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Abstract:  Supported single-atom catalysts (SAC) show a large range of activity 

and selectivity that depend on the local environment of the catalytic sites. A theory-

based optimization strategy is presented that is based on a density functional theory 

(DFT) determination of the transition states and intermediates for a low-

dimensional coordinate representation of the heterogeneity of the active sites. The 

approach is applied to a vanadium catalyst on an amorphous SiO2 support that 

involves a large kinetic network described using a full-chemistry model.  Without 

assuming a priori scaling relations or mechanism reduction, the optimal state of 

heterogeneity is found to lie at atomic configurations where the activation energies 

for two distinct key chemical processes are equal. It is found a posteriori that the 

behavior of the system is consistent with linear free energy scaling relations in the 

randomness parameters. The energetic span theory proves quite useful in reducing 

the full chemistry model to a small number of key reactions. The use of a nonlinear 

optimization algorithm in combination with energetic span theory provides 

significant simplification in treating disordered systems. 
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1.Introduction 

The design of optimal catalysts to promote a chemical process is a long-standing objective 

in chemistry and engineering. In the optimization paradigm, a desirable quantity such as the 

turnover frequency (TOF), product selectivity, or energy release is maximized with respect to a 

set of controllable parameters that constitute the design space.  This design space may include the 

identity of a catalytic metal or alloy, the ligands attached to the active site, the pH or temperature 

of the reactor, among many other possible choices. The range of these features is restricted to a 

feasible set (FS) of physically reasonable values. With the advances occurring in the efficiency of 

computational chemistry, it has become increasingly possible to use ab initio methods to determine 

the design variables which optimize performance over a family of catalysts.1 2 3 4 5 6  This approach 

can produce a so-called “volcano plot” where the predicted activity or other desired quantity shows 

a sharp maximum as a computational input is varied.7 8 9 10 Often a key descriptor is the binding 

energy of an intermediate adsorbate species along the chemical pathway which then can be used 

to screen large numbers of candidate catalysts. Optimization packages are now available for a wide 

variety of important catalytic systems and numerous strategies exist that often employ machine 

learning methodology.11 12 13 14 One design variable that is difficult to model is the disorder of the 

catalytic environment, i.e., the heterogeneity of the catalytically active site. The active site 

heterogeneity may reflect the conformational structure of an enzyme, the random distribution of 

adsorbates on a metallic surface, or, as in the present case, the anchoring (or grafting) site of a 

catalytic atom on an amorphous support. Despite clear evidence that local environment 

surrounding the active site strongly influences activity, it has proven difficult to quantitatively 

characterize such randomness in a systematic way. The direct observation of chemistry at 

individual active sites using traditional methods of surface science is obscured since measurements 

tend to average over atomic environments. Recent studies suggest, however, that spatially resolved 

atomic level (scanning tunneling microscopy) STM or (scanning transmission electron 

microscopy) STEM measurements, in tandem with theoretical modeling, can provide considerable 

insight in the nature of single-atom catalysts (SAC).15 16 In principle, single molecule kinetics also 

provides an experimental window into the role of atomic level disorder revealed in real time.17 18 19 

20 For most catalytic systems of interest, however, such experiments are not currently feasible and 

we rely mostly on theoretical modeling for insight.  
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 The atomic state of disorder may change with time.  As an umbrella concept, we note that 

molecular disorder experienced by the catalyst can be characterized by the time scale that 

quantifies the passage between disordered states.21  For static disorder, the time scale is extremely 

long, and the catalyst is essentially frozen in place during the course of the experiment.  For 

dynamic disorder, such as with enzymatic catalysis or dynamic fluxionality of high temperature 

metal clusters 22 , the catalyst activity is fluctuating at an observable rate that may even be 

comparable to the TOF.  Here we focus on static disorder, where the rate coefficients for the 

catalytic network are time-independent at each individual catalytic site in the sample.   We further 

specialize the methods to cases of grafted SAC on an amorphous support which is illustrated here 

using an explicit model of an olefin hydrogenation reaction using a vanadium catalyst on silica. 

There are an enormous number of distinct grafting sites available to the vanadium complex 

each of which is characterized by a different effective activity. This discrete distribution of 

catalytic environments is labeled by the high-dimensional coordinate vector, X, describing the 

relaxed equilibrium atomic structure. It is difficult to optimize the TOF versus X since each 

structure is an isolated minimum of the energy function that ideally should be separately sought 

and then kinetically modeled.  Instead, we shall pursue an approach based on an approximate 

continuum model of the where it is assumed that X can be described as a continuous variable which 

labels various potential SAC environments.  This allows the use of powerful optimization methods 

that can efficiently search the high-dimensional space of disordered states.  It is approximate in 

that the values of X explored in the search are not fully relaxed states. However, the approximate 

optimization does reveal zones of high activity and provides clues as to the design targets. 

The disordered state is assumed to be parameterized by a small subset of the atomic 

structures, 𝒙 ⊂ 𝑿, describing the local environment of the active site, such as bond lengths and 

angles of the spectator atoms surrounding the SAC. The activity of the state x is determined using 

ab initio methods where the remaining coordinates in X are then fully relaxed. This short-ranged 

disorder can be supplemented, if necessary, with much weaker additive Gaussian noise to represent 

long-ranged randomness. The catalytic sample is represented by a probability distribution of these 

environments. If the local coordinates, x, are held fixed to represent a single catalytic environment 

in the distribution, the energetics of the network of chemical reactions {G(x)} occurring at the 

active site can be obtained from quantum mechanical (QM) calculations, where x are treated as 

fixed constraints and {G(x)} represents the free energies of the intermediates (INT) and transition 
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states (TS). Since the rate coefficients of the network {k(x)} can be computed using transition state 

theory (TST), it is then possible to construct kinetic observables as explicit functions of x to obtain, 

e.g., an activity map vs. x. Likewise, a selectivity map can be created from the kinetics when 

chemically branched pathways exist. When numerical optimization methods are applied to those 

observables, the most effective disordered environments x* can be discovered as illustrated by the 

simple scheme 

  

It then becomes a problem in synthesis to fashion ways in which those environments may be 

enhanced in creating a sample. The regions of high activity or selectivity correspond to hotspots 

on the sample where greater turnovers of a given product are seen. The potential for direct 

observation of such hotspots was demonstrated by Chen and coworkers23 via mapping the site-

specific chemistry on two-dimensional nanocrystals.         

