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ABSTRACT: Physics-based simulations of Arctic sea ice are highly complex, involving transport between different
phases, length scales, and time scales. Resultantly, numerical simulations of sea ice dynamics have a high computational
cost and model uncertainty. We employ data-driven machine learning (ML) to make predictions of sea ice motion. The
ML models are built to predict present-day sea ice velocity given present-day wind velocity and previous-day sea ice con-
centration and velocity. Models are trained using reanalysis winds and satellite-derived sea ice properties. We compare the
predictions of three different models: persistence (PS), linear regression (LR), and a convolutional neural network (CNN).
We quantify the spatiotemporal variability of the correlation between observations and the statistical model predictions.
Additionally, we analyze model performance in comparison to variability in properties related to ice motion (wind velocity,
ice velocity, ice concentration, distance from coast, bathymetric depth) to understand the processes related to decreases in
model performance. Results indicate that a CNN makes skillful predictions of daily sea ice velocity with a correlation up to
0.81 between predicted and observed sea ice velocity, while the LR and PS implementations exhibit correlations of 0.78
and 0.69, respectively. The correlation varies spatially and seasonally: lower values occur in shallow coastal regions and
during times of minimum sea ice extent. LR parameter analysis indicates that wind velocity plays the largest role in predict-
ing sea ice velocity on 1-day time scales, particularly in the central Arctic. Regions where wind velocity has the largest LR
parameter are regions where the CNN has higher predictive skill than the LR.

SIGNIFICANCE STATEMENT: We build and evaluate different machine learning (ML) models that make 1-day pre-
dictions of Arctic sea ice velocity using present-day wind velocity and previous-day ice concentration and ice velocity. We
find that models that incorporate nonlinear relationships between inputs (a neural network) capture important information
(i.e., have a higher correlation between observations and predictions than do linear and persistence models). This perfor-
mance enhancement occurs primarily in deeper regions of the central Arctic where wind speed is the dominant predictor
of ice motion. Understanding where these models benefit from increased complexity is important because future work will
use ML to elucidate physically meaningful relationships within the data, looking at how the relationship between wind and
ice velocity is changing as the ice melts.
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1. Introduction Climate model simulations indicate a substantial likelihood
that the Arctic Ocean will become largely ice free during
September by 2100 if warming exceeds 2°C (Stroeve and Notz
2018; Notz and Stroeve 2018; Jahn 2018; Meredith et al.
2019). Transition to thinner and more fragile ice will have
widespread environmental, geopolitical, and logistical im-
pacts, including potential for new increased maritime activity
(Bennett et al. 2020; Crawford et al. 2021; Cao et al. 2022),
with which comes the need to know where sea ice is and the
need for skillful predictions of where it will be. In this study,
we contribute to addressing these issues by assessing the skill
of machine learning models in making 1-day predictions of
& Supplemental information related to this paper is available ~ sea ice motion. We design these models to predict present-
at the Journals Online website: https://doi.org/lO.l175/AIES—D— day ice motion based on previous.day observations’ and show
23-0004.s1. proof of concept for applications in operational forecasting
that would allow information about the ice state to be ob-

Corresponding author: Lauren Hoffman, lahoffma@eng.ucsd. ~ tained before satellite retrievals are processed. Additionally,
edu we explore the extent to which these ML models will have

Sea ice cover in the Arctic has been diminishing since the
beginning of the satellite record. (Serreze et al. 2007; Stroeve
et al. 2012; Stroeve and Notz 2018; Thoman et al. 2022).
Negative trends in sea ice concentration, thickness, and multi-
year ice coverage (Carmack et al. 2015) have been reported
throughout the Arctic, whereas the length of the melt season,
drift speeds, and deformation rates are increasing (Stroeve
and Notz 2018; Rampal et al. 2009; Onarheim et al. 2018).
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2 ARTIFICIAL INTELLIGENCE FOR THE EARTH SYSTEMS

enough skill to be used to represent the dynamical component
of sea ice in a simulation framework that provides nowcasting
of the state of Arctic sea ice.

Predictions of sea ice motion have almost exclusively been at-
tempted with numerical prediction models (Petrou and Tian
2019). While these state-of-the-art, physics-based models for
sea ice prove useful, their inherent complexity comes with a
high computational cost (Hunke et al. 2020). There are also sev-
eral sources of uncertainty, including large sensitivity to initial
conditions and physical assumptions (Blanchard-Wrigglesworth
et al. 2015). In contrast to physics-based models, machine learn-
ing is emerging as a powerful tool for applications in the geo-
sciences in cases where large volumes of data are available
(Hsieh and Tang 1998; Toms et al. 2020). Machine learning pre-
dictions are driven by data and, therefore, do not depend on as-
sumptions imposed on physical constraints. Although these
constraints are crucial for some applications (e.g., where mass,
heat, and momentum need to be conserved), in other applica-
tions, they introduce additional uncertainty and complexity
with little scientific benefit. While simple forms of machine
learning (e.g., linear regression) have been commonly used in
the geosciences, more advanced deep-learning models (e.g.,
neural networks) have the potential to further elucidate physi-
cally meaningful relationships within data (McGovern et al.
2019; Toms et al. 2020). In this study, we assess the viability of
using a neural network as a surrogate model to parameterize
sea ice motion in a numerical model setting on 1-day time
scales.

