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Abstract: Supported single-atom catalysts (SAC) show a large range of activity
and selectivity that depend on the local environment of the catalytic sites. A theory-
based optimization strategy is presented that is based on a density functional theory
(DFT) determination of the transition states and intermediates for a low-
dimensional coordinate representation of the heterogeneity of the active sites. The
approach is applied to a vanadium catalyst on an amorphous SiO> support that
involves a large kinetic network described using a full-chemistry model. Without
assuming a priori scaling relations or mechanism reduction, the optimal state of
heterogeneity is found to lie at atomic configurations where the activation energies
for two distinct key chemical processes are equal. It is found a posteriori that the
behavior of the system is consistent with linear free energy scaling relations in the
randomness parameters. The energetic span theory proves quite useful in reducing
the full chemistry model to a small number of key reactions. The use of a nonlinear
optimization algorithm in combination with energetic span theory provides
significant simplification in treating disordered systems.
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1.Introduction

The design of optimal catalysts to promote a chemical process is a long-standing objective
in chemistry and engineering. In the optimization paradigm, a desirable quantity such as the
turnover frequency (TOF), product selectivity, or energy release is maximized with respect to a
set of controllable parameters that constitute the design space. This design space may include the
identity of a catalytic metal or alloy, the ligands attached to the active site, the pH or temperature
of the reactor, among many other possible choices. The range of these features is restricted to a
feasible set (FS) of physically reasonable values. With the advances occurring in the efficiency of
computational chemistry, it has become increasingly possible to use ab initio methods to determine
the design variables which optimize performance over a family of catalysts.! 23 45 ¢ This approach
can produce a so-called “volcano plot” where the predicted activity or other desired quantity shows
a sharp maximum as a computational input is varied.”® ° '° Often a key descriptor is the binding
energy of an intermediate adsorbate species along the chemical pathway which then can be used
to screen large numbers of candidate catalysts. Optimization packages are now available for a wide
variety of important catalytic systems and numerous strategies exist that often employ machine
learning methodology.!! 12 13 1* One design variable that is difficult to model is the disorder of the
catalytic environment, i.e., the heterogeneity of the catalytically active site. The active site
heterogeneity may reflect the conformational structure of an enzyme, the random distribution of
adsorbates on a metallic surface, or, as in the present case, the anchoring (or grafting) site of a
catalytic atom on an amorphous support. Despite clear evidence that local environment
surrounding the active site strongly influences activity, it has proven difficult to quantitatively
characterize such randomness in a systematic way. The direct observation of chemistry at
individual active sites using traditional methods of surface science is obscured since measurements
tend to average over atomic environments. Recent studies suggest, however, that spatially resolved
atomic level (scanning tunneling microscopy) STM or (scanning transmission electron
microscopy) STEM measurements, in tandem with theoretical modeling, can provide considerable
insight in the nature of single-atom catalysts (SAC)." '° In principle, single molecule kinetics also
provides an experimental window into the role of atomic level disorder revealed in real time.!7 '8 1°
2 For most catalytic systems of interest, however, such experiments are not currently feasible and

we rely mostly on theoretical modeling for insight.



The atomic state of disorder may change with time. As an umbrella concept, we note that
molecular disorder experienced by the catalyst can be characterized by the time scale that
quantifies the passage between disordered states.?! For static disorder, the time scale is extremely
long, and the catalyst is essentially frozen in place during the course of the experiment. For
dynamic disorder, such as with enzymatic catalysis or dynamic fluxionality of high temperature
metal clusters??, the catalyst activity is fluctuating at an observable rate that may even be
comparable to the TOF. Here we focus on static disorder, where the rate coefficients for the
catalytic network are time-independent at each individual catalytic site in the sample. We further
specialize the methods to cases of grafted SAC on an amorphous support which is illustrated here

using an explicit model of an olefin hydrogenation reaction using a vanadium catalyst on silica.

There are an enormous number of distinct grafting sites available to the vanadium complex
each of which is characterized by a different effective activity. This discrete distribution of
catalytic environments is labeled by the high-dimensional coordinate vector, X, describing the
relaxed equilibrium atomic structure. It is difficult to optimize the TOF versus X since each
structure 1s an isolated minimum of the energy function that ideally should be separately sought
and then kinetically modeled. Instead, we shall pursue an approach based on an approximate
continuum model of the where it is assumed that X can be described as a continuous variable which
labels various potential SAC environments. This allows the use of powerful optimization methods
that can efficiently search the high-dimensional space of disordered states. It is approximate in
that the values of X explored in the search are not fully relaxed states. However, the approximate

optimization does reveal zones of high activity and provides clues as to the design targets.

The disordered state is assumed to be parameterized by a small subset of the atomic
structures, x C X, describing the local environment of the active site, such as bond lengths and
angles of the spectator atoms surrounding the SAC. The activity of the state x is determined using
ab initio methods where the remaining coordinates in X are then fully relaxed. This short-ranged
disorder can be supplemented, if necessary, with much weaker additive Gaussian noise to represent
long-ranged randomness. The catalytic sample is represented by a probability distribution of these
environments. If the local coordinates, x, are held fixed to represent a single catalytic environment
in the distribution, the energetics of the network of chemical reactions {G(x)} occurring at the
active site can be obtained from quantum mechanical (QM) calculations, where x are treated as

fixed constraints and {G(x)} represents the free energies of the intermediates (INT) and transition
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states (TS). Since the rate coefficients of the network {k(x)} can be computed using transition state
theory (TST), it is then possible to construct kinetic observables as explicit functions of x to obtain,
e.g., an activity map vs. x. Likewise, a selectivity map can be created from the kinetics when
chemically branched pathways exist. When numerical optimization methods are applied to those
observables, the most effective disordered environments x* can be discovered as illustrated by the

simple scheme

Activity Map(X) e x*(TOF)
x —— {G(x)} — {k(x)}
oM IST Selectivity Map(x) = x*(Select)

kinetics optimization

It then becomes a problem in synthesis to fashion ways in which those environments may be
enhanced in creating a sample. The regions of high activity or selectivity correspond to hotspots
on the sample where greater turnovers of a given product are seen. The potential for direct
observation of such hotspots was demonstrated by Chen and coworkers? via mapping the site-
specific chemistry on two-dimensional nanocrystals.