The practical challenges of theoretically designing optimally disordered environments are 

significant. In addition to the need to develop a cogent and effective optimization formalism, the 

computations must necessarily involve many QM evaluations at a sufficiently high-level accuracy 

for a large number of environments.  This burden is compounded since the chemical mechanism 

itself may involve many reactions and intermediates. Thus, if Nd disordered environments need to 

be sampled for Ns chemical states, we then would require Nd × Ns large QM calculations.  We can 

reduce this daunting number in two ways. First, by the process of mechanism reduction, the 

chemistry can be reduced to a smaller number of key kinetic steps. This greatly lessens the number 

of chemical structure determinations needed and has been extensively used in many applications.  

In the most extreme form, this might constitute a reduction to a single reaction. Second, using 

efficient numerical optimization algorithms the disorder space can be searched to find regions of 

optimal performance thus avoiding the need to engage in a systematic sampling of the space.24 25  

In the present work, we propose an optimization method that is adaptable to a variety of 

disordered systems where single point QM calculations are feasible for the relevant chemical 

structures.  The methods proposed build on a kinetic model we have recently developed which has 
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been shown to account for many aspects of the observed kinetics of the vanadium SAC.26 27 28  The 

nonlinear optimization method can then identify disordered states that maximize a desired feature 

using either a full chemistry model or a reduced model.  We consider a vanadium based SAC on 

an amorphous support that catalyzes an alkene hydrogenation reaction. The previous microkinetic 

model is extended to a larger disorder space with more extensive calculations.  The results were 

analyzed using a novel spectral technique to understand the physical basis behind the optimization.  

The role of linear scaling relationships in the disorder variables is then discussed. 

2. Theoretical Methods 

A. The Microkinetic Model and Energetics 

The disorder in the present problem results from the underlying amorphous support which 

has been characterized extensively. Experimentally, there are multiple reported values for Si-O 

bond distances and angles.29 30 31 Computationally, Ewing et al.32 and Fogerty el al.33 outlined 

methods to generate amorphous silica models that are consistent with experimental bulk properties 

like density and Si-O bond distances and angles. Grafting sites on amorphous silica are 

characterized by the presence of silanol groups on the surface and the podality (e.g., bipodal or 

tripodal grafting sites) is dictated by the distance between two silanol groups, which can be 

represented by the Euclidean distance between the two O atoms of the silanol groups. Using these 

computational models32 33 reveals how hydroxylated amorphous silica surface models will generate 

a distribution of O-O distances for potential bipodal and tripodal grafting sites. In Fig. 1, we show 

a sample structure obtained using classical molecular dynamics and DFT. Using an annealing process 

with the ReaxFF followed with DFT geometries, a series of structures a can be generated that represent 

potential grafting sites.  These are distributed as shown in on the right side of Fig. 1. This distribution 

is broad and consistent with the idea that the catalytic environments may be modeled using a 

continuous range of short-ranged coordinate parameterizations. Also note that the podality 

contributes to the rigidity/flexibility of the single atom catalyst,34 which has an impact on catalysis 

as shown in previous work where a grid-like scan of the distribution of potential grafting 

environments of a silica-supported organovanadium(III) catalyst was used to model styrene 

hydrogenation kinetics.26 27 28  There, it was shown that the computed kinetics were qualitatively 

consistent with experimental kinetic measurements using combinations of different grid points, 

i.e., a combination of contributing environments. Thus, it was emphasized that multiple disordered 
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environments were required to explain the observed pathway switching between distinct chemical 

paths. Other computational approaches include a quenched disorder model with reinforcement 

learning, which indicated that individual active sites contribute to a distribution of activation 

barriers for single-atom catalysis.35 36 37 We emphasize that all tractable computational models will 

show some loss of realism for amorphous silica-supported single atom catalysts, but they 

nevertheless show how incorporating a few design variables effectively characterize key aspects 

of the kinetics of catalysis. 

We specifically consider the optimization of a SAC that is anchored to amorphous silica. 

Due to the variation in chemical activation barriers of the chemical network, catalytic activities 

will form a distribution over the grafting sites. We seek the most active sites in that distribution.  

The organometallic vanadium(III) compound modeled catalyzes the hydrogenation of an alkene 

substrate in a nonpolar solution phase. The synthesis involves the creation of a 

(SiO2)vanadium(III)mesityl(MES)tetrahydrofurane(THF) pre-catalyst shown in Fig. 2a. In 

laboratory experiments, the pre-catalyst is activated by prolonged exposure to hydrogen that strips 

away the MES ligand.38  The THF species is part of the pre-catalytic structure and plays the role 

of an inhibitor when present in the bulk solution. The chemistry modeled here is styrene (ST) 

hydrogenation to form ethyl benzene. The catalytic chemistry of butyl styrene and other similar 

alkene hydrogenation reactions have been extensively studied in the laboratory using traditional 

kinetic methods and using structural characterizations employing X-ray absorption near edge 

structure (XANES) spectroscopy. 39  Based on these findings, a microkinetic model has been 

proposed that accounts for the hydrogenation process which involves three interconverting active 

sites and three coupled catalytic cycles.26 27 28 40 The proposed microkinetic model, represented in 

Fig. 2c, presumes the dominance of a heterolytic cleavage mechanism involving a tripodal 

vanadium active site. Three chemically distinct chemical pathways are possible that differ in the 

participation of the THF species and the ordering of the H2 or ST addition; these are labeled as 

paths 5, 6, and 7 in Fig. 2c. Under most circumstances path 7 dominates the kinetics although, at 

high levels of [THF] inhibition and for certain grafting sites, the relative flux along path 5 becomes 

higher than either path 6 or 7.  This microkinetic model, which emphasizes the heterolytic cleavage 

mechanism, is in agreement with the experimentally observed39 behavior of the TOF with respect 

to [H2], [ST], and [THF]. 
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The disorder observed in this system is a manifestation of a range of potential anchoring 

sites available to the catalytic precursor on the amorphous silica. In principle, the ab initio 

prediction of the distribution of vanadium anchoring sites would require a molecular level 

representation of the silica support followed by modeling of the synthetic chemistry leading to the 

pre-catalyst. Progress in this direction for similar systems have been made by Peters and coworkers 

using a quenched disorder model for the support.36 37 However, rather than pursuing an ab initio 

prediction for a particular choice of disordered sample, we attempt to map out the activity of 

potential anchoring sites as a function of the disorder parameters which then provide targets for 

synthetic strategies.  In order to understand the guiding issues, we investigate two-dimensional and 

three-dimensional representations of the disorder where the exhaustive computation of the 

energetics and kinetics are still possible.  In this approach, the disorder coordinates x are fixed and 

the optimized barriers and wells of the reaction network are computed.  For the two-dimensional 

case, x are chosen as the V-O and O-O bond lengths, see Fig. 2a.  In the three-dimensional case, x 

are taken as the three O-O bonds of the silica support which surround the anchoring site of the V-

atom, see Fig. 2b. Each value of x, either (rOO,rVO) or (r1,r2,r3), represents a possible catalytic site 

created in a synthetic process with some probabilistic weighting.  These choices were made based 

on the sensitivity of the observed QM energetics to the variation of various configurations. 

