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One promising approach for connecting undergraduate content coursework to secondary teaching 
is using teacher-created representations of practice. Using these representations effectively re
quires seeing teachers’ use of mathematical knowledge in the work of teaching. We argue that the 
dimensions of Rowland’s (2013) Knowledge Quartet, especially Foundation and Contingency, 
form a fruitful framework for this purpose. We contribute an analytic framework to characterize 
the quality of mathematical knowledge observed in the Foundation and Contingency dimensions, 
developed using a purposive sampling from over 300 representations. These representations all 
featured geometry teaching. We showcase the framework with examples of "high" and "devel
oping" Foundation and Contingency.Then, we compare our coding along these dimensions with 
performance on a measure of mathematical knowledge for teaching geometry. Finally, we 
describe the potential for generalizing this framework to other domains, such as algebra and 
mathematical modeling.   

Siloing subject matter risks students who silo ideas. When the students are prospective mathematics secondary teachers, and their 
mathematics and pedagogy courses have little overlap, the students may believe that knowledge from one course is contextually 
inappropriate for any other course. Indeed, despite teachers’ many opportunities to learn tertiary mathematics (Hill, 2011; Tatto & 
Bankov, 2018) there has historically been little evidence that tertiary mathematics course-taking influences secondary teachers’ 
pedagogy (Zazkis & Leikin, 2010). Multiple studies have documented that many secondary teachers do not find tertiary mathematics 
courses relevant to their careers (Goulding et al., 2003; Wasserman et al., 2018; Zazkis & Leikin, 2010), even when they have done well 
in the mathematics course (Wasserman & Ham, 2013). Though researchers have identified instances where tertiary mathematics can 
shape individual secondary mathematics teachers’ decisions (e.g., Baldinger, 2018; Zazkis & Mamolo, 2011), it was not until recently 
that a study recorded a tertiary mathematics course’s direct influence on secondary teachers’ instruction (Wasserman & McGuffey, 
2021). This finding was due to intentional connections between course activities and content (in real analysis) and secondary 
mathematics teaching. 

Our work, too, is guided by the challenge and desire to integrate learning mathematics and learning to teach mathematics (cf. 
Baumert et al., 2010). ). Mathematics encountered by prospective secondary teachers may range from geometry to algebra, to sta
tistics, to mathematical modeling (Tatto & Bankov, 2018). We report on data from the Mathematics of Doing, Understanding, 
Learning, and Educating for Secondary Schools (MODULE(S2)) Project. 
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In this paper, we review a promising type of task, which we refer to as prompts for teacher-created representations of practice (cf. 
Grossman et al., 2009). These prompts can be used across content areas. Theyengage prospective secondary mathematics teachers in 
creating their own images of teaching practice in response to a given teaching scenario. We use the term representation because the 
teachers are representing their image of teaching in responding to these tasks. Next, we describe a framework for describing the 
potential range of teachers’ knowledge and skill in using mathematics in teaching. This framework attends to teachers’ foundational 
content knowledge and actions contingent upon specific student thinking (cf. Rowland, 2013; Rowland et al., 2016). The former includes 
teachers’ personal understanding of mathematics underlying the concepts addressed in the teaching scenario. The latter incorporates 
how teachers frame explanations and questions in terms of student thinking. As a ‘proof of concept’ of analysis with this framework, we 
examined teachers’ responses to four tasks in one content area. This area was geometry from a transformation approach. Finally, we 
consider how our work might generalize to other mathematical domains. 

The following questions guided this study: What foundational knowledge and contingent actions are observable in teacher-created 
representations of practice? How can we characterize quality of foundational knowledge and contingent actions? 

1. Background 

Secondary teachers take a range of university mathematics, from first year courses in calculus, to abstract algebra, to real analysis 
(Tatto & Bankov, 2018; Ferrini-Mundy and Findell, 2001). By requiring these courses, programs hope that secondary teachers will 
teach mathematics with greater perspective and accuracy (Conference Board of the Mathematical Sciences [CBMS], 2012; Ferrini-
Mundy & Findell, 2001). However, Monk (1994), who studied relationships between teacher course taking and secondary student 
performance, found that there was a negligible effect after the first four mathematics courses. In other words, any course taken after the 
first or second year, which would likely include courses specifically designed for secondary teachers, or any advanced courses, likely 
had little effect. 

1.1. Perceived discontinuity between university mathematics and secondary teaching 

As has been well-documented, many secondary teachers find their tertiary mathematics education irrelevant to their teaching. The 
studies of Goulding et al. (2003), Ticknor (2012), and Zazkis and Leikin (2010), among others, found that to many teachers the 
university curriculum appeared to focus on topics unrelated to the K-12 curriculum. Even among teachers who found their mathe
matical preparation useful, they are rarely able to cite specific instances of how tertiary mathematics experiences influenced their 
teaching (Wasserman & Ham, 2013; Zazkis & Leikin, 2010). Some prospective teachers may view the utility of university mathematics 
content using a “transport model”, looking only at how well the exact mathematical explanations from their university mathematics 
courses would transfer to teaching secondary mathematics (Wasserman et al., 2018, p. 83). 

1.2. Connecting university mathematics to secondary teaching via applications of mathematics to teaching 

Historically, attempts to connect tertiary mathematics to secondary mathematics teaching tended to focus almost exclusively on the 
mathematics (e.g., The Panel on Teacher Training, 1971; CBMS, 2001; Kerr & Lester, 1982; Mathematical Association of America, 
1983), with little attention to mathematics teaching practice. 

We, along with multiple others, take the stance that addressing the discontinuity problem requires connecting tertiary mathematics 
and secondary mathematics teaching practice (Álvarez, Arnold, Burroughs, Fulton, & Kercher, 2020a; Heid, Wilson, & Blume, 2015; 
Lischka, Lai, Strayer, & Anhalt, 2020; Ticknor, 2012; Wasserman, Weber, Villanueva, & Mejia-Ramos, 2018; for a review, see Lai et al., 
in press). In our work, we take the approach of enhancing curricula for tertiary mathematics courses. To so do, we incorporate ac
tivities that apply mathematics to teaching, or that are application problems (cf. Álvarez et al., 2020a; Stylianides & Stylianides, 2010). We 
define such activities as tasks where prospective teachers consider a secondary teaching situation where university mathematics can be 
leveraged, and teachers then draw on this mathematics to respond to the situation in ways appropriate for secondary teaching. 

As Álvarez et al. (2020a) observed, 

Including applications to teaching in mathematics content courses … can advance content learning goals and meet the needs of pro
spective secondary mathematics teachers as they make connections between the advanced mathematics they are learning, the mathe
matics they will teach, and the complex human context that is central in the work of teaching (p. 17). 

Furthermore, such activities may help secondary teachers “transcend the transport model” (Wasserman et al., 2018, p. 87). The 
tasks allow prospective teachers to use university mathematics understandings during the work of secondary teaching. 

1.3. Teacher-created representations of practice: An application of mathematics to teaching 

Applying mathematics to teaching may come in different forms: analyzing students’ mathematical reasoning, explaining a 
mathematics teacher’s decision, or posing questions in response to student work. Some tasks in recent projects ask prospective sec
ondary teachers to describe, or even write a script for, what they would say or do to explain particular secondary-level concepts or 
upon reviewing secondary student work (e.g., Álvarez et al., 2020a; Lai et al., (in press); Lischka, Lai, Strayer, & Anhalt, 2020; 
Wasserman et al., 2018). We say that the prospective secondary teachers’ responses to these tasks are teacher-created representations of 
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practice (cf. Grossman et al., 2009). We use the phrase prompt for teacher-created representations of practice to refer to the tasks that elicit 
teacher-created representations of practice. 

For instance, a prompt may present secondary students’ explanations for an algebraic solution, and then ask teachers to pose 
questions to students to help uncover arithmetic assumptions used. Or, a prompt may present secondary students’ attempts to construct 
a graphical display to represent the association between two quantities, and ask teachers to comment as they would to a student about 
the quality of the work. The teaching practices involved here—such as posing questions and interpreting student work—require 
mathematics to carry out well (e.g., Ball et al., 2008; Baumert et al., 2010). 

Teachers’ responses to such prompts can therefore showcase their recognition of mathematics relevant to the teaching scenario, as 
well as how they use this mathematics. Monk’s (1994) results suggest that if there is a relationship between course taking and teaching, 
it may be nuanced. We explore the hypothesis that explicit connections to teaching are part of this nuance. 

1.4. The promise of connecting university mathematics to secondary teaching practice 

The potential benefits of connecting mathematics to teaching practice are both practical and methodological. First, practicing 
teachers may attribute their teaching moves to their experience with teacher-created representations of practice featured in university 
mathematics courses, as Wasserman and McGuffey (2021) found when observing and interviewing former students of their project. In 
another study using our project’s data, teachers attributed increased confidence in their teaching practice to creating representations 
of practice (Lai et al., 2023). 

Methodologically, teacher-created representations of practice may be a way to elicit and evaluate mathematical knowledge for 
teaching – the mathematical ideas, concepts, skills, and sensibilities entailed and manifested the recurrent work of teaching (Ball et al., 
2008). Early in the scholarship of mathematical knowledge for teaching, Ball and Bass (2003) proposed a way to assess knowledge of 
mathematics relevant to teaching: by posing questions where teachers respond to a given mathematics teaching scenario. Since then, 
multiple projects at the secondary level seeking to assess mathematical knowledge for teaching have used this principle as well (e.g., 
Baumert et al., 2010; Herbst & Kosko, 2012; McCrory et al., 2012; Mohr-Schroeder et al., 2017). Teacher-created representations of 
practice follow this lineage, with an instantiation in curriculum rather than assessment instruments. 

