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Abstract
An important task of meta-analysis is to observe, quantify, and explain the heterogeneity across the
reported effect sizes of primary studies. A primary issue that challenges this task is the myriad of subtle
factors that could have contributed to the observed heterogeneity. We leveraged the recent advances in
theoretical machine learning to develop a novel latent mixture-based method for disentangling effect-size
heterogeneity in meta-analysis. Mathematical analysis and simulation studies were carried out to
demonstrate that, when the observed heterogeneity stems from more than 1 factor, our method can attain
a substantially higher statistical power than the traditional methods for moderator analysis without
requiring researchers to make judgment calls on which factors to consider or correct for in analyzing the
observed heterogeneity. We also conducted a case study with real-world data to show how our method
may be used to address long-standing inconsistencies in the literature.

Translational Abstract
An important task of meta-analysis is to explain the heterogeneity among primary studies. However, it
is often a challenge for researchers to delineate the myriad of subtle factors that could have contributed
to the observed heterogeneity. We leveraged the recent advances in theoretical machine learning,
specifically the efficient decomposition of Gaussian mixture distributions, to develop a novel latent
mixture-based method for disentangling heterogeneity in meta-analysis. As demonstrated by mathemat-
ical analysis and simulation studies for moderator estimation, our method can attain substantially higher
statistical power than the traditional methods without requiring researchers to make judgment calls on
which factors to consider or correct for in analyzing the observed heterogeneity.
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A key task of meta-analysis is to observe and assess the heter-
ogeneity1 among primary studies. When the observed heterogene-
ity exceeds what could be explained by artifactual factors (e.g.,
sampling error), it becomes important for a researcher to theorize

and test what could have caused the residual heterogeneity
(Thompson, 1994). Such investigations have led to scientific
breakthroughs in many disciplines such as psychology (Huedo-
Medina, Sánchez-Meca, Marín-Martínez, & Botella, 2006), epide-
miology (Berlin, 1995), and medicine (Higgins, Thompson,
Deeks, & Altman, 2003). For example, upon inspecting the unex-
plained heterogeneity in the effect of feedback interventions (FI)
on performance, Kluger and DeNisi (1996) developed the feed-
back intervention theory (FIT) that predicts several novel moder-
ators for the FI-performance relationship, such as FI cues and task
characteristics, which have never been examined in any primary

1 In meta-analysis, heterogeneity often refers to the variation of “real”
effects across primary studies. Note that the meaning of “real” should not
be confused with “ground truth,” because methodological variations across
studies are considered part of heterogeneity in some fields (Higgins et al.,
2003) but not others (Hunter & Schmidt, 2004). This difference is moot in
this article, as our goal is not to measure heterogeneity but to explain what
caused the unexplained part of it. Thus, we use “heterogeneity” to refer to
any variation not accounted for by factors already considered in a meta-
analysis (e.g., sampling errors, corrections of measurement artifacts, etc.).
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study. These moderators were then tested on a meta-analytic
dataset through a process that falls under the umbrella term of
moderator analysis (Hunter & Schmidt, 2004), and were found to
account for a substantial portion of the observed but previously
unexplained heterogeneity.

Despite the importance of disentangling heterogeneity, actually
doing so in a meta-analysis can be challenging. A notable reason
is the myriad of subtle factors that could have contributed to the
observed heterogeneity and therefore affected the outcome of
moderator analysis. Some well-known factors include the need for
finer gradations2 of variable coding (Hunter & Schmidt, 2004, p.
180), the presence of certain availability biases (McShane, Böck-
enholt, & Hansen, 2016), or the potential influence of questionable
research practices (Simonsohn, Nelson, & Simmons, 2014). For
example, Kluger and DeNisi (1996) had to consider excluding over
15% of the existing observations (91 out of 607) after noting that
they were all reported by one researcher (Mikulincer) yet their
inclusion sharply increased the overall heterogeneity.3 The pres-
ence of these diverse factors poses a dilemma for meta-analysis
researchers. Failure to consider them could drastically reduce the
statistical power of moderator analysis (Stone-Romero & Ander-
son, 1994), which is already known to be lower than desired due
to the often small number of primary studies (Hunter & Schmidt,
2004, p. 70). Yet identifying these factors and determining which
ones to consider (and correct for) is not only difficult but often
subjective. As a result, when attempting to disentangle heteroge-
neity in meta-analysis, researchers often had to resort to ad hoc
procedures that vary considerably even within a field (Fletcher,
2007; Naaktgeboren et al., 2014), and rely on judgment calls to
make important decisions such as whether the observed yet unex-
plained heterogeneity is “natural” or warrants further investigation
(Higgins et al., 2003).

The goal of this article is to ease this heterogeneity-
disentanglement process in meta-analysis by developing an ana-
lytical method that helps researchers attain a substantially higher
statistical power in moderator analysis without having to rely on
judgment calls about which factors to consider or correct for in
analyzing the observed heterogeneity. Specifically, we leverage a
recent breakthrough in theoretical machine learning to develop
latent mixture-based moderator analysis, a novel “data-driven”
meta-analytic method that serves as a preprocessing step for mod-
erator analysis. The conceptual underpinning of our method is akin
to latent-variable mixture modeling (McLachlan & Basford, 1988;
McLachlan & Peel, 2004) in analyzing individual-level data (e.g.,
Bauer & Curran, 2003; Wang & Hanges, 2011). That is, we
consider the input data (in the case of meta-analysis, the effect
sizes reported in primary studies) as samples drawn from a mixture
of multiple Gaussian distributions (each of which is referred to as
a mixture component) rather than a single Gaussian distribution.
Unlike traditional moderator-analysis methods that require re-
searchers to theorize the factors that cause the heterogeneity
among mixture components, our method starts by deploying an
automated algorithm called mixture decomposition to infer the
nature of each component from the input data regardless of the
underlying factor4 responsible for creating the component. As we
will elaborate later, a researcher can then leverage the auto-
decomposed mixture components to examine a hypothesized mod-
erating effect in a more effective manner.

Before presenting an example that demonstrates the utility of
our mixture-based method, we first briefly address an intriguing
question surrounding its novelty: Why was the use of mixture
modeling in meta-analysis exceedingly rare,5 despite its extensive
use in analyzing individual-level data and the wide recognition in
meta-analysis that the distribution of reported effect sizes often has
little resemblance with a single Gaussian distribution (Higgins,
Thompson, & Spiegelhalter, 2009; Micceri, 1989)? A likely reason
is the computational challenge associated with decomposing a
mixture distribution when its components largely overlap with
each other. Consider an intuitive illustration in Figure 1: While a
casual inspection can reveal the two “cleanly” separated mixture
components in Figure 1a, when the components overlap with each
other like in Figure 1b, the decomposition becomes much less
obvious. This challenge is exemplified in meta-analysis given the
small effect sizes in fields like social psychology (Richard, Bond,
& Stokes-Zoota, 2003) and management (Paterson, Harms, Steel,
& Credé, 2016) and the limited number of primary studies, which
together make a “clean” separation of multiple mixture compo-
nents less likely than in individual-level data. Note that the dom-
inating solution for mixture modeling in psychology and other
social sciences, the expectation maximization (EM) algorithm, is
known to have degraded accuracy when the mean difference
between two mixture components is smaller than their standard
deviations (Redner & Walker, 1984). The main reason behind this
problem is the need for EM to accurately infer the mixture com-
ponent each input sample belongs to (i.e., the “M” step) before
estimating the parameters for each component (i.e., the “E” step),
yet inferring the exact component is obviously infeasible for
samples in the overlapping region, like an effect size of 0.05 in
Figure 1b. Indeed, for the same reason, numerous EM-like algo-
rithms in the statistics and computer science literature (e.g., Das-
gupta, 1999) have a “separation requirement” for properly identi-
fying the mixture components.

This computational challenge was addressed in 2010 by a trio of
breakthroughs in theoretical machine learning (Belkin & Sinha,
2010; Kalai, Moitra, & Valiant, 2010; Moitra & Valiant, 2010).
While their respective solutions differ, an idea they share is to
directly infer the specifics of each mixture component (i.e., its
mean, standard deviation, and weight in the mixture distribution)
without having to first determine the component affiliation for
each input sample. By doing so, the state-of-the-art algorithms can
now accurately and efficiently decompose a mixture distribution
even when the components overlap almost entirely with each other
(Bandi, Bertsimas, & Mazumder, 2019; Belkin & Sinha, 2015;
Kalai, Moitra, & Valiant, 2012). Drawing from this technical
breakthrough, we develop in this article a novel mixture-
decomposition algorithm specifically for meta-analysis, and dem-

2 e.g., from high/low to a numerical scale.
3 Perhaps because they all feature a study-level design that differs

considerably from the rest of the primary studies (Kluger & DeNisi, 1996).
4 Note that such a factor could be the core of moderator analysis, e.g., if

it were a moderator variable that caused the observed effect sizes to follow
different distributions. Or the factors could be an extraneous one that
requires correction, e.g., if a mixture component emerged solely due to
questionable research practices.

5 A few notable exceptions (Nord et al., 2017; Schlattmann et al., 2015)
were all in medicine-related fields for limited purposes such as outlier
detection.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

2 ZHANG, WANG, AND XU



onstrate the usage of this algorithm for disentangling the observed
heterogeneity in moderator analysis.

We use the example in Figure 2 to illustrate how a mixture-
based method can increase the statistical power of moderator
analysis without requiring researchers to explicitly identify and
address the factors (besides the hypothesized moderators) that
contribute to the observed heterogeneity. Note from Figure 2a and
2b that the observed effect-size distributions for moderator levels
LOW and HIGH have the exact same mean and standard deviation.
As a result, a traditional meta-analytic moderator analysis likely
returns a null result, because these methods (e.g., metaregression;
Thompson & Higgins, 2002; Q-statistic; Hedges & Pigott, 2004)
are designed to compare the mean effect size across moderator
levels. Nonetheless, even a casual inspection of Figure 2a and 2b
would reveal that the moderator likely does affect the observed
effect size, as it produces a bimodal distribution when moderator
is HIGH and a unimodal one otherwise. One likely explanation
here is the presence of a latent factor that contributes to the
observed heterogeneity but is not captured by the moderator anal-
ysis. For example, perhaps like in the aforementioned case (i.e.,
Kluger & DeNisi, 1996), one component in Figure 2b is formed by
primary studies adopting an unusual study-level design, and thus
should have been excluded or addressed through a hierarchical
moderator analysis (Hunter & Schmidt, 2004, p. 424). Alterna-
tively, perhaps the coding of the moderator variable should have
been finer-grained, and the two components in Figure 2b (i.e.,
moderator ! HIGH) should have been coded differently (e.g., as
“HIGH” and “VERY HIGH” instead). Regardless of the underly-
ing reason, the presence of this latent factor “masks” the real
moderating effect and drastically reduces the statistical power of
moderator analysis.

Now consider how our latent mixture-based method can help
address this issue without requiring a researcher to identify the
latent factor. Given the overall distribution of the reported effect
sizes (i.e., solid line in Figure 2c), our method first calls upon an
automated mixture decomposition algorithm to decompose this
distribution into its three components, all dotted lines in Figure 2c.
Note that the algorithm takes only the overall effect-size distribu-
tion6 as input, and is thus oblivious to, and unaffected by, the
moderator variable(s). In other words, if a moderator variable truly
had no effect on the reported effect size, then the moderator level
should be independent of the component affiliation of the effect
size (i.e., the posterior probability for the effect size to belong to
each mixture component). In the case of Figure 2, we could easily
see this is not the case because those effect sizes with moderator !
LOW are more likely to belong to Component 2, while those with
moderator ! HIGH more likely belong to Components 1 or 3. This
simple observation would allow our method to achieve a higher
statistical power than the traditional methods without requiring a
researcher to explicitly identify the latent factor (that separates the
two components within HIGH).

As can be seen from this example, a key benefit of using mixture
decomposition in moderator analysis is to isolate the effect of the
latent factor by disentangling the various mixture components. To
understand why, consider how the latent factor affects the statis-
tical power of traditional moderator-analysis methods (e.g.,
metaregression), which are designed to compare effect sizes across
moderator levels. With these methods, the heterogeneity intro-
duced by the latent factor (i.e., increasing the effect size from

6 After proper corrections for sampling error, artifact variability, etc.

-0.4 -0.2 0 0.2 0.4 0.6 0.8
x

Mixture
Component 1
Component 2

-0.4 -0.2 0 0.2 0.4 0.6
x

Mixture
Component 1
Component 2

a) Non-overlapping mixture components 
(easy to decompose)

b) Largely overlapping mixture components 
(difficult to decompose)

Figure 1. Illustration of the computational challenge facing mixture modeling in meta-analysis. The left figure
depicts two (almost) nonoverlapping mixture components (Gaussian distributions with mean 0 and 0.3, standard
deviation 0.1). A visual inspection can easily decompose the observed mixture distribution (solid line) into its
two components (dotted lines). In contrast, the right figure depicts two largely overlapping components
(Gaussian distributions with mean 0 and 0.1, standard deviation 0.1). The two distributions now form only a
single peak, making the decomposition a nontrivial challenge. See the online article for the color version of this
figure.
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Component 1 to Component 3 in Figure 2c when moderator !
HIGH) is mixed with, and therefore masks, the true heterogeneity
caused by the moderator variable (i.e., lowering the effect size
from Component 2 to Component 1 in Figure 2c when moderator
changes from LOW to HIGH). This causes the traditional
methods to fail unless the researcher identifies the latent factor.
With our mixture-based method, the focal measure of compar-
ison (across moderator levels) is not the raw effect sizes but
their component affiliations. This change creates a distinction
between the heterogeneity introduced by the latent factor (i.e.,
changing the affiliation from Component 1 to Component 3
when moderator ! HIGH) and the true heterogeneity caused by
the moderator variable (i.e., changing the affiliation from Com-
ponent 2 to Component 1 when moderator changes from LOW
to HIGH), so the two sources of heterogeneity are no longer
mixed with each other. As we will elaborate in the article, this
newly introduced distinction is what enables our method to
properly assess the moderating effect without requiring re-
searchers to explicitly identify the latent factor.