The ab initio free energies were calculated on discrete grids of these disorder variables, 

which are held fixed in the geometry optimization.  A continuous representation was obtained 

using numerical interpolation.  The calculations were done using a cluster model with density 

functional theory (DFT) implemented with the Gaussian 16 package.41  The geometry optimization 

was done using the B3LYP42 43  density functional and the CEP-31G44 45 46 pseudopotential double-

ζ basis set in the gas phase. The lower half of the silica cage model (6 H, 11 O, and 6 Si atoms) 

was kept frozen during all the geometry optimization calculations as were the values of the disorder 

coordinates. The standard free energy for each of the 13 structures of Fig. 2c, including the pre-

catalytic structure, was computed at 323.15° K consistent with experimental conditions3939 using 

the B3LYP functional with the TZVP47 basis set.  Further details on the DFT calculations have 

been given previously26 but here have been extended to expanded models of disorder. 

For the 2D model, a grid of 35 values of the coordinates x=(rVO,rOO). These two bond 

distances are defined in Fig. 2a. The full cluster geometries were generated by constraining the 

bond distances of rVO and rOO at grid values and optimizing the remaining active coordinates. The 
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standard free energies were computed for each structure shown in Fig. 2c. The bond distances 

chosen for rVO were 2.1, 2.2, 2.3, 2.4, and 2.5 Å, which were considered based on their effect on 

the catalytic activity26.  The bond distances chosen for rOO were 2.5, 2.7, 3.0, 3.3, 3.6, 3.9, and 4.2 

Å, which were based on the physical constraints on the silica surface due to the surface strain of 

potential grafting sites.  Since the grid is uniform, we employed a two-dimensional cubic spline 

interpolation scheme to evaluate energies at arbitrary values of (rVO,rOO).  The energies of all 

barriers and wells of the reaction network and the pre-catalyst are given in Table S1 in the 

supporting information (SI). 

For the 3D representation of disorder, we use the three coordinates r1, r2, and r3 which label 

the distance between the vanadium atom and the three closest oxygen atoms of the silica support. 

These coordinates are depicted in Fig. 2b. The key structures to the kinetics were identified by 

sensitivity analysis as the active site D, the barriers 23 and 25, and the intermediate well 24. The 

free energies for these structures were obtained on a grid of 75 values of the (r1,r2,r3) coordinates. 

No symmetries were assumed in the (r1,r2,r3) space. The free energies at 323.15° K for the four 

key kinetic structures and of the pre-catalyst are given in Table S2 of the SI. The grid is not uniform 

since a number of points were discarded that did not show adequate stability of the quantum 

calculation. Therefore, a radial basis set interpolation scheme was used. The Hessians 

corresponding to the B3LYP/TZVP calculations are extracted from Gaussian formatted checkpoint 

files. The Hessian can be transformed between coordinate systems using the chain rule.  

B. Kinetic Modeling 

The free energies of structures shown in Fig. 2c are used to determine the kinetics in x-

space, where each point x represents a potential SAC in the sample. The rate coefficient for each 

elementary step j←i in the catalytic network is given by the Eyring form  

𝑘𝑖,𝑗(𝒙) =
𝑘𝐵𝑇

ℎ
∙ 𝑒𝑥𝑝 (−

∆𝐺𝑎
0,(𝑗←𝑖)(𝒙)

𝑘𝐵𝑇
) [𝑍]                (1) 

where ∆𝐺𝑎
0,(𝑗←𝑖)(𝒙) is the standard free energy of activation and [Z] is the substrate concentration 

for any additional reactant. The indices refer to any intermediate or active site (AS). The steady 

state kinetics can then be derived from the pseudo-first-order rate matrix 
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𝑲(𝒙) = (

−𝑘1(𝒙) … 𝑘1,𝑁+1(𝒙)

⋮ ⋱ ⋮
𝑘𝑁+1,1(𝒙) … −𝑘𝑁+1(𝒙)

)                  (2)  

where the diagonal elements of K(x) are the species decay rates 𝑘𝑖(𝒙) = ∑ 𝑘𝑗,𝑖(𝒙)𝑗≠𝑖  and thus 

column sum of K(x) is zero. N is the number of distinct states of the SAC and N+1 index occurs 

since both the reactant and product states of the AS are included in K. Following the methods 

introduced in ref. 28 the population of each molecular species involving the vanadium atom is 

described by a state i with a probability Pi. The normalization condition ∑ 𝑃𝑖 = 1 enforces the 

conservation of catalyst. The kinetics for the reaction network is described by three coupled 

catalytic cycles and three interconverting AS shown in Fig. 2c. For simplicity, we focus on the 

initial rates when the product concentration is zero. The steady state properties are found using an 

efficient linear algebra method based on a Markov state model interpretation of the catalytic 

chemistry. This analysis employs the N×N state-to-state transition matrix T(x), which is identical 

to -K(x) except the product forming reactions are omitted.  The exact initial TOF, derived in ref. 

28, gives a TOF 

𝜈(𝒙) =
1

𝟏𝑇 ∙ (−𝑻(𝒙))
−1

∙ 𝑷𝟎

                     (3) 

In eq. 3, P0 is the vector representing the steady state distribution of AS only and 1 is a vector of 

all 1’s.  The AS are the states formed upon product formation. This applies even when the resting 

state is not an AS.  Often 𝑷𝟎  is just (1,0,0,….)T corresponding to a single AS. Equation 3 is 

completely equivalent to steady state solution of the conventional mass action equations for 

[Product]=0 but can be carried out without time evolution or imposing conservation constraints. 