The practical challenges of theoretically designing optimally disordered environments are
significant. In addition to the need to develop a cogent and effective optimization formalism, the
computations must necessarily involve many QM evaluations at a sufficiently high-level accuracy
for a large number of environments. This burden is compounded since the chemical mechanism
itself may involve many reactions and intermediates. Thus, if Nq disordered environments need to
be sampled for Ny chemical states, we then would require Ng X N; large QM calculations. We can
reduce this daunting number in two ways. First, by the process of mechanism reduction, the
chemistry can be reduced to a smaller number of key kinetic steps. This greatly lessens the number
of chemical structure determinations needed and has been extensively used in many applications.
In the most extreme form, this might constitute a reduction to a single reaction. Second, using
efficient numerical optimization algorithms the disorder space can be searched to find regions of

optimal performance thus avoiding the need to engage in a systematic sampling of the space.*

In the present work, we propose an optimization method that is adaptable to a variety of
disordered systems where single point QM calculations are feasible for the relevant chemical

structures. The methods proposed build on a kinetic model we have recently developed which has
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been shown to account for many aspects of the observed kinetics of the vanadium SAC.?¢ 27 28 The
nonlinear optimization method can then identify disordered states that maximize a desired feature
using either a full chemistry model or a reduced model. We consider a vanadium based SAC on
an amorphous support that catalyzes an alkene hydrogenation reaction. The previous microkinetic
model is extended to a larger disorder space with more extensive calculations. The results were
analyzed using a novel spectral technique to understand the physical basis behind the optimization.

The role of linear scaling relationships in the disorder variables is then discussed.

2. Theoretical Methods

A. The Microkinetic Model and Energetics

The disorder in the present problem results from the underlying amorphous support which
has been characterized extensively. Experimentally, there are multiple reported values for Si-O
bond distances and angles.? 3 3! Computationally, Ewing et al.’> and Fogerty el al.’’ outlined
methods to generate amorphous silica models that are consistent with experimental bulk properties
like density and Si-O bond distances and angles. Grafting sites on amorphous silica are
characterized by the presence of silanol groups on the surface and the podality (e.g., bipodal or
tripodal grafting sites) is dictated by the distance between two silanol groups, which can be
represented by the Euclidean distance between the two O atoms of the silanol groups. Using these
computational models? 33 reveals how hydroxylated amorphous silica surface models will generate
a distribution of O-O distances for potential bipodal and tripodal grafting sites. In Fig. 1, we show
a sample structure obtained using classical molecular dynamics and DFT. Using an annealing process
with the ReaxFF followed with DFT geometries, a series of structures a can be generated that represent
potential grafting sites. These are distributed as shown in on the right side of Fig. 1. This distribution
is broad and consistent with the idea that the catalytic environments may be modeled using a
continuous range of short-ranged coordinate parameterizations. Also note that the podality
contributes to the rigidity/flexibility of the single atom catalyst,* which has an impact on catalysis
as shown in previous work where a grid-like scan of the distribution of potential grafting
environments of a silica-supported organovanadium(IIl) catalyst was used to model styrene
hydrogenation kinetics.?® 27 2 There, it was shown that the computed kinetics were qualitatively
consistent with experimental kinetic measurements using combinations of different grid points,

i.e., a combination of contributing environments. Thus, it was emphasized that multiple disordered
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environments were required to explain the observed pathway switching between distinct chemical
paths. Other computational approaches include a quenched disorder model with reinforcement
learning, which indicated that individual active sites contribute to a distribution of activation
barriers for single-atom catalysis.* 3¢ 37 We emphasize that all tractable computational models will
show some loss of realism for amorphous silica-supported single atom catalysts, but they
nevertheless show how incorporating a few design variables effectively characterize key aspects

of the kinetics of catalysis.

We specifically consider the optimization of a SAC that is anchored to amorphous silica.
Due to the variation in chemical activation barriers of the chemical network, catalytic activities
will form a distribution over the grafting sites. We seek the most active sites in that distribution.
The organometallic vanadium(II) compound modeled catalyzes the hydrogenation of an alkene
substrate in a nonpolar solution phase. The synthesis involves the creation of a
(S102)vanadium(IIl)mesityl(MES)tetrahydrofurane(THF) pre-catalyst shown in Fig. 2a. In
laboratory experiments, the pre-catalyst is activated by prolonged exposure to hydrogen that strips
away the MES ligand.’®* The THF species is part of the pre-catalytic structure and plays the role
of an inhibitor when present in the bulk solution. The chemistry modeled here is styrene (ST)
hydrogenation to form ethyl benzene. The catalytic chemistry of butyl styrene and other similar
alkene hydrogenation reactions have been extensively studied in the laboratory using traditional
kinetic methods and using structural characterizations employing X-ray absorption near edge
structure (XANES) spectroscopy.* Based on these findings, a microkinetic model has been
proposed that accounts for the hydrogenation process which involves three interconverting active
sites and three coupled catalytic cycles.? 2’ 2 % The proposed microkinetic model, represented in
Fig. 2c, presumes the dominance of a heterolytic cleavage mechanism involving a tripodal
vanadium active site. Three chemically distinct chemical pathways are possible that differ in the
participation of the THF species and the ordering of the H> or ST addition; these are labeled as
paths 5, 6, and 7 in Fig. 2¢c. Under most circumstances path 7 dominates the kinetics although, at
high levels of [THF] inhibition and for certain grafting sites, the relative flux along path 5 becomes
higher than either path 6 or 7. This microkinetic model, which emphasizes the heterolytic cleavage
mechanism, is in agreement with the experimentally observed® behavior of the TOF with respect