The rest of the article is organized as follows. First, we review
the related literature from two perspectives: (a) the history and
recent advances in mixture modeling, and (b) the methodological
development in meta-analysis as related to disentangling the ob-
served heterogeneity. We then introduce our latent mixture-based
moderator analysis method and describe results from Monte Carlo
simulation studies that compare the statistical power of our new
method with the traditional approaches. We also present a case
study with real-world data, using our method to address a long-
standing inconsistency on how intrateam trust affects team perfor-
mance. The article finishes with a discussion of the limitations of
our method and the potential directions for its future development.

Literature Review

Gaussian Mixture Model

The statistical theory underlying mixture modeling has been
known since the 19th century:7 If there is heterogeneity in the
data-generation process, then the observed data, in our case effect
sizes reported in primary studies, are bound to be drawn from a
mixture of multiple distributions (Böhning, 1999). Such a mixture
distribution would have samples drawn with probability wi from its
i-th component distribution (i ! [1, m]), where w1 " . . . " wm !
1. While there is no inherent constraint in mixture modeling on
what type of distribution each component follows, most existing
work considered the case where the component distributions are
Gaussian (see Redner & Walker, 1984 and the citations within).
The factor separating the Gaussian components can be obvious in
certain cases (e.g., gender for the distribution of adult heights), but
latent in others (e.g., for the famous Pearson’s crab data; Pearson,
1894). This naturally leads to the research question of how to
decompose the observed mixture distribution into its Gaussian
components, a problem often referred to as latent variable mixture
modeling.

Most classic solutions to the problem make assumptions about
the underlying component distributions. Unfortunately, these as-
sumptions are often too strong to hold in the context of meta-
analysis. For example, EM (Dempster, Laird, & Rubin, 1977), the
most popular method for mixture modeling in psychology and
social sciences, is long known for requiring a “proper separation”

7 See discussions of Pearson’s work in Améndola, Faugère, and Sturm-
fels, (2016).

-1.5 -1 -0.5 0 0.5 1 1.5
x

Mod: LOW

-1.5 -1 -0.5 0 0.5 1 1.5
x

Mod: HIGH
Component 1
Component 2

-1.5 -1 -0.5 0 0.5 1 1.5
x

Observed
Component 1
Component 2
Component 3

a) Moderator level = LOW b) Moderator level =HIGH c) Overall effect-size distribution
Figure 2. An illustration of how mixture decomposition increases the statistical power of moderator analysis.
The left figure depicts the distribution of effect sizes when the value of a moderator variable is LOW. It is a
Gaussian distribution with mean 0 and standard deviation 0.5. The middle figure depicts the effect-size
distribution when the moderator level is HIGH. It is a mixture of two Gaussian distributions with mean #0.4 and
0.4, respectively, with each having a standard deviation of 0.3. Note that the mean of this mixture distribution
is 0 and its standard deviation is !0.32 ! 0.42 " 0.5, both exactly the same as the case where moderator !
LOW. The right figure depicts the overall distribution of observed effect sizes when half of the primary studies
have moderator ! LOW and the other half have moderator ! HIGH. It is a mixture of three Gaussian
distributions, with Components 1 and 3 corresponding to moderator ! HIGH and Component 2 with modera-
tor ! LOW. In all three figures, the solid line represents the (probability density function of the) observed
distribution, while the dotted lines represent its mixture components (if applicable). See the online article for the
color version of this figure.
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between different components (Hosmer, 1973). Even though the
minimum necessary degree of separation was not fully established
for the EM algorithm due to its iterative nature (Balakrishnan,
Wainwright, & Yu, 2017), a well-understood rule-of-thumb is that
EM cannot produce useful results when the mean difference be-
tween two components is less than their standard deviation (Red-
ner & Walker, 1984, p. 213). This issue persists in a more recent
line of research pioneered by Dasgupta (1999), which provides
rigorous guarantees on the accuracy of mixture decomposition
under a formalized separation assumption8 between all pairs of
mixture components (e.g., Achlioptas & McSherry, 2005; Sanjeev
& Kannan, 2001; Vempala & Wang, 2004). As discussed in the
introduction, the small effect sizes studied in a meta-analysis,
coupled with the limited number of primary studies, makes such
separation assumptions unlikely to hold. It is noteworthy that a
long-standing line of research in statistics, known as the method of
moments for mixture decomposition (Hopkins & Li, 2018; Lind-
say, 1989; Lindsay & Basak, 1993; Wu & Yang, 2018), does not
have this separation assumption but instead requires all compo-
nents to share the same standard deviation. Unfortunately, this
assumption of homoscedasticity is not immediately justifiable and
has indeed been shown to often not hold in meta-analyses (Hedges
& Olkin, 1985, pp. 11–12; Bonett, 2008).

Statisticians have long known that none of these assumptions is
required for solving the mixture decomposition problem. Teicher
(1961) provided an identifiability proof showing that no matter the
shape and form of the mixture distribution, with enough samples,
one can always learn every parameter (i.e., mean, standard devi-
ation, and weight) of every Gaussian component to an arbitrary
precision, so long as no two components are exactly the same.
However, the identifiability proof in theory does not imply a
methodological design in practice, and it was not clear until a trio
of breakthroughs in 2010 (Belkin & Sinha, 2010; Kalai et al.,
2010; Moitra & Valiant, 2010) addressed how one could drop the
separation assumption yet still accurately recover the mixture
components in practice, based on a reasonable number of samples
and with limited computational resources.

While each of the breakthrough and their more recent follow-up
work (e.g., Bandi et al., 2019) features a different algorithm for
mixture decomposition, these algorithms share a common feature,
in that none of them makes any separation assumption about the
mixture components. They also share a common design scheme, in
that they all infer the parameters of the Gaussian components by
finding a parameter combination that minimizes a predetermined
statistical distance between the mixture distribution computed
from the parameter combination and the actually observed distri-
bution. This distance metric varies from one work to another. For
example, Kalai, Moitra, and Valiant (2010) considered the distance
between two vectors, each consisting of the first 4k # 2 statistical
moments of the a distribution (where k is the number of mixture
components); Belkin and Sinha (2010) and Moitra and Valiant
(2010) used the distance between the probability densities of the
two distributions; Bandi, Bertsimas, and Mazumder (2019) used a
variation of the total variation distance metric (Levin, Peres,
Wilmer, Propp, & Wilson, 2017), while Daskalakis and Kamath
(2014) used the Kolmogorov–Smirnov distance metric (Daniel,
1990) between two cumulative density functions. Regardless of the
statistical-distance metric used, these algorithms represent a break-
through for mixture decomposition in practice because the number

of samples they require is only polynomial, not exponential, to the
inverse of estimation error for the component parameters (Kalai et
al., 2012). Thus, we follow the same design scheme in our
mixture-based moderator analysis, but customize the design of the
statistical distance metric and the algorithm design (i.e., for finding
the optimal parameter combination) according to the specific re-
quirements and limitations of meta-analysis.

Disentangling Heterogeneity in Meta-Analysis

In the meta-analysis literature, many researchers have hinted or
argued that the underlying effect sizes likely form a mixture of
multiple distributions. For example, in studying the choice over-
load effect, Chernev, Böckenholt, and Goodman (2010) noted, and
Simonsohn, Nelson, and Simmons (2014) concurred, that many
primary studies were “designed to document” how the direction of
an effect can be reversed by adjusting a moderator variable,
effectively making the overall set of reported effect sizes a mixture
of two distributions, one with a positive mean and the other
negative. Hunter and Schmidt (2004) also recognized that, when a
moderator variable takes on a continuum of values in primary
studies, the distribution of effect sizes could be a mixture of many
distributions, each with a different mean and variance. In addition,
effect sizes reported in “outlier” primary studies have been treated
as being drawn from a distribution with a larger variance than the
rest of the studies (Beath, 2014), making the overall distribution a
mixture of both.

In terms of moderator analysis to disentangle the mixture of
effect-size distributions, our specific focus in this article is what is
known as the task of moderator estimation (i.e., to determine how
much of the observed heterogeneity can be attributed to a hypoth-
esized moderator variable; Steel & Kammeyer-Mueller, 2002).
There are other important tasks besides moderator estimation in
moderator analysis. For example, the task of moderator detection
aims to determine whether there exists a substantial amount of
unexplained heterogeneity that could be attributed to one or more
moderators (Whitener, 1990). The task of hierarchical moderator
analysis is essential when there are multiple hypothesized moder-
ators, so as not to confound their effects (Hunter & Schmidt, 2004,
p. 424). As we will elaborate in the Discussion section, we leave
the study of how to leverage mixture modeling in these tasks to
future work.

For the specific task of moderator estimation, there has been a
long line of methodological research developing numerous meth-
ods over multiple decades, and an almost equally long line of
meta-analysis research that draws on these methods to advance
scientific fields such as psychology (e.g., Judge & Piccolo, 2004;
Kluger & DeNisi, 1996; Liu, Huang, & Wang, 2014). When the
moderator variable is continuous, a popular method for moderator
analysis is metaregression (Glass, 1977), which regresses the ob-
served effect sizes on the coded study-level characteristics such as
moderator variables. When the moderator variable is dichotomous
or categorical, one can perform a subgroup analysis by first
partitioning the primary studies into subgroups according to their
moderator levels, and then conducting a separate meta-analysis for
each subgroup (for comparisons). In subgroup analysis, methods

8 See Appendix A for a detailed review of recent results in theoretical
computer science.
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such as Q-statistic (Hedges & Pigott, 2004) can be used to test the
statistical significance of the differences between subgroups.

Unsurprisingly, many variations of these moderator-analysis
methods exist, with their superiority over each other long debated,
(at least partially) due to their differences on the assumed model of
effect sizes. For example, both fixed- and random-effect based
methods have been criticized, the former for its assumption of
effect-size homogeneity (Hunter & Schmidt, 2004, p. 201) and the
latter for the fact that effect sizes reported in the literature are often
a convenience sample rather than a random sample of the popu-
lation (Schulze, 2004, p. 41). Similarly, there have been prolonged
debates on the use of ordinary linear squares versus weighted
linear squares in metaregression (Hedges & Olkin, 1985, Chapter
8, pp. 168–190; Steel & Kammeyer-Mueller, 2002), with the
former being criticized for its homoscedasticity assumption of
sample sizes and the latter for its potential sensitivity to outliers.
Regardless of the specific method, a well-recognized universal chal-
lenge for the meta-analytic moderator analysis is that its statistical
power tends to be low due to two main reasons: One is the small
number of primary studies, and the other is that much of the observed
heterogeneity could be caused by factors other than the hypothesized
moderators (Hunter & Schmidt, 2004, p. 70).

Situating our latent mixture-based method in the methodological
literature of moderator analysis, it is important to note that, while
our method is designed to boost the statistical power of moderator
analysis by alleviating the second issue discussed above (i.e.,
heterogeneity caused by factors other than the hypothesized mod-
erators), it cannot completely solve the issue because sampling
errors (and other artifactual variances) are bound to form a sub-
stantial portion of the observed variation across studies, and cannot
be reduced without having more primary studies.

Latent Mixture-Based Moderator Analysis

This section provides an overview of our moderator estimation
method assuming the existence of a mixture decomposition algo-
rithm that can properly decompose a mixture of Gaussian distri-
butions into its respective components. We refer readers to Ap-
pendix A to Appendix D for a detailed discussion of how we
addressed the unique challenges for meta-analysis and the design
of our mixture decomposition algorithm.

Input and Output of the Mixture
Decomposition Algorithm

Because we treat the mixture decomposition algorithm as a
black box in this section, it is important to define its input and
output. The input, denoted by InM, is the same as in bare-bone
moderator analysis. That is, given m primary studies, InM consists
of their (reported) effect sizes r(esi), sample sizes Ni, and estimated
standard errors (i.e., sampling error) r(sei), i.e.,

InM: {r(es1), N1, r(se1)}, {r(es2), N2, r(se2)}, . . . , {r(esm), Nm, r(sem)}.

Note that r(esi) or r(sei) could be directly reported in a primary
study or derived by the meta-analysis researcher. For example,
when the effect size is the Pearson’s correlation coefficient, r(sei)
could be estimated as (1 # r(esi)

2)⁄!Ni # 1. For the sake of
simplicity, we assume the m samples to be independent, and defer
to future work the analysis of interstudy correlations, for example,

between those conducted by the same researchers, with similar
study-level characteristics, and so forth, which is often addressed
through a multilevel (Cheung, 2014) or multivariate (Gleser &
Olkin, 2009) meta-analysis. For the same reason, we do not con-
sider cases with missing data, for example, when a primary study
does not report a sample size Ni or a standard error r(sei). An
important distinction with regard to notation is that we use r(·) to
denote the reported values and reserve esi to represent the (latent)
ground-truth effect size for the i-th primary study.

Given InM as input, the goal of the mixture decomposition
algorithm is to infer the individual components that together form
the distribution of esi. Thus, the output of the algorithm, denoted
by OutM, contains the parameter estimates for the components:

OutM: {w1, $1, %1}, {w2, $2, %2}, . . . , {wk, $k, %k},

where k is the number of mixture components either specified by
the researcher or estimated by the algorithm, and wi, $i, %i are the
estimated weight, mean, and standard deviation for the i-th com-
ponent, respectively. With an accurate mixture decomposition
algorithm, we have

F(G) " w1 · F!#$1, %1
2$ ! w2 · F!#$2, %2

2$ ! . . . ! wk · F!#$k, %k
2$,

(1)

where G is the distribution of esi (i.e., a mixture of multiple
Gaussian distributions according to our model), F(G) is the prob-
ability density function of G, and F!($i, %i

2) represents the prob-
ability density function of a Gaussian distribution with mean $i

and standard deviation %i. While the order of the mixture compo-
nents is not important, for the sake of consistency, we sort the
components in an increasing order of $i (and an increasing order
of %i for tie-breakers).