Machine learning models for sea ice have been applied to
improve estimates of ice properties from satellite remote
sensing (Lee et al. 2016; Dumitru et al. 2019), to predict and
understand sea ice concentration on different time scales
(Kim et al. 2020; Li et al. 2021; Andersson et al. 2021), and to
make predictions of sea ice motion (Petrou and Tian 2019;
Zhai and Bitz 2021). ML models have been successful at im-
proving predictions of sea ice properties in comparison to
state-of-the-art dynamical models. For example, the deep-
learning model IceNet outperformed the seasonal forecasting
system 5 (SEAS5) dynamical model from the European
Centre for Medium-Range Weather Forecasts (ECMWF) for
lead times longer than 1 month when making seasonal fore-
casts of summer ice (Andersson et al. 2021). Additionally, a
convolutional neural network (CNN) designed to make 1-day
predictions of ice motion showed higher correlations with sat-
ellite observations than did Community Ice Code, version 5
(CICEY), a leading physics-based model for sea ice (Zhai and
Bitz 2021). The high performance of this CNN provides evi-
dence that a CNN would be an effective surrogate model to
replace the sea ice dynamical component of a numerical
model for short-time-scale predictions. We build upon the
work of Zhai and Bitz (2021) by further analyzing the nuances
in the performance of a CNN in predicting ice motion and by
building the case for its use over a conventional linear regres-
sion approach.

We apply three different models—persistence (PS), linear
regression (LR), and CNN—to make predictions of sea ice
motion. In comparison to the other two models, a CNN has
the benefits of incorporating spatial information and nonlinear
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relationships between the inputs into its predictions. We build
a CNN that has a similar architecture to that of Zhai and Bitz
(2021) (differences are noted in Table S1 in the online
supplemental material) and that is trained on the same input
and output data. Our models show similar performances in
making 1-day predictions of sea ice motion (Table S1). We ex-
pand on previous work by putting an emphasis on understand-
ing the spatial and temporal variability in performance of the
different models and how it is related to various properties of
the ice. We divide the Arctic into four geographic regions
(Fig. 1) based on the differences in skill between the CNN and
LR models, and we analyze model performance within each.

2. Background

Sea ice motion, as described by the momentum equation
[Eq. (1)], is determined from a balance of the momentum ten-
dency [(D/Dt)(mu)] with drag from the atmosphere (7,) and
ocean (7,), the Coriolis force (mfﬁ X u), the ocean surface
tilt (mgVH), and the internal ice stress (V - o) (Olason and
Notz 2014; Feltham 2008). The term on the left represents the
total derivative of mass m times velocity u:

%(mu):ra+7mefl:1><ufmgVH7V'a'. (1)

Changes in external forcing (e.g., winds, currents, radiation) in-
fluence the geometric and mechanical properties of the ice (e.g.,
thickness distribution, mass, strength, drag coefficients), which
ultimately impact ice motion and deformation (Untersteiner
et al. 2007). The American-Canadian Arctic Ice Dynamics
Joint Experiment (AIDJEX) of 1970-78 was one of the first
major studies aimed at developing a comprehensive model of
sea ice motion under the influences of the ocean and atmo-
sphere (Maykut et al. 1972; Untersteiner et al. 2007). Using
data from the AIDJEX experiments, Thorndike and Colony
(1982) introduced a relationship between sea ice velocity and
geostrophic wind that explained up to 70% of the variance in
sea ice velocity in the central Arctic. This relationship describes
ice that is subject to high wind speeds on time scales of days to
months. In this relationship, sea ice velocity is related to geo-
strophic wind velocity through a speed reduction factor (the
wind factor) and a turning angle, after removal of the long-term
mean ice velocity field. In the absence of a steady ocean current,
sea ice moved about 8° to the right of the geostrophic wind at
about 0.008 times the speed. This model is less successful for
areas within 400 km of the coast, where stress gradients within
the ice become more important due to the restriction of ice mo-
tion by geographical features (Thorndike and Colony 1982).
The internal stress gradient also depends on factors includ-
ing the magnitude of the wind speed, ice concentration, and
ice thickness. Ice with high values for thickness and concen-
tration may have large stress gradients, which can result in a
smaller dependence on wind. Conversely, ice with smaller
stress gradients (low thickness and concentration) is found to
have higher dependencies on wind (Hibler 1979). Decreases
in correlation between wind and ice motion near the coast
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FIG. 1. Maps showing (a) spatial divisions (Greenland Sea, eastern Arctic, central Arctic, and Baffin Bay),
(b) bathymetric depth (m; note the logarithmic scaling), and (c) the distance from coast (km). Spatial divisions are
based on overall performance of the CNN model and the difference between the performance of the CNN and LR
models. The four divisions represent regions of variable model performance and corr; g > corrcnn (Greenland Sea;
dark blue), low model performance and corrp g > correnn (eastern Arctic; light blue), high model performance and
corr g < correnn (central Arctic; light red), and variable model performance and corrp g << correny (Baffin Bay;
dark red). Gray shading represents areas where the difference in correlation between the CNN and LR is not statisti-
cally significant or areas that are not included within this analysis. Data are not shown in regions where the ice concen-
tration is zero or the satellite retrievals are absent for more than 20% of the year.

have often been attributed to ice stresses (Thorndike and
Colony 1982; Kimura and Wakatsuchi 2000; Hibler 1979).

A relationship between ice motion and geostrophic wind
was also examined by Kimura and Wakatsuchi (2000) and by
Maeda et al. (2020), using sea ice motion derived from satel-
lite products and geostrophic wind derived from the sea level
pressure data from ERA-Interim reanalysis data produced by
ECMWEF on 2.5° and 0.75° grids, respectively. In these studies,
geostrophic wind was generally found to explain 70% of the
variance in sea ice velocity, with 60%-90% of the variance ex-
plained in the central Arctic, and up to 40% in coastal regions
(Fig. 3 in Maeda et al. 2020). In addition to spatial variability,
seasonal variations in the speed reduction factor and turning
angle have been reported (Thorndike and Colony 1982;
Kimura and Wakatsuchi 2000; Kwok et al. 2013; Maeda et al.
2020).

