, as illustrated 
by the two solid line segments in the figure, would switch 
from positive to negative, like what has been widely reported 
in the literature (Chernev et al. 2015). As discussed earlier in 
the paper, while this model is obviously incompatible with an 
inverted-U option-satisfaction relation, it actually reflects how 
a moderating effect has been examined in most existing 
empirical studies for choice overload. 

For the second possible answer (i.e., where the choice-
overload effect is only moderated through the 
steepening/flattening of the curve), we consider a model of the 
option-satisfaction relationship as an inverted-U function, 
depicted in Figure 2(b). As can be seen from the figure, since 
the moderation does not shift the turning point significantly, 
the two inverted-U curves, representing the option-
satisfaction relationship under two moderating conditions, 
always share the same turning point. Nonetheless, just like in 
the first model, the effect size observed in a two-group 
experiment could also switch from positive to negative under 
different moderating conditions. Thus, this second model 
could also entail a widely dispersed set of effect sizes, as 
reported in the literature. 

The last possible answer to the conceptual question is that the 
moderation of choice overload involves a significant shift of 
the turning point. This answer gives rise to a wide range of 
possibilities in terms of how moderation operates, as 
moderation in this case may or may not involve a 
steepening/flattening of the inverted U. Figure 2(c) depicts 
one such possibility, where the moderating effect is limited to 
the horizontal shift of the turning point. As can be seen from 
the figure, even in this (more simplistic) case, the effect size 
observed in a two-group experiment could vary drastically, 
even flipping its sign with the shift of the turning point. In 
other words, all three models could plausibly produce the wide 
dispersion of effect sizes reported in the literature. 
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Note: For all subplots, the 𝑥-axis represents the assortment size, and the 𝑦-axis represents consumer satisfaction. In each subplot, the red 
(dotted) and blue (dashed) lines/curves depict the option-satisfaction relation at two different moderator levels, respectively. The two vertical 
dashed lines represent the two assortment sizes chosen in a two-group experiment. The intersection of a curve and the vertical line at 𝑋1 (or 𝑋2) 
represents the mean satisfaction level for the group treated with the smaller (or larger) assortment. Thus, the red or blue solid line captures the 
effect size observed in a two-group experiment for the corresponding moderator level. 

Figure 2. Illustrations of Three Alternative Conceptualizations  

Unique Pattern of Inconsistencies 

The discussions of the three models seemingly suggest that we 
have hit a dead end: As all three models could manifest as sign 
reversal in a two-group experiment, it appears untenable to 
distinguish between the three models based on the existing 
empirical evidence, which was mostly collected from two-
group experiments. Interestingly, while this infeasibility is 
true for a single two-group experiment, it does not hold when 
we have access to the results of multiple such experiments 
with different assortment-size designs. The key reason can be 
explained as follows. Figure 2 suggests that, for a given pair 
of assortment sizes {𝑋1, 𝑋2}, it is easy to find three models that 
all produce the same pair of effect sizes for the two moderator 
levels (i.e., blue and red). Nonetheless, if we now conduct 
another two-group experiment with another pair of assortment 
sizes, like 𝑋3 and 𝑋4 in Figure 3, then clearly the three models 
can no longer produce the same results.10 In other words, we 
can make a distinction between the three models by 
comparing and contrasting the results of two-group 
experiments with different assortment-size designs. 

To develop a model-specific pattern, we start with a few 
observations from Figure 3. Consider two pairs of 
assortment sizes reported in two different experiments: 
{𝑋1, 𝑋2} and {𝑋3, 𝑋4} with equal distance (i.e., 𝑋2 − 𝑋1 =
𝑋4 − 𝑋3). When the underlying option-satisfaction relation 

is an inverted-U (i.e., Models 2 and 3), we set 𝑋1 and 𝑋2 to 
be on different sides of the turning point 𝑋∗ (i.e., 𝑋1 < 𝑋∗ <
𝑋2), and 𝑋3 and 𝑋4 on the same side (i.e., 𝑋3 < 𝑋4 < 𝑋∗). 
Now, for each model, we examine how moderation affects 
the effect observed in a two-group experiment with 
assortment sizes being {𝑋1, 𝑋2} and {𝑋3, 𝑋4}, respectively. 
Note that, since 𝑋2 − 𝑋1 = 𝑋4 − 𝑋3, the slope of each solid 
line segment in Figure 3 represents the effect size for the 
corresponding setup.11 

As can be seen from Figure 3, with the linear mechanism in 
Model 1, the observed effect sizes remain constant regardless 
of the assortment-size design. This is indeed consistent with 
the conventional understanding of study design in choice 
overload, as the numeric values of the assortment sizes were 
never included in any meta-analytic models examined in the 
literature. With Models 2 and 3, however, this conventional 
understanding belies the drastic change of effect sizes with 
varying assortment sizes. For example, with Model 2, the 
difference in effect size is more pronounced for {𝑋3, 𝑋4} than 
{𝑋1, 𝑋2}, as evidenced by the large difference between the 
slopes of the red and blue line segments on the left side of 
Figure 3(b). The intuition behind this is simple. Based on the 
definition of a turning point, the slope (i.e., first-order 
derivative) of the curve must approach zero when the chosen 
assortment sizes are close to the turning point.  

 
10 Mathematically, while 𝑓(𝑋2) − 𝑓(𝑋1) alone cannot uniquely identify a 
function 𝑓(⋅) (e.g., a dotted line in Figure 2), the function can be clearly 
identified (from the three candidates) if we know both 𝑓(𝑋2) − 𝑓(𝑋1) and 
𝑓(𝑋4) − 𝑓(𝑋3). 

11 As we elaborate in the mathematical formalism and results sections, a 
variety of effect sizes (e.g., Cohen’s 𝑑, log odds ratio) have been reported 
in the literature, and can be fit into our conceptual model with proper 
transformations. For the purpose of conceptual development, it is 
appropriate to elucidate the effect size as the slope of a solid line segment. 
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Note: The design of all subplots follows the note for Figure 2. The key observation from (b) is that the difference in slope is larger for {𝑋3, 𝑋4} 
than {𝑋1, 𝑋2}. The opposite holds for (c). 

Figure 3. Illustrations of Model-Specific Patterns  

Thus, even when a moderator changes the steepness of the 
inverted U, as long as the assortment sizes are still close to 
the (unchanged) turning point, the effect size observed in a 
two-group experiment must remain bounded within the 
vicinity of zero. In contrast, when the assortment sizes are 
far from the turning point, the observed effect could vary 
drastically, as it can now reflect the true 
steepening/flattening (hence the changed slopes) of the 
inverted U. This is exactly what can be observed in 
Figure 3(b). 

The opposite may be true for Model 3. Consider the example 
depicted in Figure 3(c), where the moderating effect only 
entails a turning-point shift. As can be seen from the figure, 
the difference in effect size is now larger for {𝑋1, 𝑋2} than 
{𝑋3, 𝑋4}. This is consistent with the conceptualization behind 
the moderating effect of the turning-point effect: When the 
assortment sizes are close to the turning point, like 𝑋1 and 𝑋2 
in Figure 3(c), a turning-point shift could flip the sign of the 
observed effect with a pronounced change of slope. The slope 
change dissipates, however, once the assortment sizes are 
further away from the turning point—e.g., {𝑋3, 𝑋4} in 
Figure 3(c)—as the observed effect is now dominated by the 
steepness of the inverted-U rather than the position of the 
turning point. Comparing Model 3 with Model 2, a sharp 
contrast emerges. If moderation only operates through the 
steepening/flattening of the curve, we should expect a wider 
dispersion of effect sizes from experiments that select 
assortment sizes at either end of the spectrum. Only when the 
moderation entails a shift of the turning point, are we likely to 
observe a higher dispersion from experiments that feature 
assortment sizes in the middle, i.e., close to the turning point 
of the inverted U. 

The distinct observations from the three subplots of Figure 3 
give rise to the following model-specific pattern: Consider a 
set of existing two-group experiments with similar distance 
between assortment sizes, i.e., with a roughly constant 𝑋2 −
𝑋1. We sort the studies in increasing order of 𝑋‾ = (𝑋1 +
𝑋2)/2, and then inspect a sliding window of 𝑘 studies to 
assess how the dispersion (e.g., standard deviation) of the 𝑘 
reported effect sizes varies when 𝑋‾ grows from small to large. 
If the linear mechanism (in Model 1) were true, we would 
observe no change of dispersion. If Model 2 were true, we 
would observe a U-shaped dispersion, as it is higher when 𝑋‾ 
is at either end of the spectrum than when 𝑋‾ is close to the 
turning point. Only if Model 3 were true would it be possible 
for us to observe an inverted-U-shaped dispersion, which 
reaches the maximum when 𝑋‾ approaches the turning point of 
the option-satisfaction relation. 

The above conceptual development leaves a few limitations 
and operationalization challenges to be addressed through 
mathematical formalism. First, the dispersion in Model 1 is 
constant only when the underlying relation is linear. In the 
next section, we generalize the result from linear to monotonic 
polynomial functions and prove that the dispersion may be 
monotonic or U-shaped, but cannot be an inverted-U. While 
the possibility of a U-shaped dispersion potentially confounds 
the generalized Model 1 with Model 2, both remain clearly 
distinguishable from Model 3, which is the only possible 
model that could entail an inverted-U dispersion. Second, the 
above conceptualization focuses on experiments with similar 
distance between assortment sizes. With an analytical 
correction developed in the next section, we expand the 
pattern to involve all existing studies with arbitrary distance 
between assortment sizes. 
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Finally, we would like to note again that the two moderation 
mechanisms are likely to occur in tandem in practice (Haans 
et al. 2016). This is especially true for the choice-overload 
effect, given the likely existence of unknown moderators 
(McShane and Böckenholt 2018) and the potential for 
different moderators to function through different 
mechanisms.12 To this end, it is important to note that, while 
the existing empirical evidence might not afford us the 
resolution required to pinpoint the moderation mechanism for 
each moderator separately, if we observe an inverted-U 
pattern of dispersion from the collection of all existing studies, 
two findings abound: First, the underlying option-satisfaction 
relation is likely an inverted-U rather than a monotonic 
function as in Model 1, because the latter could not have 
produced an inverted-U pattern of dispersion. This provides 
strong evidence for the presence of the choice-overload effect. 
Second, the moderation of the option-satisfaction relation 
must involve a substantial shift of the turning point because, 
were the moderation limited to steepening/flattening the curve 
like in Model 2, the pattern of dispersion would have been a 
U-shape rather than an inverted-U-shape. 

Mathematical Formalism 

We detail the mathematical formulations of the three models 
introduced in the conceptual development, before proving the 
identifiability of the model-specific pattern. We discuss the 
operationalization of the pattern at the end of the section, 
addressing the challenges brought by the limited number of 
primary studies in the existing literature. 

Mathematical Formulation for The Three Models 

Recall from the conceptual development that the first model 
treats the option-satisfaction relation as monotonic in studying 
its moderation. In contrast, the other two models treat the 
relation as an inverted-U. This divergence in treatment 
necessitates different mathematical formulations, which we 
detail respectively as follows. 

