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Too much of a good thing can be harmful. Choice overload, a compelling paradox in consumer psychology,
exemplifies this notion with the idea that offering more product options could impede rather than improve
consumer satisfaction, even when consumers are free to ignore any available option. After attracting intense
interest in the past decades from multiple disciplines, research on choice overload has produced voluminous
yet paradoxical findings that are widely perceived as inconsistent even at the meta-analytic level. This paper
launches an interdisciplinary inquiry to resolve the inconsistencies on both the conceptual and empirical fronts.
Specifically, we identified a surprising but robust pattern among the existing empirical evidence for the choice-
overload effect and demonstrated through mathematical analysis and extensive simulation studies that the
pattern would only likely emerge from one specific type of latent mechanism underlying the moderated choice-
overload effect. The paper discusses the research and practical implications of our findings—namely, the broad
promise of analytical meta-analysis (an emerging area for the use of data analytics) and machine learning to
address the widely recognized inconsistencies in social and behavioral sciences, and the unique and salient
role of the information systems community in developing this new era of meta-analysis.
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Introduction I

The very essence of scientific progress is the systematic
accumulation of knowledge, yet the viability of doing so is
being questioned in many disciplines in social and behavioral
sciences such as psychology (Open Science Collaboration
2015) and economics (Camerer et al. 2016). Critics point to
many conflicting findings on the same research question in the
social and behavioral sciences, echoing a famous quote by
United States Senator Walter “Fritz” Mondale: “For every
study that contains a recommendation, there is another, equally
well documented study, challenging the conclusions of the first”
(Bangert-Drowns and Rudner 1990, p. 1) Without the ability to
collectively reason about such conflicting findings, we often see
tens, even hundreds, of studies examining the same research
question from different angles, only to make the picture even
murkier. Choice overload is a “poster child” of such paradoxical
research questions with notoriously inconsistent findings
(Scheibehenne et al. 2010). This paper launches an

interdisciplinary inquiry into the feasibility of leveraging
advanced analytical techniques to collectively reason about the
conflicting findings for the choice-overload effect in the
behavioral research literature. While most of the current paper
focuses on choice overload as the case study, our broader goal,
as elaborated in the discussion section, is to demonstrate the
power of analytical meta-analysis, the use of data analytics and
machine learning techniques in synthesizing the inconsistent
findings of behavioral research, and to highlight the unique and
salient role the information systems (IS) community may play
in building and expanding its methodological arsenal.

In the rest of the introduction, we first review the remarkable
inconsistencies in the literature of choice overload, before
providing an overview of our novel analytical approach. We
conclude the section with a summary of the intended
contributions of the paper from both substantive and
methodological perspectives.
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Inconsistencies in the Choice-Overload

Literature

Choice overload is a compelling paradox in consumer
psychology that has attracted intense research interest in the past
decades. It captures the idea that offering more options could
impede rather than improve consumer satisfaction, even when
consumers are free to ignore any available option. Following
the dramatic evidence of choice overload in the marketing
context (Iyengar and Lepper 2000), a series of studies ensued in
psychology (e.g., Inbar et al. 2011), marketing (e.g., Chernev
2003), and IS (e.g., He et al. 2019), only to present a complex
picture with widely dispersed effect sizes and paradoxical
findings even at the meta-analytic level. While some meta-
analyses found strong evidence of the choice-overload effect
and identified its moderators (Chernev et al. 2015; McShane
and Bockenholt 2018), others contended a failure of replication
and a general lack of empirical support for the effect
(Scheibehenne et al. 2010; Simonsohn et al. 2014). These
contradictory results leave the empirical understanding of
choice overload in a fragmented state.

The conceptual underpinning of choice overload is similarly
fragmented. On the one hand, the presence of choice overload
naturally makes the option-satisfaction relation’ into a
curvilinear inverted-U model (Grant and Schwartz 2011;
Reutskaja and Hogarth 2009) because offering more options
would be beneficial to consumer satisfaction up to a point
before becoming negative. On the other hand, most existing
studies have conceptualized the choice-overload effect no
differently than a linear relation and examined it through a
classic two-group experimental design.? Further, moderation in
choice overload* has been exclusively modeled using a linear
mechanism without discerning the two theoretically distinct yet
equally prevalent moderation types for a curvilinear
relationship: whether the moderator steepens/flattens the curve,
or shifts the turning point® of the curve left/right® (Haans et al.
2016). Like the fragmented view at the empirical level, the
theoretical understanding of choice overload is similarly
fragmented, representing a considerable gap in the literature.

2 That is, the relationship between the number of available options and
consumer satisfaction.

3 With such a design, a researcher compares the satisfaction of two groups
of individuals treated with two assortment sizes (small vs. large),
respectively. All primary studies included in the recent meta-analyses of
choice overload (e.g., McShane and Bockenholt 2018) belong to this
category.

4 The existing literature has noted many potential moderators for choice
overload. For example, (Chernev 2003) identified a consumer’s familiarity
with the available options as a moderator variable, as an increasing level of
familiarity likely attenuates the choice-overload effect.
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Given the practical implications of choice overload in an e-
commerce context (e.g., its importance in illuminating how
consumer satisfaction may vary with the number of products
displayed on an online browsing interface; Johnson et al.
2012), it has also received considerable attention in the IS
literature. For example, cognitive overload in information
processing has long been noted in IS research (Doll and
Torkzadeh 1988; Driver and Streufert 1969), even before the
emergence of choice overload in the marketing literature.
Nonetheless, most existing IS studies have approached the
issue from the perspective of information quality (Doll and
Torkzadeh 1988; Geva et al. 2019; Jones et al. 2004), which
is of paramount importance for the design and processing of
complex information but does not afford direct guidance on
the number of options to offer in an e-commerce context.
Indicatively, some studies (e.g., Pan et al. 2013) contend that
more options are always preferred in online browsing (i.e.,
choice overload does not exist), citing the inconsistent meta-
analytic findings discussed earlier (Scheibehenne et al. 2010);
while others assume a detrimental effect of having too many
options displayed on the interface (e.g., Geva et al. 2019). In
sum, the conflicting views of choice overload in consumer
psychology are also present in IS research.

A Novel Analytical Approach

The fragmented views of choice overload directly result from
the paradoxical combination of an obviously nonlinear (i.e.,
inverted-U) conceptualization of the effect and a
methodological deficit at the empirical front to examine such an
effect, most prominently the lack of a meta-analytic method that
can synthesize the results of two-group experiments to probe
the characteristics of a nonlinear relationship. Thus, we premise
the reconciliation of the fragmented views on developing a
novel analytical link between the conceptual underpinning of
choice overload—i.e., the notion of the option-satisfaction
relation being an inverted-U if choice overload exists and
monotonic if it does not—with the unique analytical patterns
discernible from the observed inconsistencies of the existing
empirical findings. Ideally, such a link should explicate the

5 The turning point is the point at which the inverted-U curve reaches its
maximum. It has also been referred to as the “inflection point” in the
literature (Grant and Schwartz 2011). Since mathematically an inverted-U
function reaches its peak at the turning point (where the first derivative
equals zero), not the inflection point (where second derivative equals zero),
we use the term “turning point” throughout this paper for the purpose of
consistency.

® This conceptual discrepancy is particularly perplexing in the context of
choice overload, given that differentiating the two moderation types is
salient for firms to assess the importance and feasibility of finding the
“right” number of options in their product design. Specifically, the
importance of choice overload is directly linked to the steepness of the
curve, while the feasibility of finding a “right” assortment size is linked to
the left/right variation of the turning point.
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mechanisms through which the former entails the latter,
enabling us to address the fragmented empirical view by
elucidating how an underlying conceptual model could actually
explain and account for the empirical inconsistencies. Similarly,
we would reconcile the fragmented conceptual view by leaning
on the coalescent existing empirical evidence to statistically
unpack the underlying option-satisfaction relation, determining
whether it is monotonic or an inverted-U and delineating the
type(s) of moderation that should be expected.

Methodological research in adjacent fields has illustrated how
curvilinearity can be linked to the paradoxical findings of
correlational studies when range restrictions occlude the
underlying effect (Pierce and Aguinis 2013). Still
underdeveloped in the literature, however, is the analytical
link between curvilinear relations and the outcomes of two-
group experimental designs, like those used in the existing
empirical studies of choice overload. We submit that the
existence of this gap speaks to the interdisciplinary challenge
facing the development of the analytical link. On the one hand,
researchers in disciplines such as mathematics are oblivious to
the gap as they rarely use behavior research methods like two-
group experiment designs. On the other hand, behavioral
researchers lack the analytical tools necessary to identify
nonlinear effects from the findings of two-group experiments.
In this paper, we tackle this interdisciplinary challenge by
developing a novel analytical pattern of inconsistencies
among the outcomes of two-group experiments that can only
emerge if both of the following two conditions are met: First,
the underlying option-satisfaction relation must be an
inverted-U rather than monotonic (e.g., linear or curvilinear-
yet-monotonic). That is, the choice-overload effect must exist.
Second, the moderation of the option-satisfaction relation
must substantially shift the turning point of the inverted U
left/right, instead of merely steepening/flattening the curve.
We prove the identifiability of the pattern mathematically and
demonstrate its statistical power through extensive simulation
studies, before confirming its presence in the empirical
evidence for the choice-overload effect.

Summary of Contributions

For the specific phenomenon of choice overload, this paper
makes substantive contributions by clarifying the basis for
expecting the emergence of inconsistent findings from two-
group experimental designs examining the choice-overload
effect. We also offer strong evidence that the choice-overload
effect does exist since a monotonic option-satisfaction relation
could not have produced the pattern of inconsistencies in the
existing empirical evidence. Further, we take care to specify
how the two conceptually distinct moderation types manifest as
clearly distinguishable patterns among the experimental
findings. Given the voluminous evidence of moderation in

choice overload, the appreciation of how moderation operates
is not only of practical pertinence but also crucial for the design
of future research.

This paper also contributes methodologically to the broader
research agenda of analytical meta-analysis, i.e., the use of
data analytics and machine learning techniques to enable the
collective reasoning of (potentially inconsistent) findings in
the literature of social and behavioral sciences (Zhang et al.
2020). To this end, we provide one of the first analytical
methods that can establish the presence of an inverted-U
relationship and its moderation type based on experimental
studies that were not specifically designed to test a curvilinear
relation. This affords behavioral researchers an opportunity to
leverage the existing empirical evidence in exploring,
theorizing, and testing curvilinear relations before new
experiments dedicated to the examination of curvilinearity can
be conducted and accumulated over time (to allow for a
comprehensive meta-analysis in the future). Further, the
effectiveness of the analytical method developed in the paper
demonstrates the promise of casting an analytics lens into the
collective reasoning of conflicting findings in empirical
studies. It is our belief that, as a scholarly community with a
diverse set of methodological roots, IS researchers are
uniquely positioned to contribute to the development of
analytical meta-analysis and to accelerate the systematic
accumulation of knowledge in a broad range of behavioral
research.

Conceptual Development I

In this section, we develop the conceptual foundation linking
the theoretical underpinning of the choice-overload effect and
its moderation to the empirical outcomes of two-group
experiments. The mathematical model and simulation studies
for the conceptual arguments will be presented in the sections
that follow. Since the presence of choice overload would
imply an inverted-U option-satisfaction relation, we first
review the conceptualization of an inverted-U relationship,
including its two distinct moderation types, in the literature.
Then, we outline the alternative conceptualizations for choice
overload, and link each of them to the empirical outcomes of
two-group experiments, before developing a unique pattern of
inconsistencies among the empirical outcomes that could have
emerged from only one of the alternative conceptualizations.

Conceptualization of an Inverted-U Relationship

A relationship is an inverted-U if the dependent variable Y
first increases with the independent variable X and then
decreases once X reaches the “turning point.”

MIS Quarterly Vol. 45 No. 4/ December 2021 1895
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(a) benefit (positive)  (b) loss (negative)

2 shifts the turning point left/right.

(¢) combined

Note: In all subplots, the x-axis represents the assortment size, and the y-axis represents the utility derived by a consumer from being offered
the assortment to choose from. Column (a) depicts examples of the benefit function, Column (b) depicts examples of the cost function, while
Column (c) depicts the inverted-U functions formed by combining the functions in Columns (a) and (b). Columns (d) and (e) depict the two types
of moderation for an inverted-U relation: Type 1 steepens/flattens one or both sides of the curve without changing the turning point, while Type

(d) moderation: type 1 (e) moderation: type 2

Figure 1. lllustrations of the Countervailing Forces Resulting in an Inverted-U Relationship

For the option-satisfaction relation, the assortment size and
the satisfaction of consumers are the independent and
dependent variables, respectively. Since the psychology
literature has unequivocally confirmed people’s preferences
of having some options (e.g., X = 2) over no option at all
(i.e., X = 1), the option-satisfaction relation would be
destined to be an inverted-U should choice overload exist
(Coombs and Avrunin 1977; Grant and Schwartz 2011;
Reutskaja and Hogarth 2009).

An inverted-U relationship is often conceptualized as “the
resultant of two opposed mediating processes, both
monotonic” (McGuire 1997, p. 23) so as to explicate the two
countervailing forces that jointly constrain and influence the
relation. For the option-satisfaction relation, the
monotonically increasing function captures the benefits
associated with a larger assortment, such as the potential to
offer consumers a better match with their personal preferences
(Baumol and Ide 1956), to accommodate consumers’ variety-
seeking behavior (Levav and Zhu 2009), to create a perception
of freedom of choice (Kahn et al. 1987), etc. The
monotonically decreasing function, on the other hand,
captures the negative implications of a larger assortment, e.g.,
by triggering “buyer’s remorse” (Schwartz et al. 2002), by
requiring additional cognitive costs for evaluating the
alternatives (Roberts and Lattin 1991), by inflating
consumers’ (unreasonable) expectations of finding an “ideal”
option (Diehl and Poynor 2010), etc. Figure 1(a)-(c) illustrates
several examples of how two monotonic functions can be
additively combined to form an inverted-U relationship. As

7 Since shifting a linear relation left/right does not change the slope, its
theoretical impact on the effect size is zero.
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can be seen from the figure, the two monotonic functions
could follow a variety of shapes, from linear functions to
functions of diminishing returns or accelerating losses.

In terms of the moderation of an inverted-U relationship,
Haans et al. (2016) developed a typology of two different
types of moderating effects, which are illustrated in
Figure 1(d) and (e), respectively. It is important to note that
the two types of moderations often operate in tandem in
practice. The first type steepens or flattens the curve, like how
moderation in a linear mechanism increases or decreases the
slope. More flexible than the linear case though, a moderating
effect on an inverted-U relationship could steepen/flatten both
sides of the inverted-U, or flatten one side while steepening
the other, as can be seen from Figure 1(d). The second type of
moderation shifts the inverted-U curve (and its turning point)
left or right. Unlike the linear case in which a left/right shift
has no influence on the observed effect,’ shifting an inverted-
U left or right could vary the observed effect considerably due
to the change of the turning point.