At temperatures below about 400°K and for certain values of x it is found that the T-matrix 

becomes ill-conditioned reflecting a huge separation of time scales between the chemical 

relaxation modes in the network. This leads to instability of the linear algebra. A regularization 

scheme is proposed in Sec. S3 of the SI which extrapolates the stable results from higher 

temperature to the lower experimentally reasonable temperature of 323.15°K. 

C. Reduced Mechanism 

To reduce the number of structures for QM calculation, we employ a novel mechanism 

reduction scheme which is tested the against full chemistry model. The difficulty with the disorder 
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problem is that the rate-limiting reactions can change as a function of x which can lead to a global 

switching for the pathway of reactive flux and thus the reduced mechanism itself must change.  

We have found that a generalization of the familiar energetic span theory (EST) can account for 

pathway switching and can reduce the number of QM calculations to a manageable number, often 

just two or four structures per value of x. In the basic EST scheme of Kozuch and Shaik48 49 50 51 , 

the rate is expressed as an effective one-step process where the activation energy involves the 

highest transition state (HTS) and lowest intermediate (LINT) along a single catalytic cycle. The 

HTS is the bottleneck to the cycle while the LINT is the state of highest occupation probability.  

Those two dominating structures combine to yield the maximal free energy of activation via 

∆𝐺𝑎
𝐸𝑆𝑇(𝒙) = 𝐺𝐻𝑇𝑆(𝒙) − 𝐺𝐿𝐼𝑁𝑇(𝒙) with the TOF given by  

𝜈(𝒙) =
𝑘𝐵𝑇

ℎ
∙ 𝑒𝑥𝑝 (−

∆𝐺𝑎
𝐸𝑆𝑇(𝒙)

𝑘𝐵𝑇
)       (4) 

[When back-reaction from products plays a role there may be an additional correction to  ∆𝐺𝑎
𝐸𝑆𝑇(𝒙 ) 

from the reaction energy.] The central issue is how to identify the (HTS,LINT) pair that controls 

the kinetics at each value of x.  We have generalized the EST approach to more complex catalytic 

networks that involve multiple catalytic paths using an eigenvalue sensitivity analysis28 52 53  that is 

similar to Campbell’s degree of reaction control.54  The eigenvalues of the transition matrix are 

found to control the TOF and other kinetic properties of the network. A somewhat different spectral 

analysis was recently proposed by Peters.55  In order to explore the method, for the 2D problem we 

shall actually compute the full chemistry network and locate the (HTS,LINT) pairs appropriate to 

each value of x. For the larger 3D problem, we use this information to simplify the network.  

The eigenvalues and eigenvectors of T(x), 𝑻(𝒙)|𝒗𝑗(𝑥)⟩ = 𝜆𝑗(𝒙)|𝒗𝑗(𝒙)⟩ correspond to pure 

chemical-relaxation modes in the network and their rates. The TOF from eq. 3 is 

𝜈(𝒙) =
−1

∑
𝑐𝑘

𝜆𝑘
𝑘

                                                  (5)  

where ck are the projections of the normalized eigenvectors onto the initial state vector P0.  Under 

most circumstances, the lowest absolute eigenvalue dominates the sum so 𝜈(𝒙) ≈ |𝜆1(𝒙)|  and 

𝑐1 ≈ 1 and the eigenvector |𝒗1(𝒙)⟩ describes the occupation probabilities along the dominating 

chemical pathway.  The exception is when the projection of the lowest eigenvector onto the AS is 

nearly zero and then the lowest two eigenvalues are generally necessary for the TOF. This 
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corresponds to an unproductive chemical path that is nearly uncoupled to the AS vector P0.  The 

lowest absolute eigenvalue is well approximated by the EST expression, eq. (4). It is important to 

note that the higher eigenvalues also seem to be accurately approximated by a similar formula 

using other pairings of barrier and well energies.  Thus, if we represent the activation energy for 

the jth eigenvalue as  

∆𝐺𝑎,𝑗(𝒙) = 𝐺𝑗
𝐻𝑇𝑆(𝒙) − 𝐺𝑗

𝐿𝐼𝑁𝑇(𝒙)                                                          (6) 

we have  

|𝜆𝑗(𝒙)| ≈
𝑘𝐵𝑇

ℎ
∙ 𝑒𝑥𝑝 (−

∆𝐺𝑎,𝑗(𝒙)

𝑘𝐵𝑇
)                                               (7) 

To identify the correct (HTS,LINT) pairing for each eigenvalue we employ a sensitivity analysis  

where 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝐼𝑛𝑑𝑒𝑥 𝑜𝑓 𝜆𝑗  = 𝑘𝐵𝑇 ∙
𝜕𝑙𝑛(|𝜆𝑗(𝒙)|)

𝜕𝐺𝑖(𝒙)
                                           (8)  

with the highest sensitivity structures yielding (HTS,LINT) pairs. Comparing eqs. (7) and (8), we 

note that a measure of the accuracy of the EST approximation is that the sensitivity index w.r.t. 

HST should be -1 and w.r.t. LINT should be +1. Further details of the method are provided in the 

SI. 

D. Optimization Method  

To maximize the TOF, we minimize the phenomenological free energy of activation 

𝛿𝐺𝑎(𝒙) , where 𝛿𝐺𝑎(𝒙) ≝ −𝑘𝐵𝑇 ∙ 𝑙𝑛 (
ℎ

𝑘𝐵𝑇
𝜈(𝒙)) , as a function of the continuous disorder 

parameters x subject to feasibility constraints that might restrict the range of x.  The quantity 

𝛿𝐺𝑎(𝒙)  clearly minimizes at precisely the same place where 𝜈(𝒙)  maximizes. Selectivity 

optimization is accomplished by maximizing the TOF projected unto the desired chemical 

pathway.  The general nonlinear optimization problem can be written in standard notation as 

𝒙∗ = 𝑎𝑟𝑔𝑚𝑖𝑛(𝑓(𝒙))           (9)  

𝑔1(𝒙) ≤ 0 

𝑔2(𝒙) ≤ 0 

⋮ 
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ℎ1(𝒙) = 0 

ℎ2(𝒙) = 0 

⋮ 

where f is the objective, the g’s define inequality constraints and the h’s define equality constraints.  

The optimization is carried out using the Scipy.optimize library in Python employing the nonlinear 

trust region constrained ‘trust-constr’ option. This algorithm is based on the primal-dual version 

of the method of Byrd et al.56  This strategy is based on a barrier approach that employs sequential 

quadratic programming and trust regions to solve the sub-problems occurring in the iteration steps. 