Model 1 (Mixture of Monotonic Relations) 

Consider a consumer faced with the decision to choose from 
an assortment of 𝑋 items (𝑋 ≥ 1). With the monotonic-

 
12 As a case in point, see the earlier discussions of the moderating effects of 
decision goal and consumer expertise. 

mixture model, we express the consumer’s level of 
satisfaction from making the decision as 

𝒰(𝑋) = 𝛽0 + 𝛽1𝑋𝛼 + 𝛽2𝑋𝛼𝑍 + 𝛽3𝑍, (1) 

where 𝑍 is the moderator variable.13 Regardless of the model 
parameters, 𝒰(𝑋) is always monotonic with 𝑋. But its shape 
depends on 𝛼 and 𝛽1 + 𝛽2𝑍 in tandem. For example, it is 
linearly increasing when 𝛼 = 1 and 𝛽1 + 𝛽2𝑍 > 0, and 
linearly decreasing when 𝛼 = 1 and 𝛽1 + 𝛽2𝑍 < 0. When 
𝛼 < 1 and 𝛼(𝛽1 + 𝛽2𝑍) > 0, 𝒰(𝑋) represents diminishing 
returns as 𝒰(𝑋) is increasing with 𝑋 yet its first-order 
derivative ∂𝒰(𝑋)/ ∂𝑋 is decreasing with 𝑋. In contrast, when 
𝛼 > 1 and 𝛽1 + 𝛽2𝑍 < 0, 𝒰(𝑋) represents accelerating 
losses. The shape of 𝒰(𝑋) is moderated by 𝑍. For example, in 
the linear case where 𝛼 = 1, changing 𝑍 from 0 to 1 can flip 
𝒰(𝑋) from increasing to decreasing if 𝛽1 > 0 and 𝛽2 < −𝛽1. 
When 𝛽2 = 0, changing 𝑍 does not affect the shape of 𝒰(𝑋), 
but moves it up and down instead. 

While this mathematical model is considerably more general 
than the linear mechanisms depicted in Figure 3(a), it is still 
limited in assuming that 𝑍 does not change the exponent 𝛼. 
This assumption is likely inconsequential in the specific case 
of choice overload, given the aforementioned dominance of 
the linear model (i.e., 𝛼 = 1) in the literature. Nonetheless, 
assuming a constant 𝛼 could threaten the generalizability of 
our results. Thus, while we adopt Equation (1) in the 
mathematical formalism section, we also conducted extensive 
simulations (to be discussed later in the paper) while varying 
𝛼, in order to examine the robustness of our results. 

Models 2 and 3 (Inverted-U Conceptualizations) 

In this case, consumer satisfaction is conceptualized as 
combining two countervailing forces, one increasing with the 
assortment size and the other decreasing. Since either force 
can be captured using the model in Equation (1), we naturally 
express 𝒰(𝑋) as the algebraic sum of the two, i.e., 𝒰(𝑋) =
𝒰0(𝑋) + 𝒰1(𝑋) where 

𝒰0(𝑋) = 𝛽0 + 𝛽1𝑋𝛼 + 𝛽2𝑋𝛼𝑍 + 𝛽3𝑍, (2) 

𝒰1(𝑋) = 𝛽4 + 𝛽5𝑋𝛾 + 𝛽6𝑋𝛾𝑍 + 𝛽7𝑍. (3) 

In order for 𝒰(𝑋) to match the inverted-U conceptualization, 
the following four inequalities must all be satisfied: 

13 Note we can directly extend 𝑍 to be a vector of multiple moderator 
variables. Correspondingly, 𝛽2 and 𝛽3 will become vectors of the 
coefficients of these variables 
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𝛼(𝛽1 + 𝛽2𝑍) > 0

𝛾(𝛽5 + 𝛽6𝑍) < 0

𝛼(𝛽1 + 𝛽2𝑍) + 𝛾(𝛽5 + 𝛽6𝑍) > 0

𝛾 > 𝛼

 

(4)

(5)

(6)

(7)

  

Specifically, (4) ensures 𝒰0(𝑋) is increasing with 𝑋; (5) 
ensures 𝒰1(𝑋) is decreasing with 𝑋; (6) ensures 𝒰(𝑋) is 
increasing when 𝑋 = 1; and (7) ensures 𝒰(𝑋) is decreasing 
when 𝑋 → ∞. 

Compared with the common way to model a curvilinear 
relationship between 𝑋 and 𝑌, which is to include in the 
regression equation the first-order 𝑋, the quadratic form of it, 
and their respective interactions with the moderator 𝑍 (Aiken 
et al. 1991; Lind and Mehlum 2010), 

𝑌 = 𝑏0 + 𝑏1𝑋 + 𝑏2𝑋2 + 𝑏3𝑋𝑍 + 𝑏4𝑋2𝑍 + 𝑏5𝑍, (8) 

our model is considerably more general, as Equation 8 is a 
special case of our model when 𝛼 = 1, 𝛾 = 2, 𝛽0 + 𝛽4 = 𝑏0, 
𝛽1 = 𝑏1, 𝛽2 = 𝑏3, 𝛽3 + 𝛽7 = 𝑏5, 𝛽5 = 𝑏2, and 𝛽6 = 𝑏4. This 
added generalizability is essential for accommodating the 
nuanced theorizing of choice overload, e.g., the benefits 
derived from a larger assortment tend to follow a function of 
diminishing returns (Grant and Schwartz 2011). The 
traditional model, on the other hand, can only be interpreted 
as the algebraic sum of a linear relation and an accelerating 
loss function (Haans et al. 2016). 

Taking the first derivative of 𝒰(𝑋) with respect to 𝑋, we 
obtain the curvature of 𝒰(𝑋): 

∂𝒰(𝑋)
∂𝑋

= ∂𝒰0(𝑋)
∂𝑋

+ ∂𝒰1(𝑋)
∂𝑋

= (𝛽1 + 𝛽2𝑍)𝛼𝑋𝛼−1 + (𝛽5 + 𝛽6𝑍)𝛾𝑋𝛾−1.        (9) 

Setting it to zero, we derive the turning point 

𝑋∗ = (− (𝛽5+𝛽6𝑍)𝛾
(𝛽1+𝛽2𝑍)𝛼

)
1

𝛼−𝛾 . (10) 

The two different types of moderation can be explicated by 
examining how different values of 𝛼, 𝛽1, 𝛽2, 𝛽5, 𝛽6, and 𝛾 
yield distinct roles of the moderator 𝑍 in Equations (9) and 
(10). For example, when 𝛽6/𝛽2 = 𝛽5/𝛽1, changing 𝑍 has zero 
effect on the turning point 𝑋∗. Yet the curvature of 𝒰(𝑋) 
could change considerably. For example, when 𝛽2 > 0 and 
𝛽6 < 0, increasing 𝑍 from 0 to 1 steepens the curve, while 
decreasing 𝑍 flattens it. This reflects the first type of 
moderation (i.e., Model 2), where the moderating effect 
changes the curvature but not the turning point. 

 
14 Specifically, we collected all the group-wise standard deviations reported in 
the literature, resulting in a collection of 120 standard deviations reported by 60 
primary studies. Regressing the reported standard deviation over the independent 

In contrast, 𝑍 could also shift 𝑋∗ considerably without 
occasioning a large change of the curvature of 𝒰(𝑋). For 
example, consider the case where 𝛼 and 𝛾 are relatively close, 
e.g., 𝛼 = 0.9 and 𝛾 = 1.1. When 𝛽2 = −𝛽1/10 and 𝛽6 =
𝛽5/10, increasing 𝑍 from 0 to 1 barely moves the curvature, 
whereas 𝑋∗ is increased by a ratio of (1.1/0.9)5 = 2.73, 
pushing the turning point far to the right. This reflects the second 
type of moderation (i.e., Model 3), where the moderating effect 
substantially shifts the turning point left or right. 

Finally, we note that, while Equations (2) and (3) derive from 
the conceptual understanding of consumer satisfaction (i.e., the 
combination of two countervailing forces, Grant and Schwartz 
2011), it is not the only analytical formulation that reflects an 
inverted-U relationship. Another commonly used analytical 
formulation for inverted U is the spline formulation (i.e., piece-
wise linear, Simonsohn 2018), which concatenates two linear 
functions, one increasing and one decreasing, together at the 
turning point to form an inverted-U (more precisely, an 
inverted-“V”) shape. Even though this formulation does not 
align with the conceptual underpinning of choice overload, we 
will demonstrate in the next subsection that the analytical results 
derived in the paper readily generalize to the spline formulation, 
testifying to the robustness of our results. 

Model-Specific Patterns in the Dispersion of 
Reported Effect Sizes 

Reported Effect Sizes and Their Dispersion 

We start by linking 𝒰(𝑋) to the effect sizes reported in the 
literature. In most existing studies, the subjects were randomly 
partitioned into two groups treated with two assortment sizes 𝑋1 
and 𝑋2 (𝑋1 < 𝑋2), respectively. The effect size was then 
computed based on the difference of an outcome variable (e.g., 
satisfaction) between the two groups. For example, Cohen’s 𝑑 
is defined as the mean difference divided by their pooled 
standard deviation. The pooled standard deviation is commonly 
assumed to be constant to the independent variable (i.e., 
assortment size 𝑋) in meta-analysis, as a violation of the 
assumption suggests the existence of a treatment-by-subject 
interaction (Hunter and Schmidt 2004, p. 283) that has never 
been reported in the choice-overload literature. We also 
empirically tested this assumption and found no supporting 
evidence for a significant correlation between the reported 
standard deviation and the independent variable.14  

variable (i.e., assortment size) failed to reject the null hypothesis of the regression 
coefficient being zero (𝑝 = .082). Similarly, the Breusch-Pagan 
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As such, for a given 𝒰(𝑋), the reported effect size 𝑑 is 
proportional to the difference of 𝒰(𝑋) between the two 
assortment sizes 𝑋1 and 𝑋2: 

𝑑(𝑋1, 𝑋2) ∝ (𝒰(𝑋1) − 𝒰(𝑋2)).  (11) 

Note that Equation (11) readily applies to other effect-size 
measures. For example, when the outcome variable is binary 
and measured on the probability scale 𝑝 ∈ [0,1], the 
commonly used effect-size measure, the log odds ratio, is 
usually modeled as the difference between 𝒰(𝑋) = log(𝑝/
(1 − 𝑝)) for the two groups and (approximately) transformed 
to Cohen’s 𝑑 with a linear multiplicative factor of √3/𝜋 
(Sánchez-Meca et al. 2003). 

To assess the dispersion of reported effect sizes, it is essential 
to examine how moderation—i.e., the study-level variations 
captured by the moderator variable 𝑍—affects 𝑑(𝑋1, 𝑋2). A 
natural dispersion indicator is the first-order derivative of 
𝑑(𝑋1, 𝑋2) with respect to 𝑍, with one caveat. The dispersion 
imputed from the existing findings can only be nonnegative,15 
yet ∂𝑑(𝑋1, 𝑋2)/ ∂𝑍 can be on either side of zero. A simple 
rectification is to use the absolute value of the derivative as the 
dispersion indicator: 

𝛥(𝑋, 𝜖) = |∂𝑑(𝑋−𝜖,𝑋+𝜖)
∂𝑍

| ∝ |∂𝒰(𝑋−𝜖)
∂𝑍

− ∂𝒰(𝑋+𝜖)
∂𝑍

|  (12) 

Without loss of generality, we replaced 𝑑(𝑋1, 𝑋2) with 𝑑(𝑋 −
𝜖, 𝑋 + 𝜖) in Equation (12), in order to highlight the change of 
𝛥 with (𝑋1 + 𝑋2)/2. Figure 4 illustrates three examples for 
how 𝛥(𝑋, 𝜖) exhibits unique patterns for different underlying 
models. In the passages that follow, we develop more generic 
analytical results for the pattern of the dispersion indicator 
over each of the three models, respectively. 