For the specific case of choice overload, the existing meta-
analyses (Chernev et al. 2015; McShane and Bockenholt
2018) synthesized four types of moderator variables: decision
goal, preference uncertainty, decision task difficulty, and
choice set complexity. The first two types of moderators,
decision goal and preference uncertainty, reflect the intrinsic,
idiosyncratic, factors associated with individual decision
makers. Specifically, decision goal captures whether
consumers approach the assortments with the goal of making
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a choice (i.e., “purchasing”) or merely to understand the
available options (i.e., “browsing”). In the case of browsing,
the benefit (i.e., increasing) function is likely less steep, as it
is now limited to the pleasure from the evaluation process
(Kahn and Wansink 2004) rather than the gain from making
the “right” purchase decision. Meanwhile, the pressure
associated with decision-making also dissipates, flattening the
cost function as well (Chernev and Hamilton 2009).
Combining the two changes, we can expect the inverted-U
curve to be flattened for browsing than for purchasing, despite
the two curves potentially sharing a similar turning point. In
other words, the first type of moderation (i.e.,
steepening/flattening) likely dominates the effects of
moderators in the decision goal category.

Preference uncertainty refers to the extent to which
consumers have articulated preferences with respect to the
selection decision, e.g., whether they are familiar with the
characteristics of the available product offerings (Chernev
2003). For consumers who are familiar with the available
options, the cost function is likely pushed to the right, as their
familiarity affords them the opportunity to assess a larger
number of options before incurring an onerous cognitive
rumination (Mogilner et al. 2008; Morrin et al. 2012).
Corresponding to this delayed cost, the turning point is also
shifted to the right, exerting the second type of moderation,
i.e., a shift of the turning point.

The latter two types of moderators, decision task difficulty and
choice set complexity, reflect the extrinsic factors associated
with the decision task itself. Specifically, decision task difficulty
captures the structural characteristics of the decision problem;
while choice set complexity captures the complexity of the
available choice options. Any time constraint on decision-
making, for example, is a factor that belongs to the category of
decision task difficulty. Whether there is a dominant option
among the available choices, on the other hand, belongs to the
category of choice set complexity. Both factors are likely to
affect the steepness of the inverted-U curve. Time constraints
are known to rapidly increase the cognitive load associated with
decision-making (Bettman et al. 1998), steepening the cost
function incurred by cognitive overload. On the flip side, having
a dominant option can ease the decision-making process
considerably (Huber et al. 1982), flattening the cost function
instead. While this is consistent with the first type of moderation
effect, it is important to note that both factors are also likely to
shift the turning point. Time constraints have been shown to
incur greater regret when an individual chooses from a larger
assortment than a smaller one (Inbar et al. 2011), conceivably

8 Throughout this section, we use the term “moderation” in a broad sense,
encompassing not only theory-predicted moderator variables but also other
study-level characteristics that could alter the option-satisfaction
relationship.

shifting the turning point to the left. On the other hand,
increasing the assortment size with the presence of a dominant
option has been shown to enhance the dominance of the option
and boost consumers’ satisfaction with choosing the dominant
option (Dhar 1997), suggesting a shift of the turning point to the
right when a dominant option is introduced. In sum, these latter
two types of (extrinsic) moderators likely induce both types of
moderating effects, steepening/flattening the curve while
simultaneously shifting the turning point.

The two types of moderation have distinct practical
implications for the choice-overload effect. The first type of
moderation reveals the factors that make the effect more (or
less) important in practice because a flat option-satisfaction
curve renders the assortment size inconsequential for
consumer satisfaction. With the aforementioned moderator of
decision goal, choice overload is clearly more important when
a firm is designing a website for direct purchase than a
brochure for casual browsing. The second type of moderation,
on the other hand, indicates the critical factors to consider in
designing assortments for product offerings. For example, a
firm may want to limit the number of product options when
few consumers are familiar with the product, and gradually
increase the assortment size when familiarity grows. Since the
two types of moderation are theoretically and empirically
distinct, they should be clearly distinguished in theoretical
development and empirical examinations (Haans et al. 2016).

Linking Conceptualizations to Existing Empirical
Evidence

To reconcile the fragmented views of choice overload, we
seek to link its conceptual model with the effect sizes reported
in the literature, in order to explain what type of an option-
satisfaction relation, combined with what type(s) of
moderation,® could have caused the observed heterogeneity
among the existing empirical findings. The emergence of
heterogeneity is indeed a common issue in meta-analyses. In
general, when the observed heterogeneity exceeds what could
be explained by artifactual factors such as sampling error,’
researchers theorize and test moderator variables to account
for the residual heterogeneity (Thompson 1994). The unique
challenge for choice overload, as discussed earlier, is the
dearth of meta-analytic methods that can probe the
characteristics of a curvilinear relationship based on the
reported findings of two-group experiments (Pierce and
Aguinis 2013).

° The presence of such residual heterogeneity has been unequivocally
established in the meta-analyses for choice overload (e.g., Chernev et al.
2015; McShane and Bockenholt 2018).
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To address this challenge, we must extend beyond the simple
aggregation of existing findings into statistical indicators, but
develop analytical models that can glean deeper insights about
how the moderation of a linear or curvilinear relationship
manifests as the heterogeneity observed in the existing
findings. In the passages that follow, we first outline the key
conceptual question we aim to answer from the synthesized
findings. Then, we develop three analytical models,
corresponding to three possible answers to the conceptual
question, respectively. Finally, we identify a unique pattern of
inconsistencies among the reported effect sizes that could only
have emerged from one of the three models. We acknowledge
at the onset that, for the sake of clarity, it is necessary to gloss
over several operationalization challenges in the conceptual
development. At the end of this section, we summarize these
challenges and how they are addressed later in the paper.

Key Question

The fragmented conceptual views of choice overload bring to
the fore two pressing issues that are practically imperative:
The first is whether the choice-overload effect exists at all
(cf. Scheibehenne et al. 2010). The importance of this issue
has long been touted in the literature (e.g., Iyengar and Lepper
2000), as it informs practitioners whether offering more
options could adversely impact consumer satisfaction. If
choice overload does exist, then the second issue that arises is
whether the turning point of the option-satisfaction
relationship may be shifted significantly by potential
moderators. That is, whether the moderation operates only
through the first type (i.e., steepening/flattening the curve), or
whether the second type (i.e., turning-point shift) occurs either
instead of or in addition to the first type. This issue is
important because the turning point directly implicates the
number of options one should offer to consumers in practice.
In other words, by understanding whether the turning point
shifts in moderation, we would be able to inform practitioners
whether it is necessary to adjust the number of available
options under different moderating conditions (e.g., for
different customers, products, etc.). Considering the two
issues in tandem, the key research question we aim to answer
is whether the choice-overload effect exists and, if so, whether
there is statistical evidence for the second type of moderation
(i.e., a shift of the turning point).

Three Models

There are three possible answers to the key question: (1) the
choice-overload effect does not exist, (2) the effect exists but
moderation only operates through steepening/flattening of the
curve, and (3) the effect exists and there are moderators that
shift the turning point significantly. To offer an analytical link
between the conceptual question and the existing empirical
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evidence, we develop three models corresponding to the three
possible answers, respectively.

We start with the case in which the choice-overload effect
does not exist. For this possibility, numerous theories in social
psychology (e.g., attribution theory, Kelley 1973; reactance
theory, Brehm 1966) point to the option-satisfaction relation
forming a monotonic function that may be linear or
curvilinear-but-monotonic. This provides the underpinning
for the first analytical model, an example of which is depicted
in Figure 2(a). Similar to how moderation is commonly
examined for a linear relationship, with a monotonic option-
satisfaction relation, researchers often hypothesize that a
change of moderator level triggers a slope change or even a
sign reversal of the relation, e.g., from the increasing blue line
to the decreasing red line in Figure 2(a). Indicatively, the
effect size observed in a two-group experiment, as illustrated
by the two solid line segments in the figure, would switch
from positive to negative, like what has been widely reported
in the literature (Chernev et al. 2015). As discussed earlier in
the paper, while this model is obviously incompatible with an
inverted-U option-satisfaction relation, it actually reflects how
a moderating effect has been examined in most existing
empirical studies for choice overload.

For the second possible answer (i.e., where the choice-
overload effect is only moderated through the
steepening/flattening of the curve), we consider a model of the
option-satisfaction relationship as an inverted-U function,
depicted in Figure 2(b). As can be seen from the figure, since
the moderation does not shift the turning point significantly,
the two inverted-U curves, representing the option-
satisfaction relationship under two moderating conditions,
always share the same turning point. Nonetheless, just like in
the first model, the effect size observed in a two-group
experiment could also switch from positive to negative under
different moderating conditions. Thus, this second model
could also entail a widely dispersed set of effect sizes, as
reported in the literature.

The last possible answer to the conceptual question is that the
moderation of choice overload involves a significant shift of
the turning point. This answer gives rise to a wide range of
possibilities in terms of how moderation operates, as
moderation in this case may or may not involve a
steepening/flattening of the inverted U. Figure 2(c) depicts
one such possibility, where the moderating effect is limited to
the horizontal shift of the turning point. As can be seen from
the figure, even in this (more simplistic) case, the effect size
observed in a two-group experiment could vary drastically,
even flipping its sign with the shift of the turning point. In
other words, all three models could plausibly produce the wide
dispersion of effect sizes reported in the literature.
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(a) Model 1: mixture of mono-
tonic relations

(b) Model 2: inverted-U; modera-
tion steepens/flattens curve

Note: For all subplots, the x-axis represents the assortment size, and the y-axis represents consumer satisfaction. In each subplot, the red
(dotted) and blue (dashed) lines/curves depict the option-satisfaction relation at two different moderator levels, respectively. The two vertical
dashed lines represent the two assortment sizes chosen in a two-group experiment. The intersection of a curve and the vertical line at X, (or X,)
represents the mean satisfaction level for the group treated with the smaller (or larger) assortment. Thus, the red or blue solid line captures the
effect size observed in a two-group experiment for the corresponding moderator level.

(c) Model 3: inverted-U; modera-
tion shifts turning point

Figure 2. lllustrations of Three Alternative Conceptualizations

Unique Pattern of Inconsistencies

The discussions of the three models seemingly suggest that we
have hit a dead end: As all three models could manifest as sign
reversal in a two-group experiment, it appears untenable to
distinguish between the three models based on the existing
empirical evidence, which was mostly collected from two-
group experiments. Interestingly, while this infeasibility is
true for a single two-group experiment, it does not hold when
we have access to the results of multiple such experiments
with different assortment-size designs. The key reason can be
explained as follows. Figure 2 suggests that, for a given pair
of assortment sizes {X;, X, }, it is easy to find three models that
all produce the same pair of effect sizes for the two moderator
levels (i.e., blue and red). Nonetheless, if we now conduct
another two-group experiment with another pair of assortment
sizes, like X5 and X, in Figure 3, then clearly the three models
can no longer produce the same results.'? In other words, we
can make a distinction between the three models by
comparing and contrasting the results of two-group
experiments with different assortment-size designs.

To develop a model-specific pattern, we start with a few
observations from Figure 3. Consider two pairs of
assortment sizes reported in two different experiments:
{X1,X,} and {X3, X,} with equal distance (i.e., X, — X; =
X4 — X3). When the underlying option-satisfaction relation

19 Mathematically, while f(X;) — f(X;) alone cannot uniquely identify a
function f(-) (e.g., a dotted line in Figure 2), the function can be clearly
identified (from the three candidates) if we know both f(X,) — f(X;) and

f(Xy) = f(X3).

is an inverted-U (i.e., Models 2 and 3), we set X; and X, to
be on different sides of the turning point X* (i.e., X; < X* <
X,), and X3 and X, on the same side (i.e., X3 < X, < X™).
Now, for each model, we examine how moderation affects
the effect observed in a two-group experiment with
assortment sizes being {X;, X,} and {X3, X,}, respectively.
Note that, since X, — X; = X, — X3, the slope of each solid
line segment in Figure 3 represents the effect size for the
corresponding setup.'!

As can be seen from Figure 3, with the linear mechanism in
Model 1, the observed effect sizes remain constant regardless
of the assortment-size design. This is indeed consistent with
the conventional understanding of study design in choice
overload, as the numeric values of the assortment sizes were
never included in any meta-analytic models examined in the
literature. With Models 2 and 3, however, this conventional
understanding belies the drastic change of effect sizes with
varying assortment sizes. For example, with Model 2, the
difference in effect size is more pronounced for {X5, X, } than
{X1,X,}, as evidenced by the large difference between the
slopes of the red and blue line segments on the left side of
Figure 3(b). The intuition behind this is simple. Based on the
definition of a turning point, the slope (i.e., first-order
derivative) of the curve must approach zero when the chosen
assortment sizes are close to the turning point.

"' As we elaborate in the mathematical formalism and results sections, a
variety of effect sizes (e.g., Cohen’s d, log odds ratio) have been reported
in the literature, and can be fit into our conceptual model with proper
transformations. For the purpose of conceptual development, it is
appropriate to elucidate the effect size as the slope of a solid line segment.
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(a) Model 1: mixture of mono-
tonic relations

than {X,, X,}. The opposite holds for (c).

(b) Model 2: inverted-U; modera-
tion steepens/flattens curve

Note: The design of all subplots follows the note for Figure 2. The key observation from (b) is that the difference in slope is larger for {X;, X,}

X2

(c) Model 3: inverted-U; modera-
tion shifts turning point

Figure 3. lllustrations of Model-Specific Patterns

Thus, even when a moderator changes the steepness of the
inverted U, as long as the assortment sizes are still close to
the (unchanged) turning point, the effect size observed in a
two-group experiment must remain bounded within the
vicinity of zero. In contrast, when the assortment sizes are
far from the turning point, the observed effect could vary
drastically, as it can now reflect the true
steepening/flattening (hence the changed slopes) of the
inverted U. This is exactly what can be observed in
Figure 3(b).

