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Sphere packing is an ancient problem. The densest packing is known to be a face-centered cubic (FCC)
crystal, with space-filling fraction ¢rcc = 7/v/18 & 0.74. The densest “random packing,” random close
packing (RCP), is yet ill defined, although many experiments and simulations agree on a value
¢rcp ~ 0.64. We introduce a simple absorbing-state model, biased random organization (BRO), which
exhibits a Manna class dynamical phase transition between absorbing and active states that has as its

densest critical point ¢, =~ 0.64 = ¢gcp and, like other Manna class models, is hyperuniform at criticality.

The configurations we obtain from BRO appear to be structurally identical to RCP configurations from
other protocols. This leads us to conjecture that the highest-density absorbing state for an isotropic biased
random organization model produces an ensemble of configurations that characterizes the state conven-

tionally known as RCP.

DOI: 10.1103/PhysRevLett.127.038002

Equal-sized spheres poured into a container can form
many stable and metastable configurations that fill the
volume to solid volume fractions ranging from ~0.55 to
~0.74 depending on friction and the protocol used [1,2].
The fact that many different experimental [3-5] and
simulation [6—8] protocols with frictionless spheres tend
to give a maximum packing fraction of ¢ ~ 0.64 suggests a
special state that Bernal [4] referred to as “random close
packing” (RCP). There have been many attempts [9-17] to
define this state mathematically, statistically, and physi-
cally. RCP is important fundamentally and practically in
problems ranging from the number of gumballs in a jar
to the viscosity of suspensions [18] and the rigidity of
amorphous, jammed [19], and glassy [20,21] materials. In
this Letter, we propose that the densest critical state in the
conserved directed percolation (Manna) universality class
BRO model has many of the properties previously asso-
ciated with RCP, which has ramifications for the long-range
structural organization of RCP.

Our path to this problem began with a beautiful experi-
ment on the time reversibility of low-Reynolds-number
flow that found that below a volume-fraction-dependent
threshold cyclic shear strain, y.(¢), particles in a highly
viscous fluid would return to the same position every cycle
following reversible trajectories [22]. Above y.(¢), their
behavior is diffusive and chaotic. A simple toy model,
random organization (RO), captures the essential features
of this transition [23]. In RO, phantom particles are said to
be active if they overlap another particle under cyclic affine
shear. After each cycle, particles are returned to their
beginning position, and active particles are given a random
uncorrelated displacement with typical magnitude e.
Particle configurations either evolve with time to an
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absorbing state, where no particles overlap, or they settle
into a continuously evolving steady state with a finite
fraction of active particles. Organization proceeds by a
competition between generally lower-density quiescent
regions being infected by generally higher-density active
regions and active regions dying out. The characteristic
time, 7 ~ |y — y.(¢)| ™1, to organize into an absorbing state
or a dynamical steady state diverges as the threshold strain
is approached from above or below y.(¢), indicating a
second-order dynamic phase transition. Similarly, 7 ~ |¢ —
¢.(y)|™ for fixed y. The model is similar to early epidemic
models such as directed percolation and is in the same
universality class as the discrete Manna model [24,25].

Unlike conventional thermodynamic phase transitions,
which exhibit diverging density or order parameter fluc-
tuations at their critical point [24], the critical states of these
dynamical absorbing state models have vanishing long-
range density fluctuations at critical [26-28]—they are
hyperuniform [29-31]. Recently, we demonstrated this
hyperuniformity experimentally [32]. However, the exper-
imental ¢,.’s were considerably higher than those predicted
by RO. We, and several previous authors, modified RO
with repulsive displacements in studies of jamming [15,17]
and hyperuniformity [33]. Biasing the displacements of
overlapping particles away from each other shifted the
critical density upward [32,34].

BRO, an absorbing-state model, remains in the Manna
universality class [24] and exhibits hyperuniformity at
critical with the structure factor S(g — 0) ~ ¢% For all
Manna class models, azp = 0.25 [26]. To characterize
these critical configurations, we show that BRO and two
other jamming protocols for RCP have very similar S(gq)’s,
with the hyperuniformity scaling exponent a ~ 0.25. We
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FIG. 1. The critical volume fraction ¢, for 3D biased random

organization (BRO) as a function of the displacement magni-
tude e. Traces correspond to different ratios of variance of
repulsive to random displacements &, where &6 =1 (blue)
consists of purely repulsive displacements, whereas 6 =0
(green) is random organization (RO) with all random displace-
ments. For 6 > 0, the small-e limit for any fixed ratio of
repulsive displacements ¢, (¢ — 0) = 0.640 + 0.001 = ¢gcp-

also find isostatic coordination Z = 6, and a similar radial
distribution function as found in several previous RCP
experiments [4,35-37] and simulations [8,33,38], giving us
confidence to conclude that the critical states of BRO are
RCP configurations. RCP’s identification as a dynamical
phase transition critical point may provide new insights into
disorder, jamming, and glass transitions. BRO at the

maximum-density critical point seems to produce the same
ensembles as previous protocols.

