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Abstract

Materials design can be accelerated by the use of physics-based forward models that
predict the properties of new materials. In cases where the properties of the material
depend on its microstructure, the models can be used as part of an optimization
scheme to predict the microstructural features that are required to achieve the design
objectives. Producing these microstructures, however, requires that we determine
the processing parameters necessary to produce the target microstructure. Here we
demonstrate the use of Bayesian optimization using simple analytic forward models
to enable this inverse process design in the context of optimization of isothermal heat
treatment of a commercial aluminum alloy to achieve (i) a target volume fraction of
a specific intermetallic phase, (ii) a specified aluminum grain size distribution, and
(iii) both objectives simultaneously. We discuss the use, and limitations, of Bayesian
optimization with a scalar desirability function for solving multi-objective problems,
and demonstrate Bayesian optimization with expected hypervolume improvement to
determine the Pareto front describing the trade-off between multiple objectives. We
compare Bayesian optimization with a genetic algorithm (NSGA-IT) and show that
while the two approaches produce similar Pareto fronts, the Bayesian optimization
converges on the solution more quickly. We further illustrate the effect of parametric
uncertainty in the forward models on the uncertainty of the Pareto front. Finally, we

demonstrate experimentally that the optimized process parameters do indeed allow
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us to make samples with the desired microstructure.
Keywords: Probabilistic materials design, inverse design, microstructure

optimization, Bayesian optimization, multi-objective optimization.




1. Introduction

Materials development has traditionally involved an iterative cycle through stages
of processing and characterization to arrive at a set of properties that satisfy the design
criteria. Such iteration can be time-consuming and expensive; it has frequently been
noted that it can take decades to move a material from laboratory to application [1].
One way to accelerate this cycle is through an inverse procedure in which a set of
desired properties is defined, and then a series of experiments is conducted with
various processing parameters. Guided by a suitable optimization scheme, a final set
of processing parameters is identified that optimizes the property (or properties) of
interest [2-5]. This approach to materials design and discovery has been applied to the
development of porous materials [6], optical materials [7], ion-conductive materials [8],
metals [9, 10] , and polymers [11, 12].

Such inverse processes do not directly concern themselves with the effect of mi-
crostructure on materials properties, and indeed in many situations, particularly those
involving functional properties, the microstructure may not be that important. For
situations where microstructure is important, particularly those regarding complex
multiscale mechanical behaviors such as plastic deformation and fracture of met-
als, considerable effort has been devoted to developing physics-based forward models
that predict the properties and behavior to be expected from a specified microstruc-
ture [13-17]. Such models can then be used as part of an inverse scheme in which
various aspects of the microstructure are varied and optimized to produce a desired
set of properties [18-21]. This is important because it enables a design process that
relies heavily on computation, which may be less time-consuming and less expensive
than an experimental campaign that seeks to go directly from processing to proper-
ties. Furthermore, the link to microstructure provides essential physical insight into
the physical mechanisms that underlie the desired behaviors.

However, this description of microstructural design omits a critical step: Once an
“optimal” microstructure has been identified, what processing is required to produce
it? This is essentially a second inverse problem; assuming that we have good physics-

based forward models that describe the development of microstructure resulting from



a given processing treatment, we can use an optimization scheme to determine the
appropriate processing conditions. In this way, the entire materials design loop can
be closed, with computational models being used to both propose microstructural
objectives and determine the necessary processing. In principle, iteration through
such a closed loop can be rapid, accelerating the materials design process considerably.

One notable early attempt at such an inverse process design is the work of John-
son and coworkers, who applied a mesh adaptive direct search algorithm to identify
a heat treatment schedule for obtaining a specified size distribution of Ni,Ti3 precip-
itates in NiTi shape memory alloys [22]. More recently, several groups have tackled
problems in which the goal was optimization of processing conditions for multiple
microstructural objectives simultaneously. For example, Tran and coworkers devel-
oped an asynchronously parallel Bayesian optimization framework which combined
multiple objective functions into a single scalar objective to optimize welding pro-
cess parameters using a Kinetic Monte Carlo forward model [23]. Honarmandi and
coworkers combined composition and process parameters to achieve a desired length
scale and volume fraction of phases resulting from spinodal decomposition in TiAlZrN
alloys [24]. Dornheim and coworkers constructed a framework combining deep rein-
forcement learning with an efficient mean-field crystal plasticity model to identify
metal-forming process parameters to obtain a specified orientation distribution func-
tions [25]. Liu and coworkers employed Bayesian optimization to explore the optimal
initial temperature and cooling rate for a Ti-6Al-4V alloy in metal additive manufac-
turing, aiming to achieve a targeted dendritic area and level of microsegregation [26].

Here we illustrate the use of inverse design to determine the processing param-
eters required to achieve multiple microstructural objectives in heat treatment of a
commercial aluminum alloy. The two microstructural parameters of interest are the
volume fraction of Al;Fe;Cu second-phase particles and the aluminum grain size dis-
tribution. Extending the prior demonstrations of inverse process design discussed
above, we compare the performance of two optimization schemes, Bayesian optimiza-
tion with expected hypervolume improvement and a genetic algorithm (NSGA-II),

in determining the Pareto front (which describes the tradeoff between the two ob-



jectives). We further consider the uncertainty in the Pareto front arising from the
uncertainty in the values of parameters of our forward models. Finally, we perform
validation experiments to show that samples produced using optimized parameters

do indeed achieve our microstructural objectives.