Model 1 

With the monotonic-mixture model, by taking Equation (1) 
into Equation (12), we obtain 

𝛥(𝑋, 𝜖) ∝ |𝛽2((𝑋 − 𝜖)𝛼 − (𝑋 + 𝜖)𝛼)|. (13) 

Consider the expression inside the absolute value operator in 
Equation (13), 𝛥(𝑋, 𝜖) = 𝛽2((𝑋 − 𝜖)𝛼 − (𝑋 + 𝜖)𝛼). Clearly, 
holding 𝜖 (i.e., the assortment-size difference between the two 
groups) constant, 𝛥 is always monotonic to 𝑋, with the direction 
determined by the combination of 𝛼 and 𝛽2. For example, in the 
linear case where 𝛼 = 1, 𝛥 remains constant no matter how we 

 
heteroskedasticity test (Breusch and Pagan 1979), which regresses the variance 
over the independent variable, also fails to reject the null hypothesis of 
homoscedasticity (𝑝 = .073). Overall, our empirical examination identified no 
supporting evidence for heteroskedasticity or treatment-by-subject interaction. 

shift 𝑋. When 𝛽2 < 0, 𝛥 increases with 𝑋𝑖 if 𝛼 > 1 or 𝛼 < 0, 
and decreases if 𝛼 ∈ [0,1]. Since 𝛥 is monotonic and 𝛥 is the 
absolute value of 𝛥, 𝛥 may be monotonic or U-shaped, but 
cannot be an inverted-U.16 This is summarized by the following 
theorem, the proof of which is available in the appendix. 

Theorem 1:  When 𝒰(𝑋) = 𝛽0 + 𝛽1𝑋𝛼 + 𝛽2𝑋𝛼𝑍 + 𝛽3𝑍, the 
dispersion indicator 𝛥(𝑋, 𝜖) has no local maximum with 
respect to 𝑋. 

Model 2 

Next, consider the inverted-U model when the moderating 
effect only steepens/flattens the curve without changing the 
turning point. A key observation here is lim𝜖→0𝑑(𝑋∗ −
𝜖, 𝑋∗ + 𝜖) = 0, where 𝑋∗ is the turning point of the inverted-
U. This means that, when 𝜖 is sufficiently small, 𝑑(𝑋∗ −
𝜖, 𝑋∗ + 𝜖) ≈ 0 regardless of 𝑍. When 𝑑(𝑋∗ − 𝜖, 𝑋∗ + 𝜖) = 0 
for all 𝑍, there must be 𝛥(𝑋∗, 𝜖) = | ∂𝑑(𝑋∗ − 𝜖, 𝑋∗ +
𝜖)/ ∂𝑍| = 0, its minimum possible value. Formally, 

lim
𝜖→0

𝛥(𝑋∗,𝜖)
𝜖

= lim
𝜖→0

|∂𝑑(𝑋∗−𝜖,𝑋∗+𝜖)
𝜖 ∂𝑍

| = 0. (14) 

In other words, the dispersion indicator 𝛥(𝑋, 𝜖) is minimized 
at the turning point 𝑋 = 𝑋∗, consistent with our earlier 
conceptual discussions. The following theorem formalizes 
this notion, with the proof included in the Appendix. 

Theorem 2:  When 𝜖 is sufficiently small, the dispersion 
indicator 𝛥(𝑋, 𝜖) reaches its minimum at 𝑋∗ (𝑋∗ > 1) if for 
all 𝑍, 

∂𝒰(𝑋∗)
∂𝑋

= 0, (15) 

which also implies that 𝑋∗ is always the turning point for 
𝒰(𝑋) regardless of the moderator 𝑍. 

Model 3 

Theorems 1 and 2 are already sufficient for establishing the 
model specificity of an inverted-U shaped dispersion indicator 
𝛥(𝑋, 𝜖) with respect to 𝑋. Since neither Model 1 nor Model 2 
was able to produce an inverted-U-shaped 𝛥(𝑋, 𝜖), if we 
observe such an inverted-U dispersion, the only possible 
explanation is Model 3, i.e., the option-satisfaction relation 
being an inverted-U, whose turning point is shifted significantly 
through moderation. 

15 The reason is that we do not have a perfect understanding of all moderator 
variables for all existing studies. 
16 Mathematically, if 𝑓 is monotonic, then for all 𝑥 in the domain of 𝑓, there 
must be |𝑓(𝑥)| ≤ max(|𝑓(𝑥 − 𝜖)|, |𝑓(𝑥 + 𝜖)|). 
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Note: Following the same legend as Figure 2, the red dotted and blue dashed lines/curves in each subplot depict the option-satisfaction relation 
at two different moderator levels 𝑍 = 0 and 𝑍 = 1. The black solid line/curve in each subplot depicts the dispersion indicator 𝛥(𝑋, 𝜖) for 𝜖 = 1. 
Parameter settings for (a): ⟨𝛼, 𝛽0, 𝛽1, 𝛽2, 𝛽3⟩ = ⟨1,0,1, −2,10⟩. 𝒰(𝑋) = 𝑋 − 2𝑋𝑍 + 10. Parameter settings for (b): ⟨𝛼, 𝛾, 𝛽0, 𝛽1, 𝛽2, 𝛽3, 𝛽4, 𝛽5, 𝛽6, 𝛽7⟩ =
⟨1.2,2,0.9,0.5,0.15,0,0, −0.05, −0.015, −0.9⟩. That is, 𝒰(𝑋) = 0.9 + 0.5𝑋1.2 − 0.05𝑋2 + 0.15𝑋1.2𝑍 − 0.015𝑋2𝑍 − 0.9𝑍, with turning point 𝑋∗ = 9.39 
for both 𝑍 = 0 and 𝑍 = 1. Parameter settings for (c): ⟨𝛼, 𝛾, 𝛽0, 𝛽1, 𝛽2, 𝛽3, 𝛽4, 𝛽5, 𝛽6, 𝛽7⟩ = ⟨1.2,2,2.4,0.5,0.15, 0,0, −0.05, −0.0024, −2.4⟩. 𝑍 ∈ {0,1}. 
That is, 𝒰(𝑋) = 2.4 + 0.5𝑋1.2 − 0.05𝑋2 + 0.15𝑋1.2𝑍 − 0.0024𝑋2𝑍 − 2.4𝑍, with turning point 𝑋∗ = 9.39 when 𝑍 = 0 and 𝑋∗ = 12.29 when 𝑍 = 1.  

Figure 4. Different Patterns of Dispersion for the Three Models  

 
Given the sufficiency of Theorems 1 and 2 on proving the 
uniqueness of the pattern, our remaining goal is to 
demonstrate that an inverted-U dispersion is indeed a common 
occurrence17 for Model 3. In other words, the shape of the 
dispersion indicator 𝛥(𝑋, 𝜖) has a sufficiently high statistical 
power to identify the presence of Model 3. Since the dynamics 
among the model parameters in Model 3 are too complex to 
allow for an analytical examination of the dispersion 
indicator, we defer the power analysis to the simulation 
studies later in the paper, and present here a simple example 
demonstrating the emergence of an inverted-U dispersion 
from the left/right shift of a famous inverted-U function, (a 
generalized version of) the Runge function18, 𝒰(𝑋) =
1/(𝜉 + (𝑋 − 𝑐1𝑍 − 𝑐2)2), where 𝜉 > 0 marks an upper 
bound of 1/𝜉 for 𝒰(𝑋), and the offset 𝑐1𝑍 + 𝑐2 indicates that 
increasing 𝑍 shifts 𝒰(𝑋) (and the turning point 𝑋∗) to the right 
by an offset of 𝑐1𝑍. In this case, consider the change of 𝑑(𝑋 −
𝑐1, 𝑋) when 𝑍 varies from 0 to 1. We have 

𝑑𝑍=0(𝑋 − 𝑐1, 𝑋) − 𝑑𝑍=1(𝑋 − 𝑐1, 𝑋) 

= 𝒰𝑍=0(𝑋) − 𝒰𝑍=0(𝑋 − 𝑐1) − 𝒰𝑍=1(𝑋) + 𝒰𝑍=1(𝑋 − 𝑐1)

= 𝒰𝑍=1(𝑋 + 𝑐1) − 2𝒰𝑍=1(𝑋) + 𝒰𝑍=1(𝑋 − 𝑐1)

≈ 𝑐1
2 ⋅ ∂2𝒰𝑍=1(𝑋)

∂𝑋2

 

(16)

(17)

(18)

 

 
17 Note that an inverted-U dispersion is a sufficient but not necessary 
condition for Model 3. That is, not all inverted-U functions produce an 
inverted-U dispersion when being shifted left/right. An example is a 
function shaped like “__ ⊓ __” (e.g., 𝒰(𝑋) = 1 if 𝑋 ∈ [5,10] and 0 
otherwise). Clearly, the dispersion indicator in this case is more complex 

The reduction from Equation (17) to (18) follows directly 
from the notion of second symmetric derivative (Zygmund 
2002) and is asymptotic when 𝑐1 → 0. Taking advantage of 
the simple analytical form of the second derivative of the 
(generalized) Runge function when 𝜉 is small, i.e., 

lim
𝜉→0

∂2𝒰𝑍=1(𝑋)
∂𝑋2 = 6

(𝑥−𝑐1−𝑐2)4 , (19) 

we know from Equation (18) that the dispersion indicator 
must also follow an inverted-U shape, with the exact same 
turning point (i.e., 𝑐1 + 𝑐2) as 𝒰𝑍=1(𝑋). 

Generalizability to the Spline Formulation 

Finally, we demonstrate that the unique analytical pattern 
derived for the polynomial formulations also holds for the 
spline formulation discussed before, which concatenates a 
linearly increasing function with a linearly decreasing one at 
the turning point. Like how Theorems 1 and 2 show that the 
dispersion indicator 𝛥(𝑋, 𝜖) cannot form a local maximum 
under the first two models, the following theorem shows 
that, with the spline formulation, the dispersion indicator 
𝛥(𝑋, 𝜖) also cannot form a local maximum if moderation is 
limited to the steepening/flattening effect but not a shift of 

than an inverted-U, as it first increases, then decreases, before increasing 
and then decreasing again. 
18 The Runge function is 𝑓(𝑥) = 1/(1 + 25𝑥2) (Cheney and Light 2009). 
We generalized the factor of 25 to 1/𝜉, and introduced an offset 𝑐1𝑍 + 𝑐2 
to capture the shifting effect of moderation. 
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the turning point. In other words, the analytical pattern we 
discovered readily generalizes to the spline formulation. 

Theorem 3:  When 𝒰(𝑋) follows the spline model 

𝒰(𝑋) = {  𝛽1𝑋 + 𝛽2𝑋𝑍, if 𝑋 ≤ 𝑋∗

𝛽3𝑋 + 𝛽4𝑋𝑍 + (𝛽1 − 𝛽3)𝑋∗ + (𝛽2 − 𝛽4)𝑋∗𝑍, if 𝑋 > 𝑋∗ (20) 

where 𝛽1 + 𝛽2𝑍 > 0 and 𝛽3 + 𝛽4𝑍 < 0 for all 𝑍, the 
dispersion indicator 𝛥(𝑋, 𝜖) is always monotonic. 

Note that the theorem considers a spline model that 
concatenates line segments of the form 𝒰(𝑋) = 𝛽𝑖𝑋 + 𝛽𝑗𝑋𝑍. 
Although this form is a simplification of Equation (2), it does 
not affect the generality of the theorem because a change of 
𝒰(𝑋) constant to 𝑋 (e.g., by 𝛽0 + 𝛽3𝑍 in Equation 2) has no 
impact on the observed effect size, given that the two 
segments must share the same value when 𝑋 = 𝑋∗. Similarly, 
the last two items in the expression of 𝒰(𝑋) when 𝑋 > 𝑋∗ are 
also to ensure that the two segments feature the same value of 
𝒰(𝑋) when 𝑋 → 𝑋∗. 