to [Hz], [ST], and [THF].



The disorder observed in this system is a manifestation of a range of potential anchoring
sites available to the catalytic precursor on the amorphous silica. In principle, the ab initio
prediction of the distribution of vanadium anchoring sites would require a molecular level
representation of the silica support followed by modeling of the synthetic chemistry leading to the
pre-catalyst. Progress in this direction for similar systems have been made by Peters and coworkers
using a quenched disorder model for the support.** 37 However, rather than pursuing an ab initio
prediction for a particular choice of disordered sample, we attempt to map out the activity of
potential anchoring sites as a function of the disorder parameters which then provide targets for
synthetic strategies. In order to understand the guiding issues, we investigate two-dimensional and
three-dimensional representations of the disorder where the exhaustive computation of the
energetics and kinetics are still possible. In this approach, the disorder coordinates x are fixed and
the optimized barriers and wells of the reaction network are computed. For the two-dimensional
case, x are chosen as the V-O and O-O bond lengths, see Fig. 2a. In the three-dimensional case, x
are taken as the three O-O bonds of the silica support which surround the anchoring site of the V-
atom, see Fig. 2b. Each value of x, either (roo,rvo) or (r1,r2,13), represents a possible catalytic site
created in a synthetic process with some probabilistic weighting. These choices were made based

on the sensitivity of the observed QM energetics to the variation of various configurations.

The ab initio free energies were calculated on discrete grids of these disorder variables,
which are held fixed in the geometry optimization. A continuous representation was obtained
using numerical interpolation. The calculations were done using a cluster model with density
functional theory (DFT) implemented with the Gaussian 16 package.* The geometry optimization
was done using the B3LYP# 4 density functional and the CEP-31G* # 4 pseudopotential double-
 basis set in the gas phase. The lower half of the silica cage model (6 H, 11 O, and 6 Si atoms)
was kept frozen during all the geometry optimization calculations as were the values of the disorder
coordinates. The standard free energy for each of the 13 structures of Fig. 2c, including the pre-
catalytic structure, was computed at 323.15° K consistent with experimental conditions**39 using
the B3LYP functional with the TZVP* basis set. Further details on the DFT calculations have

been given previously? but here have been extended to expanded models of disorder.

For the 2D model, a grid of 35 values of the coordinates x=(rvo,roo). These two bond
distances are defined in Fig. 2a. The full cluster geometries were generated by constraining the

bond distances of rvo and roo at grid values and optimizing the remaining active coordinates. The

7



standard free energies were computed for each structure shown in Fig. 2c. The bond distances
chosen for rvo were 2.1, 2.2, 2.3, 2.4, and 2.5 A, which were considered based on their effect on
the catalytic activity?. The bond distances chosen for roo were 2.5, 2.7, 3.0, 3.3, 3.6, 3.9, and 4.2
A, which were based on the physical constraints on the silica surface due to the surface strain of
potential grafting sites. Since the grid is uniform, we employed a two-dimensional cubic spline
interpolation scheme to evaluate energies at arbitrary values of (rvo,roo). The energies of all
barriers and wells of the reaction network and the pre-catalyst are given in Table S1 in the

supporting information (SI).

For the 3D representation of disorder, we use the three coordinates r1, 12, and r3 which label
the distance between the vanadium atom and the three closest oxygen atoms of the silica support.
These coordinates are depicted in Fig. 2b. The key structures to the kinetics were identified by
sensitivity analysis as the active site D, the barriers 23 and 25, and the intermediate well 24. The
free energies for these structures were obtained on a grid of 75 values of the (r1,12,r3) coordinates.
No symmetries were assumed in the (r1,r2,r3) space. The free energies at 323.15° K for the four
key kinetic structures and of the pre-catalyst are given in Table S2 of the SI. The grid is not uniform
since a number of points were discarded that did not show adequate stability of the quantum
calculation. Therefore, a radial basis set interpolation scheme was used. The Hessians
corresponding to the B3LYP/TZVP calculations are extracted from Gaussian formatted checkpoint
files. The Hessian can be transformed between coordinate systems using the chain rule.