As data, teacher-created representations of practice may bring more nuance to describing the quality of mathematical knowledge 
used and how it is applied to teaching. Álvarez et al. (2020a) identified a tendency of university students to focus on computation 
rather than underlying concepts in sample secondary student work, a finding that led them to re-design some of their prompts for 
teacher-created representations of practice. Álvarez et al. (2020b) used teacher-created representations of practice to analyze teachers’ 
propensity to validate student thinking, look for rules, and address visual representations of function from a student’s perspective. 
Alvarez et al. 2020a; Weber et al. (2020) used teacher-created representations of practice to articulate how teachers may use known 
procedures when analyzing student work, and how well teachers connected different criteria for a mathematical definition. 

One of the greatest needs in secondary teacher education is designing ways for teachers to learn mathematics and how to apply that 
mathematics to teaching. The mathematics known by teachers presents a ceiling for how well they can communicate mathematics with 
their students (Baumert et al., 2010). Further, as Lai et al. (in press) argued, there is a need to identify explicit ways to characterize 
mathematical and pedagogical qualities of applications of mathematics to teaching. In this way, mathematics teacher educators might 
better understand how mathematical practice can shape secondary teaching practice. This study contributes to this need. We char
acterize the quality of the mathematics used in teacher-created representations of practice, as well as the quality of how sample 
secondary students’ work is taken up by teachers. 

2. Conceptual perspective 

2.1. Mathematical knowledge in and for teaching (MKT) 

In a presidential address to the American Educational Research Association, Shulman (1986) called for attention to a “missing 
paradigm” problem in the study of teaching (p. 6): research that focused simultaneously on content and pedagogy. Multiple research 
groups responded to Shulman’s address, resulting in different approaches to conceptualizing knowledge use in teaching. These 
include: 

• Ball and colleagues’ “mathematical knowledge for teaching” that elaborates Shulman’s notions of content knowledge and peda
gogical content knowledge (e.g., Ball & Bass, 2003; Ball et al., 2008), and which Baumert et al. (2010) re-conceptualized for the 
secondary level;  

• Thompson and Thompson’s (1996) inquiry into “mathematical knowledge for teaching” and “knowledge for conceptual teaching”;  
• Davis and colleagues’ scholarship on “mathematics-for-teaching” (e.g., Davis & Simmt, 2006), and “mathematical knowledge in 

teaching” as discussed in a seminar led by Ruthven and Rowland (2007);  
• Heid and collaborators’ (2015) development of the notion of “mathematical understandings for secondary teaching”; and  
• Rowland and colleagues’ (2013, 2016) “Knowledge Quartet”, which identifies and categorizes teaching routines and moments 

where knowledge use may be observed. 

This is but a sample of scholarship on mathematical knowledge that informs teaching; it illustrates the variety of terminology in the 
literature. 
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For our project, the most salient aspect of this wide scholarship is its common thread: that teachers use content knowledge in 
recognizing, understanding, and responding to mathematical situations, considerations, and challenges that arise in the course of 
teaching mathematics. We refer to this as mathematical knowledge in and for teaching (MKT). 

Synthesizing these frameworks shaped our view of how mathematical knowledge influences teaching practice. It also informed the 
design of our prompts for teacher-created representations of practice. First, Baumert et al. (2010) re-conceptualized Ball and col
leagues’ content knowledge as “a profound mathematical understanding of the curricular content to be taught” (p. 142). We have 
adopted a similar point of view. Second, Baumert et al. (2010) distinguished content knowledge from pedagogical content knowledge, 
the knowledge needed for making mathematics comprehensible to students (Shulman, 1986). These distinctions echo those made by 
other scholars (e.g., Ball et al., 2008; Heid et al., 2015; Rowland, 2013; Shulman, 1986). Further, Baumert et al. (2010) argued that 
although pedagogical content knowledge appears to have a stronger role on secondary student outcomes than content knowledge does, 
mathematics teacher educators must attend to content knowledge. One of Baumert et al.’s results is that a teacher’s content knowledge 
determines how much pedagogical content knowledge the teacher will be able to learn. 

One critique of Ball and colleagues’ conception of knowledge for teaching is that they do not explicitly discuss its dynamic aspects. 
That is, teachers’ knowledge is not static, but rather develops through, and perhaps even manifests itself in practice (Davis & Simmt, 
2006; Ruthven & Rowland, 2007). This view supports our stance that teachers’ university mathematics experiences would be 
enhanced by incorporating connections to teaching practice. Teacher-created representations of practice may allow mathematical 
knowledge to manifest. 

In designing prompts for teacher-created representations of practice, we took into account the importance of supporting students 
through adaptive instruction (Baumert et al., 2010; Thompson & Thompson, 1996) and of cultivating mathematical practices such as 
defining, justifying, sense-making, or representing (Heid et al., 2015). All of our prompts for teacher-created representations of 
practice feature a student-level task, sample student work on that task, and a goal for teaching that involves engaging students in a 
mathematical practice. 

Finally, in analyzing teacher-created representations of practice, we most use Rowland and colleagues’ work on the Knowledge 
Quartet, whose details we will soon discuss. For now, we remark that the reader may wonder why this framework and not one of the 
many others. Our response is that we chose it for methodological reasons. We wanted a framework that articulated where exactly 
mathematical knowledge manifests in teaching practice, so that we would be able to identify such locations in teacher-created rep
resentations of practice. Rowland (2013) observed that this feature distinguishes the Knowledge Quartet from other frameworks for 
mathematical knowledge in and for teaching. 

2.2. The Knowledge Quartet, its use at secondary level, and its dimensions 

Soon after researchers began to conceptualize mathematical knowledge in and for teaching, multiple projects sought to link this 
knowledge to educational outcomes. At elementary and secondary levels, projects used assessments designed to measure teachers’ 
mathematical knowledge and largely found associations between teachers’ mathematical knowledge, learning gains, and desirable 
teaching qualities (e.g., Baumert et al., 2010; Hill et al., 2005; Hill et al., 2008; Rowland et al., 2000). 

Rowland et al.’s (2000) study, of 150 London-based primary teachers, motivated the following puzzle: “If superior content 
knowledge really does make a difference when [teaching mathematics], it ought somehow to be observable in the practice of the 
knowledgeable teacher” (p. 17; emphasis in the original). They wanted to know where to observe knowledge so as to “frame a 
coherent, content-focused discussion” (Rowland, 2013, p. 21) between a teacher and someone who was observing the teacher for the 
purpose of giving feedback to the teacher about their teaching. Rowland and his colleagues then undertook an observation and video 
study using a purposive sample of 12 participants drawn from a pool of 149 primary teachers. The sample reflected a range of outcomes 
based on performance on an assessment of their mathematical knowledge. Using a grounded theory approach (Glaser & Strauss, 1967; 
as cited in Rowland, 2013), they generated four broad categories of codes for teachers’ knowledge and knowledge use in teaching. 

Since the conclusion of Rowland’s initial studies, researchers have validated these categories as describing knowledge use beyond 
primary level and beyond the UK. Weston, Kleve, & Rowland, 2012 reported on a cross-national study to determine whether the 
Knowledge Quartet would be a feasible framework for analyzing secondary level data. Although they identified more codes for mo
ments of teaching where mathematical knowledge is observable, the four broad categories from the primary level study remained 
stable across a team of 15 researchers from 7 countries working with 55 episodes of secondary teaching. These categories make the four 
dimensions of the Knowledge Quartet. 

Two dimensions are Foundation (knowledge and understanding of mathematical ideas, the nature of mathematics, as well as 
principles of mathematical pedagogy) and Contingency (the ability to respond to unanticipated events ranging from network outages to 
learners’ alternative strategies). The moments of teaching where Foundation is observable include “awareness of purpose”, “identi
fying errors”, “overt display of subject knowledge”, and “use of mathematical terminology” (Rowland et al., 2016, p. 1). The moments 
of teaching where Contingency is observable include “deviation from agenda”, “responding to students’ ideas”, “use of opportunities” 
(p. 1). The remaining dimensions are Transformation (presenting ideas to learners) and Connection (cohering ideas over time); these are 
observable in moments such as “choice of examples” or “decisions about sequencing”, respectively (p. 1). 

We highlight Foundation and Contingency because we focus most on them. We now discuss our view of teacher-created repre
sentations of practice, how we operationalized Foundation and Contingency, and why our analysis used only these dimensions rather 
than all four. 
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2.3. Teacher-created representations of practice 

As Amador et al. (2017) noted, there is power in having prospective teachers “take on an active role as designers (rather than 
viewers) of classroom scenes” (p. 160; emphasis in the original). We view teacher-created representations of practice as the result of 
teachers’ design work with samples of secondary student work and a statement of an intended goal (e.g., “to advance students’ un
derstanding of how a definition connects to a procedure”). 

Teacher-created representations of practice can give a window into teachers’ conceptions of mathematics teaching as well as their 
use of mathematics in teaching. We posit that when teachers share an image of envisioned teaching using sample student work, they – 
like teachers with classroom artifacts – draw on their knowledge and commitments (Brown, 2009). 

2.4. Characterizing Foundation and Contingency in teacher-created representations of practice 

Our study and Rowland and colleagues’ studies have key similarities and also critical differences. Rowland and colleagues used 
videos of teaching across multiple topics in multiple schools. We examined teacher-created representations of practice responding to a 
limited set of prompts. Hence, we found it useful to delimit and elaborate the dimensions we used: Foundation and Contingency. We 
now discuss our operationalizations and then say why our analysis did not consider the remaining dimensions. 