Use of Mixture Components in Moderator Analysis

Having defined the input InM and output OutM of the mixture
decomposition algorithm, we now discuss how OutM can be used
in moderator estimation. First, a meta-analysis researcher could
directly benefit from learning OutM, as it provides a holistic view
of the effect-size distribution and can be used to identify obvious
outliers (Nord, Valton, Wood, & Roiser, 2017; Schlattmann,
Verba, Dewey, & Walther, 2015) or to inspect whether the distri-
bution is apparently bimodal (e.g., the example of choice overload
in Simonsohn et al., 2014). Nonetheless, for our purpose of mod-
erator estimation, in order to disentangle the hypothesized moder-
ating effect from other heterogeneity-contributing factors, we need
to further infer the component affiliation of each primary study.
The purpose, as illustrated with the example in Figure 2, is to
inspect whether a change of moderator level “moves” a study from
one component to another. While it might be tempting to deter-
ministically associate each esi with one component, recall from the
previously discussed pitfall of the EM algorithm that different
mixture components in a meta-analysis often overlap considerably
with each other, making the deterministic assignment unlikely to
be accurate. To address this challenge, we capture the component
affiliation probabilistically rather than deterministically. Specifi-
cally, we compute from OutM the posterior probability for esi to
belong to a mixture component, say the j-th one denoted by Cj:

Pr{esi ! Cj | r(esi)} "
P(r(esi) | esi ! Cj) · Pr{esi ! Cj}

P(r(esi))
. (2)
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A key observation enabling our latent mixture-based method is
that InM (i.e., the input to the mixture decomposition algorithm)
contains no information about the moderator variable to be tested.
Thus, if a moderator variable V truly had no effect on the effect
size esi, then V would be independent of Pr{esi ! Cj | r(esi)} for
any j ! [1, k]. As such, just like how traditional moderator analysis
compares effect sizes across moderator levels or correlates the
effect sizes with the moderator variable, if we replace the effect
size r(esi) in such analysis with Pr{esi ! Cj | r(esi)}, the traditional
methods should still not be able to reject their null hypotheses with
probability higher than the significance level if the moderator V
had no effect on esi. Consider a simple example where k ! 2, that
is, the mixture decomposition algorithm returns two components
C1 and C2. Because there is always Pr{esi ! C1 | r(esi)} " Pr{esi !
C2 | r(esi)} ! 1, we can simply replace the effect size in existing
moderator-analysis methods with Pr{esi ! C2 | r(esi)} (or, equiv-
alently, Pr{esi ! C2 | r(esi)} # Pr{esi ! C1 | r(esi)}). Examples
here include using it as the regressand in metaregression (and
regresses it over the moderator variables and potentially other
control variables), comparing its mean across different levels of a
categorical moderator variable, and so forth. Regardless of the
method used, if the results indicate that a moderator variable V is
a significant predictor of the posterior probability, then we should
reject the null hypothesis9 because the only way for V to affect the
posterior probability is by affecting the effect size esi.

Figure 3 illustrates such an example, where a change of the
moderator level (from LOW to HIGH) varies not only the mean
(from 0 to 0.1) but also the standard deviation (from 1 to 0.1) of the
effect-size distribution. As can be seen from Figure 3b, if a method
directly compares the mean effect size (i.e., mean(esi)) between the
moderator levels, one might not be able to properly reject the null
hypothesis given the overlapping confidence intervals. In contrast,
once we replace esi with Pr{esi ! C2 | r(esi)}, like in Figure 3c, the
moderating effect can be clearly identified from the vastly differ-
ent component affiliations between the two moderator levels. This
example demonstrates how our method can substantially increase
the statistical power of moderator analysis by leveraging the mix-
ture decomposition algorithm.

Mixture of More Than Two Components

When the mixture decomposition algorithm returns more than
two components, the design of moderator analysis is subtler be-
cause it is possible for the hypothesized moderating effect to only
affect a subset of the components. To this end, a seemingly simple
solution is to design a holistic test of correlation between the
moderator variable V and the affiliation probabilities for all com-
ponents, for example, by regressing V over a (k # 1)-dimensional
vector Pr{esi ! C1 | r(esi)}, . . . , Pr{esi ! Ck#1 | r(esi)}. Unfor-
tunately, this solution has two drawbacks: First, it is no longer
“transparent” to the moderator analysis method. For example,
while this solution is clearly a variation of metaregression, it is
unclear how to integrate this solution with the method of subgroup
analysis. The second, and more important, drawback is that this
solution increases the likelihood of moderator analysis capitalizing
on chance and returning a false positive result. Just like how
running a metaregression with too many moderator variables
might capitalize on sampling error in moderator analysis (Higgins
& Thompson, 2004; Hunter & Schmidt, 2004), inspecting too

many mixture components could have the same effect when one of
the components by chance produces a high correlation between
Pr{esi ! Cj | r(esi)} and V.

Fortunately, this issue of false positive is unlikely to be of
serious concern in practice due to a technical reason: the sample
size (i.e., the number of primary studies) available in a meta-
analysis is rarely enough to support a mixture decomposition that
produces more than three components. We refer readers to Ap-
pendix A for a detailed discussion of the technical results related
to this current limitation, and the promising recent developments
that could potentially address the limitation in the future. To
summarize the existing results, we note that, when no separation
assumption is made for the mixture components, the sample size
required by mixture decomposition increases exponentially with
the number of mixture components (Hardt & Price, 2015; Moitra
& Valiant, 2010). This exponential growth challenges the feasi-
bility of extracting a large number of components from a real-
world dataset with only a limited number of samples. Reflecting
this concern, most existing work on mixture decomposition (with-
out the separation assumption) focused exclusively on the case of
two mixture components (e.g., Daskalakis & Kamath, 2014; Hardt
& Price, 2015; Kalai et al., 2010); and all simulation or experi-
mental results we could find in the literature (e.g., Bandi et al.,
2019; Li & Schmidt, 2017) tested only two or three mixture
components when the sample size is below 1,000. Because a
meta-analysis rarely covers more than a few hundred primary
studies, it appears unlikely for a mixture of more than three
components to emerge from mixture decomposition. Thus, while
we strive to keep the design of the mixture decomposition algo-
rithm generic to the number of components, we focus on utilizing
two or three mixture components for moderator analysis in this
paper, and leave a thorough study of the generic case to future
work.

When the mixture decomposition algorithm returns three com-
ponents, we can, somewhat surprisingly, adopt the same simple
solution as the two-component case. The reason why the moder-
ating effect can still be identified from Pr{esi ! C2 | r(esi)}, that
is, the posterior probability for esi to belong to what is now the
“middle” component (i.e., with mean between C1 and C3), can be
explained by contradiction. Consider the case where the hypothe-
sized moderator variable V has two levels, LOW and HIGH.
Suppose the idea of choosing the middle component fails. In other
words, the hypothesized moderator V had a significant moderating
effect, yet Pr{esi ! C2 | r(esi)} stayed roughly constant between
V ! LOW and HIGH. In this case, a change of V would have to
“move” an effect size between C1 and C3, simply because the sum
of the posterior probability for all three components has to be 1.
Note that C1 and C3 represent the more “extreme” effect sizes at
different sides of C2. As such, if primary studies with V ! LOW
and HIGH differ significantly on their affiliations with C1 and C3,
then we will likely observe a significant difference between the
mean effect sizes of the two moderator levels. That is, the tradi-
tional moderator analysis methods likely work well anyway. In
contrast, when the effect of V is to “move” an effect size between
C2 and the other components, as illustrated by the example in the

9 In this case, the NULL hypothesis with our method is that esi follows
the same distribution regardless of vi.
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introduction, then the moderating effect might be missed by the
traditional analysis (but properly identified by our latent mixture-
based method) because a move from C2 to the two components on
both sides of it may not change the mean effect size significantly.

In summary, once the mixture decomposition algorithm returns
two or three components in OutM, our latent mixture-based method
is a simple two-step process: First, based on OutM, our method
computes for each primary study its posterior probability of be-
longing to the second mixture component (i.e., Pr{esi ! C2 |
r(esi)} for i ! 1, . . . , m). Second, we replace esi with Pr{esi !
C2 | r(esi)} before calling any traditional method for moderator
estimation. The detailed design of the mixture decomposition
algorithm is discussed in Appendix A, with parameter setup dis-
cussed in Appendix B, the ideas for reducing the computational
overhead in Appendix C, and the handling of the three-component
case in Appendix D.

Simulation Studies Using the Latent
Mixture-Based Method

Overview

We conducted two simulation studies to determine how well our
latent mixture-based method performs compared with the tradi-
tional methods. The simulation studies focused on two outcomes.
One was the comparison of statistical power (i.e., 1 # Type II error
rate) attained by different methods given the same Type I error
rate. The other was the comparison of their statistical power under
various known meta-analytic conditions. This allowed for the
analysis of how the underlying effect-size distribution impacts
performance of the methods.

The main difference between the two simulation studies was the
number of mixture components in the effect-size distribution. The
first study focused on the two-component case akin to the example
in Figure 3, while the second study focused on the three-

component case akin to the example in Figure 2. The purpose for
designing these two studies was to demonstrate two different use
cases of the latent mixture-based method. In Study 1, the hypoth-
esized moderator variable was the only factor affecting the effect-
size distribution. Thus, the superiority of our method stems from
the component affiliation of an effect size being a better “signal”
for moderator estimation than the effect size itself. In Study 2,
there was a latent factor besides the moderator variable that affects
the effect-size distribution. As such, the superiority of our method
now stems from its ability to disentangle the latent factor from the
true moderating effect.

We implemented all methods using Node.js and R; used a
variety of statistical packages (through an R-to-Node.js wrapper),
including the jStat library for JavaScript, R, and the metafor library
for R (Viechtbauer, 2010); and produced all figures using
MATLAB.10 In the rest of this section, we first describe the
simulation design in each study, before discussing the specifics of
the moderator estimation methods tested in both studies.

Simulation Study 1: Two Components

For the first study, we created two levels for the moderating
variable: LOW and HIGH, assigned a Gaussian effect-size distri-
bution to each level, and systematically varied the parameters of
the two distributions in order to examine the influence of varying
a moderating effect on the outcome of the moderator analysis.
Specifically, when the moderator is LOW, we simulated the effect
sizes with a Gaussian distribution of mean 0 and standard devia-

10 The download link and a brief description of an R package for our
latent mixture-based method is available in the online supplemental mate-
rials.
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Figure 3. An illustration of how our latent mixture-based moderator analysis works. The left figure depicts the
case where the effect-size distribution is Gaussian with mean 0 and standard deviation 1 when the moderator is
LOW, and mean 0.1 and standard deviation 0.1 when the moderator is HIGH. The solid line represents the
observed mixture distribution. The middle figure shows the box plot for the mean effect sizes given 40 primary
studies at each moderator level. The right figure shows the box plots for Pr{esi ! C2 | r(esi)} used in our method
that clearly separates the two moderator levels. See the online article for the color version of this figure.
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tion 1. When the moderator is HIGH, we created three levels11 for
the mean of the effect-size distribution: 0.1, 0.3, and 0.5; and four
levels for its standard deviation: 0.1, 0.3, 0.5, and 1. To simulate
different proportions of primary studies with moderator being
LOW or HIGH, we created three levels of weight composition:
25% (i.e., 25% HIGH and 75% LOW), 50%, and 75%. To examine
the influence of the number of primary studies, we created three
different levels: 40, 70, and 100.

Overall, the simulation design consisted of 108 unique condi-
tions or a 3 (mean of HIGH) & 4 (standard deviation of HIGH) &
3 (weight) & 3 (number of primary studies) factorial design.
Besides these simulation conditions, we also examined separately
the null-effect case where the effect-size distribution for HIGH is
exactly the same as LOW, that is, with mean 0 and standard
deviation 1. For the null-effect case, the only meaningful factor is
the number of primary studies, because the mean and standard
deviation for HIGH are both fixed, and the weight composition has
no influence on the observed effect-size distribution. For each
simulation condition, we first calculate the number of primary
studies with each moderator level according to the sample size and
the weight specified in the simulation condition, and then generate
the effect sizes for each moderator level independently at random,
according to the corresponding Gaussian distribution specified in
the simulation condition.

Simulation Study 2: Three Components

For the second study, we again set two levels for the moderating
variable (i.e., LOW and HIGH) but mapped their effect-size dis-
tributions to three instead of two Gaussian components. While
LOW always featured a Gaussian effect-size distribution, the dis-
tribution for HIGH was a mixture of two Gaussian components.
For the sake of clarity, we fixed the mean of the two Gaussian
components for HIGH at #1 and 1, respectively, and referred to
them as the left and right components. Meanwhile, we created
three levels for the mean of the LOW component: 0.1, 0.2, and 0.3,
and referred to it as the middle component. We created four levels
for the standard deviation of each component: 0.1, 0.3, 0.5, and 1;
and three levels for the number of primary studies: 40, 70, and 100.
The number of primary studies was always evenly distributed
between LOW and HIGH and, within HIGH, evenly distributed (or
differing by 1 if needed) between its two components. Overall, this
second study consisted of 36 unique conditions or a 3 (mean of
LOW) & 4 (standard deviation) & 3 (number of primary studies)
factorial design.