B. Kinetic Modeling

The free energies of structures shown in Fig. 2¢ are used to determine the kinetics in x-
space, where each point x represents a potential SAC in the sample. The rate coefficient for each

elementary step j«i in the catalytic network is given by the Eyring form

kT AGPY (%)
i j(x) = ——-exp <_kB—T [Z] (1)
where AGC?’U D (x) is the standard free energy of activation and /Z] is the substrate concentration
for any additional reactant. The indices refer to any intermediate or active site (AS). The steady

state kinetics can then be derived from the pseudo-first-order rate matrix



—ki(x) . gy (X)

K(x) = (2)

kN+1,1(x) v —kyi1(x)

where the diagonal elements of K(x) are the species decay rates k;(x) = X ; k;j;(x) and thus
column sum of K(x) is zero. N is the number of distinct states of the SAC and N+1 index occurs
since both the reactant and product states of the AS are included in K. Following the methods
introduced in ref. 28 the population of each molecular species involving the vanadium atom is
described by a state / with a probability P;. The normalization condition ), P; = 1 enforces the
conservation of catalyst. The kinetics for the reaction network is described by three coupled
catalytic cycles and three interconverting AS shown in Fig. 2c. For simplicity, we focus on the
initial rates when the product concentration is zero. The steady state properties are found using an
efficient linear algebra method based on a Markov state model interpretation of the catalytic
chemistry. This analysis employs the NxN state-to-state transition matrix 7(x), which is identical
to -K(x) except the product forming reactions are omitted. The exact initial TOF, derived in ref.
28, gives a TOF

B 1

1T (=T() - Py

v(x) (3)

In eq. 3, Py is the vector representing the steady state distribution of AS only and 7 is a vector of
all 1’s. The AS are the states formed upon product formation. This applies even when the resting
state is not an AS. Often Py is just (1,0,0,....)" corresponding to a single AS. Equation 3 is
completely equivalent to steady state solution of the conventional mass action equations for
[Product]=0 but can be carried out without time evolution or imposing conservation constraints.
At temperatures below about 400°K and for certain values of x it is found that the 7-matrix
becomes ill-conditioned reflecting a huge separation of time scales between the chemical
relaxation modes in the network. This leads to instability of the linear algebra. A regularization
scheme is proposed in Sec. S3 of the SI which extrapolates the stable results from higher

temperature to the lower experimentally reasonable temperature of 323.15°K.
C. Reduced Mechanism

To reduce the number of structures for QM calculation, we employ a novel mechanism

reduction scheme which is tested the against full chemistry model. The difficulty with the disorder



problem is that the rate-limiting reactions can change as a function of x which can lead to a global
switching for the pathway of reactive flux and thus the reduced mechanism itself must change.
We have found that a generalization of the familiar energetic span theory (EST) can account for
pathway switching and can reduce the number of QM calculations to a manageable number, often
just two or four structures per value of x. In the basic EST scheme of Kozuch and Shaik#® 42 50 51 |
the rate is expressed as an effective one-step process where the activation energy involves the
highest transition state (HTS) and lowest intermediate (LINT) along a single catalytic cycle. The
HTS is the bottleneck to the cycle while the LINT is the state of highest occupation probability.
Those two dominating structures combine to yield the maximal free energy of activation via
AGEST (x) = GHTS(x) — GYNT (x) with the TOF given by

kgT AGEST
v(x) = % - exp (— RT(x)) 4)

[When back-reaction from products plays a role there may be an additional correctionto AGEST (x)
from the reaction energy.| The central issue is how to identify the (HTS,LINT) pair that controls
the kinetics at each value of x. We have generalized the EST approach to more complex catalytic
networks that involve multiple catalytic paths using an eigenvalue sensitivity analysis? 32 % that is
similar to Campbell’s degree of reaction control.** The eigenvalues of the transition matrix are
found to control the TOF and other kinetic properties of the network. A somewhat different spectral
analysis was recently proposed by Peters.> In order to explore the method, for the 2D problem we
shall actually compute the full chemistry network and locate the (HTS,LINT) pairs appropriate to

each value of x. For the larger 3D problem, we use this information to simplify the network.

The eigenvalues and eigenvectors of T(x), T (x)|v; (%) = A (x)|v; (x)) correspond to pure

chemical-relaxation modes in the network and their rates. The TOF from eq. 3 is

v(x) = (5)

klk

where ¢ are the projections of the normalized eigenvectors onto the initial state vector Pyp. Under
most circumstances, the lowest absolute eigenvalue dominates the sum so v(x) =~ |A;(x)| and
c; = 1 and the eigenvector |v;(x)) describes the occupation probabilities along the dominating
chemical pathway. The exception is when the projection of the lowest eigenvector onto the AS is

nearly zero and then the lowest two eigenvalues are generally necessary for the TOF. This
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corresponds to an unproductive chemical path that is nearly uncoupled to the AS vector Py. The
lowest absolute eigenvalue is well approximated by the EST expression, eq. (4). It is important to
note that the higher eigenvalues also seem to be accurately approximated by a similar formula
using other pairings of barrier and well energies. Thus, if we represent the activation energy for

the j' eigenvalue as
AGa,j (x) = GjHTS(x) - GjLINT (x) (6)

we have

kBT <_ AGaJ(x)> (7)

|4 ()| = == exp kT
To identify the correct (HTS,LINT) pairing for each eigenvalue we employ a sensitivity analysis
where

an(|3))

9G;(x) ®)

Sensitivity Index of A; = kgT

with the highest sensitivity structures yielding (HTS,LINT) pairs. Comparing eqgs. (7) and (8), we
note that a measure of the accuracy of the EST approximation is that the sensitivity index w.r.t.
HST should be -1 and w.r.t. LINT should be +1. Further details of the method are provided in the
SL