2.4.1. Foundation 

We delimited the Foundation dimension to knowledge of mathematics, because of our interest in content coursework. Second, the 
dependence of Foundation on mathematical understanding suggested that we be theoretically clear about a conception of mathematical 
understanding. We used Simon’s (2006) characterization: mathematical understanding is the “learned anticipation of the logical 
necessity of a particular pattern or relationship” (p. 364). For instance, we consider understanding mathematical procedures to include 
relating that procedure to underlying definitions or concepts, as well as anticipating to do so when explaining procedures or trou
bleshooting a use of a procedure. 

2.4.2. Contingency 

We delimited Contingency to the ability to use given student thinking in teacher-created representations of practice. By given, we 
mean the student contributions explicitly provided in the prompt for teacher-created representations of practice rather than, say, 
imagined by a prospective teacher. We constrained Contingency in this way because all our prompts provided sample secondary 
student thinking, and we posited that integrating given student thinking approximated for a prospective teacher an encounter with 
potentially unexpected student contributions. 

2.4.3. Documenting the potential range of Foundation and Contingency knowledge use 

Rowland and colleagues’ work results in a framework for identifying instances where mathematical knowledge may be used in 
teaching, but it does not result in a framework for characterizing variation of such use. Weston (2013) used the Knowledge Quartet 
dimensions to quantify mathematical knowledge in teaching for the purpose of informing programs of teacher education. As she noted, 
she sought to use “consistent observation-based data across multiple trainees and multiple lessons in order to inform [teacher prep
aration] programs, rather than to support individual teacher development” (p. 289; italics ours). Our purpose is to characterize the po
tential range of knowledge use in dimensions of the Knowledge Quartet apparent in individual teachers’ work, in ways that may 
support teachers’ development. 

2.5. The choice to use only Foundation and Contingency rather than all four dimensions 

We focused on Foundation and Contingency in our work because they are the most visible in the teacher-created representations of 
practice we analyzed. In other words, the evidence from the teacher-created representations of practice was available and appropriate. 
Our results reported in this article also suggest that the evidence is sufficient for the purpose of supporting teachers’ development. 
Teacher-created representations of practice provide a snapshot of teacher’s use of knowledge and sample student work. The scope of 
the prompts is rich enough for at least some proportion of teachers to demonstrate mathematical understanding in the sense of Simon 
(2006). The prompts are also expansive enough for at least some proportion of teachers to explicitly address the student work. We note 
that while the argument of available and appropriate may be supported by the design of tasks, an argument of sufficiency can only be 
made post hoc, rather than a priori. For this reason, we point to our present work as part of the argument. 

We originally set out to use all four dimensions. We found that whereas we had robust evidence for Foundation and Contingency, 
our evidence for Transformation and Connection seemed thin. In particular, Foundation is identified through teachers’ use of 
mathematical terminology, their awareness of their purpose, and their command of the mathematics. Contingency can be examined 
through teachers’ responses to student ideas. We were able to identify these moments consistently across teacher-created represen
tations of practice. However, Transformation relies on teachers’ choice of examples of instructional materials, but these were highly 
constrained by our prompts for teacher-created representations of practice. Connection involves ideas over time, and teacher-created 
representations of practice often focused on a relatively small chunk of teaching. 
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Nonetheless, Foundation and Contingency as we use them do echo the distinction between content knowledge and pedagogical 
content knowledge, while also benefiting from Rowland’s work to articulate where to identify these areas. Ultimately, we do believe it 
would be possible to detect Transformation and Connection, and potentially ranges of these dimensions, in teacher-created repre
sentations of practice. However, the prompts for these representations would have to be designed differently than the ones that we 
used. 

3. Context 

This study was conducted as part of the MODULE(S2) Project, which seeks to connect university mathematics coursework in 
secondary teacher preparation programs to secondary teaching practice (n.d.). MODULE(S2) materials address the areas of algebra, 
geometry, mathematical modeling, and statistics. Throughout all MODULE(S2) materials, there are opportunities for teachers to apply 
mathematics to teaching. Example activities include considering student thinking, discussing common student conceptions, and 
connecting to learning standards. These opportunities arise at least once per every two intended weeks of curriculum material use. 

Each set of materials was written by an authorship team composed of mathematicians, mathematics educators, and practicing 
secondary mathematics teachers. Teams ranged from 3 to 5 persons each. The second author of this article co-wrote geometry ma
terials, and the first author co-wrote algebra materials. The authorship teams collectively developed common writing standards 
regarding prompts for representations of practice and approach to content. Materials were initially trialed by members of the 
authorship teams, and later used by instructors external the authorship teams. Authorship teams revised materials through iterative 
cycles throughout the project grant period in part informed by instructor feedback and project goals (Bryk et al., 2015). 

In materials written after the adoption of the writing standards for the MODULE(S2) project, prompts for teacher-created repre
sentations of practice describe a teaching scenario that specify a student-level task, a goal for the scenario involving engaging students 
in a mathematical practice. Prompts also include images of secondary student work created by secondary students or a portion of a 
classroom discussion that came up while working on the student-level task. Classroom teachers on authorship teams collected samples 
of actual student work to represent in applications of mathematics to teaching. 

The project advertised the materials to listservs and professional networks of university faculty in mathematics and mathematics 
education. Instructors from seven universities agreed to participate in this study. They received in-person professional development 
the summer prior to teaching as well as ongoing support via online video calls during the academic year. Instructors reported that these 
sessions, along with the materials themselves, supported successful implementation. 

3.1. Mathematical context for teacher-created representations of practice 

The data analyzed for this study are prospective secondary teachers’ responses to prompts for teacher-created representations of 
practice included in the MODULE(S2) geometry materials. These materials take a transformation perspective, which is characterized 
by defining congruence and similarity via transformations (Usiskin & Coxford, 1972). The transformations critical to congruence and 
similarity are reflections, rotations, translations, dilations, and their compositions. The data come from units on Congruence Trans
formations and Similarity Transformations. There were three units in total in the MODULE(S2) geometry materials; a unit on Axiomatic 
Systems preceded the others. We did not include the representations of practice from Axiomatic Systems because they were written prior 
to the adoption of the writing standards. 

MODULE(S2) geometry materials featured activities that emphasized the “logical necessity” (Simon, 2006, p. 365) of connecting 
the definition of each transformation type to its construction and identification. The materials advised instructors to use these activities 
prior to assigning prompts for teacher-created representation of practice in each unit. As well, instructors were asked to have teachers 
discuss the student-level task in the representations of practice, and provided activities to do so. These activities were intended to help 
teachers notice features of high-quality responses to the student-level task. To our knowledge, all instructors enacted these activities. 

3.2. Prompts for teacher-created representations of practice used in this study 

There were four prompts for creating representations across the two transformation units. Two prompts asked teachers to write 
narratives detailing how a classroom discussion might proceed, and two asked teachers to video-record themselves as they would 
respond to the students whose work is provided. These prompts asked prospective teachers to envision a response to the students that 
would move students toward understanding connections between definitions and constructions of images of relevant transformations.  
Table 1 summarizes the prompts given to prospective teachers, and Fig. 1 shows images of student work from some of the prompts. 

Table 1 
Description of prompts for teacher-created representations of practice.  

Order Medium Response Format Mathematical Content 

1 Written Written plan for class discussion Constructing reflections 
2 Video Video response spoken to learners Constructing rotations 
3 Written Written plan for class discussion Distinguishing dilation from similarity 
4 Video Video response spoken to learners Constructing dilations  
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4. Data & method 

4.1. Overview 

We sought to develop a framework for characterizing the variation in Foundation and Contingency use observed in teacher-created 
representations of practice. To do so, the authors analyzed teacher-created representations of practice in two rounds of coding. These 
efforts resulted in the operationalizations of Foundation and Contingency described earlier in Section 2.4 as well as the framework to 
be discussed later in this section. 

4.2. Sampling 

For this study, we selected data from eight cohorts across seven different teacher preparation programs in tertiary institutions, 
located in different regions of the US, that piloted the MODULE(S2) geometry materials in one-semester content courses for prospective 
secondary mathematics teachers. The total dataset included more than 300 teacher-created representations of practice. The first round 
of coding used 75 teacher-created representations from 48 teachers (2 representations/teacher × 27 teachers + 1 representation/ 
teacher × 21 teachers) from the first year of data collection as well as initial data from the second year of data collection. The second 
round of coding used a purposive sample of 31 teacher-created representations of practice (4 representations x 7 teachers + 3 rep
resentations x 1 teacher) drawn from the representations of 62 teachers with completed pre- and post-geometry assessments from the 
full set of data from the second year. The rounds were sequential. There were 18 months between the conclusion of the first round and 
the beginning of the second round. During the second round, we continued to refine operationalizations of Foundation and Contin
gency generated in the first round of coding. We also continued to refer to the Knowledge Quartet website to ensure consistency in how 
we interpreted the constructs. There was an overlap of 2 representations from 1 teacher between data in the first round and second 
round. We coded these representations de novo. After the second round of coding concluded, we cross-checked second round and first 
round coding of overlapping representations, and found that they were consistent for both Foundation and Contingency. 

We designed the purposive sample using a similar rationale to Rowland’s (2013) selection for developing Knowledge Quartet 
codes: to document the range of potential knowledge use. Rowland (2013) used teachers’ performance on an assessment of their 
mathematical knowledge as a proxy for teachers’ knowledge in teaching, and selected a sample that “reflected the range of outcomes” 
(p. 19). Analogously, the purposive sample for this study was determined using performance on a subset of the Geometry Assessments 
for Secondary Teachers (GAST) instrument (Mohr-Schroeder et al., 2017). We now give details about the GAST and how we used GAST 
pre/post results to determine sampling. We blinded ourselves to teachers’ GAST performance until after we completed coding. None of 
us had scored the pre/post-tests. A scorer collated samples for us without disclosing scores. 