3. Data

In our analysis, models are trained to make 1-day predictions
of sea ice velocity given present-day wind velocity, previous-day
sea ice concentration, and previous-day sea ice velocity from
various satellite and reanalysis sources during 1989-2021. Using
present-day wind as a predictor of present-day sea ice velocity
incorporates information that gives the model intrinsic skill. This
approach is appropriate for the objective to make predictions on
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1-day time scales. We opt not to detrend to avoid contaminating
the data with spurious removals. However, we do find that the
model performance does not have any significant changes when
run on data with the seasonal cycle removed (not shown). Proc-
essed data and methods for obtaining and processing raw data
are made available by Hoffman et al. (2023).

The ice velocity and concentration data are available from
25 October 1978 to 31 December 2021. However, evaluation
of the uncertainty metrics for the Polar Pathfinder ice motion
product shows a change in the error fields starting in the sum-
mer of 1987 (Fig. S1) due to a difference in the sampling
period when switching from using Scanning Multichannel
Microwave Radiometer (SMMR; 48-h sampling period) to
Special Sensor Microwave Imagers (SSM/Is; 24-h sampling
period) for brightness temperature (Tschudi et al. 2020). Ad-
ditionally, ice concentration data from the Nimbus-7 passive
microwave are only available every other day until 1987, and
there is a gap in availability of the sea ice concentration data
from 3 December 1987 to 12 January 1988. Thus, for consis-
tency in the stability of the observation systems and the quan-
tity of data used from each year, we use data from 1989 to
2021 to build our models. We use the satellite and reanalysis
sources discussed below for consistency with Zhai and Bitz
(2021). However, in comparison, we make a slight extension
to the temporal subset of data over which the model is trained
and tested.
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a. Sea ice velocity: Polar Pathfinder, version 4, daily sea
ice motion vectors

The Polar Pathfinder product (PP; Tschudi et al. 2019) pro-
vides daily sea ice motion vectors at a spatial resolution of
25 km in the Equal-Area Scalable Earth (EASE) grid. The
EASE grid was defined by the NOAA-NASA Polar Path-
finder Program to support standardized spatial comparisons
from gridded, satellite microwave data. In polar regions, the
EASE grid takes the form of Lambert azimuthal equal-area
projections that accurately represent area in all regions of the
global sphere (Brodzik et al. 2012). This dataset is informed
by optimal interpolation of a combination of observations
from passive microwave inputs, buoys, and NCEP-NCAR re-
analysis winds. The PP dataset relies on wind because during
the summer, passive microwave and buoy sources become un-
reliable for melting ice (Tschudi et al. 2020). For wind-derived
ice motions, ice is assumed to move at ~1% of the wind speed
and in the direction of the wind, based on the estimate from
Thorndike and Colony (1982). An estimated uncertainty map
is also provided, which we use for comparison when evaluat-
ing our models. We were unable to obtain a dataset that is in-
dependent from the PP product to validate the use of the PP
for this case. We did find high correlation between the PP and
the Ice-Tethered Profiler data (not shown), but these observa-
tions were used to create the PP product. Wang et al. (2022)
found the PP to have low accuracy in speed, but high accuracy
in angle in comparison to 11 other satellite products when
evaluated against measurements from buoys from the Inter-
national Arctic Buoy Program (IABP) and the Multidisciplin-
ary Drifting Observatory for the Study of Arctic Climate
(MOSAIC).

b. Sea ice concentration: Nimbus-7 SMMR and DMSP
SSM/I-SSMIS passive microwave data

The passive microwave sea ice concentration product
(Cavalieri et al. 1996) is generated from brightness tempera-
ture data derived from various sensors (SMMR, DMSP, and
SSM/I-SSMIS). This product provides daily measurements of
sea ice concentrations (fraction of ocean area covered by sea
ice in each grid cell) in a 25 km X 25 km polar stereographic
projection. Here we regrid to the 25-km EASE grid for con-
sistency with other ML model inputs. An intercomparison
study of 10 satellite passive microwave sea ice concentration
datasets by Kern et al. (2019) found that while the Nimbus-7
product used in this work showed the largest difference be-
tween other products, all 10 products compared reasonably
well to ship-based observations. Additionally, the Nimbus-7
product used in this study showed less than a 7% deviation
from all other products from November to June and less than
a 15% deviation from July to October when comparing the
monthly mean values of sea ice concentration among the 10
products from June 2002 to September 2011. The product
used in this study was also found to have a negative bias in
sea ice concentration throughout the Arctic in comparison to
the ensemble mean of the 10 products (Fig. 8 from Kern et al.
2019). While this negative bias was particularly large in the
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peripheral seas, it was close to zero (i.e., <6%) in the region
of study of this work.

c¢. Wind velocity: JRA55-do

The Japanese Meteorological Agency 55-year Reanalysis—
based surface dataset for driving ocean-sea ice (JRA55-do)
models is used to prescribe wind velocity (Tsujino et al. 2018).
Based on the JRASS (Kobayashi et al. 2015), the JRAS5-do is
derived for use in ocean simulations, with surface fields ad-
justed relative to satellite climatological winds (SSM/I and
QuikSCAT) using a spatially varying wind factor for wind
speed and EOF analysis for wind direction (Tsujino et al.
2018). The JRAS5-do better matches satellite wind fields in
coastal areas than do other reanalysis products (Taboada et al.
2019). The JRAS5-do provides 3-hourly estimates of total
wind velocity at 10 m with a horizontal resolution of ~55 km.
Here, we calculate daily average wind vectors and regrid to
the 25-km EASE grid.

d. Bathymetric depth: IBCAO

We use bathymetric depth from the International Bathymetric
Chart of the Arctic Ocean (IBCAO; Jakobsson et al. 2020) for
comparisons of model performance after training. We make use
of the version 4.2 product without elevation data for the Green-
land Ice Sheet on a 400 m X 400 m gridcell spacing, regridded to
the 25-km EASE grid.