The opposite may be true for Model 3. Consider the example
depicted in Figure 3(c), where the moderating effect only
entails a turning-point shift. As can be seen from the figure,
the difference in effect size is now larger for {X;, X,} than
{X3, X,}. This is consistent with the conceptualization behind
the moderating effect of the turning-point effect: When the
assortment sizes are close to the turning point, like X; and X,
in Figure 3(c), a turning-point shift could flip the sign of the
observed effect with a pronounced change of slope. The slope
change dissipates, however, once the assortment sizes are
further away from the turning point—e.g., {X3,X,} in
Figure 3(c)—as the observed effect is now dominated by the
steepness of the inverted-U rather than the position of the
turning point. Comparing Model 3 with Model 2, a sharp
contrast emerges. If moderation only operates through the
steepening/flattening of the curve, we should expect a wider
dispersion of effect sizes from experiments that select
assortment sizes at either end of the spectrum. Only when the
moderation entails a shift of the turning point, are we likely to
observe a higher dispersion from experiments that feature
assortment sizes in the middle, i.e., close to the turning point
of the inverted U.
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The distinct observations from the three subplots of Figure 3
give rise to the following model-specific pattern: Consider a
set of existing two-group experiments with similar distance
between assortment sizes, i.e., with a roughly constant X, —
X;. We sort the studies in increasing order of X = (X; +
X3)/2, and then inspect a sliding window of k studies to
assess how the dispersion (e.g., standard deviation) of the k
reported effect sizes varies when X grows from small to large.
If the linear mechanism (in Model 1) were true, we would
observe no change of dispersion. If Model 2 were true, we
would observe a U-shaped dispersion, as it is higher when X
is at either end of the spectrum than when X is close to the
turning point. Only if Model 3 were true would it be possible
for us to observe an inverted-U-shaped dispersion, which
reaches the maximum when X approaches the turning point of
the option-satisfaction relation.

The above conceptual development leaves a few limitations
and operationalization challenges to be addressed through
mathematical formalism. First, the dispersion in Model 1 is
constant only when the underlying relation is linear. In the
next section, we generalize the result from linear to monotonic
polynomial functions and prove that the dispersion may be
monotonic or U-shaped, but cannot be an inverted-U. While
the possibility of a U-shaped dispersion potentially confounds
the generalized Model 1 with Model 2, both remain clearly
distinguishable from Model 3, which is the only possible
model that could entail an inverted-U dispersion. Second, the
above conceptualization focuses on experiments with similar
distance between assortment sizes. With an analytical
correction developed in the next section, we expand the
pattern to involve all existing studies with arbitrary distance
between assortment sizes.
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Finally, we would like to note again that the two moderation
mechanisms are likely to occur in tandem in practice (Haans
et al. 2016). This is especially true for the choice-overload
effect, given the likely existence of unknown moderators
(McShane and Bockenholt 2018) and the potential for
different moderators to function through different
mechanisms.'? To this end, it is important to note that, while
the existing empirical evidence might not afford us the
resolution required to pinpoint the moderation mechanism for
each moderator separately, if we observe an inverted-U
pattern of dispersion from the collection of a// existing studies,
two findings abound: First, the underlying option-satisfaction
relation is likely an inverted-U rather than a monotonic
function as in Model 1, because the latter could not have
produced an inverted-U pattern of dispersion. This provides
strong evidence for the presence of the choice-overload effect.
Second, the moderation of the option-satisfaction relation
must involve a substantial shift of the turning point because,
were the moderation limited to steepening/flattening the curve
like in Model 2, the pattern of dispersion would have been a
U-shape rather than an inverted-U-shape.

Mathematical Formalism I

We detail the mathematical formulations of the three models
introduced in the conceptual development, before proving the
identifiability of the model-specific pattern. We discuss the
operationalization of the pattern at the end of the section,
addressing the challenges brought by the limited number of
primary studies in the existing literature.

Mathematical Formulation for The Three Models

Recall from the conceptual development that the first model
treats the option-satisfaction relation as monotonic in studying
its moderation. In contrast, the other two models treat the
relation as an inverted-U. This divergence in treatment
necessitates different mathematical formulations, which we
detail respectively as follows.

Model 1 (Mixture of Monotonic Relations)

Consider a consumer faced with the decision to choose from
an assortment of X items (X = 1). With the monotonic-

12 As a case in point, see the earlier discussions of the moderating effects of
decision goal and consumer expertise.

mixture model, we express the consumer’s level of
satisfaction from making the decision as

UX) = Bo + B XY + BXZ + P52, (1

where Z is the moderator variable.!* Regardless of the model
parameters, U(X) is always monotonic with X. But its shape
depends on a and B; + f,Z in tandem. For example, it is
linearly increasing when @« =1 and B, + f,Z > 0, and
linearly decreasing when ¢ =1 and f; + ,Z < 0. When
a<1and a(f; + B,Z) > 0, U(X) represents diminishing
returns as U(X) is increasing with X yet its first-order
derivative 0U(X)/ 0X is decreasing with X. In contrast, when
a>1 and B; +B,Z <0, U(X) represents accelerating
losses. The shape of U(X) is moderated by Z. For example, in
the linear case where @ = 1, changing Z from 0 to 1 can flip
U(X) from increasing to decreasing if f; > 0 and 8, < —f;.
When $, = 0, changing Z does not affect the shape of U(X),
but moves it up and down instead.

While this mathematical model is considerably more general
than the linear mechanisms depicted in Figure 3(a), it is still
limited in assuming that Z does not change the exponent a.
This assumption is likely inconsequential in the specific case
of choice overload, given the aforementioned dominance of
the linear model (i.e., « = 1) in the literature. Nonetheless,
assuming a constant a could threaten the generalizability of
our results. Thus, while we adopt Equation (1) in the
mathematical formalism section, we also conducted extensive
simulations (to be discussed later in the paper) while varying
a, in order to examine the robustness of our results.

Models 2 and 3 (Inverted-U Conceptualizations)

In this case, consumer satisfaction is conceptualized as
combining two countervailing forces, one increasing with the
assortment size and the other decreasing. Since either force
can be captured using the model in Equation (1), we naturally
express U(X) as the algebraic sum of the two, i.e., U(X) =
Uo(X) + U, (X) where

Uo(X) = Bo + B1 X + B XZ + B5Z, 2
Ui (X) = Ba + Bs XY + BeXVZ + B, Z. 3)

In order for U(X) to match the inverted-U conceptualization,
the following four inequalities must all be satisfied:

13 Note we can directly extend Z to be a vector of multiple moderator
variables. Correspondingly, S, and fS; will become vectors of the
coefficients of these variables
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a(fy + BZ) >0 4)

Y(Bs + BsZ) <0 (5)

a(By + B2Z) +v(Bs + BsZ) > 0 (6)
y>a ™)

Specifically, (4) ensures Uy(X) is increasing with X; (5)
ensures U, (X) is decreasing with X; (6) ensures U(X) is
increasing when X = 1; and (7) ensures U(X) is decreasing
when X — oo.

Compared with the common way to model a curvilinear
relationship between X and Y, which is to include in the
regression equation the first-order X, the quadratic form of it,
and their respective interactions with the moderator Z (Aiken
etal. 1991; Lind and Mehlum 2010),

Y = bo + le + bzXZ + b3XZ + b4X2Z + sz, (8)

our model is considerably more general, as Equation 8 is a
special case of our model whena = 1,y = 2, 8y + 4 = by,
B1 = b1, B2 = b3, B3 + B7 = bs, Bs = b,, and g = b,. This
added generalizability is essential for accommodating the
nuanced theorizing of choice overload, e.g., the benefits
derived from a larger assortment tend to follow a function of
diminishing returns (Grant and Schwartz 2011). The
traditional model, on the other hand, can only be interpreted
as the algebraic sum of a linear relation and an accelerating
loss function (Haans et al. 2016).

Taking the first derivative of U(X) with respect to X, we
obtain the curvature of U (X):

OUX) _ 0U(X) | 0UI(X) _
ax  ox ax

By + B 2)aX ™t + (Bs + B ZD)yX¥ 1. (9)

Setting it to zero, we derive the turning point

1

X (B5+B6Z)Y \a-v

X = (= Lstbenya (10)
( (B1+Bzz)“)

The two different types of moderation can be explicated by
examining how different values of a, f;, B2, Bs, B, and ¥
yield distinct roles of the moderator Z in Equations (9) and
(10). For example, when B¢ /B, = f5/B1, changing Z has zero
effect on the turning point X*. Yet the curvature of U(X)
could change considerably. For example, when 8, > 0 and
B¢ < 0, increasing Z from 0 to 1 steepens the curve, while
decreasing Z flattens it. This reflects the first type of
moderation (i.e., Model 2), where the moderating effect
changes the curvature but not the turning point.

14 Specifically, we collected all the group-wise standard deviations reported in
the literature, resulting in a collection of 120 standard deviations reported by 60
primary studies. Regressing the reported standard deviation over the independent
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In contrast, Z could also shift X* considerably without
occasioning a large change of the curvature of U(X). For
example, consider the case where o and y are relatively close,
eg,a=09 and y =1.1. When S, = —f,/10 and S, =
Bs/10, increasing Z from 0 to 1 barely moves the curvature,
whereas X* is increased by a ratio of (1.1/0.9)° = 2.73,
pushing the turning point far to the right. This reflects the second
type of moderation (i.e., Model 3), where the moderating effect
substantially shifts the turning point left or right.

Finally, we note that, while Equations (2) and (3) derive from
the conceptual understanding of consumer satisfaction (i.e., the
combination of two countervailing forces, Grant and Schwartz
2011), it is not the only analytical formulation that reflects an
inverted-U relationship. Another commonly used analytical
formulation for inverted U is the spline formulation (i.e., piece-
wise linear, Simonsohn 2018), which concatenates two linear
functions, one increasing and one decreasing, together at the
turning point to form an inverted-U (more precisely, an
inverted-“V”) shape. Even though this formulation does not
align with the conceptual underpinning of choice overload, we
will demonstrate in the next subsection that the analytical results
derived in the paper readily generalize to the spline formulation,
testifying to the robustness of our results.

Model-Specific Patterns in the Dispersion of
Reported Effect Sizes

Reported Effect Sizes and Their Dispersion

We start by linking U(X) to the effect sizes reported in the
literature. In most existing studies, the subjects were randomly
partitioned into two groups treated with two assortment sizes X
and X, (X; < X;), respectively. The effect size was then
computed based on the difference of an outcome variable (e.g.,
satisfaction) between the two groups. For example, Cohen’s d
is defined as the mean difference divided by their pooled
standard deviation. The pooled standard deviation is commonly
assumed to be constant to the independent variable (i.e.,
assortment size X) in meta-analysis, as a violation of the
assumption suggests the existence of a treatment-by-subject
interaction (Hunter and Schmidt 2004, p. 283) that has never
been reported in the choice-overload literature. We also
empirically tested this assumption and found no supporting
evidence for a significant correlation between the reported
standard deviation and the independent variable.'*

variable (i.e., assortment size) failed to reject the null hypothesis of the regression
coefficient being zero (p =.082). Similarly, the Breusch-Pagan
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As such, for a given U(X), the reported effect size d is
proportional to the difference of U(X) between the two
assortment sizes X; and X,:

d (X1, Xz) o« (U(Xy) — UX2))- (11)

Note that Equation (11) readily applies to other effect-size
measures. For example, when the outcome variable is binary
and measured on the probability scale p € [0,1], the
commonly used effect-size measure, the log odds ratio, is
usually modeled as the difference between U(X) = log(p/
(1 — p)) for the two groups and (approximately) transformed
to Cohen’s d with a linear multiplicative factor of v/3/m
(Sanchez-Meca et al. 2003).

To assess the dispersion of reported effect sizes, it is essential
to examine how moderation—i.c., the study-level variations
captured by the moderator variable Z—affects d(X;, X,). A
natural dispersion indicator is the first-order derivative of
d(X;, X;) with respect to Z, with one caveat. The dispersion
imputed from the existing findings can only be nonnegative,'”
yet dd(X;,X;)/ 0Z can be on either side of zero. A simple
rectification is to use the absolute value of the derivative as the
dispersion indicator:

dd(X—e€,X+e€)
0z

AX,€) =|

0UX—€ dU(X+e
°(| E?z = E?Z : (12)
Without loss of generality, we replaced d (X7, X;) with d(X —
€,X + €) in Equation (12), in order to highlight the change of
A with (X; + X,)/2. Figure 4 illustrates three examples for
how A(X, €) exhibits unique patterns for different underlying
models. In the passages that follow, we develop more generic
analytical results for the pattern of the dispersion indicator
over each of the three models, respectively.

Model 1

With the monotonic-mixture model, by taking Equation (1)
into Equation (12), we obtain

AX, €) < |B((X — €)% = (X + e)9)|. (13)

Consider the expression inside the absolute value operator in
Equation (13), LT(X, €) = Lo((X — )% — (X + €)9). Clearly,
holding € (i.e., the assortment-size difference between the two

groups) constant, Ais always monotonic to X, with the direction
determined by the combination of & and 3,. For example, in the

. rd .
linear case where @ = 1, 4 remains constant no matter how we

heteroskedasticity test (Breusch and Pagan 1979), which regresses the variance
over the independent variable, also fails to reject the null hypothesis of
homoscedasticity (p = .073). Overall, our empirical examination identified no
supporting evidence for heteroskedasticity or treatment-by-subject interaction.

shift X. When 8, < 0, 4 increases with X;ifa>1lora <O,
and decreases if a € [0,1]. Since /4 is monotonic and 4 is the

absolute value of 4, A may be monotonic or U-shaped, but
cannot be an inverted-U.'® This is summarized by the following
theorem, the proof of which is available in the appendix.

Theorem 1: WhenU(X) = By + L1 X% + L, X%Z + B3Z, the
dispersion indicator A(X,€) has no local maximum with
respect to X.

Model 2

Next, consider the inverted-U model when the moderating
effect only steepens/flattens the curve without changing the
turning point. A key observation here is lim._ d(X* —
€,X" +€) = 0, where X" is the turning point of the inverted-
U. This means that, when € is sufficiently small, d(X* —
€,X" +¢€) = Oregardlessof Z. Whend(X* —€¢,X" +€) =0
for all Z, there must be A(X*,e)=|0d(X* —¢€, X"+
€)/ 0Z| = 0, its minimum possible value. Formally,

. AXYe . 0d(X*—€ X +e
lim 2009 = fjy [22E X))
€—0 € €—0 €0Z

0. (14)

In other words, the dispersion indicator A(X, €) is minimized
at the turning point X = X*, consistent with our earlier
conceptual discussions. The following theorem formalizes
this notion, with the proof included in the Appendix.

Theorem 2: When € is sufficiently small, the dispersion
indicator A(X, €) reaches its minimum at X* (X* > 1) if for
all Z,

auUX"
ax

0, (15)

which also implies that X* is always the turning point for
U(X) regardless of the moderator Z.

Model 3

Theorems 1 and 2 are already sufficient for establishing the
model specificity of an inverted-U shaped dispersion indicator
A(X, €) with respect to X. Since neither Model 1 nor Model 2
was able to produce an inverted-U-shaped A(X,e€), if we
observe such an inverted-U dispersion, the only possible
explanation is Model 3, i.e., the option-satisfaction relation
being an inverted-U, whose turning point is shifted significantly
through moderation.