2. Background

To illustrate our framework for multi-objective optimization of processing param-
eters we chose as a specific example the design of aluminum alloys to resist spall, a
dynamic failure process which occurs in response to shock loading and involves nu-
cleation, growth, and coalescence of spall voids [27]. Microstructure influences spall
strength directly by providing nucleation sites for voids and indirectly through its
effect on the dynamic strength, which influences the rate of void growth [28, 29].

In a recent paper we explored the effect of microstructure on the spall strength
of 7085 aluminum, manipulating both the volume fraction of intermetallic particles
and the aluminum grain size distribution via heat treatment [30]. We observed that
spall voids tend to nucleate at Al;CusFe second-phase particles and that the spall
strength increases with the average aluminum grain size, suggesting that aluminum
grain boundaries may also be preferential sites for spall void nucleation.

Ongoing work in this area seeks to develop physics-based computational models to
describe spall void nucleation and growth, with the goal of identifying microstructures
that might be expected to produce materials with outstanding spall resistance. This
naturally raises the question of how to produce such a target microstructure once it
has been identified. This problem can be quite complicated due to the large number
of potential aspects of microstructure which could be manipulated and which might
affect spall strength. Here, we focus on the two microstructural features identified
in our earlier work: The volume fraction of Al;CusFe second-phase particles and
the aluminum grain size distribution. These have the advantages of being easily
manipulated via heat treatment, easily measured, and capable of prediction with
existing physics-based models of microstructure development. It should be noted

that we are not considering the role of smaller (nanometer-scale) precipitates, which



influence spall strength through their effect on the dynamic flow stress of the alloy

but have little effect on spall void nucleation.

3. Forward models for processing

To develop our optimization scheme we need forward models to predict the mi-
crostructure that will result from a given processing schedule. Here we focus on sim-
ple isothermal heat treatments to manipulate the nucleation and growth of Al;CusFe
second-phase particles and the aluminum grain size distribution, although in actual
practice more sophisticated thermomechanical processing would probably be used.
Our use of simple heat treatments is primarily motivated by the primary focus of this
work, which is on optimization and the inverse design process. It also enables use to
employ robust yet relatively inexpensive commercially-available modeling software,
specifically Pandat [31]. We note this is merely a specific example; the optimiza-
tion framework described below is general and could be applied to other aspects of
microstructure using other models.

The overall scheme of forward modeling is outlined in Fig. 1. Our processing
schedules comprise one or two stages of isothermal heat treatment, each specified by
a temperature and a time at that temperature. In order to describe the evolution of
microstructure, we require forward models for the dissolution, nucleation, and growth
of the Al;CusFe particles and for coarsening of the aluminum grains, as described
below. We note that more sophisticated models of microstructural development are
available, but we choose simple models for their computational efficiency and because
our primary focus is on the multi-objective optimization and not accurate simulation

of the microstructure per se.

3.1. Precipitate growth model

Our starting material is 7085-T711 aluminum, which has pre-existing micron-
scale Al;CuyFe second-phase particles [30]. To calculate the volume fraction of these
particles in response to heat treatment we need both a thermodynamic model (to

calculate the Gibbs energies of the various phases) and a kinetic model (to describe
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Fig. 1: Flowchart depicting the forward modelling process. The input to the models is a sequence of
heat treatment steps, each consisting of a temperature and a holding time at that temperature. The
outputs of the models are the volume fraction and size distribution of the Al;CusFe second-phase

particles, and the aluminum grain size distribution.

nucleation and growth of the particles). Here, we use the Calphad model [32] as
implemented in Pandat to calculate the Gibbs energies of the various phases in this
alloy system. Nucleation of second-phase particles in Pandat is based on classical

nucleation theory [33]. The transient nucleation rate (.J) is given by

T

A
J:NZﬁexp<—kB—i) exp(—;), (1)

where N is the nucleation site density, Z is the Zeldovich factor, § is the atomic
attachment rate, AG is the nucleation barrier, kg is the Boltzmann constant, t is
time at temperature 7', and 7 is the incubation time. The nucleation barrier (AG) is

calculated from
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where 0,5 is the interfacial energy of the particle/matrix interface, and AGy and
AGyg are the chemical driving force for nucleation and the elastic strain energy due

to lattice misfit, respectively. Assuming that the nuclei are spherical, [ is given by
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where « is the atomic spacing, D.g is the effective diffusivity, and R* is the critical

radius.



The precipitation dissolution and growth rates are based on a simple model pro-
posed by Morral and coworkers [34], which assumes that growth (or dissolution) are

controlled by diffusion. The rate of motion of the curved particle interface is

dR K
T4t TR G, (4)

where K is a kinetic parameter related to the concentration difference between the
particles and matrix, R is the radius of curvature of the interface, and AG* is a
thermodynamic driving force.

Most of the parameters used in these models are calculated using values built into
Pandat, but several require special attention. The molar volume and atomic spac-
ing used are values for pure aluminum (V;, = 9 x 10°m?® and o = 6.4 x 107 m,
respectively). Most important is the interfacial energy o,s, which has a profound
effect on the nucleation rate. To find an appropriate value for the interfacial energy
we used Bayesian calibration based on a series of heat treatment experiments (see
Supplementary Material for details). In the as-received 7085-T711 material the vol-
ume fraction of Al;CuyFe second-phase particles is (3.2 4= 1.7) x 1073, We performed
heat treatments consisting of a solutionizing step at 600 °C for up to 30 h optionally
followed by annealing at 300 °C for up to 70h. Heat treatments were performed in
air followed by a water quench. The measured precipitate volume fractures were used
to calibrate the value of o,3. The results are shown in Supplementary Information

Fig. S2, with a final value of 5,5 = 2.3 x 1072 Jm™2.