In the BRO model, active (overlapping) particles are
given two displacements: a repulsive displacement of
magnitude /e, away from the center of the overlapping
cluster, and a randomly directed displacement of magnitude
V1 — e, where for a given simulation 6 is fixed at a value
between 0 and 1 while displacement magnitudes are
randomly distributed between O and ed/2, for particle
diameter d, which determines the volume fraction, ¢. Thus,
the BRO model has two control parameters, ¢ and ¢ (See
the Supplemental Material [39]). Hereafter, we only con-
sider isotropic unsheared dynamics: y = 0.

The addition of repulsive bias to the particle displace-
ments vastly changes ¢, in the region where € is small, as
shown in Fig. 1. In the ¢ — 0 limit, ¢, increases well
above the unbiased RO limit, ¢.(¢ > 0,6=0)=
¢, (6 =0)=0.20, and it plateaus at ¢.(e — 0,6 > 0) =
¢e, (6> 0) =0.640 = ¢pcp. This is the case not only for
0 =1, but for any 6 > 0. For all § and e > particle
separations, displacements are effectively random, and
hence are mean field, and we find ¢.(e—00,0<5<1) >
0.06. ¢, errors are roughly constant: 0.001 for each point.

To test whether BRO remains in the Manna universality
class, we measure the critical exponents for the steady-state
activity f° and the relaxation times 7 from a random initial
state for 6 = 1. Steady-state values of f$ for BRO with
decreasing values of ¢, for the RO model with ¢ = 1 and for
the Manna model, collapse when rescaling f$ by A/+/e
and rescaling (¢ — ¢.)/¢. by ¢~'/?, where f is the activity
exponent, as shown in Fig. 2(a). A is a fitted scaling
parameter that is 1 for the RO and BRO models and 20 for
the Manna model. A reflects the difference in how excluded
volume is implemented in different models. For all models,
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FIG.2. Manna universal scaling of biased random organization. (a) The steady-state activity f3° is plotted as a function of the reduced
control parameter (¢ — ¢..)/ ., showing a clear transition between absorbing & = 0 and active /& > 0 states. The data for decreasing
€ values of the BRO model are collapsed with the RO model § = 0 (blue squares) and the Manna model (light blue diamonds). Collapse
requires rescaling the reduced control parameter by qﬁE-_I/ ) and rescaling the activity by A/+/e. (b) The same data from (a) are displayed
using log-log plotting to show power-law scaling of f3° above the critical point. All models show Manna/RO class scaling
fe ~(¢p— ¢.)P, where p = 0.84 in 3D. (c) For 5 = 1 and epsilon corresponding to parts (a) and (b), the characteristic relaxation times 7
from a Poisson random initial state to an absorbing state are plotted to show power-law divergence at ¢,.
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f% vanishes at ¢, with & ~ (¢ —¢.)?, where f is a
Manna critical exponent, f = 0.84 in 3D, as shown in
Fig. 2(b).

Similarly, we investigate the relaxation time 7 by
fitting the evolution of the activity to a form [23]
Falt)=(£a(0)= £4(00))e~/5(t/19) =5+ £, (c0), where &=
0.7 £ 0.1 for all simulations in 3D. Relaxation times for
BRO scale as 7~ |¢p — ¢.|™I on both the absorbing and
active sides of the transition with the same v = 1.08
exponent characteristic of the 3D Manna transition.
Rescaling the relaxation times by 1/¢ on the absorbing
side and plotting them as functions of (¢ —¢.)/P.
collapses the data, as shown in Fig. 2(c).

In addition to a characteristic volume fraction ¢gcp,
sphere-packing experiments [4,35-37] and simulations
[8,33,38] find universal structural features that characterize
RCP states. Correspondence between the BRO critical
point and previous studies of RCP requires that structures
found by BRO match those found by previous methods; we
choose the Lubachevsky-Stillinger (LS) [48] and soft
sphere algorithms [8] as benchmark models.