15 The reason is that we do not have a perfect understanding of all moderator
variables for all existing studies.
16 Mathematically, if f is monotonic, then for all x in the domain of f, there

must be |f (x)| < max(|f(x — )|, [f(x + €)]).
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(a) Model 1: mixture of mono-
tonic relations

(b) Model 2: inverted-U, modera-
tion steepens/flattens curve

Note: Following the same legend as Figure 2, the red dotted and blue dashed lines/curves in each subplot depict the option-satisfaction relation
at two different moderator levels Z = 0 and Z = 1. The black solid line/curve in each subplot depicts the dispersion indicator 4(X, €) for e = 1.
Parameter settings for (a): (a, By, B1, B2, B3) = (1,0,1,—2,10). U(X) = X — 2XZ + 10. Parameter settings for (b): (a, ¥, Bo, B1. B2, B3, Ba, Bs, Be B7) =
(1.2,2,0.9,0.5,0.15,0,0,—0.05,—0.015, —0.9). That is, U(X) = 0.9 + 0.5X*2? — 0.05X? + 0.15X*?Z — 0.015X?Z — 0.9Z, with turning point X* = 9.39
for both Z = 0 and Z = 1. Parameter settings for (c): {(a, v, Bo, B1, B2, B3» Bar Bs, Be, B7) = (1.2,2,2.4,0.5,0.15, 0,0, —0.05,—0.0024, —2.4). Z € {0,1}.
That is, U(X) = 2.4 + 0.5X? — 0.05X% + 0.15X12Z — 0.0024X2Z — 2.4Z, with turning point X* = 9.39 when Z = 0 and X* = 12.29 when Z = 1.

(c) Model 3: inverted-U, modera-
tion shifts turning point

Figure 4. Different Patterns of Dispersion for the Three Models

Given the sufficiency of Theorems 1 and 2 on proving the
uniqueness of the pattern, our remaining goal is to
demonstrate that an inverted-U dispersion is indeed a common
occurrence!” for Model 3. In other words, the shape of the
dispersion indicator A(X, €) has a sufficiently high statistical
power to identify the presence of Model 3. Since the dynamics
among the model parameters in Model 3 are too complex to
allow for an analytical examination of the dispersion
indicator, we defer the power analysis to the simulation
studies later in the paper, and present here a simple example
demonstrating the emergence of an inverted-U dispersion
from the left/right shift of a famous inverted-U function, (a
generalized version of) the Runge function's, U(X) =
1/(E+ (X — c1Z — ¢3)?), where § >0 marks an upper
bound of 1/¢ for U(X), and the offset ¢;Z + ¢, indicates that
increasing Z shifts U (X) (and the turning point X *) to the right
by an offset of ¢, Z. In this case, consider the change of d (X —
¢1,X) when Z varies from 0 to 1. We have

dz=0(X — ¢y, X) —dz=1 (X — ¢, X)
= Uz=0(X) — Uz=o(X — 1) = Uz=1 (X) + Uze1 (X — 1) (16)

= Uz (X +¢) = 2Uz1 (X)) + Uz (X — 1) a7
9% Uz=1(X)
ok R (18)

17 Note that an inverted-U dispersion is a sufficient but not necessary
condition for Model 3. That is, not all inverted-U functions produce an
inverted-U dispersion when being shifted left/right. An example is a
function shaped like “_ 1N _" (e.g, UX) =1 if X €[510] and 0
otherwise). Clearly, the dispersion indicator in this case is more complex
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The reduction from Equation (17) to (18) follows directly
from the notion of second symmetric derivative (Zygmund
2002) and is asymptotic when ¢; — 0. Taking advantage of
the simple analytical form of the second derivative of the
(generalized) Runge function when ¢ is small, i.e.,

lim % Uz=1(X) _ 6
£-0 ax2

T (x-ci-cp)*’ (19)
we know from Equation (18) that the dispersion indicator
must also follow an inverted-U shape, with the exact same
turning point (i.e., ¢; + ¢,) as U1 (X).

Generalizability to the Spline Formulation

Finally, we demonstrate that the unique analytical pattern
derived for the polynomial formulations also holds for the
spline formulation discussed before, which concatenates a
linearly increasing function with a linearly decreasing one at
the turning point. Like how Theorems 1 and 2 show that the
dispersion indicator 4(X, €) cannot form a local maximum
under the first two models, the following theorem shows
that, with the spline formulation, the dispersion indicator
A(X, €) also cannot form a local maximum if moderation is
limited to the steepening/flattening effect but not a shift of

than an inverted-U, as it first increases, then decreases, before increasing
and then decreasing again.

'8 The Runge function is f(x) = 1/(1 + 25x2) (Cheney and Light 2009).
We generalized the factor of 25 to 1/¢, and introduced an offset ¢;Z + ¢,
to capture the shifting effect of moderation.
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the turning point. In other words, the analytical pattern we
discovered readily generalizes to the spline formulation.

Theorem 3: When U(X) follows the spline model

[ BiX + B.XZ, ifX <X*
U ={ x4 Bz + (5~ pox + o= pox'z, itx > 1 CO)

where [+ ,Z >0 and B3+ P,Z <0 for all Z, the
dispersion indicator A(X, €) is always monotonic.

Note that the theorem considers a spline model that
concatenates line segments of the form U(X) = ;X + B;XZ.
Although this form is a simplification of Equation (2), it does
not affect the generality of the theorem because a change of
U(X) constant to X (e.g., by Sy + f3Z in Equation 2) has no
impact on the observed effect size, given that the two
segments must share the same value when X = X*. Similarly,
the last two items in the expression of U(X) when X > X* are
also to ensure that the two segments feature the same value of
UX) when X - X*.

Operationalization for Pattern Recognition

There are two key challenges in operationalizing the
dispersion index over the existing empirical evidence for
choice overload. The first challenge is the latent nature of the
study-level variations captured by Z. While multiple studies
in one article may have otherwise identical designs, except for
one explicitly marked moderator variable, such common
ground is rare across articles. Thus, when analyzing empirical
results from different articles, it is difficult to determine which
(pairs of) studies feature more similar study-level designs than
others. In other words, we cannot explicate the value of Z in
practice, let alone computing A(X,€) =|dd(X —€,X +
€)/ 0Z|. Thus, to overcome this challenge, we have to infer
the degree of effect-size variation with respect to Z without
actually knowing the exact values of Z.

Fortunately, there is a simple inference if we have access to a
sufficiently large body of empirical evidence. Specifically,
suppose that we have a large number of existing studies
featuring effect-size pair X — € and X + €. We do not know
the values of Z for any study. Instead, we assume that Z is
randomly drawn from a probability distribution with domain
Z € () and density function p(-). A simple inference for
A(X, €) is the standard deviation of the reported effect sizes:

A(X, €)

= an (d(X — &, X +€elZo) — [,d (X — €, X + elZ)p(Z)dZy) p(Z)dZ,  (21)

= 18 (L, 22829 7, azaz, ) pzgyaz, (22)

By taking the partial derivative of Equation (22) with respect
to X, one can see that A(X, €) follows the same trend with
respect to X as those specified for 4(X, €) in Theorems 1 and
2. For example, since Model 3 is the only possible model for
|0d(X —€,X +€)/0Z]| to reach a local maximum with
respect to X for any Z, if we observe such a local maximum
for A(X,€), we can still infer that Model 3 underlies the
observed effects. Figure 5(a)-(c) demonstrates this
operationalization for the three models depicted in Figure 4.
As can be seen from the figure, the model-specific patterns
are still distinctly identifiable from A. Specifically, we can
observe a constant dispersion for Model 1, a U-shaped
change of dispersion (with respect to (X; +X,)/2) for
Model 2, and an inverted-U shaped dispersion for Model 3.

Unfortunately, this operationalization is blunted by the
second key challenge in practice: The existing studies did
not cover enough assortment-size pairs to enable the plotting
of a 3D chart like those in Figure 5(a)-(c). When there are
not enough data to properly support a 3D plot, a natural idea
is to design a dimension-reduction projection of the 3D plot
to a 2D one. In this case, instead of measuring the standard
deviation for each pair of X;,X, separately to estimate
A((X, + X5)/2,(X, —X1)/2), we  consider the
measurement of standard deviation for all assortment-size
pairs that share the same (or similar) (X; + X,)/2 regardless
of their difference (i.e., (X, — X;)/2). In other words, we are
projecting the 3D plot of A(X, €) to a 2D plot of A(X), based
on the rationale that, if A(X,€) follows the same pattern
regardless of €, then we should observe the same pattern
when grouping the studies with the same X (i.e., (X; +
X,)/2) but different € (i.e., (X, — X1)/2).

There is one remaining caveat in this projection, as grouping
studies with different € could entail the overweighting of
studies with a large difference between their assortment-size
choices. For example, consider how A(X, €) varies with € for
Models 2 and 3:

A(X,€)
_10d(X —€,X +¢€)
0z
o B2 (X =€) = (X +)*) + Bs (X =€) = (X + &))] (23)
~ [2e(B,aX L + By XV 1)|. 24)

Since A(X, €) is approximately proportional to € (when € is
small), directly measuring the standard deviation of effect
sizes with different € could bear more weight on those
studies with larger €. To offset this bias, we introduce a
multiplicative correction factor of 1/(X, —X;) to the
calculation.
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(a) Model 1: mixture of monotonic
relations

(b) Model 2: inverted U; moder-
ation steepens/flattens curve

(c) Model 3: inverted U; moder-
ation shifts inflect point

(d) Model 1: mixture of mono-
tonic relations

experiments, the top subplots only display the cases where X, < X,.

(e) Model 2: inverted U; modera-
tion steepens/flattens curve

Note: The parameter settings for the three models following the same values as Figure 4. The top three subplots (i.e., a-c) depict how the standard
deviation of reported effect sizes varies with X, and X,, while the bottom three subplots (i.e., d-f) depict how the 2D indicator varies with (X; + X,)/2
(subject to a window size w). In each subplot, Z was drawn uniformly at random from its domain [0,1]. The red (dotted), blue (dashed), and black
(solid) lines/curves in each bottom subplot represent the cases with w = 0, 1, and 2, respectively. Note that, following the convention in two-group

(f) Model 3: inverted U; modera-
tion shifts inflect point

Figure 5. Operationalizations of Dispersion Indicator: 3D and 2D

Specifically, given a set of K primary studies with reported
effect sizes being d;, ..., dx and the assortment-size pairs being
(X11, X12)s o0 (Xi1, Xi2)s respectively, our final
operationalization of the dispersion indicator is:

A(X)=5D ({#| X+ Xz € [2X —w,2X +w]}), (25)

where SD represents the standard deviation, and w is a window
size used to further address the cases where no existing study
have (X;; + X;5)/2 exactly equal to X. Figure 5(d)-(f) depicts
the change of A(X) with respect to X for the three models when
the window size w varies from 0 to 2. As can be seen from the
figure, the model-specific patterns of the dispersion indicator
remain clearly identifiable from our final operationalization. We
will further elaborate on the setting of w and test the statistical
power of A(X)-based model identification in the next section.

Results I

In this section, we discuss the results of using our dispersion
indicator to identify the latent mechanism of the underlying
relation. First, we describe simulation studies that test the
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accuracy of our method over an extensive set of linear,
curvilinear-yet-monotonic, and curvilinear inverted-U
relationships with both types of moderation. Then, we discuss
the results of applying our method to the empirical evidence
of choice overload reported in the literature. Finally, we
present another case study of our method on the existing
empirical evidence of choice overload in the specific context
of online browsing, an important IS/IT artifact.

Design of Simulation Studies
Overview of Simulation Design

We conducted a total of four simulation studies. The first three
tested the accuracy of our method with (1) monotonic relations,
(2) inverted-U relations with moderation steepening/flattening
the curve, and (3) inverted-U relations with moderation shifting
the turning point, respectively, while the last study examined
the robustness of our method in the presence of random noises
in effect sizes. In each study, we computed the dispersion
indicator as operationalized by A(X) in Equation (25), and
tested whether A(X) is an inverted-U with respect to X. While
the design of our method is agnostic to the specific method used
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for testing the inverted-U, for the purpose of the
implementation, we adopted the three-step procedure
developed by Lind and Mehlum (2010), which is a popular
choice for inverted-U testing in the IS literature (e.g., Scherer et
al. 2015; Singh et al.; 2011). Specifically, the Lind-Mehlum test
involves fitting A(X) = by + b;X + b,X? with least squares
before using the fitted parameters by, bi, b, to determine
whether A(X) forms an inverted-U'?. If the test indicates an
inverted-U shape for A(X), we further estimate its turning point
as —b;/(2b,) (Haans et al. 2016). Besides the Lind-Mehlum
method, we also attempted other methods for inverted-U testing
(e.g., the planned contrast tests in Kamis et al. 2008 and Xu et
al. 2014; the two-line test in Simonsohn 2018) but did not find
qualitative differences in the results.

Since Theorems 1 and 2 indicate that an inverted-U A (X) should
only emerge when the underlying relation is an inverted-U
moderated through shifting the turning point left/right, we
should ideally only observe an inverted-U dispersion indicator
in the third simulation study. Thus, the accuracy metric is the
Type I error rate for the first two studies, and the statistical power
for the third study. We implemented our method and produced
all simulation results in MATLAB. In the passages that follow,
we describe the simulation design in each study, respectively.

Study 1

For the first study, we created two levels for the moderating
variable: Z = 0and Z = 1. We set U(X) = X% when Z = 0
and U(X) = —X“ when Z = 1. For either parameter (i.e., @,
or a; ), we created five levels: {0.5,0.8, 1.0, 1.5, 1.8} to capture
a wide variety of monotonic functions, from linear (i.e., @y =
1) to diminishing returns (e.g., @, = 0.5) to accelerating losses
(e.g., a; = 1.8). Recall from earlier discussions that this wide
coverage of @, and a; was designed to cover the cases beyond
the reach of our analytical examination, i.e., when the
moderator Z varies the exponent of X in U(X). To examine the
accuracy of our method given different numbers of primary
studies, we created three different levels: {40,70,100}. Since
our method involves only one parameter, the window size w,
we created two levels for it in the simulations: {1,3}. Overall,
the design of Study 1 consisted of 160 unique conditions or a 5
(ag) X 5 (ay) X 3 (number of primary studies) X 2 (window
size w) factorial design. Under each condition, we repeated the
test 100 times. In each test, we generated the assortment sizes
X, and X, uniformly at random from [1,40], before computing
the effect size based on U(X,) — U(X,).