To optimize the TOF, the objective function can be chosen to be either the exact 𝛿𝐺𝑎(𝒙) from the 

full network or the EST approximation.   For the latter, simpler, choice the objective is the non-

differentiable function  

𝑓(𝒙) = max
∆𝐺𝑎,𝑖(𝒙)

(∆𝐺𝑎,1(𝒙), ∆𝐺𝑎,2(𝒙), … ∆𝐺𝑎,𝑖(𝒙), … )                                 (10) 

where ∆𝐺𝑎,𝑖(𝒙)  are all the activation energies of the competing paths. Various convergent 

optimization techniques based on subgradient methods exists for non-differentiable functions 

although they tend to perform poorly.  A superior choice is the smooth approximate 

𝑓(𝑥) → 𝑓(̅𝑥) =
1

𝛼
∙ ln (

1

𝑒−𝛼∆𝐺𝑎,1(𝒙)
+

1

𝑒−𝛼∆𝐺𝑎,2(𝒙)
+ ⋯ )                                  (11) 

which is very close to the exact result 𝛿𝐺𝑎(𝒙) for a single path reaction when we set 𝛼 = 𝑘𝐵𝑇  and 

smoothly combines multiple pathway contributions.  The most efficient optimization algorithms 

require approximate gradients and Hessians of the objective for Newton stepping.  Since many 

QM methods provide such information as byproducts in determination of saddle points and wells, 

we shall assume they are available.   

The choice of constraint functions in eq. (9) requires physical insight. We note that since 

𝛿𝐺𝑎(𝒙) represents a free energy difference between states with the same values of the disorder 

parameters, x, the internal strain energy of the silica support is cancelled out in the objective.  This 

allows the algorithm to search out highly unstable and improbable support structures in either the 

pre-catalyst or the activated catalyst that may be highly reactive. However, we expect that highly 

unstable structures would be unlikely to form or would be very likely to decay from an AS. To 

exclude this unrealistic possibility, we constrain the values of x to lie in the feasible set defined 

within the overlap of the energy spheres of the lowest AS, i.e. 𝐺𝐴𝑆
0 (𝒙) ≤ 𝐺𝑀𝐴𝑋1  and the pre-

catalyst 𝐺𝑝𝑟𝑒−𝑐𝑎𝑡
0 (𝒙) ≤ 𝐺𝑀𝐴𝑋2. Thus there are two inequality constraints,  
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𝐺𝐴𝑆
0 (𝒙) − 𝐺𝑀𝐴𝑋1 ≤ 0                                                      (12) 

𝐺𝑝𝑟𝑒−𝑐𝑎𝑡
0 (𝒙) − 𝐺𝑀𝐴𝑋2 ≤ 0                                                       

The numbers 𝐺𝑀𝐴𝑋1 and 𝐺𝑀𝐴𝑋2 are set after some experimentation and must lie above the highest 

chemically relevant barrier. The constraint functions are computed at the same level of QM as the 

chemical structures.  In general, we observe the FS formed from the intersection of the two energy 

spheres forms a compact lens-shaped region in disorder space. 

3. Results 

A. Two-dimensional model 

Focusing now in detail on the 2D model, the TOF obtained using full chemistry, 𝜈(𝒙), 

obtained at T=323.15° K at fixed reagent concentration is depicted in Fig. 3a. This activity map 

shows a range of over ten orders of magnitude and clearly reveals zones of high activity which are 

sought in the maximization of 𝜈(𝒙). The phenomenological free energy of activation, 𝛿𝐺𝑎(𝒙) is 

also plotted as comparison. As a guide to the eye, the local maximum versus rVO is shown, i.e. 

max
𝑅𝑉𝑂

𝜈(𝑟𝑉𝑂, 𝑟𝑂𝑂) = 𝜈𝑚𝑎𝑥(𝑟𝑂𝑂) which follows the curved ridgeline that is superimposed on the 

contour; this ridge is equivalent to the minimum valley seen for 𝛿𝐺𝑎(𝒙). This narrow ridge 

represents the region of highest activity for potential anchoring sites of the vanadium complex and 

is the target region for TOF optimization in a synthetic process. Indeed, the inset in Fig. 3a shows 

a one-dimensional cut at rOO=3.25 Å that exhibits a typical volcano curve of TOF versus the single 

disorder parameter rVO. One can imagine the synthesis of a series of catalytic samples with 

distributions of disorder that follows such a one-dimensional path, represented heuristically in Fig. 

3a by the series of dashed ovals superimposed on the disorder pathway. The present problem 

exhibits distinct multiple chemical pathways as shown in Fig. 2c. The selectivity of kinetic flux 

along those pathways can be extracted using the same sort of mathematics as the overall TOF, 

projecting the steady state flux onto the specific pathways, with the resulting selectivity map shown 

in Fig. 3b. Although kinetic flux along pathway 7 dominates in most regions, there are parameter 

regions of high preference for path 5. This path-switching behavior is familiar from the study of 

product selectivity where two competing reaction paths are controlled by the relative energy of 

two transition states that lead to different products through a common intermediate.28 57  58  
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Optimization of a catalyst for selectivity at an atomic level involves the tuning of relative activation 

energies controlling different paths in the design space.59 

It is clear that the TOF and selectivity maps exhibit multiple stationary points and thus they 

are not simple convex functions of the design variables.  However, the numerical methods 

developed around convex optimization have proven quite robust in complex applications when 

sufficient precautions are taken to constrain the domain. For the present problem, this involves 

setting GMAX1 and GMAX2 so that a single well-defined minimum exists. The lens-shaped FS shown 

in Fig. 3c is found to exhibit a single minimum for which the optimization algorithm performs 

well. 

To illustrate the efficiency of this scheme, we consider optimizing the activity at 323.15° 

K using the full chemistry model and the optimization method of Byrd et al.56 As seen in Fig. 4, 

the optimization occurs quickly and the optimum disordered state is discovered with high accuracy 

after less than 10 steps. The initial guess is arbitrary, and any choice leads to the same optimum.  