Moderator Estimation Methods Tested

In each simulation study, we compared our latent mixture-based
method against two widely used methods for moderator estima-
tion: metaregression (Thompson & Higgins, 2002) and Q-statistic
(Borenstein, Hedges, Higgins, & Rothstein, 2011, pp. 107–125).
For all three methods, we tested a model with the moderator
variable (i.e., HIGH/LOW) being the only study-level character-
istic variable that potentially predicts the reported effect sizes. For
example, with metaregression, the vector of reported effect sizes
was regressed on the moderator variable (and an intercept term).
Note that, while numerous variations for metaregression have been
developed in the literature (e.g., Viechtbauer, López-López,

Sánchez-Meca, & Marín-Martínez, 2015), the differences among
many variations were moot in our simulations because we assumed
all primary studies to have the same sample size. For example, all
primary studies bear the same weight regardless of whether the
meta-analytic model assumes fixed or random effects. Conse-
quently, the results of ordinary least square and weighted least
square became equivalent. Several alternatives for significance
testing in metaregression, like the Knapp and Hartung (2003) test,
also became equivalent with the standard Wald-type test. We
tested other alternative designs of metaregression, such as the
permutation method for significance testing (Higgins & Thomp-
son, 2004; Viechtbauer et al., 2015), but did not find significant
differences in terms of statistical power and Type I error rates. For
Q-statistic, because the between-study variance is, by design,
different for the two moderator levels in most cases, we used
separate (rather than pooled) estimates of effect-size variance
when computing the Q-statistic (Borenstein et al., 2011, p. 167).
For each of the three methods, we calculated its statistical power
from the simulation results according to a significance level of ' !
.05, and its Type I error rate based on the outcomes of the
null-effect cases discussed in the simulation design, again when
setting ' ! .05.

Simulation Study Results

Comparisons of Statistical Power

Tables 1 and 2 compare the statistical power rates attained by
the three methods in the two simulation studies, respectively.
Table 1 also includes the Type I error rates of all three methods.
Note that, while Table 2 directly shows the statistical power of

11 As these two distributions (i.e., when moderator being LOW and
HIGH) are critical factors for both mixture decomposition and moderator
analysis, it is necessary that we briefly explain our decision to only vary the
distribution of HIGH while keeping the LOW distribution constant. A key
rationale here is that all three moderator-analysis methods being examined
are linear-invariant, meaning that their outcomes do not change when their
input effect sizes undergo linear transformations. Similarly, their outputs
also stay the same when we swap the labels of LOW and HIGH for the
moderator variable. As such, for any given pair of Gaussian distributions,
without affecting the outcome of moderator analysis, we can always
consider the distribution with the larger standard deviation as the LOW
distribution, and then normalize it through linear transformation to make
the mean of the distribution 0 and the standard deviation 1, as assumed in
our simulations. Specifically, the linear transformation is to transform a
value x to f(x) ! (x # m)/s, where m and s are the (original) mean and
standard deviation of the distribution, respectively. Note that, once we
apply the same linear transformation f to the other (i.e., HIGH) distribution,
the HIGH distribution will always have a standard deviation between 0 and
1, justifying our decision to create four levels within this range for the
standard deviation of HIGH. If the mean of the HIGH distribution is
negative after applying f, we can always multiple f by #1 (i.e., applying
another linear transformation) to make its mean positive without changing
the LOW distribution. Because of this, we only need to consider nonneg-
ative values for the mean of HIGH. The reason why we only simulated
values under 0.5 for the mean of HIGH was simply because all three
methods being examined achieved near-perfect accuracy once the mean of
HIGH rose above 0.5. Similarly, we did not test the case where the mean
of HIGH is 0 because metaregression and Q-statistic were not designed to
identify the moderating effect when the mean effect size remains exactly
the same under different levels of the moderating variable (Hedges &
Pigott, 2004). Thus, we decided to focus on the simulation conditions
where the mean of HIGH is between 0.1 and 0.5.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

9DISENTANGLING HETEROGENEITY IN META-ANALYSIS



each method, Table 1 displays the marginal statistics (mean, me-
dian, and standard deviation) of their statistical power due to the
large number of simulation conditions in Study 1. Observe from
the tables that, while the Type I error rates of all three methods are
very close, the statistical power of our latent mixture-based method
is significantly higher than the other two under almost all condi-
tions.

Remarkably, metaregression achieved a statistical power of 0.8
or above in only one tenth of the conditions in Study 1 (11 out of
108, 10.19%), and no condition in Study 2 (out of 36). Q-Statistic
never achieved this standard for any condition in either study. In
comparison, our latent mixture-based method achieved a power of
0.8 in about half of the conditions in both studies (53 out of 108,
49.07% in Study 1; 17 out of 36, 47.22% in Study 2). Even when

we relax the threshold on power from 0.8 to 0.5, metaregression
only achieved so for fewer than one third of all conditions (31 out
of 108, 28.70%) in Study 1, and only two conditions in Study 2
(out of 36, 5.56%). Q-Statistic did so for 17 conditions (out of 108,
15.74%) in Study 1, and again no condition in Study 2. In com-
parison, our latent mixture-based method achieved a power of 0.5
or above in 67.59% of the conditions in Study 1 (73 out of 108)
and 75.00% in Study 2 (27 out of 36). Furthermore, the latent
mixture-based method increased the statistical power by at least
100% (over both metaregression and Q-statistic) in 44 conditions
(40.74%) in Study 1 and 28 conditions (77.78%) in Study 2. For 22
conditions (20.37%) in Study 1 and 21 conditions (58.33%) in
Study 2, the latent mixture-based method achieved a power in-
crease of at least 500% over both metaregression and Q-statistic.

Table 1
Statistical Power and Type I Error of Latent Mixture-Based Moderator Analysis Versus Metaregression and Q-Statistic in Simulation
Study 1

Latent mixture-based
moderator analysis Metaregression Q-statistic

Simulation
condition

Power
Mean

Power
Median

Power
Stddev

Type I
Error

Power
Mean

Power
Median

Power
Stddev

Type I
Error

Power
Mean

Power
Median

Power
Stddev

Type I
Error

Num of studies
40 0.57 0.52 0.35 0.05 0.25 0.21 0.19 0.08 0.12 0.09 0.12 0.07
70 0.69 0.81 0.33 0.01 0.36 0.34 0.26 0.03 0.22 0.16 0.20 0.03
100 0.76 0.90 0.30 0.05 0.44 0.40 0.31 0.07 0.30 0.22 0.28 0.05

Mean HIGH
0.10 0.60 0.73 0.39 0.11 0.08 0.09 0.03 0.02 0.03
0.30 0.66 0.74 0.34 0.31 0.30 0.16 0.15 0.14 0.09
0.50 0.75 0.88 0.26 0.63 0.62 0.22 0.46 0.46 0.19

Stddev HIGH
0.10 1.00 1.00 0.01 0.41 0.32 0.30 0.20 0.09 0.23
0.30 0.89 0.94 0.15 0.38 0.32 0.29 0.20 0.10 0.22
0.50 0.54 0.55 0.20 0.35 0.23 0.27 0.21 0.13 0.23
1.00 0.25 0.22 0.19 0.26 0.23 0.20 0.26 0.23 0.20

Weight HIGH
0.25 0.60 0.56 0.34 0.23 0.15 0.25 0.18 0.08 0.21
0.50 0.71 0.86 0.33 0.39 0.35 0.28 0.26 0.17 0.26
0.75 0.70 0.86 0.33 0.43 0.39 0.25 0.21 0.17 0.18

Overall 0.67 0.78 0.33 0.04 0.35 0.29 0.27 0.06 0.22 0.14 0.22 0.05

Table 2
Statistical Power of Latent Mixture-Based Moderator Analysis Versus Metaregression and Q-Statistic in Simulation Study 2

Stddev
Num of
studies

meanLOW ! .1 meanLOW ! .2 meanLOW ! .3

Latent
mixture Metaregression Q-statistic

Latent
mixture Metaregression Q-statistic

Latent
mixture Metaregression Q-statistic

0.1 40 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
0.1 70 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.30 0.00
0.1 100 0.97 0.00 0.00 1.00 0.00 0.00 1.00 0.73 0.00
0.3 40 0.96 0.00 0.00 0.82 0.00 0.00 0.82 0.04 0.00
0.3 70 0.93 0.00 0.00 0.88 0.05 0.00 0.79 0.19 0.02
0.3 100 0.84 0.00 0.00 0.82 0.03 0.00 0.90 0.50 0.05
0.5 40 0.50 0.00 0.00 0.61 0.00 0.00 0.63 0.06 0.02
0.5 70 0.75 0.02 0.00 0.67 0.06 0.01 0.78 0.26 0.14
0.5 100 0.71 0.02 0.01 0.78 0.12 0.03 0.72 0.35 0.23
1.0 40 0.15 0.02 0.07 0.21 0.05 0.09 0.14 0.10 0.19
1.0 70 0.25 0.05 0.07 0.18 0.09 0.12 0.29 0.20 0.27
1.0 100 0.17 0.04 0.11 0.28 0.09 0.19 0.29 0.16 0.41

Note. Stddev is the standard deviation of effect sizes in each mixture component. Num of Studies is the total number of primary studies over both
moderator levels (i.e., three mixture components). meanLOW is the mean effect size when the moderator level is LOW.
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Impacts of Simulation Condition

We further investigated the impact of the simulation condition,
specifically the effect sizes of the simulation factors, on the sta-
tistical power of moderator analysis. We focused on the power
comparison between the latent mixture-based method and metare-
gression, given the considerably lower power of Q-statistic in the
simulation (as discussed above, the power of Q-statistic remained
below 0.8 in all simulation conditions). To this end, we conducted
a five-way analysis of variance (ANOVA) over the results of
Study 1, with the response variable being the statistical power, and
the five factors being the method of moderator analysis (i.e.,
metaregression or the latent mixture-based method) and the four
simulation factors, (i.e., the number of primary studies N and the
mean, standard deviation, and weight of the HIGH component).
Because each observation (i.e., each simulated dataset) provided
only a binary response (i.e., a significant moderating effect was
either detected or not, leading to a power of either 1 or 0), we
conducted 300 replications per cell, resulting in 2 (method) & 3
(mean) & 4 (standard deviation) & 3 (weight) & 3 (N) ! 216
different unique conditions and 64,800 different data sets analyzed
in the ANOVA. This analysis was conducted in MATLAB Version
R2020a.

Table 3 shows the results of the ANOVA. Given the large
number of observations (64,800), 30 out of 31 effects being tested
returned a significant p value (i.e., p ( .05; the only exception,
Method & N, returned p ! .0527). Thus, we followed Steinley
(2006) to focus only on the effects with a large effect size )2,
specifically those with )2 & 0.005. In terms of main effects, the
most significant ones, in the descending order of mean squares
(i.e., also F), are method, standard deviation, mean, N, and weight.
The statistical power was higher when (a) the latent mixture-based
method was used, (b) the standard deviation of HIGH decreased,
(c) the mean of HIGH increased, (d) the number of primary studies
N increased, or (e) the weight of HIGH increased. The significant
main effect of method confirmed the superiority of our latent
mixture-based method over metaregression (F(1, 64,584) !
12,338.37, p ( .0001). The reason behind the main effects of N
and the mean and standard deviation (of the HIGH distribution)
are also straightforward: The larger the number of primary studies
was, or the larger the difference was between the means or stan-
dard deviations of the two components (LOW and HIGH), the
easier it was for either moderator-analysis method to identify the
moderating effect.

The last main effect of weight, however, is counterintuitive
because it appears to suggest that increasing the number of primary
studies with moderator being HIGH can somehow improve the
accuracy of moderator analysis. This is obviously false because, to
consider an extreme-case scenario, when the weight of HIGH
became 99%, no moderator analysis would be able to accurately
identify the moderating effect unless the number of primary stud-
ies were extremely large. Upon further investigation, the effect of
weight was qualified by the significant two-way interaction be-
tween standard deviation and weight, F(6, 64,584) ! 133.86, p (
.0001. Figure 4a depicts this interaction effect. As can be seen in
the figure, for either method, when the standard deviations of
HIGH and LOW were the same (i.e., 1), the statistical power of
moderator analysis was roughly the same when the weight was
0.25 or 0.75. This is because the two cases were interchangeable

under a simple linear transformation,12 and were therefore indis-
tinguishable for any linear-invariant method like both methods
being tested. In contrast, when the standard deviation of HIGH was
smaller (e.g., 0.3), either method reached a higher statistical power
when the weight of HIGH was larger. The reason here is that the
standard deviation of HIGH was, by setup, always smaller than
LOW. Thus, when the weight of HIGH increased, the overall
standard deviation of the observed effect sizes was bound to
decrease, naturally improving the power of moderator analysis.

Besides this interaction between standard deviation and weight,
ANOVA also identified three other interactions: two 2-way interac-
tions between method and standard deviation, F(3, 64,584) !
2327.45, p ( .0001 and between method and mean, F(2, 64,584) !
1424.54, p ( .0001, which were qualified by the three-way interac-
tion of method, mean, and standard deviation, F(6, 64,584) ! 164.84,
p ( .0001. As can be seen from Figure 4b, this three-way interaction
can be interpreted by the method-mean interaction having different
patterns across different levels of the standard deviation. In general,
the power improvement of the latent mixture-based method over
metaregression was more pronounced when the HIGH distribution
had a smaller mean (see Figure 4c). Such improvement became even
more pronounced when standard-deviation of HIGH was smaller (see
Figure 4d). We further elaborate on these observations in the follow-
ing discussions.

Observed Trends From Simulation Results

We draw two important conclusions from the simulation results: (a)
the power improvement offered by the latent mixture-based method
was particularly pronounced when the difference of mean effect sizes
between moderator levels was small, or when the difference of their
standard deviations was large; and (b) a limitation of the latent
mixture-based method was that it offered little improvement over the
traditional methods when the standard deviation of every mixture
component is very large.