4. Methods
a. Model inputs

We employ a suite of machine learning and statistical
models (PS, LR, and CNN) to predict present-day sea ice
velocity components (#;, and v;,) using the following input
parameters:

e present-day zonal and meridional wind velocity (u,,
and v,,),

e previous-day zonal and meridional sea ice velocity (u;,—1
and v;,—1), and

e previous-day sea ice concentration (c,—).

Inputs are chosen based on results from Zhai and Bitz
(2021), who showed that the above combination of parame-
ters produced skillful output when used to predict sea ice mo-
tion with a CNN.

Sea ice velocity might be expected to be dependent also on
sea ice thickness, in addition to our selected input fields
(Hibler 1979; Thorndike and Colony 1982). However, feature
exploration studies of CNN models applied to Community
Earth System Model, version 2, (CESM2) output by Zhai and
Bitz (2021) found that the inclusion of sea ice thickness as an
input parameter does not greatly impact the overall skill and
correlation of CNN predictions. Fortunately, the thickness is
not an important input, as satellite observations of sea ice
thickness prior to 2019 have a high uncertainty, are discontin-
uous in time, and unavailable during the summer. Therefore,
this parameter is omitted from our analyses. We note that ef-
forts are being made to extend the CryoSat-2 sea ice thickness
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record back in time using machine learning techniques
(Landy et al. 2022). However, these data are available bi-
weekly and thus do not meet the requirements of this study
for daily data.

Inputs are taken from satellite and reanalysis sources listed
in section 3. All variables are normalized to zero mean and
one standard deviation before being input into the models,
based on the global statistics of the entire record used here
from 1989 to 2021. Data are broken up into train, validation,
and test datasets, with an 88%—-6%—-6% split (e.g., train with
years 1989-2017, validate with years 2018-19, and test with
years 2020-21). The train, validate, and test years are shuffled
10 times to produce data for 10 different ensemble runs for
each ML model. We refer to an “ensemble run” as a run that
is trained on a different temporal subset of data. We calculate
performance statistics (discussed in section 4c) for each en-
semble run and average over the 10 runs for final results. A
CNN requires inputs to be of consistent size, with consistent
spatial and temporal coverage, and without nonnumerical
[e.g., not a number (NaN)] values. Thus, while it may make
sense to remove data in regions where sea ice motion data are
not available (i.e., sea ice concentration is zero or there is
land) before training, due to the practical constraints of apply-
ing a CNN, sea ice velocity components are set to zero during
training. A time-variable mask is used to remove these sea ice
free points during model evaluation. Additionally, while un-
certainty metrics are available for the Polar Pathfinder sea ice
motion product, we do not mask out any points during train-
ing, due to the constraints of CNN models listed above. We
note that taking uncertainty into account during training of
PS and LR models is possible, but to maintain consistency be-
tween models, we leave that for future work.

b. Model setup

We compare prediction outputs from three different models:
PS, LR, and CNN.

1) PERSISTENCE AND LINEAR REGRESSION MODELS

PS predicts the present-day sea ice velocity to be the same
as that of the previous day at each grid point [Eq. (2)]:

*’ *

U, =W, . (2

This offers a baseline measure of the variability of the system
and of the minimum skill that any alternative models should
attain. Here, the vector u; is a complex number, where the
real and imaginary parts are the zonal and meridional compo-
nents of the sea ice velocity vector.

LR regresses each of the five input parameters (section 4a)
onto the sea ice velocity components [Eq. (3)]:

= Au;t + Bu.,_, + Cc!

u; it—1 it—1

+ D. 3)
Given inputs and outputs, LR solves for parameters A to D.
In Eq. (3), A-D are complex constants, and the vectors u;, u’,
and ¢; are complex numbers, where the imaginary part of ¢; is
set to zero. LR is carried out in two different manners: one is
performed globally (LR-g) and uses each time snapshot as an
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independent sample for fitting, providing one equation for the
entire modeled region in the Arctic; the other is performed
gridwise (LR), leading to a different set of regression coeffi-
cients for each grid point. For both LR configurations, we em-
ploy ridge regression with a ridge parameter of A = 1072 to
limit the magnitude of the regression coefficients and prevent
them from being unrealistically large (Marquardt and Snee
1975). The value of the ridge parameter is chosen based on the
iterative approach in Marquardt and Snee (1975) where we
make step changes from small to large values of A and pick the
value of A for which the LR coefficients stabilize (i.e., are not
infinitely large). We also note that data are not removed from
the training set when ¢; = 0, which may dampen the wind de-
pendence in LR because the model is trained that u; = 0 when
u, # 0 in these locations. As discussed in section 4a, these data
are not masked during training because the CNN requires nu-
merical values (i.e., not NaN).

2) CNN ARCHITECTURE

A CNN is a type of ML model typically applied to visual
images, whereby a computer is fed numerous (hundreds to
millions) different images and learns from their patterns in or-
der to make a prediction (O’Shea and Nash 2015). We use
datasets that are image-like in that they have a specified value
at various grid points on a map (for images, this would be col-
ors at various pixel locations). Incorporation of spatial infor-
mation when making predictions is one of the benefits of
CNN over LR or PS models, in addition to the ability of a
CNN to capture nonlinearities in the relationships between
the input predictors and the outputs. Our CNN (Fig. 2) is set
up with five repetitions of the block unit: 2D convolution, recti-
fied linear unit (ReLU), and 2D max pooling. This is followed
by a 20% dropout layer, a flattening to a one-dimensional (1D)
vector, and finally a regression onto a 1D vector (dense layer)
representative of the output predictions. This output is then
concatenated into two maps of present-day zonal and meridio-
nal sea ice velocity.