If the optimization is carried out using the full chemistry, each step requires a complete evaluation 

of the free energies of the chemical network. The optimization package also requires approximate 

gradients and Hessians of the objective function 𝛿𝐺𝑎(𝒙) and the constraint functions at each 

structure which are available for B3LYP. We also note that the method does not require a feasible 

start, so the random initial guess for x need not obey the constraints. A general observation in 

optimization theory is that an efficient higher-order algorithm will converge within 50 or fewer 

steps even in high-dimension or with complicated (but approximately convex) functions. This is a 

tractable number of quantum chemistry calculations provided that the chemical network does not 

grow too large. In the present case, convergence to within chemical accuracy occurs after only a 

handful of Newton steps.  A schematic illustration of the optimization problem is given in Fig. 5 

showing the relation of the TOF to the free energy and application to two and four state models. 

For a two state model x* occurs at the at  min
𝑥

[∆𝐺𝑎
𝐸𝑆𝑇(𝒙)].  For four states (and any higher number), 

x* occurs at  min
𝑥

[ max
∆𝐺𝑎,𝑖(𝒙)

(∆𝐺𝑎,1(𝒙), ∆𝐺𝑎,2(𝒙), … ∆𝐺𝑎,𝑖(𝒙), … )] at which point the objective can 

be non-differentiable. 

We now consider how mechanism reduction might work for the 2D model.  In Figs. 6a and 

6b we plot numerically determined HTS and LINT which are color-coded and labeled by structure 
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number. We see the identity of the (HTS,LINT) varies profoundly as a function of x and the plot 

is characterized by numerous boundary curves where barrier or well energies are equal. In Fig. 6c 

we use these identifications to compute the free energy, ∆𝐺𝑎
𝐸𝑆𝑇(𝒙). We see the agreement between 

the generalized EST result and the kinetically exact quantity, 𝛿𝐺𝑎(𝒙), Fig. 6d, is impressive and 

the only visible difference is a subtle smoothing of the exact 𝛿𝐺𝑎(𝒙)  around the transition 

boundaries between (HTS, LINT) pairings. It is interesting to note that the optimum disorder, x*, 

lies on the boundary between two (HTS, LINT) pairs, specifically between the structures (25, 24) 

and (23, AS). Furthermore, the constrained optimum 𝜈𝑚𝑎𝑥(𝑅𝑂𝑂) lies along this boundary line.  

Thus the physical meaning of x* is the point that the activation energy for the first H-atom addition 

to styrene is exactly equal to the activation energy for the addition of the second H-atom. In terms 

of optimization theory, we conclude that the mechanism reduction method should include four 

states in the generalized theory rather than just the two states of the basic EST. If optimization 

paths pass between three distinct zones of (HTS,LINT) pairing, then potentially six states would 

be required, and so forth. 

In Fig. 7 the eigenvalue sensitivity analysis and generalized EST theory is illustrated.  In 

Fig. 7a, several low-lying eigenvalues of the transition matrix are plotted versus the disorder 

parameter rVO holding rOO fixed. Numerous avoided crossings are observed at which points the 

definition of (HTS,LINT) are abruptly changing. Also plotted are the EST approximations to these 

eigenvalues which show a good agreement.  In Figs. 7b and 7c the eigenvalue sensitivity indices 

of the lowest two eigenvalues are shown immediately before and after the avoided crossing of 

those eigenvalues.  The identification of (HTS,LINT) pair is seen to jump from (25,24) to (23,AS) 

at the avoided crossing.  We note that the exact x* obtained from the Byrd et al.56 method using 

the full chemistry model is found to occur nearly exactly along this eigenvalue crossing seam. 

B. Three-dimensional model 

Using the EST model with the four states (25, 24) and (23, AS) that we identified as most 

important, we have also tested the optimization strategy for the 3D representation with disorder 

coordinates (𝑟1, 𝑟2, 𝑟3).  The optimization path and energy surfaces are plotted in Fig. 8.  Since it 

is difficult to visualize the free energy surfaces in a three-dimensional disorder space, we have 

plotted the free energy along the intersection surface where the free energy barriers are equal, i.e.,  

∆𝐺𝑎,1
𝐸𝑆𝑇(𝒙) = ∆𝐺𝑎,2

𝐸𝑆𝑇(𝒙).  It is seen that the algorithm quickly optimizes to a geometry that is 



 

16 

 

independent of the initial conditions.  The efficiency of convergence depends somewhat on starting 

point but typically we achieve convergence to within <1% within about a dozen Newton steps.  As 

indicated in the figure, the optimal point is found to lie on the intersection surface of ∆𝐺𝑎,1
𝐸𝑆𝑇(𝒙) 

and ∆𝐺𝑎,2
𝐸𝑆𝑇(𝒙) although the arbitrary initial condition lies well off this surface.  

The molecular geometries of the optimally engineered disordered state of the 3D system 

are roughly consistent with the result obtained in the 2D representation.  However, there are some 

detailed differences in the configurations since the two systems are constrained differently.  We 

note that 3D representation considers only variation of the silica configuration while the 2D 

representation considers variation of one silica coordinate and one coordinate for bonding the 

vanadium to the support.   

C. Higher dimensions 

The success of the optimization strategy for the present case suggests the following 

computationally efficient procedure that can be applied to a very high-dimensional representation 

of the active site heterogeneity. First, the full mechanism is computed at a few representative 

values of the disorder parameters, which are used as a screening to identify a small set of potential 

(HTS, LINT) pairs. Then a much smaller set of structures is used to minimize the activation energy 

obtained from QM versus x. This has the great advantage that QM for the full array of barriers and 

wells does not need to be computed for each step.  Naturally, it is possible that the search may 

wander into a region of x where the (HTS, LINT) structures involve new pairs. Hence, at a later 

stage of the calculation it is wise to compute the full network at the near optimized x* to verify the 

correct structures have been included. If not, the process can be repeated with new choices. In the 

present case, the pairs (25, 24) and (23, AS) are all that is required to optimize the TOF to high 

accuracy in 3D. If the microkinetic mechanism is not too large, it may also be computationally 

feasible to directly optimize the full chemistry model.  This more QM intensive approach has the 

advantage that the pathway-switching effect is automatically included in the TOF without the need 

to perform a sensitivity analysis. 