Operationalization for Pattern Recognition 

There are two key challenges in operationalizing the 
dispersion index over the existing empirical evidence for 
choice overload. The first challenge is the latent nature of the 
study-level variations captured by 𝑍. While multiple studies 
in one article may have otherwise identical designs, except for 
one explicitly marked moderator variable, such common 
ground is rare across articles. Thus, when analyzing empirical 
results from different articles, it is difficult to determine which 
(pairs of) studies feature more similar study-level designs than 
others. In other words, we cannot explicate the value of 𝑍 in 
practice, let alone computing 𝛥(𝑋, 𝜖) = | ∂𝑑(𝑋 − 𝜖, 𝑋 +
𝜖)/ ∂𝑍|. Thus, to overcome this challenge, we have to infer 
the degree of effect-size variation with respect to 𝑍 without 
actually knowing the exact values of 𝑍. 

Fortunately, there is a simple inference if we have access to a 
sufficiently large body of empirical evidence. Specifically, 
suppose that we have a large number of existing studies 
featuring effect-size pair 𝑋 − 𝜖 and 𝑋 + 𝜖. We do not know 
the values of 𝑍 for any study. Instead, we assume that 𝑍 is 
randomly drawn from a probability distribution with domain 
𝑍 ∈ 𝛺 and density function 𝑝(⋅). A simple inference for 
𝛥(𝑋, 𝜖) is the standard deviation of the reported effect sizes: 

𝛥̃(𝑋, 𝜖) 

= √∫ (𝑑(𝑋 − 𝜖, 𝑋 + 𝜖|𝑍0) − ∫ 𝑑𝛺 (𝑋 − 𝜖, 𝑋 + 𝜖|𝑍1)𝑝(𝑍1)𝑑𝑍1)
2

𝛺 𝑝(𝑍0)𝑑𝑍0 (21) 

= √∫ (∫ ∫ ∂𝑑(𝑋−𝜖,𝑋+𝜖)
∂𝑍

𝑍0
𝑍1𝛺 𝑝(𝑍1)𝑑𝑍𝑑𝑍1)

2

𝛺 𝑝(𝑍0)𝑑𝑍0 (22) 

By taking the partial derivative of Equation (22) with respect 
to 𝑋, one can see that 𝛥̃(𝑋, 𝜖) follows the same trend with 
respect to 𝑋 as those specified for 𝛥(𝑋, 𝜖) in Theorems 1 and 
2. For example, since Model 3 is the only possible model for 
| ∂𝑑(𝑋 − 𝜖, 𝑋 + 𝜖)/ ∂𝑍| to reach a local maximum with 
respect to 𝑋 for any 𝑍, if we observe such a local maximum 
for 𝛥̃(𝑋, 𝜖), we can still infer that Model 3 underlies the 
observed effects. Figure 5(a)-(c) demonstrates this 
operationalization for the three models depicted in Figure 4. 
As can be seen from the figure, the model-specific patterns 
are still distinctly identifiable from 𝛥̃. Specifically, we can 
observe a constant dispersion for Model 1, a U-shaped 
change of dispersion (with respect to (𝑋1 + 𝑋2)/2) for 
Model 2, and an inverted-U shaped dispersion for Model 3. 

Unfortunately, this operationalization is blunted by the 
second key challenge in practice: The existing studies did 
not cover enough assortment-size pairs to enable the plotting 
of a 3D chart like those in Figure 5(a)-(c). When there are 
not enough data to properly support a 3D plot, a natural idea 
is to design a dimension-reduction projection of the 3D plot 
to a 2D one. In this case, instead of measuring the standard 
deviation for each pair of 𝑋1, 𝑋2 separately to estimate 
𝛥̃((𝑋1 + 𝑋2)/2, (𝑋2 − 𝑋1)/2), we consider the 
measurement of standard deviation for all assortment-size 
pairs that share the same (or similar) (𝑋1 + 𝑋2)/2 regardless 
of their difference (i.e., (𝑋2 − 𝑋1)/2). In other words, we are 
projecting the 3D plot of 𝛥̃(𝑋, 𝜖) to a 2D plot of 𝛥̃(𝑋), based 
on the rationale that, if 𝛥̃(𝑋, 𝜖) follows the same pattern 
regardless of 𝜖, then we should observe the same pattern 
when grouping the studies with the same 𝑋 (i.e., (𝑋1 +
𝑋2)/2) but different 𝜖 (i.e., (𝑋2 − 𝑋1)/2). 

There is one remaining caveat in this projection, as grouping 
studies with different 𝜖 could entail the overweighting of 
studies with a large difference between their assortment-size 
choices. For example, consider how 𝛥(𝑋, 𝜖) varies with 𝜖 for 
Models 2 and 3: 

𝛥(𝑋, 𝜖) 

= |
∂𝑑(𝑋 − 𝜖, 𝑋 + 𝜖)

∂𝑍 | 

∝ |𝛽2((𝑋 − 𝜖)𝛼 − (𝑋 + 𝜖)𝛼) + 𝛽6((𝑋 − 𝜖)𝛾 − (𝑋 + 𝜖)𝛾)|     (23) 

≈ |2𝜖(𝛽2𝛼𝑋𝛼−1 + 𝛽6𝛾𝑋𝛾−1)|.  (24) 

Since 𝛥(𝑋, 𝜖) is approximately proportional to 𝜖 (when 𝜖 is 
small), directly measuring the standard deviation of effect 
sizes with different 𝜖 could bear more weight on those 
studies with larger 𝜖. To offset this bias, we introduce a 
multiplicative correction factor of 1/(𝑋2 − 𝑋1) to the 
calculation. 
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Note: The parameter settings for the three models following the same values as Figure 4. The top three subplots (i.e., a-c) depict how the standard 
deviation of reported effect sizes varies with X1 and X2, while the bottom three subplots (i.e., d-f) depict how the 2D indicator varies with (X1 + X2)/2 
(subject to a window size w). In each subplot, Z was drawn uniformly at random from its domain [0,1]. The red (dotted), blue (dashed), and black 
(solid) lines/curves in each bottom subplot represent the cases with w = 0, 1, and 2, respectively. Note that, following the convention in two-group 
experiments, the top subplots only display the cases where X1 < X2.  

Figure 5. Operationalizations of Dispersion Indicator: 3D and 2D  
 
Specifically, given a set of 𝐾 primary studies with reported 
effect sizes being 𝑑1, … , 𝑑𝐾  and the assortment-size pairs being 
⟨𝑋11, 𝑋12⟩, … , ⟨𝑋𝐾1, 𝑋𝐾2⟩, respectively, our final 
operationalization of the dispersion indicator is: 

𝛥̃(𝑋) = 𝑆𝐷 ({ 𝑑𝑖
𝑋𝑖2−𝑋𝑖1

| 𝑋𝑖1 + 𝑋𝑖2 ∈ [2𝑋 − 𝑤, 2𝑋 + 𝑤]}) , (25) 

where 𝑆𝐷 represents the standard deviation, and 𝑤 is a window 
size used to further address the cases where no existing study 
have (𝑋𝑖1 + 𝑋𝑖2)/2 exactly equal to 𝑋. Figure 5(d)-(f) depicts 
the change of 𝛥̃(𝑋) with respect to 𝑋 for the three models when 
the window size 𝑤 varies from 0 to 2. As can be seen from the 
figure, the model-specific patterns of the dispersion indicator 
remain clearly identifiable from our final operationalization. We 
will further elaborate on the setting of 𝑤 and test the statistical 
power of 𝛥̃(𝑋)-based model identification in the next section. 

Results 

In this section, we discuss the results of using our dispersion 
indicator to identify the latent mechanism of the underlying 
relation. First, we describe simulation studies that test the 

accuracy of our method over an extensive set of linear, 
curvilinear-yet-monotonic, and curvilinear inverted-U 
relationships with both types of moderation. Then, we discuss 
the results of applying our method to the empirical evidence 
of choice overload reported in the literature. Finally, we 
present another case study of our method on the existing 
empirical evidence of choice overload in the specific context 
of online browsing, an important IS/IT artifact. 

Design of Simulation Studies 

Overview of Simulation Design 

We conducted a total of four simulation studies. The first three 
tested the accuracy of our method with (1) monotonic relations, 
(2) inverted-U relations with moderation steepening/flattening 
the curve, and (3) inverted-U relations with moderation shifting 
the turning point, respectively, while the last study examined 
the robustness of our method in the presence of random noises 
in effect sizes. In each study, we computed the dispersion 
indicator as operationalized by 𝛥̃(𝑋) in Equation (25), and 
tested whether 𝛥̃(𝑋) is an inverted-U with respect to 𝑋. While 
the design of our method is agnostic to the specific method used 
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for testing the inverted-U, for the purpose of the 
implementation, we adopted the three-step procedure 
developed by Lind and Mehlum (2010), which is a popular 
choice for inverted-U testing in the IS literature (e.g., Scherer et 
al. 2015; Singh et al.; 2011). Specifically, the Lind-Mehlum test 
involves fitting 𝛥̃(𝑋) = 𝑏0 + 𝑏1𝑋 + 𝑏2𝑋2 with least squares 
before using the fitted parameters 𝑏0, 𝑏1, 𝑏2 to determine 
whether 𝛥̃(𝑋) forms an inverted-U19. If the test indicates an 
inverted-U shape for 𝛥̃(𝑋), we further estimate its turning point 
as −𝑏1/(2𝑏2) (Haans et al. 2016). Besides the Lind-Mehlum 
method, we also attempted other methods for inverted-U testing 
(e.g., the planned contrast tests in Kamis et al. 2008 and Xu et 
al. 2014; the two-line test in Simonsohn 2018) but did not find 
qualitative differences in the results. 

Since Theorems 1 and 2 indicate that an inverted-U 𝛥̃(𝑋) should 
only emerge when the underlying relation is an inverted-U 
moderated through shifting the turning point left/right, we 
should ideally only observe an inverted-U dispersion indicator 
in the third simulation study. Thus, the accuracy metric is the 
Type I error rate for the first two studies, and the statistical power 
for the third study. We implemented our method and produced 
all simulation results in MATLAB. In the passages that follow, 
we describe the simulation design in each study, respectively. 

Study 1 

For the first study, we created two levels for the moderating 
variable: 𝑍 = 0 and 𝑍 = 1. We set 𝒰(𝑋) = 𝑋𝛼0 when 𝑍 = 0 
and 𝒰(𝑋) = −𝑋𝛼1 when 𝑍 = 1. For either parameter (i.e., 𝛼0 
or 𝛼1), we created five levels: {0.5, 0.8, 1.0, 1.5, 1.8} to capture 
a wide variety of monotonic functions, from linear (i.e., 𝛼0 =
1) to diminishing returns (e.g., 𝛼0 = 0.5) to accelerating losses 
(e.g., 𝛼1 = 1.8). Recall from earlier discussions that this wide 
coverage of 𝛼0 and 𝛼1 was designed to cover the cases beyond 
the reach of our analytical examination, i.e., when the 
moderator 𝑍 varies the exponent of 𝑋 in 𝒰(𝑋). To examine the 
accuracy of our method given different numbers of primary 
studies, we created three different levels: {40,70,100}. Since 
our method involves only one parameter, the window size 𝑤, 
we created two levels for it in the simulations: {1,3}. Overall, 
the design of Study 1 consisted of 160 unique conditions or a 5 
(𝛼0) × 5 (𝛼1) × 3 (number of primary studies) × 2 (window 
size 𝑤) factorial design. Under each condition, we repeated the 
test 100 times. In each test, we generated the assortment sizes 
𝑋1 and 𝑋2 uniformly at random from [1,40], before computing 
the effect size based on 𝒰(𝑋2) − 𝒰(𝑋1). 