3.2. Grain growth model

The evolution of the aluminum grain size distribution is calculated based on the
Kampmann/Wagner Numerical (KWN) model [35]. In this model the continuous
probability density function (PDF) representing the grain size distribution is divided
into a large number of classes, and the evolution of each class is evaluated for each
time step. The grain growth model is

. 1 1
= aM S 4z
Rz « efffyvm (Rc Rz + > 3 (5)



where « is a shape constant, +y is the interfacial energy of the grain boundary (assumed
the same for all boundaries), R; is the radius of grains in the ith class, R. a radius
parameter related to both grain size and shape, and 7 is a parameter describing the
Zener drag effect [36, 37]. Finally, Mg is the effective grain boundary mobility,

Mg = TM’ (6)

where A, is the mobility coefficient, § is the width of the grain boundary, and M is
an effective atomic mobility. To use Eqns. 5 and 6 we require values for the various
parameters. Several of them (R, V,, for aluminum, and M) we draw from the Pandat
thermodynamics and mobility databases. We take the grain boundary width § to be
twice the Al nearest-neighbor distance (6 = 3.68 x 107 m) and assume the Zener
parameter Z to be zero.

The remaining parameters (v and A,) we obtain by calibrating the model against
suitable experimental data. To select the kinetic parameters and validate the grain
growth model, we performed single-stage heat treatments and characterized the alu-
minum grain structure via EBSD; details of the characterization are provided in the
Supplementary Information. We report grain sizes as effective radii (that is, the radius
of the circle with the same area as a given grain). Cumulative grain size distributions
for the starting material and material annealed at 500 °C for up to 192 h are shown in
Supplementary Information Fig. S3, together with the predictions of the model using
the final values of the parameters (7 = 0.65Jm™2 and A, = 0.9).

From Supplementary Information Fig. S3 we can see that the model captures the
mean of the grain size distribution well, but does a poorer job replicating the shape
of the distribution. This is probably partly due to the relatively complex starting
aluminum grain size distribution, which is both heterogeneous and anisotropic [30].
Furthermore, the grain growth model is a simple one, which does not fully capture
all aspects of grain structure evolution, such as nucleation of new grains via recrys-
tallization. One could imagine incorporating a more realistic model (such as a Potts
model [38-40] or a phase-field model [41-43]) to better capture the evolution of the

grain size distribution, at the cost of greater computational complexity and introduc-



ing additional parameters into the optimization. Here, our focus is on the optimization
problem so we elected to use the simpler model, which allows us to rapidly iterate

potential solutions.

4. Single objective inverse problem

In this section we describe inverse process design for the two single objectives
(precipitate volume fraction and aluminum grain size distribution) separately, before

tackling the more complex problem of multiple objectives in the following section.

4.1. Bayesian optimization for process design

The inverse problem of determining the optimal process parameters to achieve a
particular target microstructure, given physics-based forward models of microstruc-
tural development, is basically one of optimization. Essentially, we need to define an
objective function describing the agreement between the target microstructure and
various candidate microstructures predicted by the forward model, and then optimize
the process parameters to make the agreement as good as possible. In practice, this is
complicated because the parameter space is continuous and multidimensional, and the
forward model may be time-consuming and expensive to run. To efficiently explore
this space we use Bayesian optimization [44]. We note that Bayesian optimization
has been used by others in the context of selecting process parameters to optimize
materials properties [45-48]. Here, we seek to use it to identify process parameters
necessary to produce a specified microstructure.

Bayesian optimization uses a surrogate model to describe the behavior of the
objective function in the parameter space, which is initially unknown, based on a
relatively small amount of training data. In our case, we use Gaussian process regres-
sion to generate this surrogate model. Because the training data set is small there
are uncertainties associated with the predictions of the model, which may vary from
point to point in the parameter space. In Gaussian process regression knowledge of
the uncertainties allows us to calculate an acquisition function that identifies places

(in parameter space) where the forward model should be run to reduce the uncer-
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tainty in the surrogate function and locate the optimal value of an objective function.
Here we use the expected improvement function as our acquisition function to select
the next point to test [49]. The algorithm continues until either the expected im-
provement reaches a selected small value (implying that little more improvement is
anticipated), or a pre-defined number of iterations have been performed. In practice,
we have found that running one hundred iterations results in satisfactory convergence
even if the expected improvement function is still decreasing. We discuss convergence
issues in more detail below.

Figure 2 is a schematic overview of the Bayesian optimization framework for the
specific case of a one-step thermal treatment (time ¢t at temperature T') of our alu-
minum alloy. The starting point is a target microstructure that we aim to achieve.
To allow quantitative comparison with the results of the forward models this mi-
crostructure is described by a few parameters (for example, a volume fraction of a
specific phase of interest, or the aluminum grain size distribution). The optimization
process is initiated by random selection of (7, t) points, and the forward models are
run for each combination to produce candidate microstructures (again represented by
statistical descriptors). The candidate microstructures are compared with the tar-
get microstructure through calculation of an objective function which quantifies the
differences. This allows creation of a surrogate model which describes the shape of
the objective function surface across the parameter space. Next, the expected im-
provement acquisition function is used to determine a new set of points in parameter
space at which to run the forward model. When a specified stopping criterion is
met, the algorithm terminates and the optimum values of the process parameters are

determined from the global minimum in the objective function.