D. Scaling Relations 

The optimality of equal activation energies is highly reminiscent of the Sabatier principle 

that has been successfully invoked previously60  to explain volcano plots as a function of an 

intermediate energy for a variety of heterogeneous catalytic systems. This principle states that the 
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best catalyst is obtained when an intermediate is bound at the best compromise value between the 

attachment step and the release step of the cycle. It has been shown that using an intermediate 

binding energy as an independent variable, one finds approximate Evans-Polanyi-Brønsted type 

linear scaling relations for transition states for diverse systems such as ammonia synthesis, ethanol 

conversion, and electrochemical reduction.61 62 63 Does disorder fit into this pattern? As a test, we 

computed the energies of all the wells and barriers versus a key intermediate energy, viz. that for 

structure 24 where styrene has been partially hydrogenated. These results show a good linear 

relation and are presented fully in Fig. 9. The individual dots represent geometries sampled over 

the full range disorder parameters computed by QM.  In Fig. 10 we show three activation energies 

versus G24: ∆𝐺𝑎,1 = 𝐺25 − 𝐺24  (path 7),  ∆𝐺𝑎,2 = 𝐺23 − 𝐺𝐴𝑆  (path 7), and ∆𝐺𝑎,3 = 𝐺20 − 𝐺𝐴𝑆 

(path 5). The scatterplot of points represents the full (rvo,roo) 2D-disorder plane and it is seen that 

an approximate linear relationship does indeed develop.  It is seen that the crossing of the two 

activation energies, ∆𝐺𝑎,1 and ∆𝐺𝑎,2, occurs precisely at the previously obtained crossing seam 

obtained from the avoided crossing of the eigenvalue surfaces 𝜆1(𝒙) ≈ 𝜆2(𝒙) plotted in Fig. 5c. 

Interestingly, the activation energy on path 5,  ∆𝐺𝑎,3, also shows a linear scaling with G24 although 

path 5 does not include state 24.  

The success of the linear scaling relationship implies that the most important structures in 

the chemical reaction network are all approximately functions of a single independent variable, 

𝐺24
0 (𝒙).  This simplifies the chemical network and collapses the disorder space both into one 

independent variable.  A search procedure for optimality is then  argmin
𝐺24

(∆𝐺𝑎,1 − ∆𝐺𝑎,2)
2
where 

the disorder parameters are set by the requirement that two key activation energies are equal. 

Naturally, the question arises whether additional independent variables might be required for more 

complicated chemistry or higher dimensional models of disorder or when multiple binding sites 

contribute.64 This might be described as circumventing or breaking linear scaling.65 66 In the present 

application, the “width” of the scatterplots around the straight line represents the influence of 

additional secondary degrees of freedom that correspond to different locations along the crossing 

seam that possess modestly differing TOF’s.  The uncertainty in the crossing point, Gnon-linear in 

Fig. 9, reflects the variation in TOF along the crossing seam. We leave it as an open empirical 

question how these additional degrees of freedom can be added in ranked influence.  
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4. Conclusion 

Active site heterogeneity in a catalytic sample can originate in multiple ways but will 

invariably lead to a distribution of catalytic performance and provides a new opportunity to 

improve catalytic design.  Activity hot spots in a sample can be enhanced by a rationally guided 

synthesis based on a local representation of the disorder. The question explored here is how these 

hotspots may be located using ab initio QM which then provides targets for a synthetic strategy. 

Practical control parameters can include variables such as dopant concentration, nanoparticle size, 

nanoparticle composition, substrate porosity, or annealing rates.  The approach we have suggested 

involves several steps.  First, a mechanism is parameterized using a small number of local disorder 

coordinates that are suspected to strongly influence the TOF or selectivity.  The kinetics of this 

initial parameterization is then used to select a number of key structures that control the 

performance of the catalyst, here that number was four, i.e., two TS and two INT.  Then, employing 

a nonlinear optimization method, the optimal values of the disorder coordinates are computed from 

the QM energetics of the reduced mechanism.  The low-dimensional disorder space is then 

expanded to include more of the local environment and, thereby, a more accurate optimum is 

found.  Here, we stopped at three dimensions but can be made much higher.  Since the efficient 

nonlinear optimization relies on Newton stepping, the QM calculations should provide 

approximate gradients and Hessians for the optimized geometries of the key TS and INT structures.  

The main complexity of optimizing the active site environment is that reaction path can 

change as a function of the disorder coordinates.  This implies that different locations on the sample 

can proceed through different controlling mechanisms. We have found that the optimal 

environment often occurs along the boundary surfaces between such reaction paths in direct 

analogy to the Sabatier principle.  Direct optimization in a high-dimensional disorder space 

remains feasible even in such cases using the eigenvalue methodology induced here.   
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Fig. 1. A representative computational structure of amorphous silica, obtained following the 

methods of refs.32 and 33  (left), along with the distribution of O-O bond distances for all 

potential binding sites (right). The model shows the top monolayer layer of amorphous silica (Si 

– yellow, O – red, H – white) while the bulk is grey. The kernel density estimation distributions 

are based along with a histogram of calculated O-O bond distances surrounding potential binding 

sites. Bipodal and tripodal grafting sites are represented via the blue and orange bars, 

respectively, as well as the black and red curves, respectively. 
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Fig. 2.  The structure and kinetics of the silica supported organovanadium catalyst.  

In (a), the atomic level cluster model of the proposed pre-catalyst grafted to the 

silica support at a tripodal trigonal bipyramid site with a silanol donor, 

(≡SiO)2V(Mes)(THF). The structure was obtained at the B3LYP/CEP-31G level of 

theory. The atoms are coded as V=Green, Si=Yellow, O=Red, C=Gray, H=White.  

The two local coordinates rvo and roo are indicated in the figure. In (b), the 

coordinates r1, r2, and r3 of the 3D model are shown.  In (c), the microkinetic model 

for the overall process styrene+H2ethyl benzene is shown.  The active sites (AS) 

labeled D, C, and E are created by the activation process and are defined as the 

species after irreversible product release.  The three cycles 5, 6, and 7 are kinetically 

coupled.  The active sites are found to rapidly interconvert on the timescale set by 

the TOF. 
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Fig. 3.  Activity and selectivity maps in a two-dimensional disorder space.  In (a), 

zones of high activity are show in red and low activity in blue on a logarithmic 

scale. The conditions chosen are T=323.15°K, [Styrene]=1M, [H2]=5M, and 

[THF]=0.01M.  The superimposed solid line shows the ridge of constrained 

maxima, 𝜈𝑚𝑎𝑥(𝑅𝑂𝑂).  Along the cut at roo=3.25 Å the TOF exhibits a volcano 

curve shown in the inset.  The oval shaped distributions overlaying the cut 

heuristically represent a sequence of synthetic samples displaying the volcano plot.  