D. Optimization Method
To maximize the TOF, we minimize the phenomenological free energy of activation
6G,(x), where 6G,(x) & —kgT - In (kh—Tv(x)), as a function of the continuous disorder
B

parameters x subject to feasibility constraints that might restrict the range of x. The quantity
6G,(x) clearly minimizes at precisely the same place where v(x) maximizes. Selectivity
optimization is accomplished by maximizing the TOF projected unto the desired chemical

pathway. The general nonlinear optimization problem can be written in standard notation as

x* = argmin(f(x)) (9)
g1(x) <0
g2(x) <0
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hi(x)=0
h,(x) =0

where f1is the objective, the g’s define inequality constraints and the /’s define equality constraints.
The optimization is carried out using the Scipy.optimize library in Python employing the nonlinear
trust region constrained ‘trust-constr’ option. This algorithm is based on the primal-dual version
of the method of Byrd et al.*® This strategy is based on a barrier approach that employs sequential
quadratic programming and trust regions to solve the sub-problems occurring in the iteration steps.
To optimize the TOF, the objective function can be chosen to be either the exact §G,(x) from the
full network or the EST approximation. For the latter, simpler, choice the objective is the non-

differentiable function
fx) = Ag:%)(AGa,l(x),AGa,z(x), i DGg (X)), ...) (10)

where AG,;(x) are all the activation energies of the competing paths. Various convergent
optimization techniques based on subgradient methods exists for non-differentiable functions

although they tend to perform poorly. A superior choice is the smooth approximate

_ 1 1 1
fG) > fG) ==-In (e—aAaa,l(x) t——emenm T ) (11)

which is very close to the exact result § G, (x) for a single path reaction when we set « = kgT and
smoothly combines multiple pathway contributions. The most efficient optimization algorithms
require approximate gradients and Hessians of the objective for Newton stepping. Since many
QM methods provide such information as byproducts in determination of saddle points and wells,
we shall assume they are available.

The choice of constraint functions in eq. (9) requires physical insight. We note that since
8G,(x) represents a free energy difference between states with the same values of the disorder
parameters, X, the internal strain energy of the silica support is cancelled out in the objective. This
allows the algorithm to search out highly unstable and improbable support structures in either the
pre-catalyst or the activated catalyst that may be highly reactive. However, we expect that highly
unstable structures would be unlikely to form or would be very likely to decay from an AS. To
exclude this unrealistic possibility, we constrain the values of x to lie in the feasible set defined
within the overlap of the energy spheres of the lowest AS, i.e. Gis(x) < Gpaxy and the pre-

catalyst G{,’re_cat (x) < Gpaxz- Thus there are two inequality constraints,
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GRs(X) — Gyax1 < 0 (12)

Ggre—cat(x) — Gpax2 <0
The numbers Gy 4x1 and Gy ax2 are set after some experimentation and must lie above the highest
chemically relevant barrier. The constraint functions are computed at the same level of QM as the
chemical structures. In general, we observe the FS formed from the intersection of the two energy

spheres forms a compact lens-shaped region in disorder space.
3. Results

A. Two-dimensional model

Focusing now in detail on the 2D model, the TOF obtained using full chemistry, v(x),
obtained at T=323.15° K at fixed reagent concentration is depicted in Fig. 3a. This activity map
shows a range of over ten orders of magnitude and clearly reveals zones of high activity which are
sought in the maximization of v(x). The phenomenological free energy of activation, 6 G, (x) is
also plotted as comparison. As a guide to the eye, the local maximum versus rvo is shown, i.e.

rgaxv(rvo,roo) = Vinax(Too) Which follows the curved ridgeline that is superimposed on the
vo

contour; this ridge is equivalent to the minimum valley seen for §G,(x). This narrow ridge
represents the region of highest activity for potential anchoring sites of the vanadium complex and
is the target region for TOF optimization in a synthetic process. Indeed, the inset in Fig. 3a shows
a one-dimensional cut at roo=3.25 A that exhibits a typical volcano curve of TOF versus the single
disorder parameter rvo. One can imagine the synthesis of a series of catalytic samples with
distributions of disorder that follows such a one-dimensional path, represented heuristically in Fig.
3a by the series of dashed ovals superimposed on the disorder pathway. The present problem
exhibits distinct multiple chemical pathways as shown in Fig. 2c. The selectivity of kinetic flux
along those pathways can be extracted using the same sort of mathematics as the overall TOF,
projecting the steady state flux onto the specific pathways, with the resulting selectivity map shown
in Fig. 3b. Although kinetic flux along pathway 7 dominates in most regions, there are parameter
regions of high preference for path 5. This path-switching behavior is familiar from the study of
product selectivity where two competing reaction paths are controlled by the relative energy of

two transition states that lead to different products through a common intermediate.?® 57 38
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Optimization of a catalyst for selectivity at an atomic level involves the tuning of relative activation

energies controlling different paths in the design space.*

It is clear that the TOF and selectivity maps exhibit multiple stationary points and thus they
are not simple convex functions of the design variables. However, the numerical methods
developed around convex optimization have proven quite robust in complex applications when
sufficient precautions are taken to constrain the domain. For the present problem, this involves
setting Gmax1 and Gmax: so that a single well-defined minimum exists. The lens-shaped FS shown
in Fig. 3c is found to exhibit a single minimum for which the optimization algorithm performs

well.

To illustrate the efficiency of this scheme, we consider optimizing the activity at 323.15°
K using the full chemistry model and the optimization method of Byrd et al.® As seen in Fig. 4,
the optimization occurs quickly and the optimum disordered state is discovered with high accuracy
after less than 10 steps. The initial guess is arbitrary, and any choice leads to the same optimum.
If the optimization is carried out using the full chemistry, each step requires a complete evaluation
of the free energies of the chemical network. The optimization package also requires approximate
gradients and Hessians of the objective function 6G,(x) and the constraint functions at each
structure which are available for B3LYP. We also note that the method does not require a feasible
start, so the random initial guess for x need not obey the constraints. A general observation in
optimization theory is that an efficient higher-order algorithm will converge within 50 or fewer
steps even in high-dimension or with complicated (but approximately convex) functions. This is a
tractable number of quantum chemistry calculations provided that the chemical network does not
grow too large. In the present case, convergence to within chemical accuracy occurs after only a
handful of Newton steps. A schematic illustration of the optimization problem is given in Fig. 5
showing the relation of the TOF to the free energy and application to two and four state models.