We implement the CNN in Python using the Tensorflow
Keras library (Abadi et al. 2015). Convolutional and ReLU
layers are carried out with (1, 1) strides and (3, 3) filter sizes,
whereas the max pooling strides and filter sizes are (2, 2). For
each of the respective repeating block units, there are 7, 14,
28, 56, and 112 filters. The training runs for 50 epochs with a
batch size of 365 days. Optimization is carried out with an
Adam optimizer and a normalized root-mean-square error as
the loss function [second term in Eq. (5) discussed below].
Similar to the LR, we employ ridge regression with a ridge pa-
rameter of A = 1072 Further descriptions of the architectural
components of a CNN (e.g., layers, strides, filters, ReLU, max
pooling) can be found in O’Shea and Nash (2015). Filter sizes
are chosen based on the conventional Visual Geometry
Group Network (VGGNet) architecture (Szegedy et al.
2015). We do not carry out hyperparameter tuning for this
study, in order to maintain consistency with the architecture
of Zhai and Bitz (2021), with the only differences being in the
sizes and number of the filters due to differences in the sizes
of the starting input maps.
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Input: Uy Vap Yiers Vier Cies —_—> D — —_— Output: UV
Conv2D Max Dropout 20% Dense
Leaky ReLU Pooling Flatten

x 5 repeating units

FIG. 2. Schematic of the CNN used in this study for predicting present-day sea ice velocity components, u;, and v;, (outputs), from
present-day wind velocity, u,, and v, ; previous-day sea ice velocity, «;,—; and v;,—1; and previous-day sea ice concentration, ¢;,—; (inputs).
This CNN has five repeating units of a 2D convolution with an ReLU activation and max pooling, followed by a 20% dropout layer,

flattening, and a dense layer.

¢. Model evaluation

As in Zhai and Bitz (2021), the model performances are
evaluated and compared based on the correlation (corr) and
skill, given by

(x =X —
corr, 4)
\/Z(x - X) \/Z v, —3)
and
[ — v
skill,, =1 — Vo ) ®)

(xi - f)z

where x represents observations and y represents pre-
dicted values of a sample size n. The correlation [Eq. (4)]
is defined as the covariance between prediction and obser-
vation scaled by their standard deviations. The skill
[Eq. (5)] is a representation of the fraction of the observed
standard deviation explained by the model predictions,
where the second term is the root-mean-square error nor-
malized by the standard deviation of the observations
(Thomson and Emery 2014). The correlation ranges from
—1 to 1, with 1 indicating a perfect positive relationship,
—1 indicating a perfect negative relationship, and zero rep-
resenting orthogonality. The skill can range from negative
infinity to 1, with 1 representing a perfect match between
model predictions and observations. The correlation is a
measure of how well the phase variability in the data is ex-
plained by the model, whereas the skill is a measure of the
absolute error in the model predictions.

These metrics are calculated using the test dataset (varying
years, as discussed in section 4a) of which the models have no
prior knowledge. Two different masks are made and both ap-
plied to the data during model evaluation: one is time variable
and evaluates model outputs only at times and in locations
where sea ice concentration is greater than zero; the other is
constant with time and masks out all areas where sea ice con-
centration is zero more than 20% of the time from 1992 to
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2017. Metrics are calculated overall [section 5a(1)], at each
grid point to provide spatial evaluation [section 5a(2)], over
each month for temporal evaluation [section 5a(3)], and for
different percentile ranges of various sea ice properties (wind
speed, ice speed, and ice concentration) to understand the
role these play on the model performance [section 5a(4)]. For
temporal evaluations we calculate the monthly mean for each
of the 10 ensemble runs. Overall monthly means are then rep-
resented by the mean of the 10 ensemble runs, and monthly
errors are calculated as the standard error of the mean of the
10 ensemble runs (as discussed in section 4a). Temporal eval-
uations are carried out for different regions within the Arctic.
The divisions (Fig. 1a) are made based on spatial distributions of
model performance metrics (corrcnn and correnn — corriR in
Figs. 3c,f), representing regions of (i) variable model perfor-
mance and LR greatly outperforming CNN (ie., variable
correnn and corrp g 3> correnn; Greenland Sea; dark blue);
(ii) low model performance and LR slightly outperforming CNN
(i-e., low correnn and corrp g > correnn; Eastern Arctic; light
blue); (iii) high model performance and CNN slightly outper-
forming LR (i.e., high correnn and corrp g < correny; Central
Aurctic; light red); and (iv) variable model performance and CNN
greatly outperforming LR (i.e., variable correny and corrp g <<
corrcny; Baffin Bay; dark red).

d. Model comparison

We also investigate the correlation and skill differences be-
tween the LR and CNN models, which requires an understand-
ing of where the differences are significant. Significance tests
on the differences are approximated with a cross-validated
t test (Dietterich 1998; Tang et al. 2000). The cross-validated
t test proceeds as follows: (i) for each of the 10 ensemble runs,
the correlation and skill for the LR and CNN are calculated for
each grid point or percentile range for a given variable and
transformed by Fisher’s z transform [Eq. (14.5.6) in Press et al.
1986] to remove skewness in the distribution; (ii) the difference
between the transformed correlation and skill for the two mod-
els is calculated and averaged over the 10 ensemble runs; and
(iii) a two-tailed ¢ test is performed to detect whether the mean
difference between the two models is significantly different
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(i) and (1)].

from zero at the 95% confidence level. The cross-validated
t test uses the degrees of freedom to calculate significance. For
spatial comparisons [section 5a(2)], we estimate degrees of free-
dom using the temporal decorrelation scale to estimate the num-
ber of independent time series of sea ice motion in the Arctic.
This temporal decorrelation scale is taken as the e-folding
scale of a Gaussian fit to the autocorrelation of the sea ice
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speed calculated at different time lags [Egs. (10) and (11) in
Sumata et al. 2018].
e. Analysis of inputs

We analyze the spatial and temporal variability of differ-
ent parameters related to ice motion (wind speed u,; ice
speed u;; and ice concentration ;) to assess how the model
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TABLE 1. Overall correlation and skill between observations and
predictions of sea ice velocity for four different models.