 
19 We used a significance level of 0.05 when applying Lind and Mehlum 
(2010) procedure. 
20 For example, piece-wise polynomials address the Runge’s phenomenon, 
with which even a high-degree polynomial cannot properly approximate 

Study 2  

For the second study, we again set two levels for the moderating 
variable: 𝑍 = 0 and 𝑍 = 1. Note that the goal of Study 2 is to 
test inverted-U relations with moderation steepening/flattening 
the curve but not shifting the turning point. Thus, we set the 
turning point to be the same value of 𝑋∗ = 20 for both 
moderator levels and varied the steepness of the inverted U 
between the two moderator levels. Like in the first simulation 
study, we adjusted the steepness by varying the exponent of 𝑋 
in 𝒰(𝑋), as such variation was beyond the reach of our 
analytical examination. Unlike in the first study, we can now 
vary the exponent differently on different sides of the turning 
point, in order to examine how the steepness change on one or 
both sides affect the results. Specifically, we consider a piece-
wise polynomial inverted U that has 𝒰(𝑋) following 𝑋𝛼0 (i.e., 
increasing) to the left of the turning point and −𝑋𝛼1 (i.e., 
decreasing) to the right of the turning point, with both segments 
normalized to the same value at the turning point 𝑋∗ = 20. In 
numerical analysis (Cheney and Light 2009), such a piece-wise 
polynomial function is well known to be a more generalized 
approximation of inverted-U functions than the polynomial 
approximations discussed in the mathematical formalism 
section20. When 𝑍 = 0, we set 𝛼0 = 𝛼1 = 1.5. When 𝑍 = 1, 
we created four levels each for 𝛼0 and 𝛼1: {0.5,0.8,1,1.8} (1.5 
is excluded as it represents no change from the case where 𝑍 =
0). Clearly, the parameter combinations captured a wide variety 
of moderating effects, including the flattening of the curve on 
both sides (e.g., 𝛼0 = 𝛼1 = 0.5 for 𝑍 = 1), steepening on both 
sides (e.g., 𝛼0 = 𝛼1 = 1.8 for 𝑍 = 1), or flattening on one side 
but steepening on the other (e.g., 𝛼0 = 0.5, 𝛼1 = 1.8 for 𝑍 =
1) Again, we varied the number of primary studies in 
{40,70,100}, and the window size 𝑤 in {1,3}. Overall, the 
second simulation study consisted of 96 unique conditions or a 
4 (𝛼0 when 𝑍 = 1) × 4 (𝛼1 when 𝑍 = 1) × 3 (number of 
primary studies) × 2 (window size 𝑤) factorial design. 

Study 3 

For the third study, we followed the same design of an inverted-
U function as in the second simulation study, i.e., by having 
𝒰(𝑋) follow 𝑋𝛼0 (i.e., increasing) to the left of the turning point 
and −𝑋𝛼1 (i.e., decreasing) to the right of the turning point, with 
both segments normalized to the same value at the turning point 
𝑋∗. We again created five levels for both 𝛼0 and 𝛼1: 
{0.5,0.8,1.0,1.5,1.8}. Unlike in Study 2, where we varied 𝛼0 
and 𝛼1 across the moderator levels, in Study 3, we varied the 
turning point 𝑋∗ but kept the values of 𝛼0 (or 𝛼1) the same 

certain inverted-U functions under equispaced interpolation (Dahlquist and 
Bjork 1974). 
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between the two moderator levels. Specifically, we set the 
turning point for 𝑍 = 1 at 𝑋∗ = 24, and created two levels for 
the turning point for 𝑍 = 0: {16,20}. Like in the previous two 
studies, we varied the number of primary studies in 
{40,70,100}, and the window size 𝑤 in {1,3}. Overall, the third 
simulation study consisted of 300 unique conditions or a 5 (𝛼0) 
× 5 (𝛼1) × 2 (𝑋∗ when 𝑍 = 0) × 3 (number of primary studies) 
× 2 (window size 𝑤) factorial design. 

Study 4 

The last study was designed to test whether the presence of 
random noise in the reported effect sizes could substantially 
degrade the efficacy of our method. For this purpose, we 
focused on the worst-case simulation conditions for our 
method in the first three studies—i.e., the pairs of ⟨𝛼0, 𝛼1⟩ 
under which our method produced the highest Type I error rate 
or the lowest statistical power. For each of these conditions, 
we tested the accuracy of our method when random noises are 
inserted into the input effect sizes. Specifically, for each 
condition, we added to each input effect size an independent 
and identically distributed (i.i.d.) Gaussian random noise 
𝒩(0, (𝜖𝑀)2), where 𝑀 is the mean absolute effect size 
reported under the condition, and 𝜖 is a simulation factor 
controlling the magnitude of the inserted random noise. We 
created three levels for 𝜖: 0.01, 0.05, and 0.1. Overall, the 
fourth simulation study consisted of 54 unique conditions or a 
1 (worst-case ⟨𝛼0, 𝛼1⟩ for Type I error) × 3 (number of 
primary studies) × 2 (window size 𝑤) × 3 (noise level 𝜖) + 1 
(worst-case ⟨𝛼0, 𝛼1⟩ for Type II error) × 2 (𝑋∗ when 𝑍 = 0) 
× 3 (number of primary studies) × 2 (window size 𝑤) × 3 
(noise level 𝜖) factorial design. 

Simulation Results 

For the first simulation study, remarkably, there was not a single 
Type I error in any of the 16,000 runs. That is, the Type I error 
rate stays at zero for all 160 simulation conditions. This 
demonstrates the robustness of our method on ruling out the 
underlying relation being monotonic once observing an 
inverted-U dispersion indicator. 

Table 1 depicts the Type I error rates in Study 2. Since swapping 
𝛼0 and 𝛼1 does not change the result, we only listed in the table 
the cases where 𝛼0 ≤ 𝛼1. The Type I error rates across all 
simulation conditions have mean 𝑀 = 0.0085 (𝑆𝐷 = 0.0274). 
Indeed, there is not a single error in 83.33% of the simulation 
conditions (80 out of 96). Table 1 shows that the Type I errors 
mostly occurred when 𝛼0 and 𝛼1 differ drastically (e.g., when 

 
21 A function 𝑓(𝑥) has a first-order discontinuity at point 𝑥0 if it is 
continuous but not differentiable at 𝑥 = 𝑥0. 

𝛼0 = 0.5 and 𝛼1 = 1.8). A key reason is that the difference 
makes 𝒰(𝑋) no longer differentiable at the turning point. As a 
result, when the assortment sizes are close to the turning point, 
the observed effect size could deviate from zero by a greater 
degree than in the case of a differentiable 𝒰(𝑋) (e.g., as in 
Theorem 2). Nonetheless, even in these worst-case scenarios, 
the Type I error rate never exceeded 0.06 for the case of 100 
primary studies, demonstrating the robustness of our method. 

Table 2 depicts the statistical power of our method in the third 
simulation study. The statistical power across all simulation 
conditions had a mean of 𝑀 = 0.9387 (𝑆𝐷 = 0.1415). When 
the window size was 𝑤 = 3, the lowest statistical power in all 
conditions was 0.92 when there were 100 primary studies. 
Even when the number of primary studies was limited to just 
40, our method achieved a statistical power of at least 0.98 in 
the majority of simulation conditions (31 out of 50, 62.0%). 
These results demonstrate the power of our method for 
identifying the inverted-U nature of the underlying relation 
and its moderation mechanism (i.e., a left/right shift). Further, 
the turning points of the inverted-U dispersion indicator 𝛥̃(𝑋) 
match closely with the true turning point (i.e., 𝑋∗ = 24) of the 
underlying relation when 𝑍 = 1, as predicted in our earlier 
discussions (e.g., Equation 19). For example, the estimated 
turning point of the dispersion indicator had a mean of 𝑀 =
23.93 (𝑆𝐷 = 2.63) when the true turning points are {20,24} 
for the two moderator levels, and a mean of 𝑀 = 21.55 (𝑆𝐷 
= 2.17) when the true turning points were {16,24}. 

Table 3 depicts the impacts of random noise on the accuracy 
of our method. Recall from Tables 1 and 2 that the worst-
case settings of 𝛼0, 𝛼1 are (0.5, 1.8) for Type I error rates 
(Table 1) and (0.5, 1) for statistical power (Table 2), hence 
their inclusion in this fourth simulation study. As can be seen 
from the left half of the table, the Type I error rates incurred 
by our method in the noise-ridden cases are on par with or 
even lower than the noiseless case (i.e., 𝜖 = 0), especially 
when the number of primary studies is large (e.g., 𝐾 = 100, 
like in the choice-overload case). While this is ostensibly 
surprising, the reason is the same as the above-discussed 
reason why 𝛼0 = 0.5 and 𝛼1 = 1.8 became the worst-case 
setting in Study 2—i.e., the first-order discontinuity21 of 
𝒰(𝑋) at the turning point 𝑋∗. Specifically, the insertion of 
random noise reduced the drastic difference between the 
one-sided limits of ∂𝒰(𝑋)/ ∂𝑋 at point 𝑋∗ from the positive 
and negative directions (i.e., when 𝑋 → (𝑋∗)+ and 𝑋 →
(𝑋∗)−), therefore lessening the discontinuity that likely 
caused the Type I errors in the noiseless case. A similar 
observation can be made from the statistical powers reported 
in the right half of Table 3. 
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Table 1. Type I Error Rates in Study 2 

K 𝜶𝟎, 𝜶𝟏 
0.5,0.5 0.5,0.8 0.5,1 0.5,1.8 0.8,0.8 0.8,1 0.8.1.8 1,1 1,1.8 1.8,1.8 

w = 1 
40 0.00 0.00 0.00 0.11 0.00 0.00 0.00 0.00 0.00 0.00 
70 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 
100 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 
w = 3 
40 0.00 0.00 0.00 0.15 0.00 0.00 0.05 0.00 0.01 0.00 
70 0.00 0.00 0.00 0.08 0.00 0.00 0.00 0.00 0.00 0.00 
100 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.00 
Note: K = number of primary studies; w = window size; α0, α1 = exponent settings in 𝒰(𝑋) when Z = 1. 