For a two state model x* occurs at the at min[AGEST (x)]. For four states (and any higher number),
X

x* occurs at min [Agla(x)(AGa,l(x),AGa,z (%), .. AGg i (x), ... )] at which point the objective can
X ai X
be non-differentiable.

We now consider how mechanism reduction might work for the 2D model. In Figs. 6a and

6b we plot numerically determined HTS and LINT which are color-coded and labeled by structure
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number. We see the identity of the (HTS,LINT) varies profoundly as a function of x and the plot
is characterized by numerous boundary curves where barrier or well energies are equal. In Fig. 6¢
we use these identifications to compute the free energy, AGEST (x). We see the agreement between
the generalized EST result and the kinetically exact quantity, §G,(x), Fig. 6d, is impressive and
the only visible difference is a subtle smoothing of the exact §G,(x) around the transition
boundaries between (HTS, LINT) pairings. It is interesting to note that the optimum disorder, x*,
lies on the boundary between two (HTS, LINT) pairs, specifically between the structures (25, 24)
and (23, AS). Furthermore, the constrained optimum v,,,4,(Rp0) lies along this boundary line.
Thus the physical meaning of x* is the point that the activation energy for the first H-atom addition
to styrene is exactly equal to the activation energy for the addition of the second H-atom. In terms
of optimization theory, we conclude that the mechanism reduction method should include four
states in the generalized theory rather than just the two states of the basic EST. If optimization
paths pass between three distinct zones of (HTS,LINT) pairing, then potentially six states would
be required, and so forth.

In Fig. 7 the eigenvalue sensitivity analysis and generalized EST theory is illustrated. In
Fig. 7a, several low-lying eigenvalues of the transition matrix are plotted versus the disorder
parameter rvo holding roo fixed. Numerous avoided crossings are observed at which points the
definition of (HTS,LINT) are abruptly changing. Also plotted are the EST approximations to these
eigenvalues which show a good agreement. In Figs. 7b and 7c the eigenvalue sensitivity indices
of the lowest two eigenvalues are shown immediately before and after the avoided crossing of
those eigenvalues. The identification of (HTS,LINT) pair is seen to jump from (25,24) to (23,AS)
at the avoided crossing. We note that the exact x* obtained from the Byrd et al.*® method using

the full chemistry model is found to occur nearly exactly along this eigenvalue crossing seam.
B. Three-dimensional model

Using the EST model with the four states (25, 24) and (23, AS) that we identified as most
important, we have also tested the optimization strategy for the 3D representation with disorder
coordinates (r,7,,73). The optimization path and energy surfaces are plotted in Fig. 8. Since it
is difficult to visualize the free energy surfaces in a three-dimensional disorder space, we have
plotted the free energy along the intersection surface where the free energy barriers are equal, i.e.,

AGET (x) = AGEST (x). Tt is seen that the algorithm quickly optimizes to a geometry that is
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independent of the initial conditions. The efficiency of convergence depends somewhat on starting
point but typically we achieve convergence to within <1% within about a dozen Newton steps. As
indicated in the figure, the optimal point is found to lie on the intersection surface of AGS3" (x)

and AGZ3T (x) although the arbitrary initial condition lies well off this surface.

The molecular geometries of the optimally engineered disordered state of the 3D system
are roughly consistent with the result obtained in the 2D representation. However, there are some
detailed differences in the configurations since the two systems are constrained differently. We
note that 3D representation considers only variation of the silica configuration while the 2D
representation considers variation of one silica coordinate and one coordinate for bonding the

vanadium to the support.
C. Higher dimensions

The success of the optimization strategy for the present case suggests the following
computationally efficient procedure that can be applied to a very high-dimensional representation
of the active site heterogeneity. First, the full mechanism is computed at a few representative
values of the disorder parameters, which are used as a screening to identify a small set of potential
(HTS, LINT) pairs. Then a much smaller set of structures is used to minimize the activation energy
obtained from QM versus x. This has the great advantage that QM for the full array of barriers and
wells does not need to be computed for each step. Naturally, it is possible that the search may
wander into a region of x where the (HTS, LINT) structures involve new pairs. Hence, at a later
stage of the calculation it is wise to compute the full network at the near optimized x* to verify the
correct structures have been included. If not, the process can be repeated with new choices. In the
present case, the pairs (25, 24) and (23, AS) are all that is required to optimize the TOF to high
accuracy in 3D. If the microkinetic mechanism is not too large, it may also be computationally
feasible to directly optimize the full chemistry model. This more QM intensive approach has the
advantage that the pathway-switching effect is automatically included in the TOF without the need