4.2. Optimizing the volume fraction of second-phase particles

As a demonstration of the Bayesian optimization framework, we first describe its
use for a simple case: Finding the heat treatment conditions (time at temperature)
necessary to produce a specified volume fraction of an intermetallic phase, Al;CuyFe.

Our as-received starting material (aluminum alloy 7085-T711) has a volume fraction

11
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Fig. 2: An overview of the Bayesian optimization framework for determination of process parameters

to achieve a specified target microstructure. A surrogate function describing the differences in
microstructure derived from various points in process parameter space (calculated from the forward
models) is constructed, and additional points are calculated until a defined stopping criterion is
met. At this point the optimal process parameters are determined from the global minimum in the

surrogate function and returned as the output of the process.

of approximately 0.003 for this phase, and as a target for demonstration purposes we
arbitrarily chose to reduce this to 0.001. In principle, this can be achieved by a single-
stage heat treatment at a temperature where Al;CusFe is unstable, monotonically
reducing its volume fraction as it dissolves. Alternatively, we can imagine a two-stage
heat treatment consisting of a solutionizing step at high temperature, followed by
re-precipitation and growth to the target volume fraction at a lower temperature. We

illustrate both in this section.

4.2.1. Single-step heat treatment

Some microstructural features, such as the volume fraction of second-phase parti-
cles, can be described by a single number. Others, such as the grain size distribution,
require more complex descriptors. If a single-valued descriptor is appropriate we

can quantify the difference between the candidate and target microstructures as the

12



absolute value of the difference between the single-value descriptors,
y(@;) = |Sc(zi) — S, (7)

where y(x;) is the value of the objective function at point z; in process parameter
space, Sc(x;) is the value of the microstructural descriptor of the candidate mi-
crostructure at point x;, and S, is the descriptor of the target microstructure. For
the simple case of precipitation of a second phase considered in this section, S is
simply the volume fraction of that phase. The goal of the optimization is to find the
point in parameter space = that minimizes the value of y(z).

We describe each stage of heat treatment by two processing variables, temperature
T and time t, which together form a vector. For instance, a one-step heat treatment
is defined as & = [T, t1], and two-step heat treatment is defined as & = [T1, t1, Ta, to] .
For the single-stage heat treatment we constrained the range of temperatures searched
to be from 7" = 0 °C up to the melting temperature of the alloy, 7' = 630 °C [50], know-
ing that only the upper part of this range is useful for reducing the volume fraction.
For the two-stage treatment we decided to reduce the size of the parameter space to
be searched by constraining the temperature range of the first step (solutionizing)
step to be between 400 °C (above the nose of the TTT curve for Al;Cu2Fe predicted
by Pandat) and the melting point of the alloy. For the second step (precipitation
and growth) we constrained the temperature range to be between 100 °C and 400 °C.
For similar reasons, we constrained the duration of the stages to be 0h to 30h for
solutionizing and Oh to 100 h for precipitation and growth.

Using the UQpy package developed by Olivier and coworkers [51], we initiated the
Bayesian optimization framework by selecting twenty random points in processing
parameter space, which we designate ¥;. These are used as inputs to the forward
model, which produces as output the volume fraction of particles Vy at each . From
these we calculate the objective function y(Zy) at each point; these then represent
the training data for the model (Fig. 3(a)). The surrogate model is constructed
by Gaussian process regression, together with an estimate of the uncertainty in the

model at each point & in process parameter space. The acquisition function then
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Fig. 3: Contour plots of the Gaussian process regression surrogate model, with contours of constant
objective function (Eqn. 7). (a) Initial model with 20 training data points indicated. Note the min-
imum in the objective function at high temperatures and long times (upper-right corner). (b) Final
surrogate model obtained by Bayesian optimization, with the candidate solutions indicated. Note

the refinement of the shape and position of the global minimum.

determines new points at which to run the forward model. This process iterates
until the stopping criterion is satisfied; as discussed below, in practice we found that
running one hundred iterations was sufficient for the objective function to converge
on a final value. The final surrogate model is shown in Fig. 3(b), with the minimum
identified at (=12 = Zopt = [576 °C, 74 h]).

To check this result we prepared a physical sample according to the identified
optimum heat treatment. EDS maps of randomly-chosen areas on this sample are
provided in the Supplementary Information Fig. S4. The volume fraction determined

by manual point count method was V; = 0.0011, close to the target volume fraction

of 0.001.

4.2.2. Two-step heat treatment

Next, we move on to a more complicated case of a two-step heat treatment, con-
sisting of a solutionizing stage to dissolve the Al;CusFe second-phase particles fol-
lowed by a nucleation and growth step to re-form the particles, which is described
by a vector &; = [11,t1, T, t] as discussed above. The bounds for the search space
are set up according to the TTT diagram, also described above. The initial train-

ing points, candidate solutions, and final solution are shown in Fig. 4. Because
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same color.

the search space is four-dimensional the shape of the objective function surface can-
not be easily represented in a manner similar to that for the single-stage treatment.
Again we ran the optimization for 100 iterations, but in fact the optimal solution
(Ziz16 = Topt = [625°C, 1h,194°C, 50 h]) was identified after only 16 iterations.