The pair correlation function ¢(r) measures the isotropic
real-space pairwise particle correlations in the system. For
BRO with decreasing values of € and 6 = 1, all critically
organized structures exhibit an excluded volume region of
0 < r < d (inactive particles do not overlap). The first peak
of g(r) corresponds to the distance of nearest neighbors and
becomes taller and sharper as € — 0, as shown in Fig. 3(a).
We also observe a split in the second-nearest neighbor
peak for small ¢ values with cusps at r=+/3d and
r = 2d, which is a signature of RCP structures [33,35]
[Fig. 3(a), inset].

In RCP systems, short-range particle correlations are
characterized by two features: a delta function at |r| = d
followed by a power-law decay [49] g(r) ~ (r/d — 1)~1/?
as r — d'. For critical BRO configurations, power-law
scaling of ¢(r) is evident, but only over an appreciable
range as € — 0 [Fig. 3(b)]. In this limit, it is also evident
that the nearest neighbor peak narrows, it becomes taller,
and the position of its maximum shifts towards r = d,
consistent with delta-function scaling as ¢ — 0 (in Fig. 3
(a)). The integral of this peak is associated with another
property of RCP and Jamming: the average number of
particles in contact with a reference particle, Z. In BRO,
particles are given finite repulsive displacements, so inac-
tive particles are never precisely in contact, but they will
touch as € — 0. As in previous studies [33], we count the
particles whose surfaces are within a cutoff distance x,
defining Z(xey) = (24¢.)/d® [4* g(r)r2dr. For critical
BRO, Z rises as x, increases, plateauing close to x., ~
€/2 and rising again after. The second rise in Z is largely
independent of e, making the plateau flatter and more
obvious as € — 0. Fitting the plateau regions to a power law
with a constant offset, we find that the plateau of Z
approaches 6, matching the isostatic condition expected
for frictionless spheres [Fig. 3(c)]. Many other RCP and
jamming experiments [4] and simulations [8,17,33], even
those with inherent polymeric connectivity [50], find Z =~ 6,
and the power law that we find is similar to the near-contact
Z calculated in the LS model [33]. The isostatic co-
ordination has implications for the mechanical properties
of the packings—for example, the vanishing of the shear
modulus at RCP, the source of which is nonaffine particle
displacements [8,51]. We leave further investigation to
future work.
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FIG. 3.

Random close packing structure at ¢p.(¢ — 0) for § = 1. (a) The pair correlation function g(r) is plotted for critical structures

of BRO. All show an expected excluded volume region which corresponds to the particle size and a strong diverging peak at the nearest
neighbor separation in the ¢ — 0O limit. /nset: The split in the second-nearest neighbor peak occurs at small epsilon (¢ = 0.025d is
shown). The cusps at » = v/3d and r = 2d (—) are consistent with previous RCP studies. (b) A log-log plot of g(r) at ¢, as a function of
r/d — 1 emphasizes the power-law decay of g(r) away from r = d. Small-¢ structures at ¢, show g(r) ~ (r/d — 1)7%3 (==). (c) The
average contact number Z is counted for critical structures where Z is the number of neighbors at a distance less than d + x, from a
target particle. For each structure, Z is undercounted if x, is too small, but as ¢ — 0, Z approaches a plateau at the isostatic limit Z = 6.
The overcounted structures fit a form close to previous RCP calculations [33].
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Thinking of critically organized structures within the
framework of hyperuniformity [29] emphasizes the role of
long-range density correlations. There have been a few
studies of long-range correlations in RCP systems, but with
controversial results and significant disagreements between
experiments [52] and simulations [30]. We investigate the
hyperuniformity of BRO by looking for power-law scaling
of S(qg = 0)~q* We calculate S(g) for fully relaxed
(t > 1) simulations at ¢, for various values of ¢ and 6 = 1.
We find hyperuniform scaling S(g — 0) ~ ¢* with a=
0.25 for all critical structures, even those with critical
volume fractions approaching ¢. — ¢rcp [Fig. 4(a)]. a =
0.25 is the critical exponent for 3D Manna class systems
[26], and it is the same exponent found recently in
experiments on critically sheared colloids [32]. The robust-
ness of this hyperuniform scaling exponent provides more
evidence that BRO is in the Manna universality class.