 
Table 2. Statistical Power in Study 3  

K 
𝜶𝟎, 𝜶𝟏 

0.5,0.5 0.5,0.8 0.5,1 0.5,1.5 0.5,1.8 0.8,0.8 0.8,1 0.8,1.5 0.8,1.8 1,1 1,1.5 1,1.8 1.5,1.5 1.5,1.8 1.8,1.8 
c = 4, w = 1 

40 0.95 0.97 0.22 0.89 0.85 1.00 0.20 0.98 0.85 0.56 0.96 0.95 0.99 0.95 0.60 
70 1.00 1.00 0.35 1.00 0.98 1.00 0.53 1.00 0.99 0.80 1.00 0.99 1.00 1.00 0.72 
100 1.00 1.00 0.46 1.00 1.00 1.00 0.76 1.00 0.99 0.90 1.00 1.00 1.00 1.00 0.64 

c = 4, w = 3 
40 1.00 1.00 0.64 1.00 0.99 1.00 0.64 1.00 1.00 0.82 1.00 0.99 1.00 0.98 0.82 
70 1.00 1.00 0.83 1.00 1.00 1.00 0.88 0.99 1.00 0.98 1.00 1.00 1.00 1.00 0.98 
100 1.00 1.00 0.92 1.00 1.00 1.00 0.95 1.00 1.00 0.96 1.00 1.00 1.00 1.00 0.99 

c = 8, w = 1 
40 0.92 1.00 0.39 0.93 0.88 1.00 0.80 0.99 0.97 0.93 1.00 1.00 1.00 1.00 0.71 
70 1.00 1.00 0.66 0.99 0.98 1.00 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.74 
100 1.00 1.00 0.91 0.99 0.99 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.70 

c = 8, w = 3 
40 1.00 1.00 0.83 1.00 0.98 1.00 0.99 1.00 1.00 0.99 1.00 1.00 1.00 1.00 0.75 
70 1.00 1.00 0.96 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.78 
100 1.00 1.00 0.98 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.92 
Note: K = number of primary studies. C = difference between turning points of the two moderator levels (i.e., when c = 4, 𝑋∗ = 20 when Z = 0; 
when c = 8, 𝑋∗ = 16 when Z = 0). W = window size. 𝛼0, 𝛼1= exponent settings in 𝒰(𝑋) for both moderator levels. 

 
Table 3. Impacts of Random Noise in Study 4 
 Type I error rate (when α0, α1 = 0.5, 1.8) Statistical power (when α0, α1 = 0.5, 1) 

w, K w, K 
1,40 1,70 1,100 3,40 3,70 3,100 1,40 1,70 1,100 3,40 3,70 3,100 

ϵ c = 4 
0.00 0.11 0.03 0.02 0.15 0.08 0.06 0.22 0.35 0.46 0.64 0.83 0.92 
0.01 0.16 0.09 0.05 0.09 0.04 0.02 0.96 1.00 1.00 0.99 1.00 1.00 
0.05 0.14 0.10 0.04 0.09 0.02 0.01 0.84 0.91 0.96 0.93 0.94 0.96 
0.10 0.12 0.10 0.04 0.09 0.02 0.00 0.53 0.68 0.58 0.68 0.72 0.66 

ϵ c = 8 
0.00       0.39 0.66 0.91 0.83 0.96 0.98 
0.01       1.00 1.00 1.00 1.00 1.00 1.00 
0.05       0.95 0.99 0.99 0.98 1.00 0.99 
0.10       0.77 0.80 0.81 0.82 0.80 0.79 

Note: α0, α1  = exponent settings in 𝒰(𝑋). ϵ = magnitude of random noise. K = number of primary studies. w = window size. c = difference 
between turning points of the two moderator levels. The left part of the table reports the Type I error rates for different levels of ϵ under the worst-
case conditions in Study 2 (i.e., α0 = 0.5, α1 = 1.8). The right part of the table reports the statistical power for different levels of ϵ under the worst-
case conditions in Study 3 (i.e., α0 = 0.5, α1 = 1). Note that parameter c only applies to the case of statistical power (i.e., Study 3), hence the four 
additional rows in the right half. 
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Once again, our method surprisingly attained a considerably 
higher statistical power in most of the noise-ridden cases than 
in the noiseless case. The reason here again stems from a 
discontinuity in the noiseless case. Note that when 𝛼1 = 1, any 
two-group experiment with both assortment sizes falling to the 
right of the turning point would report the same effect size (after 
the weighting-based correction in Equation 24), entailing a 
sharp drop of the dispersion indicator 𝛥̃(𝑋) to zero once 𝑋 
grows past 𝑋∗. This jump in discontinuity is fundamentally 
incompatible with the existing methods for inverted-U testing.22 
The resulting anomalies explain the lower statistical power for 
the simulation conditions with either 𝛼0 = 1 or 𝛼1 = 1 (or 
both) in Table 2. Like in the Type I error case, the insertion of 
noise alleviates this discontinuity and therefore increases the 
statistical power in many of these settings. Overall, as can be 
seen from Table 3, the accuracy of our method is robust to the 
presence of random noise in the reported effect sizes. 

Empirical Evidence for Choice Overload 

The intense research interests on choice overload have led to 
multiple recent meta-analyses (Chernev et al. 2015; McShane 
and Böckenholt 2018; Scheibehenne et al. 2010; Simonsohn 
et al. 2014), with the most recent two using the same dataset. 
We believe the best way to study the insights unveiled by our 
novel analytical method is to reuse the existing dataset to the 
extent possible (and therefore sharing the same 
inclusion/exclusion criteria, weighting design, etc., as the two 
existing meta-analyses) in order to minimize the chance of 
differences in outcomes stemming from differences in data. 

The dataset contains 21 articles in which 99 observed effect sizes 
were reported. In terms of the study-level designs, the existing 
meta-analyses, Chernev et al. (2015) and McShane and 
Böckenholt (2018) synthesized four types of moderator 
variables—choice set complexity, decision task difficulty, 
preference uncertainty, and decision goal—and six types of 
operationalizations for the dependable variable: satisfaction 
/confidence, regret, choice deferral, switching likelihood, 
assortment choice, and option selection. In terms of the empirical 
evidence reported, while most reported effect sizes are in the form 
of Cohen’s 𝑑, some studies operationalized the dependent 
variable with a binary decision outcome, such as whether an 
individual ultimately decided to make a purchase. In this case, the 
“mean” of the dependent variable for each assortment size 
becomes the proportion of individuals who made a purchase. For 
these cases, we followed the same standard transformations as the 
existing meta-analysis (Chernev et al. 2015). 

 
22 For example, the Lind-Mehlum method, which we used to determine if 
the dispersion indicator is an inverted U, assumes a point-wise continuous 
and differentiable quadratic function (Lind and Mehlum 2010). 

Nonetheless, there are a few existing studies that 
operationalized the dependent variable in a way that is 
inherently incompatible with our purpose of examining the 
choice-satisfaction function. This operationalization, namely 
“assortment choice” (Chernev et al. 2015), requires each 
individual to make a binary selection between small and large 
assortments, and then measure the percentage of individuals 
who chose the small (or large) one. Given a choice-
satisfaction function 𝒰(𝑋) and two assortment sizes 𝑋1 and 
𝑋2, while this operationalization captures the percentage of 
individuals with 𝒰(𝑋1) > 𝒰(𝑋2), it reveals no additional 
information (other than the sign) of 𝒰(𝑋1) − 𝒰(𝑋2) (Cohen 
1988, p. 147), which is crucial for quantitatively assessing the 
effect of choice overload. 

Out of the 21 articles included in the meta-analyses, three 
(Chernev 2006; Chernev and Hamilton 2009; Goodman and 
Malkoc 2012) used this operationalization and therefore had 
to be excluded from our study. We note that Chernev et al. 
(2015) excluded the exact same set of studies when 
examining the mean effect of choice overload, for the same 
reason as discussed. This exclusion led to two changes in the 
dataset: First, it removed “assortment choice” as a type of 
dependent-variable operationalization. Second, a moderator 
variable decision goal was also removed because, as noted 
by Chernev et al. (2015), nearly all existing studies 
examining the moderating effect of decision goal used 
assortment choice as the outcome measure. As only two 
effect sizes remain for decision goal variable after the 
exclusion, we could not properly examine decision goal as a 
distinctive type of moderator variable. 

Analytical Results for Choice Overload 

Table 4 depicts the results of applying our method over the 
effect sizes reported in the choice-overload literature. Since 
a minimum window size of 𝑤 = 3 is required to provide a 
consecutive coverage23 of 𝑋, we tested our method with 𝑤 = 
3, 4, and 5. As can be seen from the table, our dispersion 
indicator 𝛥̃(𝑋) clearly follows an inverted-U shape 
regardless of the window size. Specifically, in all three 
settings, the dispersion reached its three maximum values 
when 𝑋 is 10, 11, and 12. Combined with our mathematical 
analysis earlier in the paper, the results in Table 4 provide 
strong evidence that the option-satisfaction relation is an 
inverted U with moderation shifting the curve left and right. 

23 Let 𝐶(𝑋) be the number of existing studies with assortment sizes 𝑋1 +
𝑋2 ∈ [2𝑋 − 𝑤, 2𝑋 + 𝑤]. When 𝑤 < 3, the number of consecutive values of 
𝑋 with 𝐶(𝑋) ≥ 2 never exceeds 5. 
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Table 4. Change of Dispersion Indicator 𝜟̃(𝑿) with 𝑿 
X 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

𝛥̃3 .035 .035 .069 .083 .071 .091 .091 .188 .084 .047 .041 .025 .023 .022 .020 N/A 

𝛥̃4 .035 .069 .069 .065 .084 .091 .095 .104 .047 .046 .041 .023 .023 .022 .022 N/A 

𝛥̃5 .035 .069 .069 .063 .084 .084 .095 .084 .062 .046 .043 .034 .023 .022 .022 .020 

𝜎 0.25 0.25 0.49 0.60 0.57 0.96 0.96 1.74 0.92 0.56 0.54 0.46 0.54 0.54 0.48 N/A 
𝛿𝑋̅ 7.2 7.2 7.5 7.8 9.2 11.6 11.6 9.0 11.2 15.3 16.5 18.8 23.7 23.4 24.0 24.0 

Note: 𝛥̃𝑖= value of 𝛥̃(𝑋) given a window size of w = i. The bold font cells indicate the top-3 values of 𝛥̃(𝑋) for the corresponding window size. σ 
= raw standard deviation of effect sizes without the assortment-size-difference correction. 𝛿𝑋̅ = the average difference between assortment sizes 
(used for correction). 
 

 
Note. In each subplot, the dotted blue line depicts the change of 𝛥̃(𝑋) for all reported effect sizes. All lines are linearly normalized to between 
0 and 1 (i.e., with 𝑦′ = (𝑦 − min(𝑦))/(max(𝑦) − min(𝑦))). In Figure 6(a), the black line depicts studies with no hypothesized moderator, the 
orange line depicts studies with moderator being “preference uncertainty,” the red line depicts studies with moderator being “decision task 
difficulty.” Note that the existing studies for “choice set complexity” produced only two distinct pairs of assortment sizes, and are hence 
excluded from the plot. In Figure 6(b), the black line represents “satisfaction/ confidence,” the orange line represents “switching likelihood,” 
and the red line represents “choice deferral.” “Option selection” and “regret” were not included in (b) because they were only represented 
by two and one distinctive pair of assortment sizes in the range, respectively. 

Figure 6. Outcome and Moderator Variables  

As a robustness check, we examined how the dispersion 
indicator is affected by the assortment-size-difference 
correction in its operationalization (i.e., the denominator 
𝑋𝑖2 − 𝑋𝑖1 for computing 𝛥̃(𝑋) in Equation 25). As can be 
seen from Table 4, the correction indeed had no qualitative 
effect on the nature of dispersion. Specifically, even when 
we directly measured the standard deviation of reported 
effect sizes in each window (i.e., the row of 𝜎), the 
dispersion was still maximized when 𝑋 ranged from 10 to 
12. Although not included in the table, we also conducted a 
variety of other robustness checks for the dispersion metric 
—e.g., by weighting an effect size with its corresponding 
sample size in computing the standard deviation (Hunter and 
Schmidt 2004), through a leave-one-out analysis on the 
included studies, by excluding studies with too wide (e.g., ≥
20) or too narrow (e.g., ≤ 3) of an assortment-size 

difference, etc.—but did not find notable changes on the 
shape of the dispersion indicator. 