1 We used a significance level of 0.05 when applying Lind and Mehlum
(2010) procedure.

2 For example, piece-wise polynomials address the Runge’s phenomenon,
with which even a high-degree polynomial cannot properly approximate

Study 2

For the second study, we again set two levels for the moderating
variable: Z = 0 and Z = 1. Note that the goal of Study 2 is to
test inverted-U relations with moderation steepening/flattening
the curve but not shifting the turning point. Thus, we set the
turning point to be the same value of X* = 20 for both
moderator levels and varied the steepness of the inverted U
between the two moderator levels. Like in the first simulation
study, we adjusted the steepness by varying the exponent of X
in U(X), as such variation was beyond the reach of our
analytical examination. Unlike in the first study, we can now
vary the exponent differently on different sides of the turning
point, in order to examine how the steepness change on one or
both sides affect the results. Specifically, we consider a piece-
wise polynomial inverted U that has U(X) following X%° (i.e.,
increasing) to the left of the turning point and —X%* (i.e.,
decreasing) to the right of the turning point, with both segments
normalized to the same value at the turning point X* = 20. In
numerical analysis (Cheney and Light 2009), such a piece-wise
polynomial function is well known to be a more generalized
approximation of inverted-U functions than the polynomial
approximations discussed in the mathematical formalism
section®”, When Z = 0, we set ay = a; = 1.5. When Z = 1,
we created four levels each for a and a;: {0.5,0.8,1,1.8} (1.5
is excluded as it represents no change from the case where Z =
0). Clearly, the parameter combinations captured a wide variety
of moderating effects, including the flattening of the curve on
both sides (e.g., ¢y = a; = 0.5 for Z = 1), steepening on both
sides (e.g., @y = a; = 1.8 for Z = 1), or flattening on one side
but steepening on the other (e.g., &y = 0.5, ¢; = 1.8 for Z =
1) Again, we varied the number of primary studies in
{40,70,1003}, and the window size w in {1,3}. Overall, the
second simulation study consisted of 96 unique conditions or a
4 (a¢g when Z =1) X 4 (a¢; when Z = 1) X 3 (number of
primary studies) X 2 (window size w) factorial design.

Study 3

For the third study, we followed the same design of an inverted-
U function as in the second simulation study, i.e., by having
U(X) follow X *0 (i.e., increasing) to the left of the turning point
and —X %1 (i.e., decreasing) to the right of the turning point, with
both segments normalized to the same value at the turning point
X*. We again created five levels for both a, and ay:
{0.5,0.8,1.0,1.5,1.8}. Unlike in Study 2, where we varied a,
and @, across the moderator levels, in Study 3, we varied the
turning point X* but kept the values of «, (or a;) the same

certain inverted-U functions under equispaced interpolation (Dahlquist and
Bjork 1974).
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between the two moderator levels. Specifically, we set the
turning point for Z = 1 at X* = 24, and created two levels for
the turning point for Z = 0: {16,20}. Like in the previous two
studies, we varied the number of primary studies in
{40,70,100}, and the window size w in {1,3}. Overall, the third
simulation study consisted of 300 unique conditions or a 5 («)
X 5(ay) X 2 (X" when Z = 0) X 3 (number of primary studies)
X 2 (window size w) factorial design.

Study 4

The last study was designed to test whether the presence of
random noise in the reported effect sizes could substantially
degrade the efficacy of our method. For this purpose, we
focused on the worst-case simulation conditions for our
method in the first three studies—i.e., the pairs of (a, a;)
under which our method produced the highest Type I error rate
or the lowest statistical power. For each of these conditions,
we tested the accuracy of our method when random noises are
inserted into the input effect sizes. Specifically, for each
condition, we added to each input effect size an independent
and identically distributed (i.i.d.) Gaussian random noise
N(0,(eM)?), where M is the mean absolute effect size
reported under the condition, and € is a simulation factor
controlling the magnitude of the inserted random noise. We
created three levels for €: 0.01, 0.05, and 0.1. Overall, the
fourth simulation study consisted of 54 unique conditions or a
1 (worst-case {(ag, a;) for Type I error) X 3 (number of
primary studies) X 2 (window size w) X 3 (noise level €) + 1
(worst-case (a, a;) for Type II error) X 2 (X* when Z = 0)
X 3 (number of primary studies) X 2 (window size w) X 3
(noise level €) factorial design.

Simulation Results

For the first simulation study, remarkably, there was not a single
Type I error in any of the 16,000 runs. That is, the Type I error
rate stays at zero for al// 160 simulation conditions. This
demonstrates the robustness of our method on ruling out the
underlying relation being monotonic once observing an
inverted-U dispersion indicator.

Table 1 depicts the Type I error rates in Study 2. Since swapping
a, and a; does not change the result, we only listed in the table
the cases where @y < @;. The Type I error rates across all
simulation conditions have mean M = 0.0085 (SD = 0.0274).
Indeed, there is not a single error in 83.33% of the simulation
conditions (80 out of 96). Table 1 shows that the Type I errors
mostly occurred when a, and «; differ drastically (e.g., when

2l A function f(x) has a first-order discontinuity at point x, if it is
continuous but not differentiable at x = x,,.
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ay = 0.5 and @; = 1.8). A key reason is that the difference
makes U(X) no longer differentiable at the turning point. As a
result, when the assortment sizes are close to the turning point,
the observed effect size could deviate from zero by a greater
degree than in the case of a differentiable U(X) (e.g., as in
Theorem 2). Nonetheless, even in these worst-case scenarios,
the Type I error rate never exceeded 0.06 for the case of 100
primary studies, demonstrating the robustness of our method.

Table 2 depicts the statistical power of our method in the third
simulation study. The statistical power across all simulation
conditions had a mean of M = 0.9387 (SD = 0.1415). When
the window size was w = 3, the lowest statistical power in all
conditions was 0.92 when there were 100 primary studies.
Even when the number of primary studies was limited to just
40, our method achieved a statistical power of at least 0.98 in
the majority of simulation conditions (31 out of 50, 62.0%).
These results demonstrate the power of our method for
identifying the inverted-U nature of the underlying relation
and its moderation mechanism (i.e., a left/right shift). Further,
the turning points of the inverted-U dispersion indicator A(X)
match closely with the true turning point (i.e., X* = 24) of the
underlying relation when Z = 1, as predicted in our earlier
discussions (e.g., Equation 19). For example, the estimated
turning point of the dispersion indicator had a mean of M =
23.93 (SD = 2.63) when the true turning points are {20,24}
for the two moderator levels, and a mean of M = 21.55 (SD
= 2.17) when the true turning points were {16,24}.

Table 3 depicts the impacts of random noise on the accuracy
of our method. Recall from Tables 1 and 2 that the worst-
case settings of a, a; are (0.5, 1.8) for Type I error rates
(Table 1) and (0.5, 1) for statistical power (Table 2), hence
their inclusion in this fourth simulation study. As can be seen
from the left half of the table, the Type I error rates incurred
by our method in the noise-ridden cases are on par with or
even lower than the noiseless case (i.e., € = 0), especially
when the number of primary studies is large (e.g., K = 100,
like in the choice-overload case). While this is ostensibly
surprising, the reason is the same as the above-discussed
reason why @y = 0.5 and a; = 1.8 became the worst-case
setting in Study 2—i.e., the first-order discontinuity?' of
U(X) at the turning point X*. Specifically, the insertion of
random noise reduced the drastic difference between the
one-sided limits of 0U(X)/ 0X at point X* from the positive
and negative directions (i.e., when X - (X*)* and X —
(X*)7), therefore lessening the discontinuity that likely
caused the Type I errors in the noiseless case. A similar
observation can be made from the statistical powers reported
in the right half of Table 3.
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Table 1. Type | Error Rates in Study 2

K g, o

0505 0508 |051 |0518 |0808 081 [0818 |11 [118 [1.81.8
w=1

40 0.00 0.00 0.00 0.11 0.00 0.00 0.00 0.00  [0.00 0.00

70 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 | 0.00 0.00

100 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 | 0.00 0.00

w=3

40 0.00 0.00 0.00 0.15 0.00 0.00 0.05 0.00 |0.01 0.00

70 0.00 0.00 0.00 0.08 0.00 0.00 0.00 0.00 | 0.00 0.00

100 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.00 | 0.00 0.00

Note: K= number of primary studies; w = window size; oy, o, = exponent settings in U(X) when z=1.

Table 2. Statistical Power in Study 3

Qp, Ay

0.5,0.5 [0.50.8 [0.51 [0.51.5 [0.51.8 [0.808 [0.81 [0.815 [0.818 [11 [115 [1,18 [1.515 [1.518 [1.818
c=4,w=1

40 Joo5 [o97 Jo22 089 [085 [100 [020 [0.98 085 [0.56 [0.96 [095 [0.99 [0.95 [0.60

70 [100 [100 035 [100 [098 [100 [053 [100 [099 [080 [1.00 [0.99 [100 [1.00 [072

100 [1.00 [1.00 [046 [1.00 [1.00 [1.00 [076 [1.00 [0.99 [0.90 [1.00 [1.00 [1.00 [1.00 |0.64

c=4,w=3
40 [100 [100 Jo64 [100 J099 [100 [064 [1.00 [1.00 [0.82 [1.00 [099 [1.00 [0.98 [0.82
70 [100 [100 083 [100 [100 [100 [0.88 [099 [100 [098 [1.00 [1.00 [100 [1.00 [098
100 [1.00 [1.00 [092 [1.00 [1.00 [1.00 [095 [1.00 [1.00 [0.96 [1.00 [100 [1.00 [1.00 0.9
c=8w=1
40 [092 [100 J039 093 [088 [1.00 [0.80 [0.99 [0.97 [093 [100 [1.00 [1.00 [1.00 [0.71
70 [100 [100 Jo66 [099 [098 [100 [0.95 [100 [100 [1.00 [100 [1.00 [100 [1.00 [074
100 [1.00 [1.00 [091 [099 [0.99 [1.00 099 [1.00 [1.00 [1.00 [1.00 [100 [1.00 [1.00 [0.70
c=8w=3
40 [100 [100 Jo83 [100 [098 [100 [099 [1.00 [1.00 [0.99 [1.00 [1.00 [1.00 [1.00 [0.75
70 [100 [100 [o96 [100 [1.00 [100 099 [1.00 [1.00 [1.00 [1.00 [1.00 [100 [1.00 [078
100 [1.00 100 [098 [100 [100 [1.00 [099 [100 [1.00 [1.00 [1.00 [1.00 [1.00 [1.00 [0.92

Note: K = number of primary studies. C = difference between turning points of the two moderator levels (i.e., when ¢ = 4, X* = 20 when Z = 0;
when ¢ =8, X* = 16 when Z = 0). W = window size. a,, @,;= exponent settings in U(X) for both moderator levels.

Table 3. Impacts of Random Noise in Study 4

Type | error rate (when o, a1= 0.5, 1.8) Statistical power (when ao, a1 = 0.5, 1)
w, K w, K
1,40 [1,70 1,200 [340 [3,70 [ 3,100 1,40 [170 [1,100 [340 [3,70 | 3,100
€ c=4
0.00 0.11 0.03 0.02 0.15 0.08 0.06 0.22 0.35 0.46 0.64 0.83 0.92
0.01 0.16 0.09 0.05 0.09 0.04 0.02 0.96 1.00 1.00 0.99 1.00 1.00
0.05 0.14 0.10 0.04 0.09 0.02 0.01 0.84 0.91 0.96 0.93 0.94 0.96
0.10 0.12 0.10 0.04 0.09 0.02 0.00 0.53 0.68 0.58 0.68 0.72 0.66
€ c=8
0.00 0.39 0.66 0.91 0.83 0.96 0.98
0.01 1.00 1.00 1.00 1.00 1.00 1.00
0.05 0.95 0.99 0.99 0.98 1.00 0.99
0.10 0.77 0.80 0.81 0.82 0.80 0.79

Note: oy, a; = exponent settings in U(X). € = magnitude of random noise. K = number of primary studies. w = window size. ¢ = difference
between turning points of the two moderator levels. The left part of the table reports the Type | error rates for different levels of € under the worst-
case conditions in Study 2 (i.e., ag= 0.5, a; = 1.8). The right part of the table reports the statistical power for different levels of € under the worst-
case conditions in Study 3 (i.e., ap= 0.5, as = 1). Note that parameter c only applies to the case of statistical power (i.e., Study 3), hence the four
additional rows in the right half.
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Once again, our method surprisingly attained a considerably
higher statistical power in most of the noise-ridden cases than
in the noiseless case. The reason here again stems from a
discontinuity in the noiseless case. Note that when a; = 1, any
two-group experiment with both assortment sizes falling to the
right of the turning point would report the same effect size (after
the weighting-based correction in Equation 24), entailing a
sharp drop of the dispersion indicator A(X) to zero once X
grows past X*. This jump in discontinuity is fundamentally
incompatible with the existing methods for inverted-U testing.??
The resulting anomalies explain the lower statistical power for
the simulation conditions with either ¢y =1 or @; = 1 (or
both) in Table 2. Like in the Type I error case, the insertion of
noise alleviates this discontinuity and therefore increases the
statistical power in many of these settings. Overall, as can be
seen from Table 3, the accuracy of our method is robust to the
presence of random noise in the reported effect sizes.

Empirical Evidence for Choice Overload

The intense research interests on choice overload have led to
multiple recent meta-analyses (Chernev et al. 2015; McShane
and Bockenholt 2018; Scheibehenne et al. 2010; Simonsohn
et al. 2014), with the most recent two using the same dataset.
We believe the best way to study the insights unveiled by our
novel analytical method is to reuse the existing dataset to the
extent possible (and therefore sharing the same
inclusion/exclusion criteria, weighting design, etc., as the two
existing meta-analyses) in order to minimize the chance of
differences in outcomes stemming from differences in data.

The dataset contains 21 articles in which 99 observed effect sizes
were reported. In terms of the study-level designs, the existing
meta-analyses, Chernev et al. (2015) and McShane and
Bockenholt (2018) synthesized four types of moderator
variables—choice set complexity, decision task difficulty,
preference uncertainty, and decision goal—and six types of
operationalizations for the dependable variable: satisfaction
/confidence, regret, choice deferral, switching likelihood,
assortment choice, and option selection. In terms of the empirical
evidence reported, while most reported effect sizes are in the form
of Cohen’s d, some studies operationalized the dependent
variable with a binary decision outcome, such as whether an
individual ultimately decided to make a purchase. In this case, the
“mean” of the dependent variable for each assortment size
becomes the proportion of individuals who made a purchase. For
these cases, we followed the same standard transformations as the
existing meta-analysis (Chernev et al. 2015).