To verify this result we measured the volume fraction of Al;CuyFe second-phase
particles produced by the optimized heat treatment using the systematic manual point
count method on an EDS map (shown in Supplementary Information Fig. S5). The
measured volume fraction of (8 £4) x 10~* is within the experimental uncertainly of

the target value, 1 x 1073,

4.3. Optimizing the aluminum grain size distribution
Unlike the volume fraction of particles which is described by a single scalar, the

grain size distribution of the aluminum is described by a probability density function
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(PDF). To compare distributions we use the Kolmogorov—Smirnov (KS) test, which
is a commonly-used non-parametric test defined as the absolute maximum difference
between two continuous distribution functions (CDFs) [52, 53]. After transforming
the grain size distribution PDF to a normalized CDF, we calculate the KS distance

as

y(fz) = sup ’Fcandidate<fi) - Flcarget’ ) (8)

where “sup” indicates the largest difference between the candidate distribution Feangidate(Zi, J)
for heat treatment Z; and the target distribution Fiaeet(j) across all of the grain sizes
in the distribution. This process is illustrated in Fig. 5 for the comparison between

the initial microstructure (prior to any heat treatment) and the desired target mi-
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Fig. 5: Calculation of the KS distance y(#;) between a target grain size distribution Fiarget and
a candidate distribution Feandidate(Z;) corresponding to heat treatment Z;. Top: Target grain size
distribution as a probability density function (PDF) at left, which is cumulatively summed to produce
the cumulative density function (CDF) at center. The same procedure is applied to the candidate
distribution (bottom). At right the two CDFs are compared; the KS distance y(Z;) is the largest

absolute difference between the two CDFs (at any grain size).

To test Bayesian optimization of the processing parameters for a target grain size

distribution, we arbitrarily chose as our target a log-normal size distribution with
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a mean of 25pm and standard deviation 10 pm. In what follows we describe the
grain size distribution in terms of unweighted (instead of log-weighted) grain sizes,
which for our target grain size distribution is 29 pm. Our search space spanned a two-
stage heat treatment with the same constraints as for the particle volume fractions
(described above). We note, however, that very little grain growth happens during
the second stage of the heat treatment, which is at a lower temperature than the first
stage. Fig. 6(a) shows the search space with the initial (training) points, candidate
solutions, and the final optimal solution. The optimal solution, Fj—gp = Topt =
[530°C, 11 h,208°C, 80 h], was reached after ninety iterations. The initial and target
grain size CDF's, along with the CDF of the optimal solution, are shown in Fig. 6(b).
Parts (c¢) and (d) of that figure are contour plots showing the surrogate function
before and after optimization.

To verify that this works, we prepared a sample following the optimized heat
treatment schedule. The mean aluminum grain size obtained from EBSD on that
specimen (shown in Supplementary Information Fig. S6) is 31.0 & 1.3 pm, which is

reasonably close to the target value of 29 pm.

5. Multi-objective inverse problem

In the prior section we demonstrated how Bayesian optimization can be used to
determine processing parameters corresponding to a single target microstructural ob-
jective, either particle volume fracture or grain size distribution. However, in practice
the need to achieve multiple properties simultaneously may produce a requirement to
meet more than one microstructural objective at the same time. This is, in principle,
significantly more challenging than optimizing for a single objective because a change
to the processing parameters to improve one feature of the microstructure may come
at the expense of another. In this section we demonstrate several approaches to this
problem, optimizing both the volume fraction of Al;CusFe second-phase particles and

the aluminum grain size distribution simultaneously.
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heat treatment. (c) Contour plots of the initial surrogate model, with contours of constant objective
function (Eqn. 8). Note that although the search space is four-dimensional, this plot shows only the
higher-temperature stage ([71, t1]) because the second stage (which occurs at lower temperature)
has almost no effect on the aluminum grain size distribution. (d) Final surrogate model obtained

by Bayesian optimization, with the candidate solutions indicated. Note the refinement of the shape

and position of the global minimum.
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Fig. 7: (a) Schematic Pareto trade-off plot. The points represent candidate solutions, and the points
defining the Pareto front are shown in blue. The two points shown in red illustrate two optimal
solutions with different relative importance of the two objectives. (b) Trade-off plot for the particle
volume fraction (black) and grain size (red) objectives optimized independently. The initial points
and candidate solutions are represented as filled and open circles, respectively. The Pareto front is

in blue.

5.1. Pareto front methods

To begin we need some way to assess the trade-offs inherent in optimizing against
multiple objectives. This is the idea behind the Pareto front, illustrated schematically
in Fig. 7(a). The value of the objective function for each goal is plotted against the
other; the Pareto front is the set of solutions for which no other solution improves
on both objectives (i.e. is closer to the origin in Fig. 7(a)). For example, points (1)
and (2) on Fig. 7(a) represent different trade-offs between the two objectives. Thus
the Pareto front comprises a set of solutions which are all in some sense optimal but
which give different weights to the two objective functions.