4.2.1. GAST instrument 
There are 26 questions in total on the original GAST. We consulted our project’s advisory board, which included Mohr-Schroeder, 

the lead researcher for GAST development, about using only questions from the instrument addressing content in the MODULE(S2) 
geometry materials. Based on this consultation, our pre/post-forms contained 14 questions, with a total score of 22. Among the 
teachers whose data we collected for the second round, 61 had completed both pre- and post-semester GAST forms. The maximum pre- 
assessment score attained was 14. The maximum post-assessment score attained was 17. 

As context for interpreting the GAST scores, we note that the original GAST forms were validated to measure mathematical 
knowledge for teaching geometry using a sample of predominantly practicing teachers. Our sample was strictly prospective teachers. 
The mean score on the full GAST form was 20 points out of a maximum of 30 (Mohr-Schroeder et al., 2017). Hence, our sample’s 
maximum score may be comparable to their average score. Mohr-Schroeder et al. did not compare prospective and practicing teacher 

Fig. 1. Sample secondary student work given to prospective teachers.  
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performance in their sample. However, using a different instrument to measure mathematical knowledge for teaching geometry, 
Herbst and colleagues reported that practicing secondary teachers score, on average, higher than preservice teachers do. Moreover, 
practicing teachers with more experience teaching geometry courses perform better than those with less experience (Herbst & Kosko, 
2012; Milewski et al., 2019). Milewski et al. (2019) reported that most prospective teachers’ scores were comparable to those in the 
lower half of practicing teachers’ scores. It is not surprising that the teachers in our sample scored, overall, in a lower range than those 
in Mohr-Schroeder et al.’s sample. 

4.2.2. Sampling using GAST 
To document the range of potential knowledge use in teaching, we assigned “high performance” and “low performance” thresholds 

for each item on the GAST. GAST items used in this study were scored out of 1, 2, or 4 points. Thresholds were as follows. For 1 point 
items, “high performance” was 1 point; for 2 point items, “high performance” was 2 points; and for 4 point items, “high performance” 
was 3 or 4 points. Otherwise the score was categorized as “low performance”. 

We computed the percentage of “high-pre-score”-“high-post-score” pairs and “low-pre-score”-“low-post-score” pairs. In theory, 
someone’s GAST responses could receive 100% “high-pre-score”-“high-post-score” if, on each item, their responses had a “high per
formance” score in both pre- and post-tests. Someone’s GAST responses could also theoretically receive 100% “low-pre-score”-“low- 
post-score” if, on each item, their responses had a “low performance” score in both pre- and post-tests. In reality, most teacher received 
a mixture of all combinations across items: high/high, low/low, low/high, and occasionally high/low. 

We narrowed the pool to 20 teachers (10 +10 teachers), consisting of:  

• The teachers with the 10 highest percentages of “high-pre-score”-“high-post-score” item scores, and  
• The teachers with the 10 highest percentages of “low-pre-score”-“low-post-score” item scores. 

In the first group, high/high percentages ranged 45–73%, and low/low percentages ranged 0–45.4%. In the second group, high/ 
high percentages ranged 0–27%, and low/low percentages ranged 60.0–83.3%. Across the larger pool from which this purposive 
sample was drawn, high/high percentages ranged 0–72.7% and low/low percentages ranged 9.1–83.3%. 

We then examined representations from the 8 teachers out of the 20 who had submitted all 4 representations of practice selected for 
this analysis (see Table 2). During analysis we realized that one assignment had been scanned incompletely. At this point in the study, 
we no longer had access to contact the teacher and thus eliminated this one representation from our sample. This resulted in a sample 
of 31 teacher-created representations of practice. 

4.3. Developing a framework to characterize Foundation and Contingency 

To develop a framework for characterizing foundation and contingency, the authors first considered Rowland and colleagues’ 
descriptions of the Foundation and Contingency dimensions of the Knowledge Quartet (e.g., Rowland et al., 2016). We reflected on 
how these descriptions may apply to the specific teacher-created representations of practice analyzed and, at the same time, how they 
may apply to other domains. To do so, the authors involved researchers with expertise in a variety of mathematical domains—such as 
mathematical modeling, algebra, and geometry—in our discussion. 

We emphasize that our codes throughout the study represent demonstrated use of mathematical knowledge. We do not claim that 
this is the totality of the teachers’ knowledge; the knowledge may have been tacit but possessed. It is therefore incorrect to extrapolate 
about the entire body of a teacher’s knowledge based on these representations of practice. However, these data may still give some 
insight into how mathematical knowledge use is expressed in the context of a university content course. 

We determined coding in both rounds by consensus. We only finalized a code when all coders agreed on the code assigned, as well 
as the reasoning. The reasoning was then incorporated into the operationalizations used, and all codes made to that point were checked 
against the revised operationalization. 

In our first round of coding, we were able to reconcile most but not all differences for Foundation codes across four levels. However, 
efforts to agree on distinctions among four levels of Contingency observations reached no conclusion. 

Table 2 
Purposive sampling of teachers ordered by “high-pre-score”-“high-post-score” item percentage.  

teacher high-high proportion* low-low proportion** GAST (Pre) GAST (Post) GAST 
(Difference) 

GMM205 45% 27% 9 12 + 3 
GMM202 45% 27% 7 11 + 4 
GTA218 45% 36% 9 10 + 1 
GMM308 27% 64% 5 9 + 4 
GMM302 18% 64% 6 9 + 3 
GTA208 18% 73% 2 3 + 1 
GMM206 17% 83% 1 6 + 5 
GMM201 11% 67% 3 9 + 6 

*high-high proportion = proportion of “high-pre-score”-“high-post-score” GAST item percentage. 
* *low-low proportion = proportion “low-pre-score”-”low-post-score” GAST item percentage 
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In the second round of coding, for both Foundation and Contingency, we used two categories of “High” and “Developing”. We 
anticipated that having two categories would result in greater reliability among coders, because in the first round, we were most 
unable to draw clear distinctions among middle and lowest categories. We began by coding demonstrated Foundation. In contrast to 
the first round, where nearly half the codes needed reconciliation, only 4 codes for 31 representations needed reconciling. We repeated 
this process for demonstrated Contingency. Contingency coding required reconciling 12 codes across the 31 representations. 

5. Results 

Our primary result is a framework for characterizing demonstrated high and developing knowledge in the Foundation and Con
tingency dimensions in teacher-created representations of practice created in the context of a university mathematics course. Fig. 2(a) 
shows this framework across domains. Fig. 2(b) specializes the framework to definitions of geometric transformations. Fig. 3 shows 
assigned codes for all representations of practice in the purposive sample. Table 3 shows the four combinations of High and Developing 
codes. 

We now describe the four combinations of High or Developing Foundation and Contingency with selected teacher-created rep
resentations of practice. To do so, we take advantage of the fact that there is one representation of practice that showcases all four 
combinations. This is the written prompt in Fig. 3, Column 2. Fig. 4 shows the full text of this prompt (the student work is similar to that 
in Fig. 1). Fig. 5 shows a definition for reflection suggested in the curriculum materials. 

5.1. High Foundation/High Contingency 

Before we begin, we remind the reader that all illustrations are based on responses to the prompt shown in Fig. 4. While we ground 
our descriptions in details of the chosen prompt, we also highlight aspects that generalize across the category (High/High, Developing/ 
High, High/Developing, or Developing/Developing). After each specific description, we step back and summarize the category’s signal 
qualities. 

In our framework, the quality of demonstrated Foundation is characterized by linking constructions to the definition, and the 
quality of Contingency is characterized by integrating student work into the work of connecting constructions and definitions. 
GMM302′s representation of practice was coded as High Foundation/High Contingency. GMM302 began their representation of 

Fig. 2. Framework for Characterizing Foundation and Contingency Knowledge.  
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practice: 
To start, I would draw the student responses and our definition of Reflection on the board. [.] Pointing to the first response, [I would 

ask,] if we were to draw a line between the points P and the corresponding P′s, what can we tell about the line segments made by P and 
P′? As students respond, I draw and make the corresponding changes to the figure on the board (see Fig. 6(a)). 

After describing some potential responses from students, GMM302 prompted students to link construction and definition: “What is 

Fig. 3. Codes for observed knowledge use in purposive sample.  

Table 3 
Foundation/Contingency code combinations.  

Combination 
Foundation/Contingency 

Teachers whose representations of practice were coded with this combination (how many) 

High F/High C GMM205(2), GMM202(3), GMM302(1), GMM308(1) 
Developing F/High C GMM302(1), GMM308(2) 
High F/Developing C GMM205(2), GTA206(1) 
Developing F/Developing C GMM202(1), GTA218(4), GMM302(2), GMM201(4), GTA208(3), GTA206(3)  

Fig. 4. Summary of prompt given to teachers to create a written representation of practice.  
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it we know about our line of reflection in regard to our definition of reflection?” GMM302 then marked the angles (see Fig. 6(b)) and 
asked students questions to review the two defining properties of perpendicular bisectors (bisecting, and with perpendicular angles). 
GMM302 posed, “Since our main problem here is the angles, how might we approach this in a way that results in right angles instead?” 
Finally, after drawing a correct reflection (see Fig. 6(c)) but without evaluating it as such to the students, GMM302 asked, “Looking at 
our new figure, does this hold true to the definition of a Reflection?” GMM302 concluded, after describing potential responses, “Yes, it 
does hold true. So, we know [segment] a′ is the reflection of [segment] a across the given line.” 