22 For example, the Lind-Mehlum method, which we used to determine if
the dispersion indicator is an inverted U, assumes a point-wise continuous
and differentiable quadratic function (Lind and Mehlum 2010).
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Nonetheless, there are a few existing studies that
operationalized the dependent variable in a way that is
inherently incompatible with our purpose of examining the
choice-satisfaction function. This operationalization, namely
“assortment choice” (Chernev et al. 2015), requires each
individual to make a binary selection between small and large
assortments, and then measure the percentage of individuals
who chose the small (or large) one. Given a choice-
satisfaction function U(X) and two assortment sizes X; and
X,, while this operationalization captures the percentage of
individuals with U(X;) > U(X,), it reveals no additional
information (other than the sign) of U(X;) — U(X,) (Cohen
1988, p. 147), which is crucial for quantitatively assessing the
effect of choice overload.

Out of the 21 articles included in the meta-analyses, three
(Chernev 2006; Chernev and Hamilton 2009; Goodman and
Malkoc 2012) used this operationalization and therefore had
to be excluded from our study. We note that Chernev et al.
(2015) excluded the exact same set of studies when
examining the mean effect of choice overload, for the same
reason as discussed. This exclusion led to two changes in the
dataset: First, it removed “assortment choice” as a type of
dependent-variable operationalization. Second, a moderator
variable decision goal was also removed because, as noted
by Chernev et al. (2015), nearly all existing studies
examining the moderating effect of decision goal used
assortment choice as the outcome measure. As only two
effect sizes remain for decision goal variable after the
exclusion, we could not properly examine decision goal as a
distinctive type of moderator variable.

Analytical Results for Choice Overload

Table 4 depicts the results of applying our method over the
effect sizes reported in the choice-overload literature. Since
a minimum window size of w = 3 is required to provide a
consecutive coverage?® of X, we tested our method with w =
3,4, and 5. As can be seen from the table, our dispersion
indicator A(X) clearly follows an inverted-U shape
regardless of the window size. Specifically, in all three
settings, the dispersion reached its three maximum values
when X is 10, 11, and 12. Combined with our mathematical
analysis earlier in the paper, the results in Table 4 provide
strong evidence that the option-satisfaction relation is an
inverted U with moderation shifting the curve left and right.

2 Let C(X) be the number of existing studies with assortment sizes X; +
X, € [2X —w, 2X + w]. When w < 3, the number of consecutive values of
X with C(X) = 2 never exceeds 5.
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Table 4. Change of Dispersion Indicator 4(X) with X

X 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
A; | .035 | .035 | .069 | .083 | .071 | .091 | .091 | .188 | .084 | .047 | .041 | .025 | .023 | .022 | .020 | N/A
A, | .035 | .069 | .069 | .065 | .084 | .091 | .095 | .104 | .047 | .046 | .041 | .023 | .023 | .022 | .022 | N/A
As | .035 | .069 | .069 | .063 | .084 | .084 | .095 | .084 | .062 | .046 | .043 | .034 | .023 | .022 | .022 | .020
o 0.25 | 0.25 | 0.49 | 0.60 | 0.57 | 0.96 | 0.96 | 1.74 | 0.92 | 0.56 | 0.54 | 0.46 | 0.54 | 0.54 | 0.48 | N/A
Oy 7.2 7.2 7.5 7.8 92 | 116 | 116 | 9.0 112 | 1563 | 16.5 | 18.8 | 23.7 | 23.4 | 24.0 | 24.0
Note: 4;= value of A(X) given a window size of w = i. The bold font cells indicate the top-3 values of A(X) for the corresponding window size. o

= raw standard deviation of effect sizes without the assortment-size-difference correction. §, = the average difference between assortment sizes
(used for correction).

0.8
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0.4
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5 10 15

(a) Moderator variables

5 10 15

(b) Dependent variables
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Note. In each subplot, the dotted blue line depicts the change of A4(X) for all reported effect sizes. All lines are linearly normalized to between
0 and 1 (i.e., with y' = (y — min(y))/(max(y) — min(y))). In Figure 6(a), the black line depicts studies with no hypothesized moderator, the
orange line depicts studies with moderator being “preference uncertainty,” the red line depicts studies with moderator being “decision task
difficulty.” Note that the existing studies for “choice set complexity” produced only two distinct pairs of assortment sizes, and are hence
excluded from the plot. In Figure 6(b), the black line represents “satisfaction/ confidence,” the orange line represents “switching likelihood,”
and the red line represents “choice deferral.” “Option selection” and “regret” were not included in (b) because they were only represented

by two and one distinctive pair of assortment sizes in the range, respectively.

Figure 6. Outcome and Moderator Variables

As a robustness check, we examined how the dispersion
indicator is affected by the assortment-size-difference
correction in its operationalization (i.e., the denominator
Xy — X;; for computing A(X) in Equation 25). As can be
seen from Table 4, the correction indeed had no qualitative
effect on the nature of dispersion. Specifically, even when
we directly measured the standard deviation of reported
effect sizes in each window (i.e., the row of o), the
dispersion was still maximized when X ranged from 10 to
12. Although not included in the table, we also conducted a
variety of other robustness checks for the dispersion metric
—e.g., by weighting an effect size with its corresponding
sample size in computing the standard deviation (Hunter and
Schmidt 2004), through a leave-one-out analysis on the
included studies, by excluding studies with too wide (e.g., =
20) or too narrow (e.g., < 3) of an assortment-size

difference, etc.—but did not find notable changes on the
shape of the dispersion indicator.

Finally, Figure 6 depicts how the dispersion indicator A(X)
varies with X when considering only a subset of the existing
results featuring one type of moderator variable or one
operationalization of the dependent variable. Most of these
factorized studies returned an inverted-U shaped A(X). For
example, as predicted earlier in the paper, the type of
moderator variables corresponding to consumer expertise, i.e.,
“preference uncertainty,” yielded a dispersion indicator that is
clearly an inverted-U (i.e., the orange line in Figure 6a),
reflecting our conceptual arguments that a change of
consumer expertise likely moves the inverted-U option-
satisfaction relation left/right. Nonetheless, note from the
figure that there are also a few cases where the dispersion
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indicator appears monotonic. We caution that the limited
sample sizes in these individual cases likely constrain the
insights one can derive from the computed A(X). For
example, no existing study that examined the moderator type
“decision task difficulty” (i.e., the red line in Figure 6a) chose
a pair of assortment sizes with an average of between 6.5 and
16. This makes the decreasing line in the figure hard to
interpret: It could be reflecting a monotonic (or U-shaped)
dispersion indicator. Alternatively, the dispersion indicator
could form an inverted-U with a turning point X* € (6.5,16),
yet the lack of a sample in this range makes the inverted-U
impossible to identify based on the existing evidence.

Case Study of Choice Overload in E-Commerce

The choice-overload effect has a strong potential to stimulate
practical implications in an e-commerce context but the existing
literature does not provide a sufficient number of primary studies
(e.g., 10 or more; Sterne et al. 2011) to allow for a conventional
meta-analysis. To address this limitation, we curated the existing
empirical evidence in finer granularity than a typical meta-
analysis. Specifically, we identified one of the largest randomized
behavioral experiments (Moser et al. 2017), which examined the
choice-overload effect in e-commerce platform design, and
obtained the raw observations including 611 participants in the
experiment. Then, we used the common subsampling method
(e.g., the bag-of-little-bootstraps procedure; Kleiner et al. 2014)
to randomly partition the raw observations into independent,
simulated, primary studies, before using our method to perform a
meta-analysis to assess the choice-overload effect in the context
of e-commerce platform design.

More specifically, the participants of the experiment were
assigned to one of six treatment conditions uniformly at
random. All six treatment conditions feature the same e-
commerce shopping web page (for chocolates). The only
difference is the number of options (i.e., chocolates)
displayed, which is 12, 24, 40, 50, 60, and 72%* for the six
conditions, respectively. After making a choice from the
displayed options, the subjects were asked to rate their level
of satisfaction with the choice on a 7-point Likert scale, from
(1) not at all satisfied to (7) extremely satisfied. Figure 7(a)
depicts the relationship between the observed satisfaction
and the assortment size. While the observations do suggest
an inverted-U option-satisfaction relationship, with the peak
satisfaction level reached by an assortment size of between
24 and 50, Moser et al. (2017) showed that the traditional
statistical tests for two-group experiments failed to reject the
null hypothesis (i.e., choice overload does not exist). Note

24 These six assortment sizes were derived from an examination of the most
popular e-commerce websites - see Moser et al. (2017) for details.
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that, while there was no explicit manipulation of any
moderating variable in the experiment design, Moser et al.
(2017) duly noted the existence of many potential factors
(e.g., individual differences in personality or experience)
that could make the option-satisfaction relation idiosyncratic
for different subjects. As discussed earlier, it is this
idiosyncrasy of the option-satisfaction relation that enables
the dispersion-based pattern leveraged by our method.

Theoretical Implications for Choice Overload

This paper contributes to the burgeoning literature on choice
overload, which we move forward in several ways. First, we
reconciled the fragmented empirical views of choice overload
by explaining why the wide dispersion of reported effect sizes
is not an indication of the malleability of the choice-overload
effect but is instead to be expected when the underlying
option-satisfaction relation is an inverted-U. We did so
through the development of a novel conceptual and
mathematical link between a moderated inverted-U
relationship and the dispersion of effect sizes observed in two-
group experiments. By identifying a unique pattern of
dispersion among the existing empirical evidence, we provide
strong evidence for the presence of the choice-overload effect.
Despite the copious empirical studies about choice overload
and the repeatedly posited theory of the option-satisfaction
relation being an inverted-U (Grant and Schwartz 2011;
Reutskaja and Hogarth 2009; Shah and Wolford 2007), our
work represents the first method to use the former to test the
latter and shows how the inverted-U conceptualization can
account for the heterogeneity among the empirical evidence.

Second, we reconciled the fragmented views of choice overload
by leveraging the existing empirical evidence to explicate the
latent moderation mechanisms. The debate in the existing meta-
analyses for choice overload is framed around the question of
what variables moderate the choice-overload effect rather than
how the moderators condition the option-satisfaction
relationship. We identified and explained the two types of
moderation for an inverted-U option-satisfaction relation,
illuminated their distinctive implications in theory and practice,
and leveraged our novel analytical method to demonstrate that
the moderation in choice overload likely entails a considerable
shift of the inverted-U curve to the left and right. This finding
not only highlights the importance of choice overload for
assortment design in practice but points to fruitful future
research opportunities for further explicating and quantifying
the effects of individual moderator variables on the inverted-U
relation, which we will elaborate later in this section.
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Note: The x-axis represents the assortment size in both subplots. The y-axis represents the choice satisfaction in the left subplot and the
value of the dispersion indicator A(X) in the right subplot. In both subplots, each dot represents the mean of the corresponding variable,
while the length of the error bar is one standard error towards either direction.

Methodological Contributions

Our research findings have fundamental methodological
contributions to experimental research on curvilinear
relationships beyond the choice-overload effect. Specifically,
our research answers the call for the development of advanced
meta-analytic methods for examining the potential
curvilinearity of a relationship (Johns 2006; Pierce and
Aguinis 2013). The additional intricacies of curvilinear
relationships (compared with linear ones) give rise to
significant challenges in meta-analysis, where the notion of
linearity has underpinned the development of most existing
methods (Hunter et al. 2006). Indeed, with limited exceptions
(e.g., Sturman 2003), there are not even adequate procedures
to test for the presence of a curvilinear relationship in a meta-
analysis of experimental studies. Our novel analytical method
presented in this paper represents a first step towards bridging
this gap. Specifically, our method of inferring the existence
and moderation of an inverted-U relationship from two-group
experiments is pertinent for at least three reasons:

First, it allows researchers to tap the gold mine of existing
empirical evidence in theorizing and testing an inverted-U
relationship, even though the existing research designs are all
based on the linear mechanism (which is a common
occurrence when examining curvilinear relationships; Aguinis
et al. 2009). Second, our method enables the statistical
disentanglement of the two types of inverted-U moderation,
even though such moderation has never been theorized in the

literature nor brought to bear in research designs. Again, this
facilitates the theoretical development and empirical
examination of curvilinear relationships, even before new
experiments dedicated to the study of curvilinearity can be
conducted and accumulated over time. Finally, the findings of
our method provide valuable guidelines for the design of
future experimental studies. Specifically, when designing an
experiment dedicated to the examination of an inverted-U
relation, researchers may select a small set of “critical”
independent-variable (i.e., X) values according to the
estimations produced by our method, instead of having to
examine the full spectrum of X. For example, if our method
suggests a moderating effect that steepens/flattens the curve,
researchers may want to select one value of X adjacent to the
turning point and two values far away from the turning point
to its left and right, respectively, in order to exemplify the
change of steepness in the observed effect. On the other hand,
if our method suggests a moderating effect that shifts the curve
left/right, researchers may want to select multiple values of X
around the potential range of the turning point in order to
pinpoint the degree of shift conditioned by the moderation.

Broader Research Implications

More broadly, our research is premised on the notion of
analytical meta-analysis, specifically the introduction of
data analytics and machine learning techniques to the
methodological arsenal of meta-analysis in behavioral
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research. While still an emerging method, analytical meta-
analysis has shown recent successes in several disciplines.
For example, Zhang et al. (2020) leveraged the recent
breakthroughs in theoretical machine learning on the
decomposition of Gaussian mixtures (Kalai et al. 2012) to
introduce mixture decomposition algorithms to the analysis
of effect-size distribution in meta-analyses. Meager (2019),
on the other hand, used graphical models to examine the
latent factors driving the heterogeneity of existing findings.

The importance and promise of analytical meta-analysis is
evidenced by the numerous and intense debates on
reproducibility in behavioral sciences (e.g., Open Science
Collaboration 2015), which speak to the importance of
gleaning deeper insights from the synthesization of
behavioral research findings than the simple aggregation of
existing findings into statistical indicators (like what many
existing meta-analytic methods do), especially when such
findings are ostensibly inconsistent with each other. The
rapid advancement of data analytics and machine learning
techniques, on the other hand, makes such techniques ripe
for adoption, exploration, and innovation in the space of
meta-analysis. For example, our current work demonstrates
that the use of data analytics techniques can not only
reconcile the empirical inconsistencies of the choice-
overload effect in behavioral research but can also develop a
deeper understanding of its theoretical underpinning.