A simple approach to optimizing against multiple objectives would be to optimize
for each separately, combine all the candidate solutions into a single set, construct
the Pareto front, and then choose a solution on the front that reflects the relative im-
portance of the objectives. To illustrate the present case, Fig. 7(b) is a Pareto-front

plot for the candidate solutions for the single-objective volume fraction and grain
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size distribution optimizations discussed above. It is apparent that the candidate
solutions in the vicinity of the Pareto front are sparsely distributed, particularly in
the regions of the plot where the two objectives are nearly equally weighted. This
is not surprising, given that in the two optimizations the objectives were considered
independently. It thus seems likely that there may be other, potentially better solu-
tions to be found in this region, and it becomes important to optimize against both
objectives simultaneously.

As a first attempt at multiple-objective optimization we used an implementation
of the non-dominated sorting genetic algorithm II (NSGA-II) [54, 55] as implemented
in the pymoo package [56]. Here, we used the simulated binary crossover (SBX) [57]
and polynomial mutation (PM) [58] genetic operators. The NSGA-II parameters
were gene length of four, crossover rate of 0.6, mutation rate of 0.05 and an initial
population size of twenty. The Pareto front evolves with an increasing number of
generations; in practice we found that the Pareto front evolved to a stable position
after about forty generations.

The operation of the NSGA-II algorithm is illustrated in Fig. 8. Starting from
an initial population of candidate solutions (the first generation), the forward models
are run to determine the volume fraction of Al;Fe;Cu second-phase particles and the
aluminum grain size distribution, and the values of the objective functions (relative
to the targets) are calculated. The individual candidate solutions are then ranked (by
the fast non-dominated sorting approach and the crowding distance [59]) and then
the top individuals (ten here) are selected to be parents of the next generation. From
those parents, offspring are generated by crossover and mutation of the four variables
(two times and two temperatures) and the fitness of each offspring is calculated using
the forward models and the values of the objective functions. The algorithm iterates
until the specified number of generations (or some convergence criterion) is reached.

The results are shown in Fig. 9, which compares the solutions produced by the
NSGA-II algorithm after forty generations with the naive Pareto front derived from
the separate single-objective Bayesian optimizations. Notice that the smallest achiev-

able values of the two objective functions are about the same as in Fig. 7(b), nearly
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Fig. 8: An overview of the NSGA-II framework for determination of process parameters to achieve

a specified target microstructure.

zero for the volume fraction objective and about 0.1 for the grain size distribution
objective. But with the genetic algorithm the objective function for both objectives
can be reduced simultaneously in the region between these extremes, reflecting more
optimal solution for various trade-offs between the two objectives. Notice also that
the solutions identified are more uniformly and densely distributed along the Pareto

front.
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Fig. 9: The optimized Pareto front determined by the genetic algorithm (blue) compared with the

naive Pareto front determined from the single-objective optimizations (black).

5.2. Bayesian optimization with desirability function-based scalarization

Conceptually, a simple way to approach Bayesian optimization for multi-objective
problems is to combine the objectives into a single, scalar function. For example, we

can simply calculate a weighted sum of the individual objection functions,

Y(a) = 3 wilo), ©)

where w; is the weight for objective function y;, x represents the independent variables,
and Y (x) is the overall objective function.

One complication in applying Eqn. 9 is that the various individual objectives y;(x)
may represent quite different values depending on the nature of the objective (for ex-
ample, the particle volume fraction and the KS distance of the grain size distributions
calculated above). This issue is addressed by the use of “desirability functions,” which
are essentially normalized versions of individual objective functions [60]. For exam-

ple, if y;(z) is the distance between a value and the target then the desirability can
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be described by

L, for y;(z) < LSL
Ailys(@)] § (4E5EE)" for LSL < yi() < USL
0, for y;(z) > USL,

where LSL and USL are the lower and upper specification limits respectively and
s is a geometrical parameter. The desirability scales from 1 (if the value of y;(x)
is within the LSL of its target) to zero (if y;(z) is more than the USL above the
target. The geometrical parameter s describes the shape of the transition between
the two extremes of d; = 1 close to the target and d; = 0 far away. We note that the
desirability may be calculated in slightly different ways, depending on the nature of
the objective [60].

To optimize multiple objectives simultaneously, Derringer and coworkers con-
structed an overall desirability function Y as a weighted product of the individual

desirability functions,

v = (o] 10

=1

where w; is the weighting factor of the ith objective function [61]. The weights are
chosen based on the assessed relative importance of the individual objectives, with the
constraint that 0 < w; < 1 and normalized such that ), w; = 1. In essence, the opti-
mal solutions form a Pareto front as above, and the chosen weights determine which
of the solutions on that front is chosen. By transforming the multi-objective problem
into a single objective problem in this way we can apply the Bayesian optimization
framework to its solution.

To this approach, we optimize the processing conditions for producing a particu-
lar Al;CusFe volume fraction and aluminum grain size distribution (using the same

targets and limits as above), assigning different weights to the two objectives (Fig. 10).
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Fig. 10: Multi-objective problem (particle volume fraction and aluminum grain size distribution)
solved using overall desirability and Bayesian optimization. Trade-off plots showing the two objective
functions by applying different weights for each objective function with (a) wVF = 0.8, w%SP = 0.5
(b) wVF = 0.5, wEP = 0.5 (¢) wVF = 0.2, wSP = 0.8. The initial points (filled circles), candidate
solutions (open circles), and the final optimized solution (red). Also shown is the Pareto front

determined by the genetic algorithm NSGA-II described above.