Finally, Figure 6 depicts how the dispersion indicator 𝛥̃(𝑋) 
varies with 𝑋 when considering only a subset of the existing 
results featuring one type of moderator variable or one 
operationalization of the dependent variable. Most of these 
factorized studies returned an inverted-U shaped 𝛥̃(𝑋). For 
example, as predicted earlier in the paper, the type of 
moderator variables corresponding to consumer expertise, i.e., 
“preference uncertainty,” yielded a dispersion indicator that is 
clearly an inverted-U (i.e., the orange line in Figure 6a), 
reflecting our conceptual arguments that a change of 
consumer expertise likely moves the inverted-U option-
satisfaction relation left/right. Nonetheless, note from the 
figure that there are also a few cases where the dispersion 
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indicator appears monotonic. We caution that the limited 
sample sizes in these individual cases likely constrain the 
insights one can derive from the computed 𝛥̃(𝑋). For 
example, no existing study that examined the moderator type 
“decision task difficulty” (i.e., the red line in Figure 6a) chose 
a pair of assortment sizes with an average of between 6.5 and 
16. This makes the decreasing line in the figure hard to 
interpret: It could be reflecting a monotonic (or U-shaped) 
dispersion indicator. Alternatively, the dispersion indicator 
could form an inverted-U with a turning point 𝑋∗ ∈ (6.5,16), 
yet the lack of a sample in this range makes the inverted-U 
impossible to identify based on the existing evidence. 

Case Study of Choice Overload in E-Commerce 

The choice-overload effect has a strong potential to stimulate 
practical implications in an e-commerce context but the existing 
literature does not provide a sufficient number of primary studies 
(e.g., 10 or more; Sterne et al. 2011) to allow for a conventional 
meta-analysis. To address this limitation, we curated the existing 
empirical evidence in finer granularity than a typical meta-
analysis. Specifically, we identified one of the largest randomized 
behavioral experiments (Moser et al. 2017), which examined the 
choice-overload effect in e-commerce platform design, and 
obtained the raw observations including 611 participants in the 
experiment. Then, we used the common subsampling method 
(e.g., the bag-of-little-bootstraps procedure; Kleiner et al. 2014) 
to randomly partition the raw observations into independent, 
simulated, primary studies, before using our method to perform a 
meta-analysis to assess the choice-overload effect in the context 
of e-commerce platform design. 

More specifically, the participants of the experiment were 
assigned to one of six treatment conditions uniformly at 
random. All six treatment conditions feature the same e-
commerce shopping web page (for chocolates). The only 
difference is the number of options (i.e., chocolates) 
displayed, which is 12, 24, 40, 50, 60, and 7224 for the six 
conditions, respectively. After making a choice from the 
displayed options, the subjects were asked to rate their level 
of satisfaction with the choice on a 7-point Likert scale, from 
(1) not at all satisfied  to (7) extremely satisfied. Figure 7(a) 
depicts the relationship between the observed satisfaction 
and the assortment size. While the observations do suggest 
an inverted-U option-satisfaction relationship, with the peak 
satisfaction level reached by an assortment size of between 
24 and 50, Moser et al. (2017) showed that the traditional 
statistical tests for two-group experiments failed to reject the 
null hypothesis (i.e., choice overload does not exist). Note 

 
24 These six assortment sizes were derived from an examination of the most 
popular e-commerce websites - see Moser et al. (2017) for details. 

that, while there was no explicit manipulation of any 
moderating variable in the experiment design, Moser et al. 
(2017) duly noted the existence of many potential factors 
(e.g., individual differences in personality or experience) 
that could make the option-satisfaction relation idiosyncratic 
for different subjects. As discussed earlier, it is this 
idiosyncrasy of the option-satisfaction relation that enables 
the dispersion-based pattern leveraged by our method. 

Theoretical Implications for Choice Overload 

This paper contributes to the burgeoning literature on choice 
overload, which we move forward in several ways. First, we 
reconciled the fragmented empirical views of choice overload 
by explaining why the wide dispersion of reported effect sizes 
is not an indication of the malleability of the choice-overload 
effect but is instead to be expected when the underlying 
option-satisfaction relation is an inverted-U. We did so 
through the development of a novel conceptual and 
mathematical link between a moderated inverted-U 
relationship and the dispersion of effect sizes observed in two-
group experiments. By identifying a unique pattern of 
dispersion among the existing empirical evidence, we provide 
strong evidence for the presence of the choice-overload effect. 
Despite the copious empirical studies about choice overload 
and the repeatedly posited theory of the option-satisfaction 
relation being an inverted-U (Grant and Schwartz 2011; 
Reutskaja and Hogarth 2009; Shah and Wolford 2007), our 
work represents the first method to use the former to test the 
latter and shows how the inverted-U conceptualization can 
account for the heterogeneity among the empirical evidence. 

Second, we reconciled the fragmented views of choice overload 
by leveraging the existing empirical evidence to explicate the 
latent moderation mechanisms. The debate in the existing meta-
analyses for choice overload is framed around the question of 
what variables moderate the choice-overload effect rather than 
how the moderators condition the option-satisfaction 
relationship. We identified and explained the two types of 
moderation for an inverted-U option-satisfaction relation, 
illuminated their distinctive implications in theory and practice, 
and leveraged our novel analytical method to demonstrate that 
the moderation in choice overload likely entails a considerable 
shift of the inverted-U curve to the left and right. This finding 
not only highlights the importance of choice overload for 
assortment design in practice but points to fruitful future 
research opportunities for further explicating and quantifying 
the effects of individual moderator variables on the inverted-U 
relation, which we will elaborate later in this section. 
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Note: The 𝑥-axis represents the assortment size in both subplots. The 𝑦-axis represents the choice satisfaction in the left subplot and the 
value of the dispersion indicator 𝛥̃(𝑋) in the right subplot. In both subplots, each dot represents the mean of the corresponding variable, 
while the length of the error bar is one standard error towards either direction. 

Figure 7. Case Study for Online Browsing  

Methodological Contributions 

Our research findings have fundamental methodological 
contributions to experimental research on curvilinear 
relationships beyond the choice-overload effect. Specifically, 
our research answers the call for the development of advanced 
meta-analytic methods for examining the potential 
curvilinearity of a relationship (Johns 2006; Pierce and 
Aguinis 2013). The additional intricacies of curvilinear 
relationships (compared with linear ones) give rise to 
significant challenges in meta-analysis, where the notion of 
linearity has underpinned the development of most existing 
methods (Hunter et al. 2006). Indeed, with limited exceptions 
(e.g., Sturman 2003), there are not even adequate procedures 
to test for the presence of a curvilinear relationship in a meta-
analysis of experimental studies. Our novel analytical method 
presented in this paper represents a first step towards bridging 
this gap. Specifically, our method of inferring the existence 
and moderation of an inverted-U relationship from two-group 
experiments is pertinent for at least three reasons: 

First, it allows researchers to tap the gold mine of existing 
empirical evidence in theorizing and testing an inverted-U 
relationship, even though the existing research designs are all 
based on the linear mechanism (which is a common 
occurrence when examining curvilinear relationships; Aguinis 
et al. 2009). Second, our method enables the statistical 
disentanglement of the two types of inverted-U moderation, 
even though such moderation has never been theorized in the 

literature nor brought to bear in research designs. Again, this 
facilitates the theoretical development and empirical 
examination of curvilinear relationships, even before new 
experiments dedicated to the study of curvilinearity can be 
conducted and accumulated over time. Finally, the findings of 
our method provide valuable guidelines for the design of 
future experimental studies. Specifically, when designing an 
experiment dedicated to the examination of an inverted-U 
relation, researchers may select a small set of “critical” 
independent-variable (i.e., 𝑋) values according to the 
estimations produced by our method, instead of having to 
examine the full spectrum of 𝑋. For example, if our method 
suggests a moderating effect that steepens/flattens the curve, 
researchers may want to select one value of 𝑋 adjacent to the 
turning point and two values far away from the turning point 
to its left and right, respectively, in order to exemplify the 
change of steepness in the observed effect. On the other hand, 
if our method suggests a moderating effect that shifts the curve 
left/right, researchers may want to select multiple values of 𝑋 
around the potential range of the turning point in order to 
pinpoint the degree of shift conditioned by the moderation. 

Broader Research Implications 

More broadly, our research is premised on the notion of 
analytical meta-analysis, specifically the introduction of 
data analytics and machine learning techniques to the 
methodological arsenal of meta-analysis in behavioral 
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research. While still an emerging method, analytical meta-
analysis has shown recent successes in several disciplines. 
For example, Zhang et al. (2020) leveraged the recent 
breakthroughs in theoretical machine learning on the 
decomposition of Gaussian mixtures (Kalai et al. 2012) to 
introduce mixture decomposition algorithms to the analysis 
of effect-size distribution in meta-analyses. Meager (2019), 
on the other hand, used graphical models to examine the 
latent factors driving the heterogeneity of existing findings. 

The importance and promise of analytical meta-analysis is 
evidenced by the numerous and intense debates on 
reproducibility in behavioral sciences (e.g., Open Science 
Collaboration 2015), which speak to the importance of 
gleaning deeper insights from the synthesization of 
behavioral research findings than the simple aggregation of 
existing findings into statistical indicators (like what many 
existing meta-analytic methods do), especially when such 
findings are ostensibly inconsistent with each other. The 
rapid advancement of data analytics and machine learning 
techniques, on the other hand, makes such techniques ripe 
for adoption, exploration, and innovation in the space of 
meta-analysis. For example, our current work demonstrates 
that the use of data analytics techniques can not only 
reconcile the empirical inconsistencies of the choice-
overload effect in behavioral research but can also develop a 
deeper understanding of its theoretical underpinning. 

The research space of analytical meta-analysis is vast and its 
promise immense. Numerous research questions in the 
behavioral sciences have been blunted by the inconsistency 
of existing empirical evidence in the literature (Open 
Science Collaboration 2015). Some well-known ones 
include the impact of intrateam trust on team performance 
(Zhang et al. 2020), the effectiveness of fear appeals on 
persuasion (Tannenbaum et al. 2015), the link between 
happiness and success (Lyubomirsky et al. 2005), etc. All 
these research areas may stand to gain from the development 
of novel methods in analytical meta-analysis. We contend 
that, as a scholarly community with diverse methodological 
perspectives (e.g., employing behavioral, econometric, 
analytical, and computational methods; Rai 2016), the IS 
community is uniquely positioned to develop such fresh 
research perspectives and contribute to this emerging area of 
analytical meta-analysis. Indicatively, one of the first 
methods that introduced machine learning to meta-analysis 
was developed primarily by IS researchers (Zhang et al. 
2020). From this perspective, it is our hope that the paper 
will inspire more “cross-paradigm connective IS research” 
(Rai 2018, p. v) in the near future. As demonstrated in this 
work, through the process of combining a behavioral theory 
with an analytical method, we can generate novel insights 
capable of connecting two disjointed worlds. 

Limitations and Future Directions 

It is important to note several limitations to our study. In terms 
of the generalizability of our method to other (potentially) 
curvilinear effects, we note that the independent variable of the 
option-satisfaction relation (i.e., assortment size) is an explicitly 
designed absolute measure (Cronbach et al. 1972) that has a 
common scale across studies. This stands in contrast to 
relationships that have independent variables relying on a 
normative or relative standard for measurement. Examples here 
include many psychological constructs such as personality 
traits, the measures for which tend to compare individuals 
against some norm groups rather than an absolute criterion 
(Cronbach et al. 1972). To apply our method to these 
relationships, future work needs to examine how to infer the 
change of the dispersion indicator with the independent variable 
when values of the independent variable are not directly 
comparable across studies. 