We coded this representation as High Foundation/High Contingency because GMM302 created tight connections from incorrect 
and correct images to the definition, positioned students to engage with these links, and did so while centering student work. Other 
examples that were coded as High Foundation/High Contingency also exhibited close connections between the definition of the 
transformation and its construction. In each case, the definition was used as a tool to check the correctness of the provided student 
work (as in the case of GMM 302) or to develop explanations through questioning. For example, a teacher might provide an image and 
ask questions of the class relating to each portion of the definition of the related transformation, either with specific mention of the 
definition by the teacher or by asking questions that would lead to the definition being provided by students in the class. 

5.2. Developing Foundation/High Contingency 

GMM308′s response was coded Developing Foundation/High Contingency. GMM308 began their representation of practice by 
analyzing the student work, and suggesting what may have been going on in the students’ mind that led to these constructions. 

It looks as though they have drawn lines across the line of reflection from each point to the reflected point. I believe that they have thought 
that since it is reflected that the distance from the line of reflection is now opposite for each point (the point on top of the reflected image is 
the same distance as the point on the bottom of the pre-image and vice versa). 

In this way, GMM308 exemplified the notion of interacting reflectively with student thinking (Thompson, 2000). GMM308 then 
described linking the work to the definition: 

I would use [Student 2′s work] to discuss with students how this attending to some points of the definition, but not quite (sic). They have 
used the idea of the same distance from the line of reflection, but it was utilized incorrectly. I would use this to be able to discuss with 
students how this doesn’t fully fit the definition of a reflection and how we can fix that. We would work as a class to improve the original 
reflection and make sure it fits all of the necessary components of the definition needed. 

This representation of practice exemplified High Contingency—it identified specific connections from given student work to the 
definition of reflection, including the role of perpendicular bisectors. However, it did not articulate the reasoning about perpendicular 
bisectors precisely, and so we assigned a Developing Foundation code. This was the case for GMM308′s presented analysis of both 
provided samples of student work. 

This pattern was repeated in each representation coded Developing Foundation/High Contingency. In each, the response begins by 
drawing out the thinking provided by one of the students related to the appropriate transformation. Then, the responses envision 
questions to students where pieces of the definition for the transformation are provided but not connected to the construction of the 
transformation. By starting with the given student work, these responses demonstrate High Contingency. Unclear or inaccurate 
connection between the definition and the construction of the transformation leads the response to be coded with Developing 
Foundation. In our data, there were two ways for a connection to be coded as Developing Foundation with High Contingency. First, as 
demonstrated by GMM308, the reasoning about the definition is imprecise. Second, a teacher may reason about the definition 

Fig. 5. Version of class definition of reflection.  

Fig. 6. Board drawings proposed by GMM302 to link construction to definition.  
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incorrectly. 

5.3. High Foundation/Developing Contingency 

In our framework, demonstrating High Foundation requires clearly linking the construction to the definition whereas demon
strating High Contingency relies on the use of student work to make the connection between the definition and construction. GTA206′s 
representation of practice was coded High Foundation/Developing Contingency. 

This representation of practice began by posing to the class, “What do we know about reflections?” and encouraging discussion 
specifically focused on the definition of reflection. GTA206′s representation then hypothesized student-generated definitions that were 
correct but imprecise, and how they would clarify the role of the perpendicular bisector in the definition: 

I will discuss this by showing students different examples on the board on how this comes about by drawing a perpendicular bisector 
between point A on Object 1 and point A′ on Object 2. I will do this with each point of the object to show that the perpendicular bisector 
does in fact make a right angle at the line of reflection. Doing so links the definition to the way in which one can determine whether or not 
two figures are in fact a reflection of each other. 

At this point, GTA206′s representation of practice turned to more examples but did not use the exact student work provided: “I will 
at this point use student 1 and student 2′s examples (sic), but not the exact same lines as the students drew. I will change them so that 
they do not feel as if I am targeting their work.” GTA206′s representation of practice suggests that learners will be able to determine 
their errors by examining other work that is not their own. The discussion of reflections concludes with an assignment in which 
learners would “draw a perpendicular bisector from each original figure point to the new reflected figures.” 

GTA206′s representation of practice made a clear connection between the definition and the construction of the reflection, 
exemplifying High Foundation. However, GTA206′s representation of practice did not draw on the provided learner thinking in 
moving the class forward in their understanding of reflections. This representation of practice provides no evidence of knowledge for 
responding to potentially unexpected contributions from students, because they did not reference the given student contributions at 
all. Perhaps GTA206 left their knowledge of the connection tacit rather than expressed, because they prioritized the students’ potential 
emotions. Although consideration for the learner’s feelings as their work is shown is important, it is also vital to use the thinking of the 
students in the class in order to move their thinking forward. We coded this response as Developing Contingency, but also use this case 
to remind us that we are coding only proxies of knowledge. 

The other examples in our sample that were coded as High Foundation/Developing Contingency were video responses. In each 
case, the teachers correctly described the connections between the provided student work and definitions of the appropriate trans
formations, demonstrating High Foundation as they evaluated the student work. In their descriptions of how they would respond to the 
students, they each directed students to new examples rather than the provided work and related these new examples to the definition. 
In this way, the teachers responded to the students without using the given student work. 

5.4. Developing Foundation/Developing Contingency 

A response that demonstrates Developing Foundation and Developing Contingency lacks connection between definition and 
construction, and furthermore does not use the given student work to address the concepts. GMM201′s representation of practice 
illustrates this type. 

GMM201′s representation of practice opened by sharing the two student samples and asking students “if they agree or disagree with 
the two works.” GMM201 intended to probe students for their reasoning, and give them time to share their responses with the whole 
class. Although potential student responses are given that include reference to the distance of a point from the line of reflection, there is 
no resolution or clear use of the definition of reflection. 

Rather than resolving this discussion, GMM201′s representation of practice then posed a new task to students, where the students 
were asked to reflect provided shapes over a given line. Then, after monitoring students’ work on this task, the representation of 
practice stated that the “teacher will provide the definition of reflection to the students, and work on another example on the board to 
show how the definition is related to the work.” This is the only mention of a definition of reflection in GMM201′s response. Note that 
there was no elaboration of what the definition is or how it is used to construct a reflection. GMM201′s representation concluded by 
indicating that students will then be asked to revise their answers to previous problems and to determine in other ways, such as paper 
folding, whether or not their images are reflections. 

At first read, it may seem that GMM201 used student thinking by displaying student responses and providing time for learners to 
make sense of the work they observe. However, this representation of practice never linked the given student work to the definition of 
reflection, and also makes no substantive reference to the given student work beyond displaying it. For these reasons, we coded this 
representation of practice as Developing Foundation/Developing Contingency. 

Other examples coded in the Developing Foundation/Developing Contingency category similarly lacked substantive use of student 
work and explicit connection between definition and construction. The student work may be presented at some point during the 
representation of practice but it is not taken up beyond asking whether or not the class agrees with the work, if at all. Responses in this 
category did not build discussion from the initial prompts asking for agreement. In this category, the definition was either not given, or 
stated by the teacher with no connection to the student work samples or to construction. Students were at times directed to a new task, 
without connection between these pieces. 
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5.5. Foundation and Contingency levels in relation to GAST selection process 

Recall that we selected the purposive sample in part by the proportion of “high-pre-score”- “high-post-score” GAST item per
centages (shown in Table 2). We coded Foundation and Contingency for these teachers’ representations of practice. To consider the 
relation between our sampling procedure and the coding, we plotted their item percentage in relation to the number of High Foun
dation and High Contingency codes for each teacher. See Fig. 7. 

Overall, as observed in Fig. 7, the proportion of “high-pre-score”-“high-post-score” GAST item percentages appear to be associated 
more strongly with Foundation codes than Contingency codes. This may be explained by the content of the GAST. When we analyzed 
GAST items administered to teachers for whether they fit the description of knowledge in the Foundation or Contingency dimensions, 
we only found 1 item to fit the description of Contingency: the question asked teachers to incorporate given student work. All other 
items assessed knowledge of particular mathematical theorems in the form of a purely mathematical question, or involved Foundation 
knowledge to analyze a proposed mathematical task. 

Among the teachers with the highest “high-pre-score”-“high-post-score” percentages (GMM205, GMM202, GTA218; see Table 2), 
two exhibited high levels in the foundation and contingency dimensions on at least half of their teacher-created representations of 
practice. Overall, their representations of practice demonstrated greater knowledge use in Foundation and Contingency than the 
representations of practice from teachers selected for the highest “low-pre-score”-“low-post-score” percentages. The exceptions are 
GTA218 and GMM308 (selected for "low-pre-score"-"low-post-score" percentage). GTA218 only improved by one point on their post- 
test GAST performance; perhaps this indicates an overall difficulty with developing deeper mathematical knowledge overall in the 
course. This would explain a difficulty applying mathematical knowledge to the work of teaching in the representations of practice that 
they created, particularly if this semester was their first opportunity to apply mathematical knowledge directly to the work of teaching. 
Another explanation is that GTA218 did not engage with this material due to lack of interest, pressures outside of class, or other 
reasons. 

Across all four of GMM308′s representations, two High Foundation and three High Contingency codes were assigned. As noted in 
the previous discussion of GMM308′s representations of practice, there is attention to potential connections between definition and 
construction. Developing Foundation codes were given when the connection was not precisely articulated. In other words, GMM308′s 
representations of practice demonstrated an attention to underlying mathematical structures, but this attention was not always 
expressed as precisely as needed to clearly connect the construction to the definition and thus to be coded as High Foundation. 