Model Correlation Skill
Persistence (PS) 0.69 = 0.02 021 = 0.02
Linear regression, global (LR-g) 0.72 £ 0.01 0.30 = 0.01
Linear regression, gridwise (LR) 0.78 = 0.02 0.37 = 0.02
Convolutional neural network (CNN) 0.81 = 0.01 0.42 = 0.02

performance compares to the model inputs. Spatial analyses
look at maps of the average and standard deviation of each
parameter over time from 1989 to 2021. This type of analysis
is useful for comparing these properties to maps of the
model performance metrics in order to understand different
regimes within the Arctic. We also look at the seasonality
of each of these properties. Similar to the input analysis in
section 4c, monthly errors are calculated as the standard er-
ror of the mean of the 10 ensemble runs, and temporal eval-
uations are carried out for different divisions that are
chosen based on the model performances.

5. Results
a. Model performance
1) OVERALL

We evaluate the overall performance of the different mod-
els by calculating the correlation and skill over all grid points
and times (Table 1). The CNN has the highest correlation and
skill, followed closely by the gridwise LR. The gridwise LR
largely outperforms the LR-g that covers the entire Arctic,
which is not much better than the simple PS model. These
results confirm the advantage of using a model that captures
nonlinearity (CNN) and the heterogeneity of Arctic sea ice
motion statistics (both CNN and LR). The better perfor-
mance of the CNN, LR, and LR-g models in comparison to
the PS confirms that sea ice motion depends on wind and sea
ice concentration on daily time scales. Table 1 shows the pat-
tern in which an increase in model complexity leads to an in-
crease in performance. Additionally, because correlation is a
measure of how well the model is able to capture the phasing,
while skill measures the model’s ability to capture phasing
and magnitude, the high correlation but lower skill suggests
the models do well capturing the phasing but incur error in
capturing the magnitude.

2) SPATIAL

Spatial variations in the correlation (Fig. 3) and skill (not
shown) are similar for the PS, LR, and CNN models. Models
perform well for predictions in the central Arctic, with
decreasing performance in coastal locations. Low values of
correlation (Figs. 3a—c) are visible in the Bering Strait, Bering
Sea, Hudson Bay, East Siberian Sea, Laptev Sea, Kara Sea,
and off the coast of Greenland. Particularly poor model per-
formances are found near the islands in the eastern Arctic.
The best model performance is seen north of Fram Strait and
in the Beaufort Sea.
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Typically, corrcnn > corrpr > corrps, similar to the results
from section 5a(1). The spatial differences in correlation be-
tween the models are shown in Figs. 3d—f. Regions in red indi-
cate areas where the first model in the difference metric
outperforms the second (i.e., corrcnn > corrps in Fig. 3d,
corrp g > corrps in Fig. 3e, and correnn > corrpg in Fig. 3f),
whereas blue regions indicate the opposite (i.e., correnn <
corrp g in Fig. 3f). Gray regions show where the difference in
correlation between the two models is not statistically signifi-
cant. The CNN and LR models outperform the PS over the
entire Arctic (Figs. 3d,e), with the exception of the western
side of Baffin Bay, where the PS outperforms the LR (blue).
Overwhelmingly, the CNN outperforms the LR (red in
Fig. 3f). Interestingly, the LR has a higher correlation (blue)
in coastal regions where both models have decreased perfor-
mance (i.e., near the islands in the eastern Arctic and off the
coast of Greenland).

The spatial patterns in model performance compared to the
distance from the coast are confirmed in Fig. 4. Correlations
for the CNN and LR models tend to be lower in coastal re-
gions (Figs. 4a,b). This is also true for skill (not shown). For
both models, locations that are greater than 400 km from the
coast consistently have correlation greater than 0.7 (and skill
greater than 0.3; not shown). The finding that the CNN out-
performs the LR model for most cases is confirmed in Fig. 4c,
where most of the data lie in the positive region (i.e., above
the black line). Conversely, locations where the LR outper-
forms the CNN only occur within 400 km of the coast.

We also show that models have decreased performance in
shallower regions (Figs. 4d,e). Overall, model performance in-
creases with increasing seafloor depth. The relationship is log-
arithmic: performance increases rapidly with increasing depth
for depths shallower than 1000 m, while the trend levels out
for depths greater than 1000 m. Models exhibit correlations
less than 0.7 and 0.5 (CNN and LR, respectively) only for lo-
cations with depths less than 1000 m. The CNN outperforms
the LR for most cases (Fig. 4f). Most regions where the LR
outperforms the CNN (below the black line) occur at depths
shallower than 500 m, although there are some instances of
higher correlation of the LR for greater depths.

We also analyze the spatial variability of the various prop-
erties related to sea ice motion (u,, u;, and ¢;). The means and
standard deviations of the properties listed above are mapped
in Figs. 3g-1. Patterns in mean ice speeds tend to coincide
with the spatial patterns in wind speed (Figs. 3g,h), consistent
with the known dependence of ice motion on wind speed
(Thorndike and Colony 1982). Both ice and wind speed are
relatively low in the coastal and island regions of the East
Siberian Sea, the Canadian Arctic Archipelago, and off the
northern and western coasts of Greenland. The highest mean
wind speeds occur in the Davis Strait, off the eastern coast of
Greenland, and in the Bering Strait; high mean ice speeds
also occur in these regions, in addition to the Beaufort Sea.
The region of low mean ice speeds to the north of the Canadian
Arctic Archipelago coincides with high mean ice concentra-
tions (Figs. 3h,i). Conversely, the region of low mean ice
speeds in the East Siberian Sea coincides with lower mean ice
concentrations.