Figure 11(a) illustrates the search space, including the initial (training) points,
candidate solutions, and the optimized solution. The optimization process applies
a weight of 0.2 to objective function 1 (volume fraction) and a weight of 0.8 to
objective function 2 (grain size distribution). The optimal solution was Zop

(626 °C,0.2h, 169 °C, 60 h], reached after 86 iterations.
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Fig. 11: Multi-objective problem (particle volume fraction and aluminum grain size distribution)
solved using overall desirability and Bayesian optimization. (a) Initial, candidate, and optimized
two-stage heat treatments, similar to Fig. 4 above). (b) Grain size distributions: Initial (gray),

target (dashed), optimized solution (red), and experimentally-determined final (blue).

The initial and target grain size CDFs, along with that for the optimal solution are
shown in Fig. 11(b). To verify this result, we heated-treated a sample following the
optimized solution. The experimentally-determined CDF of the grain size distribution
obtained from EBSD on that specimen (Supplementary Information Fig. S7) is shown
in blue in Fig. 11(b). As with the single-objective optimization above, the agreement
between the mean of the experimentally-determined distribution (30.0 &+ 1.4 pm) is
in good agreement with the target 29 pm, although the shape of the experimentally-
determined distribution varies significantly from that of the optimized solution. The
optimized volume fraction of Al;Fe;Cu second-phase particles was 0.0015, compared
to a target value of 0.001. The experimental value of the volume fraction of Al;Fe,Cu
second-phase particles was (0.0010 4 0.0005 ), and the corresponding EDS map is
shown in Supplementary Information Fig. S8, in good agreement with both the
target and optimized solution. We note that the solutions determined by Bayesian

optimization lie close to the Pareto front found by the NSGA-II algorithm, as expected
(Fig. 10 (c)).
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5.3. Bayesian optimization using expected hypervolume improvement

A limitation of the desirability function approach to Bayesian optimization of
multi-objective problems is that it only locates a single point on the Pareto front,
reflecting the weighting of the individual objectives selected by the user. This is
problematic because it does not provide a complete view of the trade-offs involved,
and because preferences (i.e. weighting of the objectives) may change with time.

An alternative approach which allows us to identify the entire Pareto front is
Bayesian optimization using expected hypervolume improvement (EHVI) as the ac-
quisition function [62]. The hypervolume is the size of the dominated subspace
bounded by a provisional Pareto front (P) and a reference point (r), as illustrated
schematically in Fig. 12(a). As new points y are calculated, the improvement in the
Pareto front is quantified by the increase in the hypervolume, as shown in Fig. 12(b).

The hypervolume improvement (HVI) is given by
HVI = HV(Pyew) — HV(P) (11)

where P, is the Pareto front determined with the additional candidate points y. To

choose these new points, we calculate the expected hypervolume improvement,
EHVI(4, 0, P,r) = / HVI(P,y) - PDF,, () dy, (12)

where PDF,, ,(y) is the probability density function associated with the new points y.
Here we use single-task Gaussian process regression to generate surrogate models, with
a multivariate independent normal distribution with mean p and standard deviation

o [63].
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Fig. 12: (a) Schematic hypervolume (shaded yellow) between a reference point r and a provisional
Pareto front P = {Py, Ps, P3, P,}. (b) Improvement of the hypervolume by introduction of two new
points (Ps (shaded blue), Ps (shaded green)).

We performed Bayesian optimization using the EHVI acquisition function using
the Botorch package [64]. We chose an initial population of twenty points, and in-
troduced a new candidate point at every iteration. The optimization process was
terminated after eight hundred iterations. The results are shown in Fig. 13, which
compares the Pareto fronts produced by Bayesian optimization with EHVI with that
from NSGA-II. We see that the Pareto fronts determined by the two algorithms are

similar.
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Bayesian optimization, and candidate solutions are shown as open triangles.

6. Discussion

Our results show that both Bayesian optimization with expected hypervolume
improvement and a genetic algorithm (NSGA-II) can be used for inverse process
design to achieve a particular target microstructure, and that for our test case the
two approaches produce similar Pareto fronts. Two key questions regarding this
work are the relative efficiencies of the two algorithms (which may become especially
important when more realistic and therefore more computationally-intensive physics-
based forward models are used) and the uncertainty in the Pareto front determined
by this approach.

The relative efficiency of Bayesian optimization with expected hypervolume im-
provement and the NSGA-II genetic algorithm is illustrated in Fig. 14, which shows
the increase of the hypervolume as a function of the number of candidate points
evaluated for each approach. A total of fourteen runs were performed (seven each
for Bayesian optimization and NSGA-II), and in the plot the hypervolumes are nor-

malized by the value of the largest hypervolume after 800 evaluation among these
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fourteen runs. We see that although both algorithms converge to similar hypervol-
umes (and thus similar Pareto fronts), Bayesian optimization improves more quickly
as a function of the number of evaluations. In practice, one would not pre-determine
the number of evaluations, but would instead choose a convergence criterion based
on the rate of increase of the hypervolume [65]. In this light, Bayesian optimiza-
tion would be preferred because it converges more quickly, at least for the problem

considered here.
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Fig. 14: Hypervolume improvement for the Bayesian optimization and generic algorithms, as a
function of the number of points evaluated. The solid line represents the mean of the hypervolume
(averaged over seven runs for each algorithm) and the shaded area illustrates the standard deviation.
The hypervolumes are normalized to the value of the largest final hypervolume from the fourteen

total runs.