Representations from the three teachers with the highest “low-pre-score”-“low-post-score” percentages were coded with only 
Developing Contingency and Foundation. Two of these teachers’ GAST scores saw the largest increase from pre- to post-test across the 
sample. These teachers were developing mathematical knowledge for teaching from the most basic levels, may have had difficulty 
applying their knowledge to teaching, despite their knowledge gain. 

6. Discussion 

We set out to examine observable use of knowledge in Foundation and Contingency dimensions in teacher-created representations 
of practice, and to characterize their variation. To do so, we analyzed a purposive sample of teacher-created representations of practice 
in geometry. We now address limitations of the analysis and the potential generality of the framework. 

First, one limitation to coding any proxy of knowledge is that “Developing” codes may reflect the absence of evidence rather than 
absence of knowledge. Developing Foundation or Contingency may be related more to prioritizing different aims, such as student affect 
or a desire for brevity. It may also come from disengagement with the course. Yet we also observe that we collected data from courses 
where teachers generated definitions for transformations based on constructing images, routinely analyzed and responded to sample 
secondary student thinking, and discussed featured secondary student-level tasks in view of the connection to definition. These 

Fig. 7. Foundation and Contingency vs. proportion of high-high pre- and post-GAST item scores.  
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activities were offered prior to assigning the prompt for the representations of practice. Considering these curricular supports, we 
conclude that at least some Developing Foundation and Contingency codes indicate where a teacher’s knowledge can grow, although 
we cannot absolutely conclude that for all responses. 

Second, we would be remiss not to issue caveats about the binary scheme of “Developing” and “High”. These characterizations, like 
other hierarchical characterizations in the literature (e.g., Ader & Carlson, 2021; Munter, 2014; Serbin et al., 2020), are not intended to 
be characterizations of teachers or their ultimate potential. Rather, we present descriptions of observable features of representations of 
practice that point to mathematical and pedagogical areas teachers may need more support to develop, and also to showcase how 
exemplary knowledge may manifest. 

In evaluating the robustness of our framework, we consider the limitation of our data to four prompts for representations of practice 
in geometry, and the potential for our framework to generalize across domains. Our framework, as reported, is tailored to the use of 
definition to a particular concept of geometry, and derived from the analysis of a limited number of prompts. However, we see our 
framework as generalizable. Its underpinnings in the Knowledge Quartet (Rowland, 2013) and mathematical understanding (Simon, 
2006) are intended to apply broadly to mathematics teaching and learning. The centrality of definition to mathematics, as well as 
reasoning with definition and assumptions (Kitcher, 1984), suggests the potential for adapting this framework to domains with 
strongly structured logical systems, such as algebra. 

For instance, in place of linking definition with construction methods, the framework could emphasize connecting definitions with 
common procedures. As an example, consider inverse functions. Multiple studies have shown that students compartmentalize the 
various meanings and representations of inverse functions, not understanding how one is related to the other, or to definitions. 
Students may not see connections between “switching-and-solving” (Vidakovic, 1996), reflecting a graph about the line y = x, and the 
definition of inverse function (Brown & Reynolds, 2007; see Paoletti et al., 2018 for a review). Yet we would hope that teachers would 
understand these connections, and moreover, be able to apply knowledge of this connection to their teaching (e.g., Weber et al., 2020). 
In Fig. 8, we interpret this situation in terms of our framework. 

For domains such as mathematical modeling, which apply mathematics in phases of distinctive practices (e.g., Blum & Leiß, 2007), 
the framework could emphasize the rationale for each phase as well as anticipation of movement across phases, for instance, knowing 
that the proposal of a mathematical model can be followed by considering the real world or the results of the model, that these phases 
can work together to refine one’s model (e.g., Czocher, 2018). 

Finally, we note that our case for Foundation is stronger than our case for Contingency: we have applied the framework to more 
data for Foundation, due to the first round coding process. Nonetheless we believe that our case for Contingency holds promise, and 
that the specific attention to given student work is a contribution to the field. 

7. Conclusion 

We now consider our results with respect to the literature on teachers’ knowledge. We see Foundation knowledge as content 
knowledge, pedagogical content knowledge as elicited by applications of mathematics to teaching, and Contingency as an outcome of 
pedagogical content knowledge. Using the Knowledge Quartet allowed us to attend precisely to how mathematics can be applied to 
teaching when designing prompts for teacher-created representations of practice. 

As Baumert et al. (2010) noted, “one of the next great challenges for teacher research will be to determine how [content knowledge 
and pedagogical content knowledge] can be best conveyed” (p. 168). Teacher education must address both content knowledge and 
pedagogical content knowledge—and in ways that connect to teaching. Rowland (2013) posited that Foundation knowledge de
termines the use of mathematics in the other dimensions of the Knowledge Quartet, including Contingency. 

Our work provides a proof of concept of a device that can be used in multiple university mathematics courses to integrate 
mathematics and its application to teaching. The representations of practice we analyzed were created by teachers as part of a suite of 
university mathematics courses. In the representations studied, they elicited Foundation knowledge that could be integrated with 
Contingency actions. We believe that these results extend across content areas. Our results speak to Monk’s (1994) argument for a more 
nuanced understanding of how mathematical knowledge may contribute to secondary teaching. We find that mathematical knowl
edge, such as can be taught in a university mathematics course, can be observed while explicit connections to teaching are made. 
Moreover, we demonstrated ways that quality in two dimensions, Foundation and Contingency, may be articulated. 

Our data corroborates Rowland’s posited relationship between Foundation and Contingency: High Foundation tended to corre
spond with High Contingency, and Developing Foundation tended to correspond with Developing Contingency. However, a High 
Foundation code was not a guarantee of High Contingency. We do not have the data to know whether our results corroborate Baumert 
et al.’s (2010) findings for content knowledge as a precursor of pedagogical content knowledge. 

Our results also indicate how far we must go to meet Baumert et al.’s (2010) challenge. There were not many High Founda
tion/High Contingency codes, and producing a representation of practice coded as High earlier in the term did not correspond to being 
coded High later in the term. Moreover, there were many Developing/Developing code combinations. One interpretation is that, like 
Herbst and colleagues’ findings, there is on average a wide gap between prospective teachers’ and practicing teachers’ knowledge for 
teaching geometry. Another interpretation is that it is difficult to transfer mathematical teaching practices learned in one mathematical 
context (e.g., congruence) to another (e.g., similarity); a similar result was found at the elementary level by Morris et al. (2009). 
Whatever the explanation, the challenge remains for connecting mathematics to its applications in teaching, and in ways that support 
teachers’ development across content areas. 
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Álvarez, J.A., Jorgensen, T., & Beach, J., 2020b, Using multiple scripting tasks to probe preservice secondary mathematics teachers’ understanding of visual 
representations of function transformations. Paper presented at the 14th International Congress on Mathematics Education. Shanghai, China. 

Amador, J. M., Estapa, A., de Araujo, Z., Kosko, K. W., & Weston, T. L. (2017). Eliciting and analyzing preservice teachers’ mathematical noticing. Mathematics Teacher 
Educator, 5(2), 158–177. https://doi.org/10.5951/mathteaceduc.5.2.0158 

Baldinger, E. E. (2018). Learning mathematical practices to connect abstract algebra to high school algebra. In N. Wasserman (Ed.), Connecting Abstract Algebra to 
Secondary Mathematics, for Secondary Mathematics Teachers (pp. 211–239). Springer.  

Ball, D., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching: What makes it special. Journal of Teacher Education, 59(5), 389–407. https://doi.org/ 
10.1177%2F0022487108324554. 

Ball, D. L., & Bass, H. (2003). Towards a practice-based theory of mathematical knowledge for teaching. In B. Davis, & E. Simmt (Eds.), Proceedings of the 2002 Annual 
Meeting of the Canadian Mathematics Education Study Group (pp. 3–14). 

Baumert, J., Kunter, M., Blum, W., Brunner, M., Voss, T., Jordan, A., … Tsai, Y. M. (2010). Teachers’ mathematical knowledge, cognitive activation in the classroom, 
and student progress. American Educational Research Journal, 47(1), 133–180. 

Fig. 8. Potential generalization of framework to inverse functions.  

Y. Lai et al.                                                                                                                                                                                                             

https://doi.org/10.1080/10986065.2020.1844608
http://refhub.elsevier.com/S0732-3123(22)00098-0/sbref2
http://refhub.elsevier.com/S0732-3123(22)00098-0/sbref2
https://doi.org/10.5951/mathteaceduc.5.2.0158
http://refhub.elsevier.com/S0732-3123(22)00098-0/sbref4
http://refhub.elsevier.com/S0732-3123(22)00098-0/sbref4
http://refhub.elsevier.com/S0732-3123(22)00098-0/sbref5
http://refhub.elsevier.com/S0732-3123(22)00098-0/sbref5
http://refhub.elsevier.com/S0732-3123(22)00098-0/sbref6
http://refhub.elsevier.com/S0732-3123(22)00098-0/sbref6
http://refhub.elsevier.com/S0732-3123(22)00098-0/sbref7
http://refhub.elsevier.com/S0732-3123(22)00098-0/sbref7


Journal of Mathematical Behavior 70 (2023) 101030

16

Blum, W., & Leiß, D. (2007). How do students and teachers deal with modelling problems? In C. Haines, P. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical 
modeling: Education, engineering, and economics (pp. 222–231). Horwood.  

Brown, C., & Reynolds, B. (2007). Delineating four conceptions of function: A case of composition and inverseT. Lamberg, & L. R. Wiest (Eds.). Psychology of 
Mathematics Education, 190–193. 