The research space of analytical meta-analysis is vast and its
promise immense. Numerous research questions in the
behavioral sciences have been blunted by the inconsistency
of existing empirical evidence in the literature (Open
Science Collaboration 2015). Some well-known ones
include the impact of intrateam trust on team performance
(Zhang et al. 2020), the effectiveness of fear appeals on
persuasion (Tannenbaum et al. 2015), the link between
happiness and success (Lyubomirsky et al. 2005), etc. All
these research areas may stand to gain from the development
of novel methods in analytical meta-analysis. We contend
that, as a scholarly community with diverse methodological
perspectives (e.g., employing behavioral, econometric,
analytical, and computational methods; Rai 2016), the IS
community is uniquely positioned to develop such fresh
research perspectives and contribute to this emerging area of
analytical meta-analysis. Indicatively, one of the first
methods that introduced machine learning to meta-analysis
was developed primarily by IS researchers (Zhang et al.
2020). From this perspective, it is our hope that the paper
will inspire more “cross-paradigm connective IS research”
(Rai 2018, p. v) in the near future. As demonstrated in this
work, through the process of combining a behavioral theory
with an analytical method, we can generate novel insights
capable of connecting two disjointed worlds.
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Limitations and Future Directions

It is important to note several limitations to our study. In terms
of the generalizability of our method to other (potentially)
curvilinear effects, we note that the independent variable of the
option-satisfaction relation (i.e., assortment size) is an explicitly
designed absolute measure (Cronbach et al. 1972) that has a
common scale across studies. This stands in contrast to
relationships that have independent variables relying on a
normative or relative standard for measurement. Examples here
include many psychological constructs such as personality
traits, the measures for which tend to compare individuals
against some norm groups rather than an absolute criterion
(Cronbach et al. 1972). To apply our method to these
relationships, future work needs to examine how to infer the
change of the dispersion indicator with the independent variable
when values of the independent variable are not directly
comparable across studies.

With regard to the substantive examination of the choice-
overload effect, the current method is limited in terms of the
resolution it offers. For example, our method tests for the
presence of a moderating effect that shifts the turning point
left/right, but cannot pinpoint the exact amount of the left/right
shift. Further, while we focused on distinguishing an inverted-U
relationship (and its moderation) from a monotonic relationship,
there may be practical needs to unpack further details of the
inverted-U relationship, like the steepness on either side of the
turning point. We elaborate on these limitations and the
corresponding future research directions below.

High-Resolution Moderation Inference

Ultimately, inferring the moderation mechanism in a meta-
analysis involves disentangling the multiple components that
together form the distribution of the observed effect sizes. From
a methodological perspective, Hunter and Schmidt (2004)
noted that, when a moderator variable takes on a continuum of
values, the effect-size distributions tends to be a mixture of
many distributions, each having a different mean and variance.
In the specific context of choice overload, Chernev et al. (2010)
argued, and Simonsohn et al. (2014) concurred, that many
existing experiments were “designed to document” how the
sign of the effect can be reversed by a change of the moderator
level, making the distribution of the reported effect sizes a
mixture of two distributions, one having a positive mean effect
size and the other negative. With this backdrop, the method
developed in this paper can be construed as detecting whether
the observed mixture distribution (of effect sizes) likely consists
of two components produced by two inverted-U option-
satisfaction relations with different turning points. Obviously,
to enable the inference of the moderation mechanism with a
higher resolution—e.g., to estimate the exact shift of the turning



Zhang & Xu / Reconciling the Paradoxical Findings of Choice Overload through an Analytical Lens

point—future work needs to infer greater details about each of
the components that together form the observed mixture
distribution of the reported effect sizes.

To this end, a promising direction for future research stems
from a recent breakthrough in theoretical machine learning on
the decomposition of mixture distributions (Kalai et al. 2012).
Traditionally, it was notoriously difficult to decompose an
effect-size distribution for two reasons. The first reason is the
limited sample size, as the number of reported effect sizes did
not exceed a hundred even for an extensively studied effect like
choice overload. The second, and more important, reason is
that, because of the complexity of moderation, different
components of the mixture decomposition likely overlap
considerably with each other. The conventional methods for
mixture decomposition, like the expectation maximization
(EM) algorithm (Dempster et al. 1977) and its modern
variations (e.g., Dasgupta 1999), are known to produce
inaccurate results when two adjacent mixture components are
not sufficiently separate from each other (e.g., in the case of the
EM algorithm, when the mean difference between such two
components is smaller than their standard deviations; Redner
and Walker 1984). In 2010, a trio of breakthroughs in
theoretical machine learning (Belkin and Sinha 2010; Kalai et
al. 2010; Moitra and Valiant 2010) successfully addressed this
challenge by developing algorithms that directly estimate the
parameters of each mixture component without attempting to
infer the component affiliation for each input sample (like the
“M” step in the EM algorithm). With the more recent
development of this idea, state-of-the-art algorithms can now
accurately and efficiently decompose a mixture distribution
even when the components overlap almost entirely with each
other (e.g., Bandi et al. 2019). To further discern the moderation
mechanisms of choice overload, future work could leverage
these recent advances in mixture decomposition to first unpack
the various components of the observed effect-size distribution
before examining the role of moderator variables in forming
these components.

Mathematical Model of Inverted U

In the mathematical analysis part of the paper, we adopted the
conventional model of an inverted-U relation as a polynomial
function (Lind and Mehlum 2010). The usage of this
polynomial model provided valuable insights for our work and
has proven fruitful for examining inverted-U relations in
adjacent fields (e.g., see reviews in Haans et al. 2016; Pierce and
Aguinis 2013). However, to fully appreciate the subtlety of an
inverted-U relationship like the option-satisfaction relation,
future work may need to examine the modeling of inverted-U
relations beyond polynomial functions. Specifically, we note
that while polynomials can often closely fit an inverted-U
function within a limited range of the independent variable,

their fit could become questionable once the range is
substantially expanded. For example, a quadratic model of
inverted-U, as commonly used in the literature (Haans et al.
2016), would predict that consumer satisfaction decreases more
when the assortment size changes from 100 to 110 than when it
changes from 15 to 25. This is obviously counterintuitive, as
one would reasonably expect consumers to barely notice a
change in assortment size from 100 to 110 but not a change
from 15 to 25. This counterintuitive phenomenon is unlikely to
cause problems when analyzing the existing empirical results,
as most of them focused on physical goods with a limited range
of assortment sizes. However, it could become problematic for
future research attempts to compare the choice-overload effect
across physical and online settings, for which the range of the
assortment size may have to be considerably expanded.

Fundamentally, this problem is rooted in a well-known
challenge for polynomial interpolation in numerical analysis
(Dahlquist and Bjork 1974). While the Weierstrass
approximation theorem (Cheney and Light 2009, p.151)
ensures that any continuous function F(X) can be
approximated by a set of polynomial functions P (X), the actual
polynomial functions that can achieve such close
approximations, even for a small closed range of X, can be
extremely complex (e.g., Bernstein polynomials; Lorentz
2013). Further, as indicated by Runge’s phenomenon
(Dahlquist and Bjork 1974), when fitting the polynomial
function based on a limited number of observations, we may
find a polynomial function P (X) that perfectly fits an inverted-
U F(X) on all given observations yet produces unbounded
errors on the unobserved values of X. To address these issues,
future work may need to refine the model of the inverted-U
function, e.g., by leveraging the techniques developed in
numerical analysis to mitigate the errors of polynomial
interpolation. Examples here include the development of
alternative models, such as the use of spline interpolation with
piece-wise polynomial functions (Hall and Meyer 1976) or the
introduction of a regularization term (e.g., the £,-norm of the
first derivative of the polynomial function; De Boor et al. 1978).

Acknowledgments

The authors would like to thank the senior editor, associate editor, and
reviewers for their helpful comments and suggestions, which greatly
improved the quality of this work. The authors would also like to thank
Eunice Kim and Echo Wen Wan as well as participants of the Research
Seminar Series at the George Washington University’s School of
Business for their valuable feedback. The authors were supported in
part by the U.S. National Science Foundation (NSF) under Grant
1850605 and by the Defense Advanced Research Projects Agency
(DARPA) under Grant HR00111920023. Any opinions, conclusions,
or recommendations expressed in this paper are those of the authors
and do not necessarily reflect the views of NSF and DARPA.

MIS Quarterly Vol. 45 No. 4/ December 2021 1915



Zhang & Xu / Reconciling the Paradoxical Findings of Choice Overload through an Analytical Lens

References

Aguinis, H., Pierce, C. A., Bosco, F. A., and Muslin, I. S. 2009.
“First Decade of Organizational Research Methods: Trends in
Design, Measurement, and Data-Analysis  Topics,”
Organizational Research Methods (12:1), pp. 69-112.

Aiken, L. S., West, S. G., and Reno, R. R. 1991. Multiple
Regression: Testing and Interpreting Interactions, SAGE.
Bandi, H., Bertsimas, D., and Mazumder, R. 2019. “Learning a
Mixture of Gaussians via Mixed-Integer Optimization,”

INFORMS Journal on Optimization (1:3), pp. 221-240.

Bangert-Drowns, R. L., and Rudner, L. M. 1990. Meta-analysis in
Educational Research, ERIC Digest, Article# ED339748
(https:/files.eric.ed.gov/fulltext/ED339748.pdf)

Baumol, W. J., and Ide, E. A. 1956. “Variety in Retailing,”
Management Science (3:1), pp. 93-101.

Belkin, M., and Sinha, K. 2010. “Toward Learning Gaussian
Mixtures with Arbitrary Separation,” in Proceedings of the 23"
Annual Conference on Learning Theory, pp. 407-419.

Bettman, J. R., Luce, M. F., and Payne, J. W. 1998. “Constructive
Consumer Choice Processes,” Journal of Consumer Research
(25:3), pp. 187-217.

Brehm, J. W. 1966. A Theory of Psychological Reactance,
Academic Press.

Breusch, T. S., and Pagan, A. R. 1979. “A Simple Test for
Heteroscedasticity and Random Coefficient Variation,”
Econometrica (47:5), pp. 1287-1294.

Camerer, C. F., Dreber, A., Forsell, E., Ho, T.-H., Huber, J.,
Johannesson, M., Kirchler, M., Almenberg, J., Altmejd, A.,
Chan, T., and others. 2016. “Evaluating Replicability of
Laboratory Experiments in Economics,” Science (351:6280),
pp. 1433-1436.

Cheney, E. W., and Light, W. A. 2009. 4 Course in Approximation
Theory, American Mathematical Society.

Chernev, A.2003. “When More Is Less and Less Is More: The Role
of Ideal Point Availability and Assortment in Consumer
Choice,” Journal of Consumer Research (30:2), pp. 170-183.

Chernev, A. 2006. “Decision Focus and Consumer Choice Among
Assortments,” Journal of Consumer Research (33:1), pp. 50-59.

Chernev, A., Béckenholt, U., and Goodman, J. 2010. “Commentary
on Scheibehenne, Greifeneder, and Todd Choice Overload: Is
There Anything to It?” Journal of Consumer Research (37:3),
pp. 426-428.

Chernev, A., Bockenholt, U., and Goodman, J. 2015. “Choice
Overload: A Conceptual Review and Meta-Analysis,” Journal
of Consumer Psychology (25:2), pp. 333-358.

Chernev, A., and Hamilton, R. 2009. “Assortment Size and Option
Attractiveness in Consumer Choice Among Retailers,” Journal
of Marketing Research (46:3), pp. 410-420.

Cohen, J. 1988. Statistical Power Analysis for the Behavioral
Sciences, Lawrence Earlbaum.

Coombs, C. H., and Avrunin, G. S. 1977. “Single-Peaked Functions
and the Theory of Preference.” Psychological Review (84:2),
pp- 216-230.

Cronbach, L. J., Gleser, G. C., Nanda, H., and Rajaratnam, N. 1972.

The Dependability of Behavioral Measurements: Theory of

Generalizability for Scores and Profiles, Wiley.

Dahlquist, G., and Bjork, A. 1974. “Equidistant Interpolation and
the Runge Phenomenon,” in Numerical Methods, G Dahlquist,
A. Bjork (eds.), Prentice Hall, pp. 101-103.

1916 MIS Quarterly Vol. 45 No. 4 / December 2021

Dasgupta, S. 1999. “Learning Mixtures of Gaussians,” in
Proceedings of the 40" Annual Symposium on Foundations of
Computer Science, pp. 634-644.

De Boor, C., De Boor, C., Mathématicien, E.-U., De Boor, C., and
De Boor, C. 1978. A Practical Guide to Splines, Springer.
Dempster, A. P., Laird, N. M., and Rubin, D. B. 1977. “Maximum
Likelihood from Incomplete Data via the EM Algorithm,”
Journal of the Royal Statistical Society: Series B

(Methodological) (39:1), pp. 1-22.

Dhar, R. 1997. “Consumer Preference for a No-Choice Option,”
Journal of Consumer Research (24:2), pp. 215-231.

Diehl, K., and Poynor, C. 2010. “Great Expectations?! Assortment
Size, Expectations, and Satisfaction,” Journal of Marketing
Research (47:2), pp. 312-322.

Doll, W. J., and Torkzadeh, G. 1988. “The Measurement of End-
User Computing Satisfaction,” MIS Quarterly (12:2), pp. 259-
274.

Driver, M. J., and Streufert, S. 1969. “Integrative Complexity: An
Approach to Individuals and Groups as Information-Processing
Systems,” Administrative Science Quarterly (14:2), pp. 272-
285.

Geva, H., Barzilay, O., and Oestreicher-Singer, G. 2019. “A Potato
Salad with a Lemon Twist: Using a Supply-Side Shock to
Study the Impact of Opportunistic Behavior on Crowdfunding
Platforms,” MIS Quarterly (43:4), pp. 1227-1248.

Goodman, J. K., and Malkoc, S. A. 2012. “Choosing Here and Now
Versus There and Later: The Moderating Role of Psychological
Distance on Assortment Size Preferences,” Journal of
Consumer Research (39:4), pp. 751-768.

Grant, A. M., and Schwartz, B. 2011. “Too Much of a Good Thing:
The Challenge and Opportunity of the Inverted U,”
Perspectives on Psychological Science (6:1), pp. 61-76.

Haans, R. F., Pieters, C., and He, Z.-L. 2016. “Thinking about U:
Theorizing and Testing U- and Inverted U-Shaped
Relationships in Strategy Research,” Strategic Management
Journal (37:7), pp. 1177-1195.

Hall, C. A., and Meyer, W. W. 1976. “Optimal Error Bounds for
Cubic Spline Interpolation,” Journal of Approximation Theory
(16:2), pp. 105-122.

He, Y., Guo, X., and Chen, G. 2019. “Assortment Size and
Performance of Online Sellers: An Inverted U-Shaped
Relationship,” Journal of the Association for Information
Systems (20:10), 1503-1530.

Huber, J., Payne, J. W., and Puto, C. 1982. “Adding
Asymmetrically Dominated Alternatives: Violations of
Regularity and the Similarity Hypothesis,” Journal of
Consumer Research (9:1), pp. 90-98.