OCTOBER 2023

HOFFMAN ET AL. 9

al c
@ R ©
08 <F_ 2 . R x10°°
- [ 25
2 0.6 = 0
o 2 -
E04 o
8 £ 2
o
0.2 0.2} °
-0.2
0 ) ) ) ) 0 ) ) , ' " ) 1.5 %
0O 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200 0O 200 400 600 800 1000 1200 ~g
distance from coast [km] ';
‘ () i , Q) 04 . ® s
08 I = - 08| = = e
! I @
Z06 06 = 02
z =2l z |
o = 4 < 05
E 0.4 ﬁ 04} 9 0 |
° =
0.2 0.2} »
-0.2 ——o
0 0
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

bathymetric depth [m]
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models is shown in (c) and (f). Gray shading in (c) and (f) represents correlation differences between the two models that are not statisti-
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Regions that show high variability (large standard devia-
tions) in ice speed coincide with high mean ice speeds (i.e., in
the Beaufort Sea, Baffin Bay, Davis Strait, and Greenland
Sea), while regions with low variability coincide with lower mean
ice speeds (to the north of the Canadian Arctic Archipelago and
in the East Siberian Sea) (Figs. 3h,k). Variability in wind
speed is found to be relatively consistent throughout the
Arctic, with the exception of high variability off the eastern
coast of Greenland (Fig. 3j). Regions with large variability
in ice concentration typically correspond to regions with
lower mean ice concentrations (i.e., in the East Siberian
Sea, Baffin Bay, the Kara Sea, and the Bering Strait). These
are the regions where the largest amount of seasonal ice
melt typically occurs (not shown), which contributes to the
large variability and lower mean ice concentrations.

3) TEMPORAL

For the region containing the entire Arctic, the CNN typi-
cally has the highest correlation, followed by the LR and then
the PS model (Fig. 5a). During June-September, the differ-
ence in correlation between the CNN and LR models is not
statistically significant. Temporal structure is visible in the
correlation for all of the models. The LR model performance
(Fig. 5a) has a larger range of seasonal variability than the
other two models. Maximum correlation and skill for the PS
and CNN models occur during October—December, while the
LR has a correlation maximum in June-August. All three
models experience a minimum performance in April.

The temporal evaluations are divided into regions (Fig. 1a)
based on the spatial variability of their performance, as dis-
cussed in section 4c. The impacts of this spatial division on
model performance are shown in Figs. Sb—d, while Figs. Se—g
represent differences in the correlation between the different
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models. Here, the black lines represent metrics calculated
with all of the data included, and the different shades of red
and blue represent the respective spatial regions from Fig. 1a.
Diamonds in Figs. Se-g indicate months when the difference
between the two models is statistically significant. The corre-
lation for the region within the central Arctic division (light
red) does not deviate much from that of the entire Arctic
(black), because the central Arctic region is large and covers
most of the region containing the entire Arctic. However,
there are significant changes in monthly values of correlation
for all other divisions (Greenland Sea, eastern Arctic, and
Baffin Bay divisions). For all three models, the eastern Arctic
(light blue) division exhibits a similar seasonal cycle to the en-
tire Arctic (i.e., minimum correlation in March—April) but has
a consistently lower monthly correlation in comparison to the
other divisions for all models, except during the months of
July—October.

The Greenland Sea (dark blue) and Baffin Bay (dark red)
divisions exhibit a relatively high correlation from October—
May that decreases toward a minimum in August or September
(Figs. Sb—d). The Greenland Sea division (dark blue) has a
higher correlation than the other divisions from October—April
for all three models. The Greenland Sea division shows a lower
correlation than the region containing the entire Arctic from
the months of June-September, reaching a minimum in August
for all three models that is significantly lower than correlations
for the entire Arctic (i.e., the CNN has a minimum of 0.54 for
the Greenland Sea division in comparison to 0.80 for the overall
Arctic). The Baffin Bay division (dark red) exhibits the largest
deviations in correlation from the overall Arctic for all models,
showing up as a large decrease during the months of May-
November. The Baffin Bay division has higher correlations in
December—April and the lowest August-September minimum
out of all of the divisions for all models (ie., the August
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FIG. 5. Ensemble mean monthly correlation for the prediction of sea ice velocity by three different models: (a) all models, (b) PS,

(c) LR, and (d) CNN. The difference between the correlation of the (e) CNN and PS, (f) LR and PS, and (g) CNN and LR models.
(h)-(j) Ensemble mean monthly values of various properties related to sea ice motion [u, in (h); &, in (i); and ¢; in (j)]. Metrics are calcu-
lated for five different regions, containing the entire area of the Arctic (black) and within the spatial divisions indicated in Fig. 1a (shades
of red and blue). Error bars represent ensemble mean standard deviations. Diamonds in (e)-(g) indicate months when the difference be-

tween the two models represented is statistically significant.

correlation of the CNN within the Baffin Bay division is 0.28 in
comparison to 0.80 for the entire arctic). The performance mi-
nima that occur in August-September for the Greenland Sea
and Baffin Bay regions are much lower than the April minima
for the region containing the entire Arctic. This pattern of de-
creased model performance during months of minimum sea ice
extent (Greenland Sea and Baffin Bay divisions) suggests a link
between model performance and sea ice concentration, which
will be further evaluated in section Sc.