Improvement over existing methods. Concerning the first
point, one can observe from Table 1 that, in Study 1, the latent
mixture-based method offered particularly significant power improve-
ments when the mean difference between LOW and HIGH was
smaller or when their standard-deviation difference was larger. The
same can be observed from Table 2 for Study 2, where HIGH has a
significantly larger standard deviation due to the presence of the latent
factor. A key reason why metaregression (and Q-statistic) did not
perform well in these cases was actually the null hypotheses it was
designed to test: The group mean effect sizes are equal across differ-
ent levels of the moderator variable (Hedges & Pigott, 2004). When
the moderator variable has two levels, this means that, to reject the
null hypothesis, the confidence intervals for the mean effect sizes at
both levels need to be narrow. Therefore, as long as one moderator
level had reported effect sizes with a large standard deviation, its wide
confidence interval would likely overlap with the other (no matter
how narrow a confidence interval the other level had), making it
difficult to reject the null hypothesis. More formally, note that with
metaregression, testing the significance of a moderating variable is

12 This specific linear transformation is f(x) ! # (x # meanHIGH), where
meanHIGH is the mean of the HIGH distribution. One can see that after
applying this linear transformation to the LOW and HIGH distributions in
the 0.25 case, the output distributions become exactly the same as the
HIGH and LOW distributions in the 0.75 case, respectively.
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essentially testing whether its corresponding regression coefficient is
zero (Thompson & Higgins, 2002). Given two moderator levels with
standard deviations %1, %2 and weights w1, w2, respectively, the
standard deviation for the regression coefficient is of the form13

sb "% %1
2w1m ! %2

2w2m ! s2m
(m # 2)#w1w2

2m ! w2w1
2m$ , (3)

where m is the total number of primary studies and s is the standard
error for each primary study. This formula can be further simpli-
fied to sb " !4#%1

2 ! %2
2 ! 2s2$ ⁄ #m # 2$ when w1 ! w2 ! 0.5.

Consistent with earlier discussions, so long as one moderator level
had a large standard deviation, this large value would dominate the
value of sb, thereby significantly reducing the power of metare-
gression no matter how small the standard deviation of the other
level was. Similarly, for Q-statistic (Hedges & Pigott, 2004), when
w1 ! w2 ! 0.5, the expected value of the test statistic (over the
randomness of all reported effect sizes) is

E(QB) "
m · ($1 # $2)

2

%1
2 ! %2

2 ! 2s2 , (4)

where $1 and $2 are the mean effect sizes for the two moderator
levels, respectively. Under the null hypothesis, QB follows the
chi-square distribution with degree of freedom 1. Thus, when $1 *
$2, the larger QB is, the higher the statistical power of the
Q-statistic method will be. Again, so long as one moderator level
had a large standard deviation, this large value would dominate the
denominator of E(QB), thereby significantly reducing the power of
Q-statistic no matter how small the standard deviation of the other
level was.

In contrast, our latent mixture-based method turned the uneven
standard deviations across moderator levels, whether caused by the
nature of the moderating effect (like in Study 1) or by the presence of
a latent factor (like in Study 2), from a deficiency into an asset by
leveraging the unevenness to better disentangle the mixture compo-
nents. For example, consider a simulation condition in Study 1 where
the mean, standard deviation, and weight of HIGH were 0.5, 0.1, and
0.5, respectively. We collected from the simulation results the com-
ponent affinity of each effect size. For those with a moderator level of
LOW, the mean was 0.39 and the standard deviation was 0.22. For
those with HIGH, the mean was 0.72 and the standard deviation was
0.35. Simple calculation14 would suggest that, to confirm a statisti-

cally significant difference on the mean, we only needed on average
12 primary studies for each moderator level. Consistent with this
calculation, the simulation results showed that our latent mixture-
based method achieved a statistical power of 1.00 when the total
number of primary studies was only 40—significantly higher than the
powers of 0.57 and 0.26 for metaregression and Q-statistic, respec-
tively.

Limitation of the latent mixture-based method. Concerning
the second point, one important limitation of the latent mixture-based
method is that it offers little improvement when the effect-size dis-
tributions for all moderator levels have large standard deviations. For
both studies, this limitation can be observed from the low statistical
power of our approach when the standard deviation is 1.0 (in Tables
1 and 2).

It is important to note that this lack of improvement was not solely
caused by the increasing error in the mixture decomposition process.
To verify this, we made a slight change to Study 1 by feeding the
latent mixture-based method with the exact distributions of LOW and
HIGH, and found the power and sensitivity of its output to stay
essentially the same. Upon further investigation, we found that the
root reason behind this lack of improvement appeared to be how we
leveraged the decomposed mixture in moderator analysis. More spe-
cifically, recall that we replaced the regressand in metaregression with
the (posterior) probability for a reported effect size to belong to the
second mixture component. When all moderator levels had large
standard deviations, this probability became approximately mono-
tonic, with a close-to-linear relationship, with the value of the effect
size. More specifically, in Study 1, when the mean, standard devia-
tion, and weight of HIGH was 0.1, 1, and 0.5, respectively, assuming
that the mixture decomposition algorithm can recover the exact dis-
tributions of LOW and HIGH, the posterior probability for an effect
size x to belong to the HIGH component is

13 LOW and HIGH were coded as 0 and 1, respectively, in the meta-
regression.

14 Specifically, when each moderator level has a sample size of 12, the
t-statistic for sample mean difference is (0.72 # 0.39)/(0.22/!12 " 0.35/
!12) ! 2.01 + 1.96, which is the t-statistic corresponding to a signifi-
cance level of p ! .05 in a two-tailed t-test.

Table 3
ANOVA With Statistical Power as the Response

Source df SS MS F )2

Method 1 1645.79 1645.79 12338.37 0.10
SD 3 2042.13 680.71 5103.25 0.13
Mean 2 1237.68 618.84 4639.42 0.08
N 2 370.69 185.35 1389.54 0.02
Weight 2 301.59 150.80 1130.52 0.02
Method & SD 3 931.36 310.45 2327.45 0.06
Method & Mean 2 380.03 190.02 1424.54 0.02
SD & Weight 6 107.13 17.86 133.86 0.01
Method & Mean & SD 6 131.93 21.99 164.84 0.01
Total 64,799 16194.24

Note. df ! degree of freedom; SS ! sum of squares; MS ! mean squares; SD ! standard deviation (of the HIGH component); N ! number of primary
studies. p ( .001 for all rows in the table. Only main effects and interactions with effect size )2 & .005 were included in the table. All Fs had 64,584
denominator degrees of freedom.
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Pr{x ! HIGH | x} " e0.1x#0.005

1 ! e0.1x#0.005

" 0.995 ! 0.1x
1.995 ! 0.1x

" 0.995
1.995 ! 0.025x, (5)

where the two approximations hold15 when #2 ( x ( 2 (covering
95.4% of all effect sizes). Given the aforementioned linear-
invariant property of the latent mixture-based method, this close-
to-linear relationship between x and Pr{x ! HIGH | x} reduced the
latent mixture-based method to metaregression, explaining this
observed limitation.

A Case Study Using Real-World Data

While the simulation studies highlighted two use cases of the
latent mixture-based method, there is yet another, arguably more

prevalent, use case: when the effect sizes associated with every
moderator level is heterogeneous, that is, consisting of multiple
mixture components. This scenario often happens when effect
sizes are derived from observational data, with multiple moderator
variables affecting the focal relationship at once. In this case, there
are almost certainly moderator variables whose values are not
perfectly aligned with the decomposed mixture components. Using
a real data set as a case study, we show how the latent mixture-
based moderator-analysis method can better detect moderating

15 Note that the first approximation assumes e0.1x # 0.005 , 1 " (0.1x #
0.005), a commonly used linear approximation of the exponential when the
exponent is close to 0. While there is no universal consensus on an upper
limit on the exponent for the approximation to hold, because e#0.2 ! 0.82
and e0.2 ! 1.22, we consider this approximation to be valid when #2 (
x ( 2. The second approximation assumes 0.0025x2 (( 0.05x, which
obviously holds when #2 ( x ( 2.
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Figure 4. Interaction effects. Mixture ! our latent-mixture method; MRegression ! the metaregression
method; SD ! standard deviation.
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effects when each level of a moderator variable is corresponding to
a (different) mixture of the decomposed components.

The Real-World Data Set

As a case study, we considered a problem extensively studied in
psychology: whether trust matters more for the performance of
virtual teams than face-to-face teams (i.e., whether team virtuality
has a moderating effect on the relationship between intrateam trust
and team performance). Interestingly, the two recent meta-
analyses, published on the same issue of the Journal of Applied
Psychology, drew different conclusions: While Breuer, Hüffmeier,
and Hertel (2016) found it significant (i.e., the trust-performance
relationship was stronger in virtual teams than face-to-face teams),
De Jong, Dirks, and Gillespie (2016) found that the strength of the
trust-performance relationship does not meaningfully differ be-
tween virtual teams and face-to-face teams. These different con-
clusions continued the long-standing inconsistency in the literature
on whether the moderating role of team virtuality indeed exists
(Alge, Wiethoff, & Klein, 2003; Muethel, Siebdrat, & Hoegl,
2012; Staples & Webster, 2008).

Throughout this case study, we used the same data and artifact-
correction procedures as De Jong et al. (2016). Specifically, we
first downloaded the data from its online supplemental materials,
and then applied sampling-error correction and measurement-error
correction according to the specifications within. Note that because
De Jong et al. (2016) used artifact distributions, rather than indi-
vidual artifacts, for measurement-error correction (according to the
procedures in Hunter & Schmidt, 2004), this step actually had no
effect on the outcome of our moderator analysis. We verified the
correction of the procedure by successfully reproducing the statis-
tics reported in De Jong et al. (2016), for example, the mean
(corrected) effect-size difference between team virtuality being
HIGH and LOW was 0.09, with 95% confidence interval being
[#0.03, 0.20]. We then applied the latent mixture-based method
on the data. To test the reliability of results, we conducted a variant
of the “leave-one-out” analysis by randomly excluding from the
input data a number of the primary studies. We tested three
specific cases: excluding one study, 10% of studies, and 20%. For
each case, we repeated the test 100 times and recorded the number
of cases where latent mixture-based method identified a moderat-
ing effect with a significance level of p ! .05.

Results and Discussion

Table 4 shows the results of the latent mixture-based method
when applied over the entire input dataset, and compares them
with the results in De Jong et al. (2016). As can be seen in the
table, the latent mixture-based method did identify a significant
moderating effect of team virtuality. Furthermore, the leave-one-
out analysis confirmed that such an effect was not an artifact of
one or a small number of primary studies. Specifically, when
randomly excluding one, 10%, and 20% of the primary studies, the
results still indicated a significant moderating effect in 98%, 79%,
and 67% of the cases, respectively.

To understand how our latent mixture-based method was able to
identify the moderating effect while the existing method cannot,
we compared how traditional subgroup analysis and our method
model the (subgroup) distributions for face-to-face teams (i.e.,

moderator ! LOW) and virtual teams (i.e., HIGH). As can be seen
in Figure 5b, our latent mixture-based model reveals that the two
moderator levels differ quite significantly when the effect sizes are
small, yet the difference diminishes when the effect sizes are large.
Unfortunately, if one did not disentangle the mixture components
but instead relied on the overall mean and standard deviation of the
two subgroups, like in traditional subgroup analysis, this differ-
ence would no longer be recognizable, as shown in Figure 5a. To
verify this explanation, we designed a simple test with the aim of
“isolating” the effect of the right-most component. Specifically,
we considered the following question: if we only considered
primary studies that reported effect size below a certain threshold,
say 0.2, we would have “zoomed in” to the part of the distribution
where the moderator variable has a significant effect. In this case,
would it be more likely for a moderator-analysis method to identify
the moderating effect despite of the reduced sample size? As can
be seen in Figure 5c, when the threshold increased, the t-score first
rose until reaching the peak when the threshold was around 0.2,
after which it declined, eventually falling out of the statistically
significant range. This is remarkably consistent with our explana-
tion that the increased resolution offered by our method is the
reason why it detected the moderating effect.

In this case study, the latent mixture-based method not only
identified the moderating effect, but also pinpointed where team
virtuality likely had the strongest effect: when the effect size of the
trust-performance relationship was relatively small. There are var-
ious explanations for why this could have happened. For example,
it could have been caused by interactions between team virtuality
and other team characteristics, as pointed out by De Jong et al.
(2016) and De Guinea, Webster, and Staples (2012). It might also
have been caused by a “ceiling effect” on how strong the trust-
performance relationship could be. More research is needed for
understanding the reason behind this observation. Finally, while
we did not reanalyze the data in the other existing meta-analysis
(Breuer et al., 2016), which had different inclusion-exclusion
criteria and did identify a significant moderating effect for team
virtuality, we would like to note that the mean effect size reported
there for both face-to-face and virtual teams were smaller than
those reported by De Jong et al. (2016): - ! 0.22 versus 0.26 for
face-to-face teams, 0.33 versus 0.35 for virtual teams. This is again
consistent with the finding of the case study because, as discussed
earlier, primary studies reporting smaller effect sizes likely dem-
onstrate a stronger moderating effect for team virtuality.

General Discussion

In this section, we first discuss the research implications that can
be drawn from our latent mixture-based method. We then review
the limitations of our latent mixture-based method and the future
research needed to address them.

Research Implications

For the focal meta-analytic task studied in this article (i.e.,
mixture estimation), the main research implication of our latent
mixture-based method is its ability to offer a substantially higher
statistical power than the existing methods when the underlying
effect sizes are not identically distributed, but instead form a
mixture of multiple different distributions, with the heterogeneity
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between distributions caused by factors that could be known or
unknown. Our method achieves this superiority by explicitly mod-
eling the distribution of effect sizes with a Gaussian mixture
model. To address a unique challenge for latent mixture modeling
in meta-analysis—the inability for the EM algorithm and its vari-
ants to handle mixture distributions with mostly overlapping com-
ponents—we leveraged a recent breakthrough in theoretical ma-
chine learning that enabled the accurate decomposition of mixture
components arbitrarily close to each other. The results of such a
decomposition can then be used to more effectively test a hypoth-
esized moderating effect. A unique feature of our method is that it
can be considered a preprocessing step orthogonal to the numerous
methods developed (and debated) in the literature for moderator
estimation. As such, researchers conducting meta-analysis can
freely decide which existing method to use after obtaining the
decomposed mixture components.