Hunter, J. E., and Schmidt, F. L. 2004. Methods of Meta-Analysis:
Correcting Error and Bias in Research Findings, SAGE.

Hunter, J. E., Schmidt, F. L., and Le, H. 2006. “Implications of
Direct and Indirect Range Restriction for Meta-Analysis
Methods and Findings,” Journal of Applied Psychology (91:3),
pp- 594-612.

Inbar, Y., Botti, S., and Hanko, K. 2011. “Decision Speed and
Choice Regret: When Haste Feels Like Waste,” Journal of
Experimental Social Psychology (47:3), pp. 533-540.

Iyengar, S. S., and Lepper, M. R. 2000. “When Choice Is
Demotivating: Can One Desire Too Much of a Good Thing?”
Journal of Personality and Social Psychology (79:6), pp. 995-
1006.



Zhang & Xu / Reconciling the Paradoxical Findings of Choice Overload through an Analytical Lens

Jachimowicz, J. M., Duncan, S., Weber, E. U., and Johnson, E. J.
2019. “When and Why Defaults Influence Decisions: A Meta-
Analysis of Default Effects,” Behavioural Public Policy (3:2),
pp- 159-186.

Johns, G. 2006. “The Essential Impact of Context on
Organizational Behavior,” Academy of Management Review
(31:2), pp. 386-408.

Johnson, E. J., Shu, S. B., Dellaert, B. G., Fox, C., Goldstein, D.
G., Haubl, G., Larrick, R. P., Payne, J. W., Peters, E., Schkade,
D., and others. 2012. “Beyond Nudges: Tools of a Choice
Architecture,” Marketing Letters (23:2), pp. 487-504.

Jones, Q., Ravid, G., and Rafaceli, S. 2004. “Information Overload
and the Message Dynamics of Online Interaction Spaces: A
Theoretical Model and Empirical Exploration,” Information
Systems Research (15:2), pp. 194-210.

Kahn, B. E., and Wansink, B. 2004. “The Influence of Assortment
Structure on Perceived Variety and Consumption Quantities,”
Journal of Consumer Research (30:4), pp. 519-533.

Kahn, B., Moore, W. L., and Glazer, R. 1987. “Experiments in
Constrained Choice,” Journal of Consumer Research (14:1),
pp- 96-113.

Kalai, A. T., Moitra, A., and Valiant, G. 2010. “Efficiently
Learning Mixtures of Two Gaussians,” in Proceedings of the
42 ACM Symposium on Theory of Computing, 553-562.

Kalai, A. T., Moitra, A., and Valiant, G. 2012. “Disentangling
Gaussians,” Communications of the ACM (55:2), pp. 113-120.

Kamis, A., Koufaris, M., and Stern, T. 2008. “Using an Attribute-
Based Decision Support System for User-Customized Products
Online: An Experimental Investigation,” MIS Quarterly (32:1),
pp- 159-177.

Kelley, H. H. 1973. “The Processes of Causal Attribution.”
American Psychologist (28:2), pp. 107-128.

Kleiner, A., Talwalkar, A., Sarkar, P., and Jordan, M. 1. 2014. “A
Scalable Bootstrap for Massive Data,” Journal of the Royal
Statistical Society: Series B (Statistical Methodology) (76:4),
pp. 795-816.

Levav, J., and Zhu, R. 2009. “Seeking Freedom Through Variety,”
Journal of Consumer Research (36:4), pp. 600-610.

Lind, J. T., and Mehlum, H. 2010. “With or Without u? The
Appropriate Test for a U-Shaped Relationship,” Oxford
Bulletin of Economics and Statistics (72:1), pp. 109-118.

Lorentz, G. G. 2013. Bernstein Polynomials, American
Mathematical Society.

Lyubomirsky, S., King, L., and Diener, E. 2005. “The Benefits of
Frequent Positive Affect: Does Happiness Lead to Success?”
Psychological Bulletin (131:6), pp. 803-855.

McGuire, W. J. 1997. “Creative Hypothesis Generating in
Psychology: Some Useful Heuristics,” Annual Review of
Psychology (48:1), pp. 1-30.

McShane, B. B., and Bockenholt, U. 2018. “Multilevel
Multivariate Meta-Analysis with Application to Choice
Overload,” Psychometrika (83:1), pp. 255-271.

Meager, R. 2019. “Understanding the Average Impact of
Microcredit Expansions: A Bayesian Hierarchical Analysis of
Seven Randomized Experiments,” American Economic
Journal: Applied Economics (11:1), pp. 57-91.

Mogilner, C., Rudnick, T., and Iyengar, S. S. 2008. “The Mere
Categorization Effect: How the Presence of Categories
Increases Choosers’ Perceptions of Assortment Variety and

Outcome Satisfaction,” Journal of Consumer Research (35:2),
pp.- 202-215.

Moitra, A., and Valiant, G. 2010. “Settling the Polynomial
Learnability of Mixtures of Gaussians,” in Proceedings of the
515" Annual Symposium on Foundations of Computer Science,
Las Vegas, Nevada, October 24-26, pp. 93-102.

Morrin, M., Broniarczyk, S. M., and Inman, J. J. 2012. “Plan
Format and Participation in 401 (k) Plans: The Moderating
Role of Investor Knowledge,” Journal of Public Policy &
Marketing (31:2), pp. 254-268.

Moser, C., Phelan, C., Resnick, P., Schoenebeck, S. Y., and
Reinecke, K. 2017. “No Such Thing as Too Much Chocolate:
Evidence Against Choice Overload in e-Commerce,” in
Proceedings of the Annual Conference on Human Factors in
Computing Systems, pp. 4358-4369.

Open Science Collaboration. 2015. “Estimating the Reproducibility
of Psychological Science,” Science (349:6251), Article
aac4716.

Pan, B., Zhang, L., and Law, R. 2013. “The Complex Matter of
Online Hotel Choice,” Cornell Hospitality Quarterly (54:1),
pp- 74-83.

Pierce, J. R., and Aguinis, H. 2013. “The Too-Much-of-a-Good-
Thing Effect in Management,” Journal of Management (39:2),
pp. 313-338.

Rai, A. 2016. “The MIS Quarterly Trifecta: Impact, Range, Speed,”
MIS Quarterly (40:1), pp. 3—-10.

Rai, A. 2018. “Beyond Outdated Labels: The Blending of IS
Research Traditions,” MIS Quarterly (42:1), pp. 3—6.

Redner, R. A., and Walker, H. F. 1984. “Mixture Densities,
Maximum Likelihood and the EM Algorithm,” SIAM Review
(26:2), pp. 195-239.

Reutskaja, E., and Hogarth, R. M. 2009. “Satisfaction in Choice as
a Function of the Number of Alternatives: When ‘Goods
Satiate,”” Psychology & Marketing (26:3), pp. 197-203.

Roberts, J. H., and Lattin, J. M. 1991. “Development and Testing
of a Model of Consideration Set Composition,” Journal of
Marketing Research (28:4), pp. 429-440.

Sanchez-Meca, J., Marin-Martinez, F., and Chacén-Moscoso, S.
2003. “Effect-Size Indices for Dichotomized Outcomes in
Meta-Analysis,” Psychological Methods (8:4), pp. 448-467.

Scheibehenne, B., Greifeneder, R., and Todd, P. M. 2010. “Can
There Ever Be Too Many Options? A Meta-Analytic Review
of Choice Overload,” Journal of Consumer Research (37:3),
pp- 409-425.

Scherer, A., Wiinderlich, N. V., and Wangenheim, F. V. 2015. “The
Value of Self-Service: Long-Term Effects of Technology-
Based Self-Service Usage on Customer Retention,” MIS
Quarterly (39:1), pp. 177-200.

Schwartz, B., Ward, A., Monterosso, J., Lyubomirsky, S., White,
K., and Lehman, D. R. 2002. “Maximizing Versus Satisficing:
Happiness Is a Matter of Choice,” Journal of Personality and
Social Psychology (83:5), pp. 1178-1197.

Shah, A. M., and Wolford, G. 2007. “Buying Behavior as a
Function of Parametric Variation of Number of Choices,”
Psychological Science (18:5), pp. 369-270.

Simonsohn, U. 2018. “Two Lines: A Valid Alternative to the
Invalid Testing of U-Shaped Relationships with Quadratic
Regressions,” Advances in Methods and Practices in
Psychological Science (1:4), pp. 538-555.

MIS Quarterly Vol. 45 No. 4/ December 2021 1917



Zhang & Xu / Reconciling the Paradoxical Findings of Choice Overload through an Analytical Lens

Simonsohn, U., Nelson, L. D., and Simmons, J. P. 2014. “p-Curve
and Effect Size: Correcting for Publication Bias Using Only
Significant Results,” Perspectives on Psychological Science
(9:6), pp. 666—681.

Singh, P. V., Tan, Y., and Mookerjee, V. 2011. “Network Effects:
The Influence of Structural Capital on Open Source Project
Success,” MIS Quarterly (35:4), pp. 813—829.

Sterne, J. A., Sutton, A. J., Ioannidis, J. P., Terrin, N., Jones, D. R.,
Lau, J., Carpenter, J., Riicker, G., Harbord, R. M., Schmid, C.
H., and others. 2011. “Recommendations for Examining and
Interpreting Funnel Plot Asymmetry in Meta-Analyses of
Randomised Controlled Trials,” BMJ (343), Article d4002.

Sturman, M. C. 2003. “Searching for the Inverted U-Shaped
Relationship Between Time and Performance: Meta-Analyses
of the Experience/Performance, Tenure/Performance, and
Age/Performance Relationships,” Journal of Management
(29:5), pp. 609-640.

Tannenbaum, M. B., Hepler, J., Zimmerman, R. S., Saul, L.,
Jacobs, S., Wilson, K., & Albarracin, D. (2015). Appealing to
Fear: A Meta-Analysis of Fear Appeal Effectiveness and
Theories. Psychological Bulletin (141:6), pp. 1178-1204.

Thompson, S. G. 1994. “Systematic Review: Why Sources of
Heterogeneity in Meta-Analysis Should Be Investigated,” BMJ
(309:6965), pp. 1351-1355.

Xu, J., Benbasat, 1., and Cenfetelli, R. T. 2014. “The Nature and
Consequences of Trade-Off Transparency in the Context of
Recommendation Agents,” MIS Quarterly (38:2), pp. 379—406.

Zhang, N., Wang, M., and Xu, H. 2020. “Disentangling Effect Size
Heterogeneity in Meta-Analysis: A Latent Mixture Approach,”
Psychological ~ Methods, Advance online publication
(https://doi.org/10.1037/met0000368)

Zygmund, A. 2002. Trigonometric Series, Cambridge University
Press.

1918 MIS Quarterly Vol. 45 No. 4 / December 2021

About the Authors

Nan Zhang is a professor of information technology and analytics
in the Kogod School of Business at the American University.
Before joining Kogod, he was a professor of information sciences
at Pennsylvania State University and a professor of computer
science at George Washington University. His research focuses on
data analytics, data privacy, and machine learning. His work has
received many prestigious awards, including the Communications
of the ACM Research Highlight in 2020, the ACM SIGMOD
Research Highlight Award in 2019, the National Science
Foundation’s CAREER award in 2008, and several best paper
awards from leading research conferences in computer science.

Heng Xu is a professor of information technology and analytics in
the Kogod School of Business at the American University, where
she also serves as the director of the Kogod Cybersecurity
Governance Center. Her current research focuses on information
privacy, data ethics, and algorithmic fairness. Her work has
received many awards, including the Operational Research
Society’s Stafford Beer Medal in 2018, the National Science
Foundation’s CAREER award in 2010, and others. She has also
served on a broad spectrum of national leadership committees
including co-chairing the Federal Privacy R&D Inter-agency
Working Group in 2016 and serving on the National Academies
Committee on Open Science in 2017.



Zhang & Xu / Reconciling the Paradoxical Findings of Choice Overload through an Analytical Lens

Appendix
Proof of Theorem 1 |
Theorem 1: When U(X) = Bo + L1 X* + BoXYZ + B3 Z, the dispersion indicator A(X, €) has no local maximum with respect to X.
Proof: Consider a simpler (and more generic) form of U(X) as
UX)=FX)+G6X)Z. (26)

To prove that no local maximum exists for 4(X, €), it is sufficient to prove that the “directional” version of it (i.e., the value inside the
absolute-value function in 4), which we denote as 4(X, €), is monotonic with respect to X.

LT(X, E) — 6d(X;;X+e) - BUS(Z_E) _ 0’115;(2+e) (27)
Consider how 4 (X, €) varies with X and €:
0%4(X,€) _ 0%d(X-eX+e) (28)
0X 0e 0Z 0X 0e
iyt (-0 220 @

Note that, so long as G (X) is either concave or convex, 924 (X, €)/ 0X 0e always stays at the same side of zero for all X, meaning that 4 X, e)
must be monotonic with respect to X. When U(X) = By + 1 X% + B, X%Z + B3Z, we have G(X) = ,X% + B3, which is either concave? if

Bra(a—1) < 0 orconvex if Bra(a — 1) = 0. Thus, LT(X, €) must be monotonic with respect to X, completing the proof. O

Proof of Theorem 2 |

Theorem 2. When € is sufficiently small, the dispersion indicator A(X, €) reaches its minimum at X* (X* > 1) if for all Z,

auUX™)

=0, (30)

which also implies that X* is always the turning point for U(X) regardless of the moderator Z.

Proof: When 0U(X™)/ 0X = 0, there must be

lim d(X*—€,X"+€) o lim UX*—e)-UX"+€) —o. (31)
€-0 € -0 €
Since OU(X™)/ 0X = 0 for all Z, we have
. AXNE) 4. |0d(XT—e X +e)| _
ll_r)l(ﬁ) e ll_r)l(ﬁ) €0z [~ 0. (2)

Since A(X, €) = 0, Equation (32) proves that, when € — 0, the dispersion indicator 4(X, €) reaches its minimum possible value at X = X*. O

5 Note that X > 1 per the definition of U(X).
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Proof of Theorem 3 K

Theorem 3. When U(X) follows the spline model

ucx) = (PrX + BXZ, ifX < X*
( ) - {B3X + ﬁ4XZ + (ﬁl - B3)X* + (ﬁz - B4_)X*Z, otherwise

(33)
where ; + ,Z > 0 and B3 + ,Z < 0 for all Z, the dispersion indicator A(X, €) is always monotonic.
Proof: Consider the value of the dispersion indicator A(X, €). Equation 33 yields

2B,€, ifX+e< X"

Bo+B)e, fXEX —6,X +6). (34)
2B.€, ifX—e>X"

0d(X—€X+€) _

AX,€) = >

The theorem directly follows. O
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