Naturally, the question of relative efficiency becomes more important as the com-
putational cost of the forward models increases. For this work we deliberately chose
relatively simple forward models because their low computational cost allowed for
rapid iteration through the optimization process. More accurate results could be
obtained with more sophisticated models. For example, Monte Carlo Potts mod-

els [38, 39] phase field models [41, 42], and hybrid models [66] would likely predict
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the grain size distribution more accurately by accounting for complex effects such as
anisotropy, abnormal grain growth, and coupling of grain boundary migration with
local chemistry. Similarly, in this study we chose to examine only simple heat treat-
ments; consideration of more complex thermomechanical processing would require
appropriate forward models.

We note that although Bayesian optimization works well for this fairly simple
problem with two microstructural objectives, this may not be true in other situa-
tions. In particular, in a situation with a larger number of microstructural objectives
(which may be correlated with each other) the relative efficiency of Bayesian optimiza-
tion may suffer as the computational complexity of constructing the surrogate model
increases. For problems of higher complexity, more efficient and scalable optimization
algorithms, such as reinforcement learning [67, 68], may be required.

A second important question relates to the uncertainties in the results. The sys-
tematic (epistemic) uncertainty of the predicted optimal processing sequence arises
from two sources. First is the choice of forward models; different models naturally
produce different results and will result in a different optimization [69]. Second is
uncertainty in the parameters of the models — most notably in our case, that of the
interfacial energy o3 in Eqn. 2 and the grain boundary energy in Eqn. 5. Because
the choice of forward models is not a focus of this study (as discussed above, we
deliberately chose simple models of low computational complexity), here we discuss
only the parametric uncertainty.

We built the surrogate model with a fixed set of parameters of the forward model,
obtained through a Bayesian calibration process using the results of a limited num-
ber of experiments (as discussed in Supplemental Material). The primary objective
of Bayesian calibration is to reduce the difference between the experimental obser-
vations and simulation results based on an absolute distance metric (as shown in
Supplementary Information Fig. S2 and S3). An advantage of Bayesian calibration is
that it returns the posterior distribution of the model parameters, which we can use
in assessing the parametric uncertainty in the Pareto front. To do so, for each point

along the Pareto front (Fig 13) we sampled the posterior distributions of both inter-
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facial energy and grain boundary energy, and used these values to compute the value
of the two objective functions around each point on the Pareto front. The results are

shown in Fig. 15.
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Fig. 15: The effect of uncertainty in model parameters on the Pareto front. The red circles are the
Pareto front positions determined by Bayesian optimization with expected hypervolume improve-
ment (Fig 13). Each blue point represents a new combination of objective functions calculated from
the forward models using model parameters sampled from the posterior distributions obtained from

Bayesian calibration.

The new points (blue) in Fig. 15 represent the uncertainty in the Pareto front
position. We note that the position of the front is not strongly affected by the
uncertainty in the model parameters. This is an interesting observation, particularly
because the nucleate rate of the second-phase particles is extremely sensitive to the
value of the interfacial energy, which appears as a cubic term in an exponential

(Eqns. 1 and 2). The lack of sensitivity of the Pareto front to this parameter is likely
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because the objective function is associated with the volume fraction of the second
phase, which is associated with thermodynamic phase stability, not necessarily the
kinetics of precipitation. It may well be that if the objective function was based on
the size distribution of the second-phase particles, rather than their volume fraction,
the uncertainty in the results would be larger.

We note that this is a preliminary approach to understanding uncertainty in the
inverse design process, providing a basic understanding of the effect of paramet-
ric uncertainty on the Pareto front. However, it simplifies the complexity of the
problem by assuming that the posteriors of the calibrated parameters are normally
distributed [70]. A more sophisticated approach would be to apply a stochastic sim-
ulation technique, such as the Markov Chain Monte Carlo (MCMC) method, during
Bayesian calibration. This method applies a flexible probabilistic framework that bet-
ter captures the full scope of potential variability of the parameters [71]. The MCMC
method generates samples of the model parameters using a Markov chain, which is
designed such that its stationary distribution is expected to converge to the poste-
rior distribution of the model parameters. This produces parameter values without
assumptions about the shape of the posterior distribution. Finally, we note that a
more complete analysis of uncertainty would include the choice of the forward models.
As mentioned above other models such as phase field or Potts could provide more
sophisticated predictions of grain growth, but are computationally much more intense
than the simple analytical model used here. The effect of these kinds of choices on

inverse process design is an important subject for future research.

7. Conclusion

In this study, we described the development of an inverse “process-structure”
framework that identifies the optimal processing parameters required to generate a
target microstructure. We applied isothermal heat treatments to a commercial alu-
minum alloy in order to modify specific aspects of its microstructure, including the
volume fraction of Al;CusFe second-phase particles and the aluminum grain size dis-

tribution, both individually and separately. For the multiple objective optimization
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problem we find that Bayesian optimization with expected hypervolume improve-
ment and a genetic algorithm (NSGA-II) produce similar Pareto fronts describing
the trade-off between the two objectives, but that Bayesian optimization converges
to the solution more quickly. We also considered the effect of uncertainty in the
parameters of the forward model (specifically, interfacial energy of the Al;CuyFe par-
ticles and the aluminum grain boundary energy) on the Pareto front. Interestingly,
even though these parameters (and particularly the interfacial energy) can have a pro-
found effect on the kinetics of the microstructural evolution, parametric uncertainty

has only a modest effect in the position of the Pareto front.
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