Within the scope of meta-analysis, the research implications of
our work extend beyond the moderator estimation task discussed
in this article, as many other meta-analytic tasks could also benefit
from a proper understanding of the mixture composition of the
effect-size distribution. For example, when applied to moderator
detection, the mixture model could help determine whether an
unexplained heterogeneity is “natural” or should be attributed to
one or more unknown moderating effects. As an illustration,
consider the case where the effect-size distribution is a mixture of
two equal-weight Gaussians versus a mixture dominated by one
Gaussian plus a low-weight component with extreme values. Ap-
parently, the former is more likely to be explained by unknown
moderators, while the latter could have the unexplained heteroge-
neity attributed to a small number of outlier studies. How to draw
such inferences from various types of mixture compositions could
be studied in future research.

Mixture modeling could also help detect another common cause
of unexplained heterogeneity: the need for finer gradations of
variable coding (Hunter & Schmidt, 2004, p. 180). As discussed in
the introduction, if one moderator level features a Gaussian dis-
tribution yet the other exhibits a two-component mixture, then a
researcher should consider whether the second level could be
further partitioned into finer gradations, and examine whether such
finer coding is consistent with the two mixture components. Sim-
ilarly, if each moderator level has only one Gaussian component,
then finer coding is less likely to alter the outcome of moderator
analysis.

Another well-known challenge in meta-analysis that could po-
tentially benefit from mixture modeling is the detection of and
correction for availability biases such as publication bias (Lin &
Chu, 2018) and questionable research practices (QRPs). For ex-

ample, QRPs such as data peeking (Simonsohn et al., 2014) are
known to artificially increase effect size, essentially creating a
mixture component with a larger mean. This difference in distri-
bution has already been leveraged in existing research to detect
QRPs, for example, through tools such as p-curve16 (Simonsohn et
al., 2014) and test of excess significance (Ioannidis & Trikalinos,
2007). Compared with these tools, mixture decomposition has the
potential to not only detect the “questionable” component but also
reveal the distribution of the “other” component that is not affected
by the QRP.

Similarly, publication bias is known to lead to an excessive
skewness in the effect-size distribution (Begg & Mazumdar,
1994), with the skewness being leveraged by existing research for
detection (Ferguson & Brannick, 2012) and correction (Duval &
Tweedie, 2000). Because a skewed distribution can be modeled as
a mixture of two overlapping Gaussian distributions (Kalai et al.,
2012), mixture decomposition also has the potential to detect and
correct for such biases. How to generate robust estimates of the
true effect-size distribution based on the output of mixture decom-
position is an intriguing topic for future research.

Finally, the machine-learning technique leveraged by our
method, which removes the mixture-class separation requirement
of EM-based techniques, can also help improve latent mixture
analysis with observed data (e.g., latent class analysis, latent
profile analysis, growth mixture modeling). Poor mixture-class
separation (i.e., a small distance between adjacent mixture com-
ponents) has been shown to impact numerous aspects of latent
mixture analysis, such as hindering the convergence of the com-
putational process (Tofighi & Enders, 2008), requiring a substan-
tially larger sample (Tueller & Lubke, 2010), making class enu-
meration (i.e., to determine the number of mixture components)
more challenging (Depaoli, 2013), and so forth. Future research
can study the use of the state-of-the-art mixture decomposition
algorithms in latent mixture analysis with observed data. Such
studies will likely need to address a number of unique challenges
that were not sufficiently discussed in the computer science liter-
ature, such as how to enable class enumeration when a large class
separation is no longer required by the mixture decomposition
algorithm, how to determine if a non-Gaussian distribution should
be decomposed into two largely overlapping Gaussian components

16 Rigidly speaking, p-curve measures skewness of the p-value distribu-
tion, not the effect-size distribution. Yet the underlying mathematical
principle is the same, as a (one-tailed) p value can be expressed as a
monotonic function of the effect size.

Table 4
Results for Moderator Analysis

Team
virtuality Studies - SD- SE-

95% CI
-1 # -2 c SDc SEc

95% CI
c1 # c2

High 26 .35 .17 .047 #.03 .20 .96 .02 .004 .01 .05
Low 56 .26 .24 .039 .93 .07 .010

Note. - ! mean corrected effect size; SD- ! standard deviation of -; SE- ! standard error of -; 95% CI -1–-2 ! confidence interval of between-group
effect-size difference; c ! mean component affinity; SDc ! standard deviation of c; SEc ! standard error of c; 95% CI c1–c2 ! confidence interval of
between-group component-affinity difference.
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or be attributed to other factors such as poor measurement scaling
(Bauer & Curran, 2003), and so forth.

Limitations and Future Directions

It is important to note several limitations to our study. First, the
current method only tests the moderating effect of a single variable.
While one could use the method in a hierarchical moderator analysis,
as we will elaborate in this section, it may be advantageous to
specifically design a latent mixture-based method for evaluating mul-
tiple moderator variables (and their interactions). Second, while we
focused on the Gaussian mixture model, there may be real-world data
sets that feature non-Gaussian components (e.g., Bauer & Curran,
2003), which call for future studies to investigate the potential use of
non-Gaussian mixture models in meta-analysis. Finally, as discussed
in the simulation results, our method does not perform well when all
mixture components feature large standard deviations. We elaborate
on these limitations and the corresponding future directions below.

Multiple moderator variables. When there are multiple mod-
erator hypotheses to test, a well-known challenge to moderator esti-
mation is there are often not enough primary studies to cover the
many value combinations of moderator variables and support a fully
hierarchical moderator analysis (Hunter & Schmidt, 2004, p. 424).
Unfortunately, directly integrating our latent mixture-based method
with hierarchical moderator analysis would worsen this problem. For
example, if one first breaks out all primary studies into subgroups by
the value of one categorical moderator variable before testing another
moderator variable over each subgroup, then the smaller sample size
in each subgroup could negatively affect not only the statistical power

of traditional moderator analysis but also the accuracy of mixture
decomposition (and therefore the statistical power of our method).

Interestingly, a potential solution to this challenge is to take inspi-
ration from the various spectral algorithms recently developed for
high-dimensional mixture decomposition (Anandkumar, Ge, Hsu,
Kakade, & Telgarsky, 2014; Belkin & Sinha, 2015; Goyal, Vempala,
& Xiao, 2014; Hsu & Kakade, 2013; Huang, Ge, Kakade, & Dahleh,
2015), and reduce the sample size required for mixture decomposition
by taking into account both the effect sizes and the hypothesized
moderator variables during the mixture decomposition process. For
example, suppose there are two theoretically predicted moderator
variables A and B. In analyzing the moderating effect of B (and
understanding its interactions with A), we could adjust the target of
mixture decomposition from a univariate distribution (i.e., the ob-
served effect-size distribution) to a multivariate one representing the
joint distribution of the observed effect size and A. As demonstrated
by the recent spectral algorithms, if A is correlated with the effect size,
then a two-dimensional mixture decomposition algorithm can lever-
age the correlation to reduce the sample size required for an accurate
decomposition, simply because each sample now contains more in-
formation that can be used to guide the decomposition process. To this
end, future research can study how to tailor the design of a high-
dimensional mixture decomposition algorithm for the purpose of
meta-analysis, how to study the moderating effect of B and its inter-
actions with A based on the estimated mixture composition, and so
forth.

Variations of mixture modeling. A limitation of our study is
that it focused on Gaussian mixture modeling, which assumes each
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a) Models based on a single 
Gaussian distribution

b) Models based on our mixture
 decomposition results

c) Changes of t-statistic with
 threshold on reported effect size

Figure 5. An illustration of our case study for examining the moderating effect of team virtuality in the
relationship between intrateam trust and team performance. The left figure depicts the distributions being tested
in traditional subgroup analysis. Because the outcome depends only on the mean - and standard deviation SD-

of the corrected effect sizes, the traditional method is essentially testing the mean difference between the two
Gaussian distributions depicted in the figure (with mean - and standard deviation SD- for each subgroup). The
middle figure depicts what is tested in our method, that is, the component affiliation. Each line represents the
estimated mixture distribution for the corresponding subgroup, generated by weighting the decomposed mixture
components with the posterior distribution of component affiliation for effect sizes in the subgroup. The right
figure depicts the change of the t-statistic between the mean effect sizes of studies with moderator being LOW
and the other studies, as estimated by kernel density estimation when we only consider studies with reported
effect sizes below a threshold, which varies from #0.12 to 0.50. The dotted line in the figure marks the t-score
corresponding to p ! .05. See the online article for the color version of this figure.
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component of the mixture to follow a Gaussian distribution. It is
important to understand that there is no inherent constraint in mixture
decomposition to assume each component to be Gaussian. Even
though the vast majority of existing work on mixture decomposition
made the Gaussian assumption (McLachlan & Peel, 2004), there were
attempts to decompose mixture distributions into non-Gaussian com-
ponents (e.g., Banfield & Raftery, 1993), or to distinguish between a
mixture of multiple Gaussian and one non-Gaussian distribution (e.g.,
Nylund, Asparouhov, & Muthén, 2007). More generally, the field of
unsupervised learning (e.g., clustering; Figueiredo & Jain, 2002) in
machine learning could be considered as decomposing a (usually
high-dimensional) mixture distribution into separate components
without presumed distributions.

In terms of whether future research should drop the Gaussian
assumption in studying mixture distributions in meta-analysis,
there are two perspectives to consider. First, like in the famous
case of Pearson’s (1894) crab data, a skewed (thus non-Gaussian)
distribution could be further decomposed into multiple Gaussian
components. Indeed, as the literature of kernel density estimation
(Silverman, 2018) suggests, any distribution can be expressed as a
mixture of Gaussian distributions. From this perspective, it appears
that the Gaussian assumption might not fundamentally limit the
generalizability of mixture modeling. Nonetheless, there is also
another perspective that the Gaussian assumption might unneces-
sarily increase the number of components we have to consider in
a mixture model. For example, if we already know that each
component likely follows a heavy-tailed distribution (e.g., Burton,
2012), then replacing the Gaussian assumption with a heavy-tailed
distribution could substantially reduce the number of components
in the mixture distribution, and thereby reducing the number of
primary studies required for an accurate decomposition. To this
end, future research could study what types of distributions other
than Gaussian often emerge in a meta-analysis and revise the
distributional assumptions in the mixture model accordingly.

Leveraging results from distribution testing in moderator
analysis. Recall from the discussion of simulation results that a
key limitation of our latent mixture-based method is its low power
when all mixture components feature large standard deviations. In
particular, we showed that the power stayed low even when the
method had access to the exact mixture composition. This raised
an intriguing feasibility question: Is it possible for moderator
analysis to take advantage of an accurately decomposed mixture
distribution, even when the mixture components have large stan-
dard deviations? To this end, we note a very active research area
in theoretical computer science called distribution testing (see
Canonne, 2017 for an excellent literature review), which may be
especially useful for understanding whether a small number of
samples are enough to distinguish between two distributions close
to each other. For example, translating a landmark result in distri-
bution testing (Chan, Diakonikolas, Valiant, & Valiant, 2014,
Theorem 1.2) into moderator analysis, we know no method can
possibly identify a moderating effect unless the number of primary
studies exceeds a threshold that is inversely proportional to dTV

4/3,
where dTV is the total variation distance between the LOW and
HIGH effect-size distributions. For example, with our Simulation
Study 1, with equal number of primary studies in LOW and HIGH,
there is

dTV " C · min&1, max&%LOW
2 # %HIGH

2

%LOW
2 ,

$HIGH # $LOW

%LOW
''

(6)

where $LOW, $HIGH represent the means and %LOW, %HIGH rep-
resent the standard deviations of the two components, and C is a
constant proven to be between 1/200 and 9/2 (Devroye, Mehra-
bian, & Reddad, 2020). While this lower bound cannot tell us
exactly how many primary studies are required,17 it reveals the
following insights that are consistent with our simulation results.

First, it shows that the large-standard-deviation case should have
been much harder for moderator analysis than the other conditions.
When %HIGH ( 1, dTV was determined by the first input to max,
with dTV ! 0.99C, 0.81C, and 0.75C when %HIGH ! 0.1, 0.3, and
0.5, respectively. When %HIGH ! 1, dTV was determined by the
second input instead, with dTV ! 0.1C, 0.3C, and 0.5C when
$HIGH ! 0.1, 0.3, and 0.5, respectively. Even the largest value
when %HIGH ! 1 is smaller than the smallest value when %HIGH (
1, confirming that the lower power of moderator analysis would
likely hold even for the best possible meta-analysis method.

Second, it also appears to indicate that handling the case of
$HIGH ! 0.1 and %HIGH ! 1 requires more primary studies than
what are typically available in a meta-analysis. To understand
why, note that the value of dTV in this case is 9.9 times lower than
the case of $HIGH ! 0.1 and %HIGH ! 0.1, meaning that the
minimum number of primary studies it requires is roughly 9.94/3 !
21.26 times larger. Even when the “best” method took just five
studies per moderator level to successfully identify the moderating
effect in the latter case, the number of primary studies required in
the former would be roughly 10 & 9.94/3 ! 213, larger than many
existing meta-analyses in psychology and the social sciences.