Brown, M. W. (2009). The teacher–tool relationship: Theorizing the design and use of curriculum materials. In J. Remillard, B. Herbel-Eisenmann, & G. M. Lloyd 
(Eds.), Mathematics teachers at work (pp. 37–56). Routledge.  

Bryk, A., Gomez, L. M., Grunow, A., & LeMahieu, P. (2015). Learning to improve: How America’s schools can get better at getting better. Cambridge, MA: Harvard 
Education Press,.  

Conference Board of the Mathematical Sciences. (2012). The Mathematical Education of Teachers II. American Mathematical Society and Mathematical Association of 
America.  

Czocher, J. A. (2018). How does validating activity contribute to the modeling process? Educational Studies in Mathematics, 99(2), 137–159. 
Davis, B., & Simmt, E. (2006). Mathematics-for-teaching: An ongoing investigation of the mathematics that teachers (need to) know. Educational Studies in 

Mathematics, 61(3), 293–319. 
Ferrini-Mundy, J. & Findell, B. (2001). The mathematical education of prospective teachers of secondary mathematics: Old assumptions, new challenges. In CUPM 

Discussion Papers about Mathematics and the Mathematical Sciences in 2010: What should students know? Mathematical Association of America. 
Glaser, B. G., & Strauss, A. L. (1967). The Discovery of Grounded Theory: Strategies for Qualitative Research. Aldine de Gruyter,.  
Goulding, M., Hatch, G., & Rodd, M. (2003). Undergraduate mathematics experience: Its significance in secondary mathematics teacher preparation. Journal of 

Mathematics Teacher Education, 6(4), 361–393. 
Grossman, P., Compton, C., Igra, D., Ronfeldt, M., Shahan, E., & Williamson, P. W. (2009). Teaching practice: A cross-professional perspective. Teachers College Record, 

111(9), 2055–2100. 
Heid, M. K., Wilson, P., & Blume, G. W. (Eds.). (2015). Mathematical Understanding for Secondary Teaching: A Framework and Classroom-Based Situations. Information 

Age Publishing.  
Herbst, P., & Kosko, K., 2012, Mathematical knowledge for teaching high school geometry. In Van Zoest, L.R. , Lo, J.-J. , & Kratky, J.L. (Eds). Proceedings of the 34th 

annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education. Kalamazoo, Michigan. 
Hill, H. C., Blunk, M. L., Charalambous, C. Y., Lewis, J. M., Phelps, G. C., Sleep, L., & Ball, D. L. (2008). Mathematical knowledge for teaching and the mathematical 

quality of instruction: An exploratory study. Cognition and Instruction, 26(4), 430–511. 
Hill, H. C., Rowan, B., & Ball, D. L. (2005). Effects of teachers’ mathematical knowledge for teaching on student achievement. American Educational Research Journal, 

42(2), 371–406. 
Hill, J. G. (2011). Education and certification qualifications of departmentalized public high school-level teachers of core subjects: Evidence from the 2007-2008 

schools and staffing survey, report. NCES 2011–317 U.S. Department of Education. Washington, DC: National Center for Education Statistics,.  
Kerr, D. R., & Lester, F. K. (1982). A new look at the professional training of secondary school mathematics teachers. Educational Studies in Mathematics, 13(4), 

431–441. 
Kitcher, P. (1984). The Nature of Mathematical Knowledge. Oxford, UK: Oxford University Press,.  
Lai, Y., Strayer, J.F., Ross, A., Adamoah, K., Anhalt, C., Bonnesen, C., Casey, S., Kohler, B., & Lischka, A.E. (2023). The potential impact of opportunities to apply 

mathematics to teaching on prospective secondary teachers’ competence. Paper presented at the 2023 Annual Conference on Research in Undergraduate 
Mathematics Education, Omaha, Nebraska. 

Lai, Y., Wasserman, N., Strayer, J.F., Casey, S., Weber, K., Fukawa-Connelly, T., & Lischka, A.E. (in press). Making advanced mathematics work in secondary teacher 
education. In Benken, B. (Ed.), Reflection on Past, Present, and Future: Paving the Way for the Future of Mathematics Teacher Education, Chapter 6. Association 
of Mathematics Teacher Educators. 

Lischka, A. E., Lai, Y., Strayer, J. F., & Anhalt, C. (2020). MODULE(S2): Developing mathematical knowledge for teaching in content courses. In W. G. Martin, 
B. R. Lawler, A. E. Lischka, & W. M. Smith (Eds.), The Mathematics Teacher Education Partnership: The Power of a Networked Improvement Community to Transform 
Secondary Mathematics Teacher Preparation (AMTE Monograph) (pp. 119–141). Information Age Press.  

Mathematical Association of America, 1983, Recommendations on the Mathematical Preparation of Teachers. CUPM Panel on Teacher Training. MAA Notes, Number 
2. 

Mathematics of Doing, Understanding. Learning, and Educating for Secondary Schools. (n.d.) Our Project. https://modules2.com/our-project . 
McCrory, R., Floden, R., Ferrini-Mundy, J., Reckase, M. D., & Senk, S. L. (2012). Knowledge of algebra for teaching: A framework of knowledge and practices. Journal 

for Research in Mathematics Education, 43(5), 584–615. 
Milewski, A., Lai, Y., Prasad, P.V., Akbuga, E., & Shultz, M. (February, 2019) Improving Teaching and Learning in Undergraduate Geometry Courses for Secondary 

Teachers. Working Group Presentation at the Annual Conference of the Special Interest Group of the Mathematical Association of America on Research in 
Undergraduate Education. 

Mohr-Schroeder, M., Ronau, R. N., Peters, S., Lee, C. W., & Bush, W. S. (2017). Predicting student achievement using measures of teachers’ knowledge for teaching 
geometry. Journal for Research in Mathematics Education, 48(5), 520–566. 

Monk, D. H. (1994). Subject area preparation of secondary mathematics and science teachers and student achievement. Economics of Education Review, 13(2), 
125–145. 

Morris, A. K., Hiebert, J., & Spitzer, S. M. (2009). Mathematical knowledge for teaching in planning and evaluating instruction: What can preservice teachers learn? 
Journal for Research in Mathematics Education, 40(5), 491–529. 

Munter, C. (2014). Developing visions of high-quality mathematics instruction. Journal for Research in Mathematics Education, 45(5), 584–635. 
Paoletti, T., Stevens, I. E., Hobson, N. L., Moore, K. C., & LaForest, K. R. (2018). Inverse function: Pre-service teachers’ techniques and meanings. Educational Studies in 

Mathematics, 97(1), 93–109. 
Rowland, T. (2013). The Knowledge Quartet: The genesis and application of a framework for analysing mathematics teaching and deepening teachers’ mathematics 

knowledge. Sisyphus, 1(3), 15–43. 
Rowland, T., Martyn, S., Barber, N. P., & Heal, C. (2000). Primary teacher trainees’ mathematics subject knowledge and classroom performance. Research in 

Mathematics Education, 2, 3–18. 
Rowland, T., Thwaites, A., & Jared, L., 2016, Analysing secondary mathematics teaching with the Knowledge Quartet. Paper presented at the 13th International 

Congress on Mathematics Education. Hamburg, Germany. 
Ruthven, K. & Rowland, T., 2007, Conceptualising and theorising mathematical knowledge in teaching. Seminar series on Mathematical Knowledge in Teaching. 

Retrieved from http://maths-ed.org.uk/mkit/seminar1. 
Serbin, K. S., Robayo, B. J. S., Truman, J. V., Watson, K. L., & Wawro, M. (2020). Characterizing quantum physics students’ conceptual and procedural knowledge of 

the characteristic equation. The Journal of Mathematical Behavior,. Article ID, 58, Article 100777. 
Shulman, L. S. (1986). Those Who Understand: Knowledge Growth in Teaching. Educational Researcher, 15(2), 4–14. https://doi.org/10.3102/0013189×015002004 
Simon, M. A. (2006). Key developmental understandings in mathematics: A direction for investigating and establishing learning goals. Mathematical Thinking and 

Learning, 8(4), 359–371. 
Stylianides, G. J., & Stylianides, A. J. (2010). Mathematics for teaching: A form of applied mathematics. Teaching and Teacher Education, 26(2), 161–172. 
Tatto, M. T., & Bankov, K. (2018). The intended, implemented, and achieved curriculum of mathematics teacher education in the United States. In M. T. Tatto, 

M. C. Rodriguez, W. M. Smith, M. D. Reckase, & K. Bankov (Eds.), Exploring the Mathematical Education of Teachers Using TEDS-M Data (pp. 69–133). Springer.  
The Panel on Teacher Training. (1971). Recommendations on course content for the training of teachers of mathematics. Mathematical Association of America Committee 

on the Undergraduate Program in Mathematics.  
Thompson, A. G., & Thompson, P. W. (1996). Talking about rates conceptually, Part II: A teacher’s struggle. Journal for Research in Mathematics Education, 27(1), 2–24. 