to perform a sensitivity analysis.
D. Scaling Relations

The optimality of equal activation energies is highly reminiscent of the Sabatier principle
that has been successfully invoked previously® to explain volcano plots as a function of an
intermediate energy for a variety of heterogeneous catalytic systems. This principle states that the
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best catalyst is obtained when an intermediate is bound at the best compromise value between the
attachment step and the release step of the cycle. It has been shown that using an intermediate
binding energy as an independent variable, one finds approximate Evans-Polanyi-Brensted type
linear scaling relations for transition states for diverse systems such as ammonia synthesis, ethanol
conversion, and electrochemical reduction.®' ©2 % Does disorder fit into this pattern? As a test, we
computed the energies of all the wells and barriers versus a key intermediate energy, viz. that for
structure 24 where styrene has been partially hydrogenated. These results show a good linear
relation and are presented fully in Fig. 9. The individual dots represent geometries sampled over
the full range disorder parameters computed by QM. In-Fig. 10 we show three activation energies
versus Goa: AGg g = Gps — Gy (path 7), AG,, = Gp3 — Gus (path 7), and AG, 3 = Gpo — Gys
(path 5). The scatterplot of points represents the full (rvo,ro0) 2D-disorder plane and it is seen that
an approximate linear relationship does indeed develop. It is seen that the crossing of the two
activation energies, AG, ; and AG, ,, occurs precisely at the previously obtained crossing seam
obtained from the avoided crossing of the eigenvalue surfaces 1;(x) = 4,(x) plotted in Fig. 5c.
Interestingly, the activation energy on path 5, AG, 3, also shows a linear scaling with G24 although

path 5 does not include state 24.

The success of the linear scaling relationship implies that the most important structures in
the chemical reaction network are all approximately functions of a single independent variable,

G2,(x). This simplifies the chemical network and collapses the disorder space both into one

independent variable. A search procedure for optimality is then argmin(AGa,l - AGa'z)zwhere
24

the disorder parameters are set by the requirement that two key activation energies are equal.
Naturally, the question arises whether additional independent variables might be required for more
complicated chemistry or higher dimensional models of disorder or when multiple binding sites
contribute.* This might be described as circumventing or breaking linear scaling.® ¢ In the present
application, the “width” of the scatterplots around the straight line represents the influence of
additional secondary degrees of freedom that correspond to different locations along the crossing
seam that possess modestly differing TOF’s. The uncertainty in the crossing point, AGnon-lincar in
Fig. 9, reflects the variation in TOF along the crossing seam. We leave it as an open empirical

question how these additional degrees of freedom can be added in ranked influence.

17



4. Conclusion

Active site heterogeneity in a catalytic sample can originate in multiple ways but will
invariably lead to a distribution of catalytic performance and provides a new opportunity to
improve catalytic design. Activity hot spots in a sample can be enhanced by a rationally guided
synthesis based on a local representation of the disorder. The question explored here is how these
hotspots may be located using ab initio QM which then provides targets for a synthetic strategy.
Practical control parameters can include variables such as dopant concentration, nanoparticle size,
nanoparticle composition, substrate porosity, or annealing rates. The approach we have suggested
involves several steps. First, a mechanism is parameterized using a small number of local disorder
coordinates that are suspected to strongly influence the TOF or selectivity. The kinetics of this
initial parameterization is then used to select a number of key structures that control the
performance of the catalyst, here that number was four, i.e., two TS and two INT. Then, employing
anonlinear optimization method, the optimal values of the disorder coordinates are computed from
the QM energetics of the reduced mechanism. The low-dimensional disorder space is then
expanded to include more of the local environment and, thereby, a more accurate optimum is
found. Here, we stopped at three dimensions but can be made much higher. Since the efficient
nonlinear optimization relies on Newton stepping, the QM calculations should provide

approximate gradients and Hessians for the optimized geometries of the key TS and INT structures.

The main complexity of optimizing the active site environment is that reaction path can
change as a function of the disorder coordinates. This implies that different locations on the sample
can proceed through different controlling mechanisms. We have found that the optimal
environment often occurs along the boundary surfaces between such reaction paths in direct
analogy to the Sabatier principle. Direct optimization in a high-dimensional disorder space

remains feasible even in such cases using the eigenvalue methodology induced here.
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Fig. 1. A representative computational structure of amorphous silica, obtained following the
methods of refs.32 and 33 (left), along with the distribution of O-O bond distances for all
potential binding sites (right). The model shows the top monolayer layer of amorphous silica (Si
— yellow, O —red, H — white) while the bulk is grey. The kernel density estimation distributions
are based along with a histogram of calculated O-O bond distances surrounding potential binding
sites. Bipodal and tripodal grafting sites are represented via the blue and orange bars,
respectively, as well as the black and red curves, respectively.
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Fig. 2. The structure and kinetics of the silica supported organovanadium catalyst.
In (a), the atomic level cluster model of the proposed pre-catalyst grafted to the
silica support at a tripodal trigonal bipyramid site with a silanol donor,
(=S10)2V(Mes)(THF). The structure was obtained at the BALYP/CEP-31G level of
theory. The atoms are coded as V=Green, Si=Yellow, O=Red, C=Gray, H=White.
The two local coordinates ryo and 1o, are indicated in the figure. In (b), the
coordinates ri, 12, and r3 of the 3D model are shown. In (c), the microkinetic model
for the overall process styrene+H>=>ethyl benzene is shown. The active sites (AS)
labeled D, C, and E are created by the activation process and are defined as the
species after irreversible product release. The three cycles 5, 6, and 7 are kinetically
coupled. The active sites are found to rapidly interconvert on the timescale set by
the TOF.
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Fig. 3. Activity and selectivity maps in a two-dimensional disorder space. In (a),
zones of high activity are show in red and low activity in blue on a logarithmic
scale. The conditions chosen are T=323.15°K, [Styrene]=1M, [H2]=5M, and
[THF]=0.01M. The superimposed solid line shows the ridge of constrained
maxima, Vpqyx(Roo). Along the cut at t00=3.25 A the TOF exhibits a volcano
curve shown in the inset. The oval shaped distributions overlaying the cut
heuristically represent a sequence of synthetic samples displaying the volcano plot.
In (b), the selectivity of the reactive flux following pathway 5 is shown where red
denotes high flux. In regions of high overall activity, the flux is dominated by
pathway 7 although there is a small local maximum of pathway 5 flux indicated by
the cross. The dashed lines bound the feasible set with the choices values Gy 451 =
2 kcal/mol and Gpux, = 20 kcal/mol . In (c) the feasible set of permitted
disorder values is the lens shaped region. The contour lines the level sets for the
functions Gs(x) and Gpyecqe ().
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Fig. 4. Three optimization pathways, T1-T3, which maximize the TOF in a two-
dimensional representation of disorder with full chemistry. Three initial conditions
outside the FS were randomly selected and converge to the same optimal point. In
(a), the optimization paths are shown superimposed on the TOF objective function
and boundaries to the FS are depicted with dashed lines. In (b), the convergence of
the objective function (the TOF) is shown as a function of the algorithmic step N.
In (c), the optimization paths are plotted in (TOF,ro0) space along with the position
of the ridge Vy,qx (1h0). Within a few steps, the trajectories converge to the ridge
and thereafter approaches the maximum more slowly.
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Fig. 5. A schematic diagram showing various optimization strategies. In the first
panel, the full TOF is optimization versus disorder coordinate x. The maximizer of
the TOF, x* is same as the minimizer of phenomenological free energy of
activation. In the second panel, a two state optimization involves minimizing the
difference between the barrier energy, G5, and the well energy GM™T. In the
lower panels the four state optimization is represented. Two activation energies
AGHTS (x) and AG[T3 (x), are found from the difference between two (HTS,LINT)
pairs. The greater of AGYT" (x) and AGE TS (x) at each x defines the overall free