Finally, it also points to potential methodological advances for
moderator analysis. Chan et al. (2014) designed an algorithm that
achieved this proven lower bound on sample size with an inter-
esting two-step approach. Again translating the algorithm to the
context of moderator analysis, the algorithm functions as follows.
It starts by partitioning the possible values of the effect size into
two subsets: One consists of “popular” values that are frequently
reported for either LOW or HIGH. The algorithm uses a variant of
the .2-test to determine whether LOW and HIGH differs signifi-
cantly in terms of their observed frequencies on these popular
values. Then, for the other subset of “unpopular” values, the
algorithm calls upon another landmark result (Goldreich & Ron,
2011) in distribution testing to determine whether the two distri-
butions differ on the subset. We do not elaborate on this second
part because it is not important to our subsequent discussions. The
reason why this algorithm is capable of minimizing the required
number of primary studies follows directly from the above-derived
value of dTV. For example, under the simulation conditions, the
“popular values” of effect size are naturally close to $HIGH and

17 Almost all existing results in distribution testing uses the Big-O
notation (Knuth, 1997, Section 1.2.11) in theoretical computer
science—i.e., they focus on investigating the relationship between the
required sample size (i.e., number of primary studies) and the character-
istics of the underlying distributions (i.e., LOW and HIGH), and ignore
constant factors in the derived results, making it impossible to derive or
bound the exact number of primary studies that are required in a meta-
analysis.
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$LOW. Focusing on these values barely affects the numerator
$HIGH # $LOW, yet can significantly reduce the denominator
%LOW and thereby increase dTV. When the resulting reduction on
the lower bound offsets the reduction of sample size (because now
only those primary studies reporting “popular values” are consid-
ered), the algorithm has the potential to more effectively detect the
moderating effect when the total number of primary studies is
relatively small. Because the focus of this article is to introduce
mixture decomposition to meta-analysis, we leave further investi-
gation of this design of moderator analysis to future research.
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Appendix A

Detailed Design for Our Mixture Decomposition Algorithm

The technical problem of mixture decomposition can be defined
as follows.

Technical Problem Definition [Mixture Decomposition]

Given InM: {r(es1), N1, r(se1)}, {r(es2), N2, r(se2)}, . . . ,
{r(esm), Nm, r(sem)}, the objective of mixture decomposition is to
find OutM: {w1, $1, %1}, {w2, $2, %2}, . . . , {wk, $k, %k} that
minimizes a predefined error function d(InM, OutM) that measures
the distance between the mixture distribution predicted by OutM
and the distribution actually observed in practice (i.e., InM).

Somewhat surprisingly, while the existing work on mixture
decomposition feature deep and complex theoretical results, the
general workflow of the state-of-the-art algorithms for mixture
decomposition are quite simple. A basic version of it is to just
enumerate all possible value combinations of {w1, $1, %1}, . . . ,
{wk, $k, %k}, in order to find the one that minimizes the error
function (Kalai et al., 2012). With such a simple workflow,
solving the mixture decomposition problem centers on address-
ing two main issues, which we refer to as the identifiability

challenge and the computational challenge, respectively. The
identifiability challenge is to properly define the error function
d(InM, OutM), so the value of OutM that minimizes the error
function indeed represents the mixture components to be recov-
ered. The computational challenge, on the other hand, focuses
on finding ways to reduce the computational time required by
the simple enumeration. While addressing the computational
challenge is an important part of the computer science research
on this topic (e.g., Daskalakis & Kamath, 2014), it is unlikely
to be a concern for our purpose due to the usually small input
size in meta-analysis. Thus, in most part of this appendix, we
will focus on addressing the identifiability challenge, specifi-
cally by discussing how to develop an error function d(InM,
OutM) that fits the unique requirements of meta-analysis. Later
in the appendix, we will borrow heavily from the computer
science literature to identify potential solutions should the
computational challenge arise. At the end of the appendix, we
discuss the technical limitations of our algorithm and the po-
tential directions for future research.

(Appendices continue)
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Identifiability Challenge

Note from the problem definition that the error function d(InM,
OutM) is supposed to measure the distance between the mixture
distribution predicted by OutM, which we denote as Gout, and the
ground-truth effect-size distribution estimated from InM, which we
denote as Gin. With this requirement, the definition of the error
function essentially boils down to defining a synthesized data
structure / for Gout and Gin, so the error function can be expressed
as the vector norm of the difference of / between the two distri-
butions:

d(InM, OutM) " !'(Gin) # '(Gout))!. (7)

Many different forms of / have been used in the modern
implementation of mixture decomposition, including a vector
formed by the first six statistical moments (i.e., E[(X # E(X))i]
where E represents the expected value and i ! 1, . . . , 6) of the
distribution (Kalai et al., 2010), the first three moments (Anand-
kumar, Hsu, & Kakade, 2012), the cumulative density function
(Daskalakis & Kamath, 2014), and so forth. All these forms of /
have been proved to have the identifiability property, that is, so as
long as two distributions G1 and G2 are close on / (i.e., /(G1) ,
/(G2)), every mixture component of the two distributions must
also be similar to each other.

Unfortunately, a unique challenge in meta-analysis, the presence
of sampling error in r(esi), prevents us from directly using many of
these definitions of /. Specifically, note that our input to the
mixture decomposition algorithm is not a sample of the mixture
distribution (as is commonly assumed in the literature of statistics
or computer science; Dasgupta, 1999; Kalai et al., 2012). Instead,
each reported effect size r(esi) can be considered as the sum of a
sample from the mixture distribution (i.e., esi) and a sample from
its sampling-error distribution (i.e., sei), which varies from one
primary study to another. To properly define the error function, we
must ensure an accurate estimation of /(Gin) based on the input
data InM.

A seemingly simple idea to address the challenge is to use
statistical moments (like Kalai et al., 2010) as the synthesized data
structure /, and estimate /(Gin), that is, the moments of the
mixture distribution, based on the reported effect sizes and stan-
dard errors. Unfortunately, there are two obstacles facing the
implementation of this idea: First, while numerous methods (e.g.,
Hedges & Vevea, 1998; Hunter & Schmidt, 2004; White, 1980)
have been proposed for the correction of sampling error in esti-
mating the first two statistical moments (i.e., mean and variance),
these studies generally assume the underlying effect-size distribu-

tion to be Gaussian (Brannick, Yang, & Cafri, 2011), which
contradicts our assumption of it being a mixture of multiple
Gaussian distributions. Second and more importantly, it is unclear
how these methods can be extended to higher-order moments.
Note that, while there is no obvious need to estimate any moment
of order higher than two under the traditional Gaussian assump-
tion,18 doing so is essential for the purpose of mixture decompo-
sition because even very simple mixture distributions cannot be
accurately decomposed based on only moments of the first two
orders (Achlioptas & McSherry, 2005; Chang, 1996). While one
could always use a Monte Carlo approach to conduct a brute-force
search for an optimal estimate of any higher-order moment, doing
so would reveal another, even more fundamental, issue with using
statistical moments to decompose a mixture distribution in meta-
analysis: Higher-order statistical moments are known to be inher-
ently unstable when the sample size is small because, given the
definition of the i-th moment (i.e., E[(X # E(X))i]), the larger i is,
the more influence an outlier likely has on the moment estimation
(Kim & White, 2004; Kothari, Steinhardt, & Steurer, 2018). As a
result, even modern implementations of the method of moments
for mixture decomposition tend to require a larger sample size than
what is normally available for a meta-analysis (Hardt & Price,
2015).

One way to allow for the correction of sampling error in /(Gin)
is to define / as the histogram of the input distribution, specifi-
cally an h-dimensional vector corresponding to the (estimated)
probability for the mixture distribution to fall within h equal-width
bins:

Pr{es ! (b, b ! d]}, Pr{es ! (b ! d, b ! 2d]}, . . . ,

Pr{es ! (b ! (h # 1)d, b ! hd]}

where es is a sample from the mixture distribution, d is the width
of each bin, and (b, b " hd] is the range for the histogram. While
the parameters of the histogram, specifically the values of h, b, and
d, are important for the proper running of the algorithm, we
relegate the detailed discussions of their setup to Appendix B.
Assuming a proper setup of the parameters, we now discuss why
this histogram structure is a proper definition of /, and how it
enables the correction of sampling error in estimating /(Gin) for
the ultimate computation of d(InM, OutM).

18 Because the i-th (i + 2) moment of any Gaussian distribution N($, %2)
is either 0 (when i is odd) or a function of i and % when i is even
(specifically, (i # 1)!! · %i, where (i # 1)!! is the product of all odd integers
between 1 and i # 1).

(Appendices continue)
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First, the identifiability of the histogram data structure, that is,
two distributions close on the histogram must also be close on their
mixture compositions, can be readily established from the identi-
fiability property of the probability density function (Teicher,
1961), as histogram is simply a discretized version of the proba-
bility density function. Second, and more importantly, /(Gin) can
be easily estimated from the reported effect sizes r(es1), . . . , r(esn)
and their standard errors r(se1), . . . , r(sen). Specifically, we can
estimate the i-th element of /(Gin), that is, the probability for the
effect size to belong to range (b " (i # 1)d, b " id], simply as the
average probability for each effect size esj to fall in the range.

'i(Gin) " 1
2m · (

j"1

m &erf&b ! i · d # r(esj)
!2r(sej)

'
# erf&b ! (i # 1) · d # r(esj)

!2r(sej)
'', (8)

where erf(·) is the Gaussian error function.
A desirable property of the histogram structure is its robustness

to outliers (in the sense of robust statistics; Huber, 2011; Kothari
et al., 2018). That is, the value of the histogram and, therefore, the
error function, never changes drastically with the insertion or
deletion of one or a few primary studies. To understand why, note
that the total change an outlier study can incur on all of /1(Gin),
. . . , /h(Gin) is 1/m, no matter how extreme the reported effect size
or standard error is. Leveraging this property, we define the error
function d(InM, OutM) is the !1-norm19 of the difference between
/(Gin) and /(Gout). This ensures the robustness of the histogram
data structure after sampling-error correction, and stands in sharp
contrast with the usage of statistical moments as /, in which case
the impact of one outlier primary study on the error function can
be unbounded.

Computational Challenge

As discussed earlier in the section, given the definitions of /
and the error function, a simple approach to finding OutM is to
enumerate all possible value combinations of wi, $i, %i, and
finding the mixture composition that minimizes the error function.
While potentially inefficient in practice, it is a popular method of
choice in theoretical studies of the problem (Kalai et al., 2010). For
example, if a meta-analysis uses the Pearson correlation coefficient
as the effect size, then a reasonable strategy would be to consider
21 candidate values for $i: from #1 to 1 with a step of 0.1, 10
candidate values for %i: from 0.1 to 1 with a step of 0.1, and nine
candidate values for wi: from 0.1 to 0.9 with a step of 0.1. This
way, the total candidate set would contain 21 & 10 & 9 ! 1,890
single-component mixtures, (1,890 & 1,889)/2 ! 1,785,105 two-
component mixtures, and (1,890 & 1,889 & 1,888)/(3 & 2) !
1,123,426,080 three-component mixtures. While enumerating this
set of over one billion candidates is doable with today’s computing

infrastructure, to achieve better precision than 0.1, one may need
to improve upon the simple-enumeration method, in order to
reduce the computational time of finding OutM. For the sake of
simplicity, we focus on the case of two-component mixture when
introducing our method to address this computational challenge,
and defer discussions of the three-component case (and the method
to determine the number of components) to Appendix D.

There are two main ideas for addressing the computational
challenge. One is to prune the candidate values for wi, $i, and %i

for every component. For example, if no observed effect size is
below #0.5, then we can safely exclude from consideration all
candidates with $i ( #0.5, because obviously the optimal mixture
composition will not include such a component. We discuss in
Appendix C the pruning strategies for wi, $i, and %i based on the
input InM.

The second idea, indeed a commonly used one in the recent
literature of mixture decomposition (e.g., Bandi et al., 2019;
Daskalakis & Kamath, 2014), is to only enumerate the values of
w1, $1, %1, and then derive for a given w1, $1, %1 the correspond-
ing w2, $2, %2 that minimizes the error function. Obviously, if such
a derivation is possible, one can sharply reduce the number of
enumerations without affecting the accuracy of OutM. We follow
the method developed by Daskalakis and Kamath (2014) for the
derivation. Given /(Gin) and w1, $1, %1, the derivation starts with
computing an estimated histogram for the second component, by
“deducting” the first component (as defined by w1, $1, %1) from
/(Gin). Specifically, for any i ! 1, . . . , h, there is

'i(C2) "
'i(Gin)
1 # w1

#
w1

2(1 # w1)&erf&b ! id # $1

!2%1
'

# erf&b ! (i # 1)d # $1

!2%1
'', (9)

where erf(·) is the Gaussian error function, and b, d, and h are
parameters for the histogram data structure as discussed before.

The next step is to derive the component parameters $2 and %2

from the estimated histogram /(C2). The key requirement here is
to ensure that the parameter estimates are robust to small changes
of /(C2), especially at the extreme ends (e.g., /i(C2) where i , 1
or h). For example, while a natural idea for estimating $2 is to
directly estimate the mean of C2 from /(C2), doing so could
violate the robustness requirement, given the well-known sensitiv-
ity of mean to extreme values (Huber, 2011). To this end, Daskala-
kis and Kamath (2014) introduced two well-known robust statis-
tics for estimating $2 and %2: the estimated median of C2 for $2,
and the estimated interquartile range (IQR) divided by a constant
2!2erf#1(1/2) (where erf#1 is the inverse of the Gaussian error
function) for %2. Specifically, we compute

19 i.e., the sum of the absolute value of every element in the input vector.

(Appendices continue)
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$2 " b ! )min&j | (
i"1

j

'i(C2) & 1
2'# 1

2* · d, (10)

%2 " d
2!2erf#1(1 ⁄ 2)

·

)min&j | (
i"1

j

'i(C2) & 3
4'# min&j | (

i"1

j

'i(C2) & 1
4'*. (11)

before applying the standard Sheppard’s correction (Wilson, 1927)
to correct for the downward bias caused by the binning of data in
the histogram. The robustness of these estimations to outliers
directly follows from the robustness of median and IQR (Huber,
2011). Intuitively, it is easy to see that no matter how extreme an
outlier effect size is, it cannot change the median or IQR estimate
by more than the histogram bin-width d.

The pseudocode in Appendix F shows the detailed design of our
mixture decomposition algorithm with the optimization for ad-
dressing the computational challenge.