In (b), the selectivity of the reactive flux following pathway 5 is shown where red 

denotes high flux.  In regions of high overall activity, the flux is dominated by 

pathway 7 although there is a small local maximum of pathway 5 flux indicated by 

the cross.  The dashed lines bound the feasible set with the choices values 𝐺𝑀𝐴𝑋1 =
2 𝑘𝑐𝑎𝑙/𝑚𝑜𝑙  and 𝐺𝑀𝐴𝑋2 = 20 𝑘𝑐𝑎𝑙/𝑚𝑜𝑙  .  In (c) the feasible set of permitted 

disorder values is the lens shaped region.  The contour lines the level sets for the 

functions 𝐺𝐴𝑆
0 (𝒙) and 𝐺𝑝𝑟𝑒−𝑐𝑎𝑡

0 (𝒙). 
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Fig. 4.  Three optimization pathways, T1-T3, which maximize the TOF in a two-

dimensional representation of disorder with full chemistry.  Three initial conditions 

outside the FS were randomly selected and converge to the same optimal point.  In 

(a), the optimization paths are shown superimposed on the TOF objective function 

and boundaries to the FS are depicted with dashed lines.  In (b), the convergence of 

the objective function (the TOF) is shown as a function of the algorithmic step N.  

In (c), the optimization paths are plotted in (TOF,roo) space along with the position 

of the ridge 𝜈𝑚𝑎𝑥(𝑟𝑜𝑜).  Within a few steps, the trajectories converge to the ridge 

and thereafter approaches the maximum more slowly. 
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Fig. 5.  A schematic diagram showing various optimization strategies.    In the first 

panel, the full TOF is optimization versus disorder coordinate x.  The maximizer of 

the TOF, x*, is same as the minimizer of phenomenological free energy of 

activation. In the second panel, a two state optimization involves minimizing the 

difference between the barrier energy, GHTS, and the well energy GLINT.  In the 

lower panels the four state optimization is represented.  Two activation energies 

∆𝐺𝑎,1
𝐻𝑇𝑆(𝑥) and ∆𝐺𝑎,1

𝐻𝑇𝑆(𝑥), are found from the difference between two (HTS,LINT) 

pairs. The greater of ∆𝐺𝑎,1
𝐻𝑇𝑆(𝑥) and ∆𝐺𝑎,1

𝐻𝑇𝑆(𝑥) at each x defines the overall free 

energy of activation ∆𝐺𝑎
𝐸𝑆𝑇(𝑥)  of the EST.  The minimum of ∆𝐺𝑎

𝐸𝑆𝑇(𝑥)   defines 

the optimum, x*. 
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Fig. 6.  The generalized energetic span theory in two-dimensions.  In (a) and (b) the 

HTS and LINT are shown as functions of the disorder coordinates.  These 

designations are determined using a sensitivity analysis of the TOF. The boundary 

lines between regions occur when the barriers and wells controlling the reactive 

flux undergo transition.  In (c) the EST prediction of the effective activation free 

energy is shown versus x.  In (d) the kinetically exact phenomenological free energy 

is shown which agrees very well with the EST approximation. Note that the 

min(Ga(x)) lies extremely close to the eigenvalue avoided crossing curve 𝜆1(𝒙) ≈
𝜆2(𝒙) and their plots are indistinguishable. 
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Fig. 7. Eigenvalues of the transition matrix as a function of the disorder parameter 

rVO holding the value of rOO fixed at 3.25Å compared with the sensitivity spectrum.  

The concentrations of the reagents were chosen to be [ST]=1M, [H2]=5M, and 

[THF]=0.01M. In (a), the lowest three eigenvalues computed from the full T-matrix 

are shown along with predictions of EST.  There is a sharp avoided crossing of the 

lowest two eigenvalues at rVO=2.32Å at which point the TOF maximizes. In (b) the 

sensitivity index of the lowest eigenvalue reveals the appropriate choices for the 

pairing (HTS,LINT). The upper panel shows the spectrum at a value of rVO slightly 

below the crossing point and lower panel shows the spectrum slightly above the 

crossing point. The result clearly shows that (HTS,LINT) goes from (AS,23) to 

(24,25) abruptly at the crossing point.  
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Fig. 8.  Several optimization trajectories for the three-dimensional disorder model.  

The three random trajectories are shown which are started from random unfeasible 

initial conditions. (a) The trajectories are shown (𝑟1, 𝑟2, 𝑟3)-space along with three 

surfaces: the crossing surface for the two activation free energies, ∆𝐺𝑎
1(𝑟1, 𝑟2, 𝑟3) =

∆𝐺𝑎
2(𝑟1, 𝑟2, 𝑟3), multicolored; the boundary surface of the constraint on the pre-

catalyst, 𝑅𝑃𝐶 > ‖𝒙 − 𝒙0
𝑃𝐶‖, in red; and the boundary surface of constraint on the 

AS, 𝑅𝐴𝑆 > ‖𝒙 − 𝒙0
𝐴𝑆‖, in green. In (b) the same trajectories are plotted in 

(𝑟1, 𝑟2, 𝐸𝑛𝑒𝑟𝑔𝑦) space along with the crossing surface for activation energies.  In 

(c) the convergence of the TOF is shown as a function of optimization step.  Most 

trajectories quickly approach the crossing surface and then more slowly approach 

the overall optimum. 
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Fig. 9.  Linear scaling relations for the barrier and well free energies as a function 

of the intermediate free energy, G24 in the two-dimensional disorder model.  The 

points represent a grid values, (rVO,rOO), that span the full range of disorder space 

given by Table S1.The temperature is chosen to be 323.15 K and the free energies 

reflect the reagent concentrations, [THF]=0.01M, [Styrene]=1M, and [H2]=5M.  

The largest outliers to linear scaling occur at the edge of the grid. 
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Fig. 10.  Linear scaling of three activation free energies as a function of the binding 

free energy of the intermediate, 24.  The zero for G24 is taken as the lowest active 

site.  In (a) the activation energy ∆𝐺𝑎,1 = 𝐺25 − 𝐺24 is plotted in red and ∆𝐺𝑎,2 =
𝐺23 − 𝐺𝐴𝑆 is plotted in green. The scatter of points represents a uniform array of x-

values with 𝑟𝑂𝑂 < 3.6Å.  In (b), the ∆𝐺𝑎,1 = 𝐺25 − 𝐺24 is again in red and ∆𝐺𝑎,3 =
𝐺20 − 𝐺𝐴𝑆  is in green. The black dots lie along the boundary line where the 

activation free energies are equal. 
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