energy of activation AGEST (x) of the EST. The minimum of AGEST (x) defines
the optimum, x*.
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Fig. 6. The generalized energetic span theory in two-dimensions. In (a) and (b) the
HTS and LINT are shown as functions of the disorder coordinates. These
designations are determined using a sensitivity analysis of the TOF. The boundary
lines between regions occur when the barriers and wells controlling the reactive
flux undergo transition. In (c) the EST prediction of the effective activation free
energy is shown versus x. In (d) the kinetically exact phenomenological free energy
is shown which agrees very well with the EST approximation. Note that the
min(8Ga(x)) lies extremely close to the eigenvalue avoided crossing curve 1, (x) =~
A, (x) and their plots are indistinguishable.
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Fig. 7. Eigenvalues of the transition matrix as a function of the disorder parameter
rvo holding the value of roo fixed at 3.25A compared with the sensitivity spectrum.
The concentrations of the reagents were chosen to be [ST]=IM, [H2]=5M, and
[THF]=0.01M. In (a), the lowest three eigenvalues computed from the full T-matrix
are shown along with predictions of EST. There is a sharp avoided crossing of the
lowest two eigenvalues at rvo=2.32A at which point the TOF maximizes. In (b) the
sensitivity index of the lowest eigenvalue reveals the appropriate choices for the
pairing (HTS,LINT). The upper panel shows the spectrum at a value of rvo slightly
below the crossing point and lower panel shows the spectrum slightly above the
crossing point. The result clearly shows that (HTS,LINT) goes from (AS,23) to
(24,25) abruptly at the crossing point.
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Fig. 8. Several optimization trajectories for the three-dimensional disorder model.
The three random trajectories are shown which are started from random unfeasible
initial conditions. (a) The trajectories are shown (1y, 7, 13)-space along with three
surfaces: the crossing surface for the two activation free energies, AGL (1,15, 13) =
AGZ(ry, 15, 13), multicolored; the boundary surface of the constraint on the pre-
catalyst, Rpc > ||x — x5€]||, in red; and the boundary surface of constraint on the
AS, Rys > |lx — x5°]|, in green. In (b) the same trajectories are plotted in
(11,73, Energy) space along with the crossing surface for activation energies. In
(c) the convergence of the TOF is shown as a function of optimization step. Most
trajectories quickly approach the crossing surface and then more slowly approach
the overall optimum.
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Fig. 9. Linear scaling relations for the barrier and well free energies as a function
of the intermediate free energy, Go4 in the two-dimensional disorder model. The
points represent a grid values, (rvo,roo), that span the full range of disorder space
given by Table S1.The temperature is chosen to be 323.15 K and the free energies
reflect the reagent concentrations, [THF]=0.01M, [Styrene]=1M, and [H2]=5M.
The largest outliers to linear scaling occur at the edge of the grid.

Gaalkcal

29




404 ° AG,1 =625 = Gaa ~ | 504 °AGa1=0CGzs—Ga 2
* AG,,2 =G23 — Gas ,:;7 * AG,,2 =G0 — Gas
» crossing "*‘35, e Crossing
£ 45 A
40
©
)
=3 35 -
©
Q
<
30 ...
20 1
0 10 0 10
Gaglkcal Goalkcal

Fig. 10. Linear scaling of three activation free energies as a function of the binding
free energy of the intermediate, 24. The zero for G4 is taken as the lowest active
site. In (a) the activation energy AG, 1 = G,5 — G4 1s plotted in red and AG, , =
G,3 — Gy 1s plotted in green. The scatter of points represents a uniform array of x-
values with 75, < 3.6A. In (b), the AGgq = Gy5 — Gpy isagaininred and AGy 3 =
Goo — Gy 1s in green. The black dots lie along the boundary line where the
activation free energies are equal.
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