Limitation and Future Technical Development

Our mixture decomposition algorithm has two interrelated lim-
itations, on the small number of mixture components and the
potentially high computational complexity, respectively. As dis-
cussed earlier in the article, these limitations might not be critical
for the specific application of moderator estimation in meta-
analysis. Nonetheless, they may become critical for applying the
algorithm in a broader set of applications. To understand the
boundary conditions of using the algorithm, it is important to
examine the feasibility of overcoming these limitations and the
potential methods to do so. To this end, we summarize here a
series of important recent results in theoretical computer science
(e.g., Regev & Vijayaraghavan, 2017) that established the math-
ematical bounds pertaining to the use of the algorithm, specifically
the tradeoff among the following six factors: (a) the number of
mixture components k; (b) the sample size m; (c) the dimension-
ality of the mixture distribution d (d ! 1 in our case); (d)
the degree of separation among mixture components, for example,
the minimum distance s between two adjacent means of mixture
components; (e) the maximum standard deviation of a mixture
component %; and (f) the maximum tolerable error in recovering
the mean of each mixture component 0.

The table in Appendix E summarizes the main findings from
this recent set of work, which include both algorithm designs and
infeasibility results. For example, the last row in the table depicts
an infeasibility result showing that the sample size cannot be less
than exponential to the number of mixture components k if the
separation between components is arbitrarily small.

There are three important observations from the table. First, the
limitation on the number of mixture components in our algorithm
is the unique consequence of our decision to require the least
amount of assumptions from a researcher when using our algo-
rithm. This can be observed from the last row of the existing

algorithm section in the table. Because we do not require research-
ers to make any a priori assumptions about the degree of separation
between different mixture components, essentially allowing any
separation s + 0, the sample size and computational time required
by our algorithm becomes sensitive (i.e., exponential) to k, the
number of mixture components. This is the reason why all simu-
lation or experimental results in the literature (e.g., Bandi et al.,
2019; Li & Schmidt, 2017) included at most three components
when the sample size is below 1,000 and no separation assumption
is made about the mixture components. It is also the reason why
we offered the caveat earlier in the article that, given the number
of primary studies in a meta-analysis rarely exceeds 1,000, our
algorithmic design for moderator estimation in meta-analysis only
considers k ! 2 or 3. Note from the table that it has been proven
infeasible to ease this limitation on k without making additional
assumptions about the data distribution, as shown in the last row of
Infeasibility Result.

The second and third observations from the table pertain to ways
of easing the limitation if researchers are comfortable imposing
certain assumptions on the data. For example, if the mixture
components are assumed to have a clear separation (e.g., s +
%!log k), Regev and Vijayaraghavan (2017) developed an algo-
rithm that guarantees an estimation error of at most 0 when the
sample size is polynomial to k and 1/0. The algorithm is also
efficient, with computational complexity polynomial to k and 1/0.
Because k is now moved from being an exponent to a polynomial
factor, one could potentially support a large number of components
with a small sample size. While the separation assumption might
not hold in the context of meta-analysis (as discussed earlier in the
paper), researchers may be able to leverage this algorithm in a
primary study where such separation assumptions are reasonable
(e.g., when the data points are expected to form separable clusters).

The third and final observation points to an intriguing finding in
the third row of the existing algorithms section in the table, that is,
when the data points are high-dimensional (e.g., d + k). Under this
condition, a series of recent work demonstrated the feasibility of
exploiting the high dimensionality to launch spectral methods that
are capable of decomposing mixture components arbitrarily close
to each other with a sample size (and computational complexity)
polynomial to k, d, and 1/0 (Anandkumar et al., 2014; Belkin &
Sinha, 2015; Goyal et al., 2014; Hsu & Kakade, 2013; Huang et
al., 2015). In other words, even when the separation assumption is
not valid, one can still allow a large number of mixture compo-
nents if the dimensionality of data exceeds the number of mixture
components. For the specific application studied in the paper (i.e.,
moderator estimation in meta-analysis), it is rare to have multiple
dependent variables forming a high-dimensional mixture distribu-
tion. Nonetheless, in either a meta-analysis or in a primary study,
the high-dimensional algorithms could be useful as an exploratory
tool for researchers to gain a holistic understanding of the data
distribution.

(Appendices continue)
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Appendix B

Histogram Setup

In this appendix, we discuss the design of the histogram param-
eters b, d, and h. First of all, we note that the robustness charac-
teristics discussed earlier in the article, such as the maximum total
change of 1/m that an outlier study can incur on the histogram
structure, hold regardless of the values of b, d, and h. Nonetheless,
their values may affect the computational overhead of the mixture
decomposition algorithm and the precision of the outputs it gen-
erates. Balancing between the two goals is therefore essential in
selecting the histogram parameters. The selection of an optimal bin
width d has been extensively studied in statistics as the “bandwidth
selection” problem (Wand, 1997), with a famous heuristic for
Gaussian distribution being d ! 3.49%n#1/3 (Scott, 1979), where n
is the sample size and % is the standard deviation. For our purpose,
we need the histogram to have enough “resolution” for all com-
ponents of the mixture. Therefore, the bin width we choose should
not exceed 3.49 · mini(%i) · n#1/3, where %1, . . . , %k are the
standard deviations of the k mixture components. The challenge
here is that %i is not available at the time when we have to
determine h. Fortunately, we can derive an approximate lower
bound for mini(%i) by leveraging a well-known result in order
statistics: the standard deviation % of a Gaussian distribution can
be approximated by !( · 12 (Hosking, 1990), where 12 is the
second L-moment of the distribution, i.e., (E(X2:2) # E(X1:2))/2,
where X1:2 and X2:2 are the smaller and larger values of a size-2
simple random sample taken from the Gaussian distribution, re-
spectively, and E(·) represents the expected value taken over the
randomness of the size-2 sample. Equipped with this result, our

procedure for estimating mini(%i) can be stated as follows: First, we
order the m reported effect sizes from small to large as 21, . . . , 2m,
and construct m # winf · m " 1 sliding windows of effect sizes,
where winf is the minimum possible weight of a component (e.g.,
the default value 0.1 in our method). Each sliding window has size
s ! winf · m:

{)1, . . . , )s}, {)2, . . . , )s!1}, . . . , {)m#s!1, . . . , )m}.

While we do not know which 2i belongs to which component,
we do know that the value of 12 of either component cannot fall
below the minimum 12 of the m # winf · m " 1 sliding windows,
for the simple reason that these moving windows already contain
the most “tightly squeezed” subsets of the reported effect sizes.
Thanks to this property, we can now estimate 12 for all sliding
windows, find the smallest value min(12), and then drive a lower
bound on mini(%i) as !( · min(12). After that, we set the bin width
for the histogram as d ! 3.49· !( · min(12) · m#1/3. One subtle
issue in estimating 12 is how to deal with the precision level in
reporting effect sizes - e.g., while both X1:2 and X2:2 may be
reported as 0.19, they could still differ on values beyond the
second decimal point. To this end, we compute the difference
between X1:2 and X2:2 as half of their precision level, i.e., 0.005 in
the above example.

Given the bin width d, the other two parameters for the histo-
gram setup, the lower limit b and the number of bins h, can be
easily derived as b ! 21 and h ! >(2m # 21)/d?, where >·?
represents the ceiling function.

Appendix C

Candidate Values for First Component

In this appendix, we discuss the strategies for pruning wi, $i, and %i,
in order to minimize the number of value combinations for wi, $i, %i

to enumerate in the mixture decomposition algorithm. With regard to
the weight parameter w1, we can simply enumerate all possible values
from a predetermined minimum weight winf to 1 # k · winf, with a
predetermined precision level ε as interval. Given that many meta-
analyses contain a 100 or fewer primary studies, a reasonable set of
setting is winf ! 0.1 and ε ! 0.05 or 0.1, as any mixture component
with weight lower than 0.1 is unlikely to have sufficient representation
in the input sample to enable a reliable estimate.

For $1, we adopt a pruning idea developed by Daskalakis and
Kamath (2014), which only includes the input effect sizes r(es1),
. . . , r(esm) as the candidate values for $1. As proven by Daskala-
kis and Kamath (2014), when m + 20!2 %/(3w1ε), where % is the
standard deviation of r(esi), there is a higher than 99% probability
that at least one of the reported effect sizes r(esi) is within ε of $1.

Consider a setting of % ! 0.2, with w1 ! 0.5, we have 99%
probability that one of r(esi) is within 0.05 of $1 so long as m +
75.42. Thus, this pruning idea is unlikely to substantially increase
the error of the mixture decomposition output.

For %1, however, we found that an effective pruning idea de-
veloped by Daskalakis and Kamath (2014) cannot be applied
because of a unique constraint in the inputs to meta-analysis.
Specifically, the idea is to find the minimum distance between
samples and use this observed distance to derive a likely range for
%1. Intuitively, if no two samples are close to each other, then it is
highly unlikely for either component to have a small variance.
Unfortunately, implementing this idea in meta-analysis faces an
obstacle: Most input effect sizes are only reported to a precision of
0.01, meaning that the minimum distance between samples is
almost always 0. As such, we resort to the basic approach for
enumerating %1 with a step of ε.

(Appendices continue)
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Appendix D

Three-Component Case

As discussed earlier in the article, our handling of the three-
component case is similar to the two-component case with one
exception: to disentangle three components, we need to enumerate
all possible parameter combinations for both C1 and C2, which
could infer significant computational overhead if each component
has a large number of possible parameter combinations. To alle-
viate the computational load, one method is to fix one of C1 and C2

to a component in the output of the two-component decomposition.
Another method is to leverage the same idea for reducing compu-
tational complexity in the two-component case: Like how /(C2)
can be derived by deducting C1 from /(Gin) in the two-component
case, /(C3) can be derived by deducting C1 and C2 from /(Gin).
The only additional step occurs when the algorithm is called upon
to determine the number of components (i.e., in Line 15).

Determining the “right” number of components has long been
an important problem in latent mixture analysis for individual-
level data. The fundamental challenge is to decide, as the number
of component increases, when the increase in model fit no longer
justifies the corresponding decrease of model parsimony. Besides
considering the theoretical meaning of the solutions (Foti, Bray,
Thompson, & Allgood, 2012), researchers could also resort to
standard statistical procedures, which mostly focus on inspecting
how various log-likelihood based fit statistics vary with the num-
ber of mixture components (Nylund et al., 2007).

This challenge is admittedly not as critical in our method,
because the mixture composition is not the final output but only an

intermediate result. Nonetheless, if the mixture decomposition
algorithm settles on a “wrong” number of components, the statis-
tical power of moderator estimation could be reduced, either
because the algorithm mistakenly merges the components corre-
sponding to different moderator levels (i.e., when the number of
components is less than ideal), or because the error of mixture
decomposition is unnecessarily enlarged (i.e., when the number of
components is more than ideal). To address this challenge, we
introduce a recently developed procedure for decomposing mix-
ture distributions formed by overlapping components (Bandi et al.,
2019). First, we find from Candidate_Set the optimal candidate
set, i.e., the one that minimizes d(InM, OutM), with one, two, and
three components, respectively. Afterwards, we compute the fol-
lowing log-likelihood function for each of these three mixture
compositions (i.e., with k ! 1, 2, 3, respectively):

" " (
i"1

m

log&(
j"1

k wj

!2(%j
2
e#

(xi # $ j)
2

2%j
2 '.

As specified by Bandi et al. (2019), the three-component can-
didate is selected if its value of L is at least (1 " c) times over the
two-component solution and at least (1 " c)2 times over the
one-component solution, where c is a constant with a recom-
mended value of 0.01. Otherwise, the two-component solution is
selected if its value of L is at least (1 " c) times over the
one-component solution. Failing both, the single-component solu-
tion is selected.

Appendix E

Summary of Boundary Conditions for Mixture Decomposition

Condition Sample size m Running time Reference

Existing Algorithms
s + %, k ! 2 * poly(k, d, 1/0) * poly(k, d, 1/0) Balakrishnan, Wainwright, & Yu, 2017
s + %!log k * poly(k, d, 1/0) * poly(k, d, 1/0) Regev & Vijayaraghavan, 2017
s + 0, d + kc (c + 1) * poly(k, d, 1/0) * poly(k, d, 1/0) Huang, Ge, Kakade, & Dahleh, 2015
s > 0 < ek < poly(k, d, 1/")k2

Moitra & Valiant, 2010
Infeasibility Results
s * %!log k + kc, where c + 1 N/A Regev & Vijayaraghavan, 2017; Anderson, Belkin, Goyal, Rademacher, & Voss, 2014
s * c, (c is a constant) & ek N/A Moitra & Valiant, 2010

Note. The bolded row represents the assumption made in our article and the corresponding requirements on sample size and running time. Poly means
a polynomial function of the input variables. All the bounds in the table are asymptotic, as we did not include the Big-O notation (specifically O(·) for the
upper bounds and 3(·) for the lower bounds; Knuth, 1997, Section 1.2.11 for the sake of simplicity).

(Appendices continue)
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Appendix F

Pseudocode for the Mixture Decomposition Algorithm

Algorithm for mixture decomposition

1: Compute /(Gin) according to the histogram parameters b, d, and h specified in Appendix B
2: Candidate_Set ¢ {{1, $, %, 0, 0, 0}}, where $, % are the estimated mean and standard deviation of effect sizes after artifactual corrections,

respectively. Note that this candidate is corresponding to a single Gaussian distribution with mean $ and standard deviation %.
3: For each possible value combination w1, $1, %1 (as defined in Appendix C) as C1
4: Compute /(C2) by deducting C1 from /(Gin)
5: Derive $2 and %2 from /(C2)
6: Insert {w1, $1, %1, (1 # w1), $2, %2} to Candidate_Set
7: End For
8: For each value combination w1, $1, %1 (as defined in Appendix C) as C1
9: For each value combination w2, $2, %2 with w2 ( 1 # w1 as C2

10: Compute /(C3) by deducting C1 and C2 from /(Gin)
11: Derive $3 and %3 from /(C3)
12: Insert {w1, $1, %1, w2, $2, %2, (1 # w1 # w2), $3, %3} to Candidate_Set
13: End For
14: End For
15: Find the mixture composition in Candidate_Set that minimizes d(InM, OutM), according to the procedure in Appendix D.
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