With regard to the substantive examination of the choice-
overload effect, the current method is limited in terms of the 
resolution it offers. For example, our method tests for the 
presence of a moderating effect that shifts the turning point 
left/right, but cannot pinpoint the exact amount of the left/right 
shift. Further, while we focused on distinguishing an inverted-U 
relationship (and its moderation) from a monotonic relationship, 
there may be practical needs to unpack further details of the 
inverted-U relationship, like the steepness on either side of the 
turning point. We elaborate on these limitations and the 
corresponding future research directions below. 

High-Resolution Moderation Inference 

Ultimately, inferring the moderation mechanism in a meta-
analysis involves disentangling the multiple components that 
together form the distribution of the observed effect sizes. From 
a methodological perspective, Hunter and Schmidt (2004) 
noted that, when a moderator variable takes on a continuum of 
values, the effect-size distributions tends to be a mixture of 
many distributions, each having a different mean and variance. 
In the specific context of choice overload, Chernev et al. (2010) 
argued, and Simonsohn et al. (2014) concurred, that many 
existing experiments were “designed to document” how the 
sign of the effect can be reversed by a change of the moderator 
level, making the distribution of the reported effect sizes a 
mixture of two distributions, one having a positive mean effect 
size and the other negative. With this backdrop, the method 
developed in this paper can be construed as detecting whether 
the observed mixture distribution (of effect sizes) likely consists 
of two components produced by two inverted-U option-
satisfaction relations with different turning points. Obviously, 
to enable the inference of the moderation mechanism with a 
higher resolution—e.g., to estimate the exact shift of the turning 
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point—future work needs to infer greater details about each of 
the components that together form the observed mixture 
distribution of the reported effect sizes. 

To this end, a promising direction for future research stems 
from a recent breakthrough in theoretical machine learning on 
the decomposition of mixture distributions (Kalai et al. 2012). 
Traditionally, it was notoriously difficult to decompose an 
effect-size distribution for two reasons. The first reason is the 
limited sample size, as the number of reported effect sizes did 
not exceed a hundred even for an extensively studied effect like 
choice overload. The second, and more important, reason is 
that, because of the complexity of moderation, different 
components of the mixture decomposition likely overlap 
considerably with each other. The conventional methods for 
mixture decomposition, like the expectation maximization 
(EM) algorithm (Dempster et al. 1977) and its modern 
variations (e.g., Dasgupta 1999), are known to produce 
inaccurate results when two adjacent mixture components are 
not sufficiently separate from each other (e.g., in the case of the 
EM algorithm, when the mean difference between such two 
components is smaller than their standard deviations; Redner 
and Walker 1984). In 2010, a trio of breakthroughs in 
theoretical machine learning (Belkin and Sinha 2010; Kalai et 
al. 2010; Moitra and Valiant 2010) successfully addressed this 
challenge by developing algorithms that directly estimate the 
parameters of each mixture component without attempting to 
infer the component affiliation for each input sample (like the 
“M” step in the EM algorithm). With the more recent 
development of this idea, state-of-the-art algorithms can now 
accurately and efficiently decompose a mixture distribution 
even when the components overlap almost entirely with each 
other (e.g., Bandi et al. 2019). To further discern the moderation 
mechanisms of choice overload, future work could leverage 
these recent advances in mixture decomposition to first unpack 
the various components of the observed effect-size distribution 
before examining the role of moderator variables in forming 
these components. 

Mathematical Model of Inverted U 

In the mathematical analysis part of the paper, we adopted the 
conventional model of an inverted-U relation as a polynomial 
function (Lind and Mehlum 2010). The usage of this 
polynomial model provided valuable insights for our work and 
has proven fruitful for examining inverted-U relations in 
adjacent fields (e.g., see reviews in Haans et al. 2016; Pierce and 
Aguinis 2013). However, to fully appreciate the subtlety of an 
inverted-U relationship like the option-satisfaction relation, 
future work may need to examine the modeling of inverted-U 
relations beyond polynomial functions. Specifically, we note 
that while polynomials can often closely fit an inverted-U 
function within a limited range of the independent variable, 

their fit could become questionable once the range is 
substantially expanded. For example, a quadratic model of 
inverted-U, as commonly used in the literature (Haans et al. 
2016), would predict that consumer satisfaction decreases more 
when the assortment size changes from 100 to 110 than when it 
changes from 15 to 25. This is obviously counterintuitive, as 
one would reasonably expect consumers to barely notice a 
change in assortment size from 100 to 110 but not a change  
from 15 to 25. This counterintuitive phenomenon is unlikely to 
cause problems when analyzing the existing empirical results, 
as most of them focused on physical goods with a limited range 
of assortment sizes. However, it could become problematic for 
future research attempts to compare the choice-overload effect 
across physical and online settings, for which the range of the 
assortment size may have to be considerably expanded. 

Fundamentally, this problem is rooted in a well-known 
challenge for polynomial interpolation in numerical analysis 
(Dahlquist and Bjork 1974). While the Weierstrass 
approximation theorem (Cheney and Light 2009, p. 151) 
ensures that any continuous function 𝐹(𝑋) can be 
approximated by a set of polynomial functions 𝑃(𝑋), the actual 
polynomial functions that can achieve such close 
approximations, even for a small closed range of 𝑋, can be 
extremely complex (e.g., Bernstein polynomials; Lorentz 
2013). Further, as indicated by Runge’s phenomenon 
(Dahlquist and Bjork 1974), when fitting the polynomial 
function based on a limited number of observations, we may 
find a polynomial function 𝑃(𝑋) that perfectly fits an inverted-
U 𝐹(𝑋) on all given observations yet produces unbounded 
errors on the unobserved values of 𝑋. To address these issues, 
future work may need to refine the model of the inverted-U 
function, e.g., by leveraging the techniques developed in 
numerical analysis to mitigate the errors of polynomial 
interpolation. Examples here include the development of 
alternative models, such as the use of spline interpolation with 
piece-wise polynomial functions (Hall and Meyer 1976) or the 
introduction of a regularization term (e.g., the ℓ2-norm of the 
first derivative of the polynomial function; De Boor et al. 1978). 
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Appendix  
Proof of Theorem 1  

Theorem 1: When 𝒰(𝑋) = 𝛽0 + 𝛽1𝑋𝛼 + 𝛽2𝑋𝛼𝑍 + 𝛽3𝑍, the dispersion indicator 𝛥(𝑋, 𝜖) has no local maximum with respect to 𝑋. 

Proof: Consider a simpler (and more generic) form of 𝒰(𝑋) as 

 𝒰(𝑋) = 𝐹(𝑋) + 𝐺(𝑋)𝑍. (26) 

To prove that no local maximum exists for 𝛥(𝑋, 𝜖), it is sufficient to prove that the “directional” version of it (i.e., the value inside the 
absolute-value function in 𝛥), which we denote as 𝛥(𝑋, 𝜖), is monotonic with respect to 𝑋. 

 𝛥(𝑋, 𝜖) = ∂𝑑(𝑋−𝜖,𝑋+𝜖)
∂𝑍

∝ ∂𝒰(𝑋−𝜖)
∂𝑍

− ∂𝒰(𝑋+𝜖)
∂𝑍

. (27) 

Consider how 𝛥(𝑋, 𝜖) varies with 𝑋 and 𝜖: 

 

∂2𝛥⃗⃗⃗(𝑋,𝜖)
∂𝑋 ∂𝜖

= ∂3𝑑(𝑋−𝜖,𝑋+𝜖)
∂𝑍 ∂𝑋 ∂𝜖

∝ lim
𝜖→0

1
𝜖

⋅ (∂𝐺(𝑋−𝜖)
∂𝑋

− ∂𝐺(𝑋+𝜖)
∂𝑋

) = ∂2𝐺(𝑋)
∂𝑋2 .

 
(28)

(29)
 

Note that, so long as 𝐺(𝑋) is either concave or convex, ∂2𝛥(𝑋, 𝜖)/ ∂𝑋 ∂𝜖 always stays at the same side of zero for all 𝑋, meaning that 𝛥(𝑋, 𝜖) 
must be monotonic with respect to 𝑋. When 𝒰(𝑋) = 𝛽0 + 𝛽1𝑋𝛼 + 𝛽2𝑋𝛼𝑍 + 𝛽3𝑍, we have 𝐺(𝑋) = 𝛽2𝑋𝛼 + 𝛽3, which is either concave25 if 
𝛽2𝛼(𝛼 − 1) ≤ 0 or convex if 𝛽2𝛼(𝛼 − 1) ≥ 0. Thus, 𝛥(𝑋, 𝜖) must be monotonic with respect to 𝑋, completing the proof. ◻ 

Proof of Theorem 2  

Theorem 2. When 𝜖 is sufficiently small, the dispersion indicator 𝛥(𝑋, 𝜖) reaches its minimum at 𝑋∗ (𝑋∗ > 1) if for all 𝑍, 

 𝜕𝒰(𝑋∗)
𝜕𝑋

= 0, (30) 

which also implies that 𝑋∗ is always the turning point for 𝒰(𝑋) regardless of the moderator 𝑍. 

Proof: When ∂𝒰(𝑋∗)/ ∂𝑋 = 0, there must be 

 lim
𝜖→0

𝑑(𝑋∗−𝜖,𝑋∗+𝜖)
𝜖

∝ lim
𝜖→0

𝒰(𝑋∗−𝜖)−𝒰(𝑋∗+𝜖)
𝜖

= 0. (31) 

Since ∂𝒰(𝑋∗)/ ∂𝑋 = 0 for all 𝑍, we have 

 lim
𝜖→0

𝛥(𝑋∗,𝜖)
𝜖

= lim
𝜖→0

|∂𝑑(𝑋∗−𝜖,𝑋∗+𝜖)
𝜖 ∂𝑍

| = 0. (32) 

Since 𝛥(𝑋, 𝜖) ≥ 0, Equation (32) proves that, when 𝜖 → 0, the dispersion indicator 𝛥(𝑋, 𝜖) reaches its minimum possible value at 𝑋 = 𝑋∗. ◻ 

 

 
25 Note that 𝑋 ≥ 1 per the definition of 𝒰(𝑋). 
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Proof of Theorem 3  

Theorem 3. When 𝒰(𝑋) follows the spline model 

 𝒰(𝑋) = {𝛽1𝑋 + 𝛽2𝑋𝑍, if 𝑋 ≤ 𝑋∗

𝛽3𝑋 + 𝛽4𝑋𝑍 + (𝛽1 − 𝛽3)𝑋∗ + (𝛽2 − 𝛽4)𝑋∗𝑍, otherwise (33) 

where 𝛽1 + 𝛽2𝑍 > 0 and 𝛽3 + 𝛽4𝑍 < 0 for all 𝑍, the dispersion indicator 𝛥(𝑋, 𝜖) is always monotonic. 

Proof: Consider the value of the dispersion indicator 𝛥(𝑋, 𝜖). Equation 33 yields 

 𝛥(𝑋, 𝜖) = ∂𝑑(𝑋−𝜖,𝑋+𝜖)
∂𝑍

= {
2𝛽2𝜖, if 𝑋 + 𝜖 ≤ 𝑋∗

(𝛽2 + 𝛽4)𝜖, if 𝑋 ∈ (𝑋∗ − 𝜖, 𝑋∗ + 𝜖)
2𝛽4𝜖, if 𝑋 − 𝜖 ≥ 𝑋∗

. (34) 

The theorem directly follows. ◻ 

 

 