Y. Lai et al.                                                                                                                                                                                                             

http://refhub.elsevier.com/S0732-3123(22)00098-0/sbref8
http://refhub.elsevier.com/S0732-3123(22)00098-0/sbref8
http://refhub.elsevier.com/S0732-3123(22)00098-0/sbref9
http://refhub.elsevier.com/S0732-3123(22)00098-0/sbref9
http://refhub.elsevier.com/S0732-3123(22)00098-0/sbref10
http://refhub.elsevier.com/S0732-3123(22)00098-0/sbref10
http://refhub.elsevier.com/S0732-3123(22)00098-0/sbref11
http://refhub.elsevier.com/S0732-3123(22)00098-0/sbref11
http://refhub.elsevier.com/S0732-3123(22)00098-0/sbref12
http://refhub.elsevier.com/S0732-3123(22)00098-0/sbref12
http://refhub.elsevier.com/S0732-3123(22)00098-0/sbref13
http://refhub.elsevier.com/S0732-3123(22)00098-0/sbref14
http://refhub.elsevier.com/S0732-3123(22)00098-0/sbref14
http://refhub.elsevier.com/S0732-3123(22)00098-0/sbref15
http://refhub.elsevier.com/S0732-3123(22)00098-0/sbref16
http://refhub.elsevier.com/S0732-3123(22)00098-0/sbref16
http://refhub.elsevier.com/S0732-3123(22)00098-0/sbref17
http://refhub.elsevier.com/S0732-3123(22)00098-0/sbref17
http://refhub.elsevier.com/S0732-3123(22)00098-0/sbref18
http://refhub.elsevier.com/S0732-3123(22)00098-0/sbref18
http://refhub.elsevier.com/S0732-3123(22)00098-0/sbref19
http://refhub.elsevier.com/S0732-3123(22)00098-0/sbref19
http://refhub.elsevier.com/S0732-3123(22)00098-0/sbref20
http://refhub.elsevier.com/S0732-3123(22)00098-0/sbref20
http://refhub.elsevier.com/S0732-3123(22)00098-0/sbref21
http://refhub.elsevier.com/S0732-3123(22)00098-0/sbref21
http://refhub.elsevier.com/S0732-3123(22)00098-0/sbref22
http://refhub.elsevier.com/S0732-3123(22)00098-0/sbref22
http://refhub.elsevier.com/S0732-3123(22)00098-0/sbref23
http://refhub.elsevier.com/S0732-3123(22)00098-0/sbref24
http://refhub.elsevier.com/S0732-3123(22)00098-0/sbref24
http://refhub.elsevier.com/S0732-3123(22)00098-0/sbref24
http://refhub.elsevier.com/S0732-3123(22)00098-0/sbref25
http://refhub.elsevier.com/S0732-3123(22)00098-0/sbref25
http://refhub.elsevier.com/S0732-3123(22)00098-0/sbref26
http://refhub.elsevier.com/S0732-3123(22)00098-0/sbref26
http://refhub.elsevier.com/S0732-3123(22)00098-0/sbref27
http://refhub.elsevier.com/S0732-3123(22)00098-0/sbref27
http://refhub.elsevier.com/S0732-3123(22)00098-0/sbref28
http://refhub.elsevier.com/S0732-3123(22)00098-0/sbref28
http://refhub.elsevier.com/S0732-3123(22)00098-0/sbref29
http://refhub.elsevier.com/S0732-3123(22)00098-0/sbref30
http://refhub.elsevier.com/S0732-3123(22)00098-0/sbref30
http://refhub.elsevier.com/S0732-3123(22)00098-0/sbref31
http://refhub.elsevier.com/S0732-3123(22)00098-0/sbref31
http://refhub.elsevier.com/S0732-3123(22)00098-0/sbref32
http://refhub.elsevier.com/S0732-3123(22)00098-0/sbref32
http://refhub.elsevier.com/S0732-3123(22)00098-0/sbref33
http://refhub.elsevier.com/S0732-3123(22)00098-0/sbref33
https://doi.org/10.3102/0013189&times;015002004
http://refhub.elsevier.com/S0732-3123(22)00098-0/sbref35
http://refhub.elsevier.com/S0732-3123(22)00098-0/sbref35
http://refhub.elsevier.com/S0732-3123(22)00098-0/sbref36
http://refhub.elsevier.com/S0732-3123(22)00098-0/sbref37
http://refhub.elsevier.com/S0732-3123(22)00098-0/sbref37
http://refhub.elsevier.com/S0732-3123(22)00098-0/sbref38
http://refhub.elsevier.com/S0732-3123(22)00098-0/sbref38
http://refhub.elsevier.com/S0732-3123(22)00098-0/sbref39


Journal of Mathematical Behavior 70 (2023) 101030

17

Thompson, P. W. (2000). Radical constructivism: Reflections and directions. In L. P. Steffe, & P. W. Thompson (Eds.), Radical constructivism in action: Building on the 
pioneering work of Ernst von Glaserfeld (pp. 412–448). Falmer Press.  

Ticknor, C. S. (2012). Situated learning in an abstract algebra classroom. Educational Studies in Mathematics, 81(3), 307–323. 
Usiskin, Z. P., & Coxford, A. F. (1972). A transformation approach to tenth-grade geometry. The Mathematics Teacher, 65(1), 21–30. 
Vidakovic, D. (1996). Learning the concept of inverse function. Journal of Computers in Mathematics and Science Teaching, 15(3), 295–318. 
Wasserman, N., Weber, K., Villanueva, M., & Mejia-Ramos, J. P. (2018). Mathematics teachers’ views about the limited utility of real analysis: A transport model 

hypothesis. The Journal of Mathematical Behavior, 50, 74–89. 
Wasserman, N. H., & Ham, E. (2013). Beginning teachers’ perspectives on attributes for teaching secondary mathematics: reflections on teacher education. 

Mathematics Teacher Education and Development, 15(2), 70–96. 
Wasserman, N. H., & McGuffey, W. (2021). Opportunities to Learn From (Advanced) Mathematical Coursework: A Teacher Perspective on Observed Classroom 

Practice. Journal for Research in Mathematics Education, 52(4), 370–406. 
Weber, K., Mejía-Ramos, J. P., Fukawa-Connelly, T., & Wasserman, N. (2020). Connecting the learning of advanced mathematics with the teaching of secondary 

mathematics: Inverse functions, domain restrictions, and the arcsine function. The Journal of Mathematical Behavior, 57, Article 100752. 
Weston, T. L. (2013). Using the Knowledge Quartet to quantify mathematical knowledge in teaching: the development of a protocol for Initial Teacher Education. 

Research in Mathematics Education, 15(3), 286–302. 
Weston, T. L., Kleve, B., & Rowland, T. (2012). Developing an online coding manual for the Knowledge Quartet: An international project. Proceedings of the British 

Society for Research into Learning Mathematics, 32(3), 179–184. 
Zazkis, R., & Leikin, R. (2010). Advanced mathematical knowledge in teaching practice: Perceptions of secondary mathematics teachers. Mathematical Thinking and 

Learning, 12(4), 263–281. 
Zazkis, R., & Mamolo, A. (2011). Reconceptualizing knowledge at the mathematical horizon. For the Learning of Mathematics, 31(2), 8–13. 

Y. Lai et al.                                                                                                                                                                                                             

http://refhub.elsevier.com/S0732-3123(22)00098-0/sbref40
http://refhub.elsevier.com/S0732-3123(22)00098-0/sbref40
http://refhub.elsevier.com/S0732-3123(22)00098-0/sbref41
http://refhub.elsevier.com/S0732-3123(22)00098-0/sbref42
http://refhub.elsevier.com/S0732-3123(22)00098-0/sbref43
http://refhub.elsevier.com/S0732-3123(22)00098-0/sbref44
http://refhub.elsevier.com/S0732-3123(22)00098-0/sbref44
http://refhub.elsevier.com/S0732-3123(22)00098-0/sbref45
http://refhub.elsevier.com/S0732-3123(22)00098-0/sbref45
http://refhub.elsevier.com/S0732-3123(22)00098-0/sbref46
http://refhub.elsevier.com/S0732-3123(22)00098-0/sbref46
http://refhub.elsevier.com/S0732-3123(22)00098-0/sbref47
http://refhub.elsevier.com/S0732-3123(22)00098-0/sbref47
http://refhub.elsevier.com/S0732-3123(22)00098-0/sbref48
http://refhub.elsevier.com/S0732-3123(22)00098-0/sbref48
http://refhub.elsevier.com/S0732-3123(22)00098-0/sbref49
http://refhub.elsevier.com/S0732-3123(22)00098-0/sbref49
http://refhub.elsevier.com/S0732-3123(22)00098-0/sbref50
http://refhub.elsevier.com/S0732-3123(22)00098-0/sbref50
http://refhub.elsevier.com/S0732-3123(22)00098-0/sbref51

	Characterizing prospective secondary teachers’ foundation and contingency knowledge for definitions of transformations
	1 Background
	1.1 Perceived discontinuity between university mathematics and secondary teaching
	1.2 Connecting university mathematics to secondary teaching via applications of mathematics to teaching
	1.3 Teacher-created representations of practice: An application of mathematics to teaching
	1.4 The promise of connecting university mathematics to secondary teaching practice

	2 Conceptual perspective
	2.1 Mathematical knowledge in and for teaching (MKT)
	2.2 The Knowledge Quartet, its use at secondary level, and its dimensions

	2.3 Teacher-created representations of practice
	2.4 Characterizing Foundation and Contingency in teacher-created representations of practice
	2.4.1 Foundation
	2.4.2 Contingency
	2.4.3 Documenting the potential range of Foundation and Contingency knowledge use

	2.5 The choice to use only Foundation and Contingency rather than all four dimensions
	3 Context
	3.1 Mathematical context for teacher-created representations of practice
	3.2 Prompts for teacher-created representations of practice used in this study

	4 Data & method
	4.1 Overview
	4.2 Sampling
	4.2.1 GAST instrument
	4.2.2 Sampling using GAST

	4.3 Developing a framework to characterize Foundation and Contingency

	5 Results
	5.1 High Foundation/High Contingency
	5.2 Developing Foundation/High Contingency
	5.3 High Foundation/Developing Contingency
	5.4 Developing Foundation/Developing Contingency
	5.5 Foundation and Contingency levels in relation to GAST selection process

	6 Discussion
	7 Conclusion
	Funding
	Acknowledgments
	References