Previous studies of RCP structures using the
Lubachevsky-Stillinger algorithm identified hyperuni-
form scaling near the maximally random jammed (MRJ)
point [9,30]; however, from a linear plot, they concluded
S(g = 0) ~ g'. We reproduce those data here, and we
include results from our own simulations of the soft sphere
model relaxed by conjugate gradient energy minimization
[8,39]. Although there is a region g ~ 0.08-0.5 that can be
fit with a power a~1, over the lower g region g~
0.006-0.08, we find a;g = 0.24 £ 0.02. The three RCP
models display very similar S(g)’s for all values of g.
While there is surprising agreement in S(g) at ¢gcp, this is
not the case away from ¢pcp. A measure of the difference

is AS(q) = Jo®" |S(q.4)/S(q.4c) - 1ldg. At ., al
models have approximately the same AS(q). However, the
inset of Fig. 4(b) shows significant differences between the
models on both sides of the transition, which implies that
BRO is not a disguised form of a previously studied model.
It is remarkable that several different protocols converge to
RCP but approach it differently as a function of ¢.

There have been many previous protocols to find RCP.
Several authors use jamming in their constructions
[8,9,14,15,17,53], others use a peaked statistical ensemble
of accessible states from energy minimization [11,53], and
others look for randomness as a minimization of many
order parameters—e.g., MRJ [9]. A different form of
hyperuniformity, “contact hyperuniformity,” was found
for jammed packings [54]. BRO at the maximum-density
critical point seemingly produces the same ensemble as
many of the previous protocols. We note that regarding
RCP as the highest-density critical point of a dynamic
phase transition requires invoking neither randomness, nor
jamming, nor hyperuniformity in the outcome; rather, they
are emergent properties.

Unresolved is the question of why the BRO critical point
is seemingly coincident at ¢pz-p with the results of previous
protocols. In some sense, the BRO critical point is similar
to the soft sphere calculations, in that there are directed
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FIG. 4. Random close packing is Manna class hyperuniform.
(a) The angularly averaged structure factor S(g) is plotted for
BRO structures at ¢,.. Different traces correspond to decreasing €
values where all critical structures are hyperuniform with Manna
universal scaling S(g — 0) ~ g®2*%9! for all ¢ values. (b) The
critical structure factor S(g) for three models of RCP: Lubachev-
sky-Stillinger (data from Donev et al.) [30], soft spheres, and
BRO. The structure factors calculated from LS and soft spheres
agree remarkably well with the ¢ — 0 limit of BRO, all three
showing S(¢ — 0) ~ ¢*. Manna class hyperuniform scaling is
according to apg=0.24 £0.02, ag,; =0.27+0.03, and
agro = 0.26 £ 0.02. Inset: The relative difference structure
factor AS(q) = fos(z"/d) IS(q.$)/S(q,d.) — 1]|dg is a measure
of S(g) away from ¢,.. Though all models agree at the critical
point AS = 0, they differ on both sides of the transition.

repulsive steps in both. Soft spheres equilibrate more
slowly as RCP is approached from both sides. Our
preliminary investigation suggests that the soft sphere
model may also be related to a dynamical phase transition,
as also suggested in Ref. [17].

BRO can be investigated in other dimensions. In 1D, the
densest monodispersed absorbing state has ¢. = 1 and is
trivially a 1D crystal (while for RO ¢, = 0.9). In 2D, we
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find that the densest monodispersed BRO absorbing state
approaches a densely packed hexagonal crystal with
¢.~0.91, (while for RO ¢. = 0.45). With bi-dispersed
disks, the results are similar to jammed states found in the
literature, but we also find S(q) ~ ¢* with a ~ 0.45, which
is the 2D Manna hyperuniformity exponent (see the
Supplemental Material [39]), lending credence to our claim
that RCP in 3D is indeed hyperuniform with Manna class
exponents. We have not yet studied BRO in greater than
3D. In 3D, BRO yields FCC crystals when sheared, hence
the “isotropic” in our conjecture.

Biased random organization is a well-defined dynamical
model and protocol, especially in the € — 0 limit. We have
demonstrated that in the thermodynamic limit (infinite size
system) for vanishingly small displacements (e — 0), the
highest-density absorbing state has many properties coinci-
dent with those associated with RCP or “point J” in the
jamming phase diagram. With this association of RCP with
the critical point of a dynamic phase transition, we expect
progress in mathematically calculating ¢rcp, gaining
insight into the properties of the jamming and glass
transitions and studies of amorphous systems in general.
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