The differences in correlation between the models for the
different divisions are shown in Figs. Se—g. The LR and CNN
typically outperform the PS for all divisions (i.e., diamonds in-
dicating statistically significant difference in model perfor-
mance are above zero in Figs. Se,f). The LR outperforms the
CNN in all months for the eastern Arctic division. However,
statistically significant differences from zero are only present
December-May. The CNN outperforms the LR during
the months of September—May for the central Arctic and
September—June for the Baffin Bay division. However, the
difference between the correlation of the CNN and LR is not
statistically significant during the months of June—October for
the central Arctic or July and September—November for the
Baffin Bay division. These differences in model correlation will
be further analyzed in section Sc.
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We also compare the temporal variability in performance
to that of the various properties related to sea ice motion (u,,
u;, and ¢;). The ensemble mean monthly averages of various
properties related to sea ice motion are shown in Figs. Sh—j.
Analysis is further broken down into the four divisions within
the Arctic, which are chosen based on values of the model
correlations (Fig. 1).

For all regions, the seasonal cycles for ice speed and wind
speed (Figs. 5h,i) generally line up, with minima typically oc-
curring during the summer months and maxima in the winter.
The seasonal pattern of minimum wind speeds occurring from
June to July and maximum speeds occurring any time from
October to February is consistent throughout all regions, ex-
cept for the eastern Arctic division, where minima are found
in December-March and maxima occur in September—October.
The Greenland Sea division has greater seasonal variability
in wind and ice speeds than the other divisions, with compara-
tively high maximum speeds in November—April. Seasonal
patterns in ice speed show minima in June—July for the central
Arctic, June—August for the Greenland Sea, and May—October
for the Baffin Bay divisions. The eastern Arctic division shows
the opposite seasonal trend, instead exhibiting minimum ice
speed from December to May. Sea ice concentration also fol-
lows a seasonal cycle within each division, typically reaching a
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FIG. 6. Correlation of (a)—(c) the CNN and (d)—(f) the difference between CNN and LR correlation as a function of various properties
related to sea ice motion [u, in (a) and (d); u; in (b) and (e); and ¢; in (c) and (f)]. The correlation is calculated with subsets of test data
based on percentiles (5% intervals) of the various parameters. The x axis represents the mean value of the data in each 5% interval of
each parameter. In (d)—(f), correlation differences that are not statistically significant are not shown.

maximum in March and a minimum in September (Fig. 5j). The
Baffin Bay division exhibits the lowest and longest-duration
minimum ice concentration (i.e., ¢; < 0.5 from July to October).
From December to May, the Greenland Sea division has a
lower ice concentration than the other divisions, which are all
similar during this time.

4) MODEL PERFORMANCE FOR PERCENTILES OF INPUTS

The model performance is compared to properties related
to sea ice motion (u,, u;, and ¢;) to probe the variability in
model correlation in space and time. Figure 6 shows the corre-
lation metrics calculated from subsets of test data for all
models (PS in dark blue, LR in teal, and CNN in green). Sub-
divisions are based on percentile ranges (5% intervals) of the
various properties. The performance metrics [correlation
(Figs. 6a—c) and the difference in correlation between the var-
ious models (Figs. 6d-f)] are plotted against the average of
each percentile range (e.g., 0%—-5%, 5%-10%) for each prop-
erty. Skill metrics (not shown) have similar patterns to the
correlation. We find that the correlation increases with in-
creasing wind speed, sea ice speed, and sea ice concentration
for all models (Figs. 6a—c). These relationships have statisti-
cally significant 7* values when fit to a second-order polyno-
mial with a least squares regression.
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The CNN and LR consistently outperform the PS model, as
these two difference metrics (correnn — corrps and corr g —
corrpg) are positive for all u,, u;, and ¢; (blue and teal lines in
Figs. 6d-f). The CNN has a higher correlation than the LR
(green lines in Figs. 6d-f), except for the case where ¢; < 0.5
(Fig. 6f). The metrics for the difference between the CNN and
the other two models (i.e., correnny — corrps and correny —
corr r) have statistically significant relationships with wind
speed, ice speed, and ice concentration: the difference between
the two models decreases for increases in wind and ice speed
(Figs. 6d,e) and increases with increases in ice concentration
(Fig. 6f). The difference metric corr g — corrps shows a similar
relationship to u;, but not to u, or ¢;. Additionally, the difference
between the CNN and the LR is less dependent on i; than are
the other two difference metrics (i.e., the slope of the green line
is less than the slopes of the teal and blue lines in Fig. 6¢). This
can be attributed to the correlation of the PS model being much
lower than that of the CNN or LR when ice speeds are close to
0 m s~ '. The results in Figs. 6d—f are robust whether we use all
data or remove nonsignificant points.

b. Linear regression parameters: Relationship between
sea ice motion and input parameters

Analysis of the linear regression parameters provides in-
sight on the locations where each of the inputs is important
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ice velocity at each location. Wind and ice speed parameters are derived from calculating the magnitude of the parameters for the velocity

components.

for predicting sea ice motion. The parameters from the full
LR [A-C in Eq. (3)] described in section 1 are mapped in Fig.
7. Here, Figs. 7a—c represents the magnitude of the regression
coefficients for normalized wind speed, sea ice speed, and sea

ice concentration on the sea ice velocity (i.e., VR? + 3% of A
to C, where R and 3 represent the real and imaginary compo-
nents of these coefficients). These values range between 0 and
1 in the figure because they are normalized to the maximum
overall coefficient. Larger values indicate that sea ice velocity
has a larger linear dependence on a particular parameter.
Results show that wind speed has the largest importance in
predicting sea ice velocity within the central Arctic (Fig. 7a).
Near the coast, the LR coefficient for previous-day sea ice ve-
locity is elevated (Fig. 7c), complementary to the high values
in the interior for wind speed (Fig. 7a). Figures 7d and 7e rep-
resent the rotation angles of the wind and sea ice velocity to
the predicted next-day sea ice velocity. The wind angle has an
average of 24.9° + 11.3° throughout the Arctic, which is fully
consistent with Nansen’s observations aboard the Fram of an-
gles between 20° and 40° (Ekman 1905) and falls within one
standard deviation of previous research by Thorndike and
Colony (1982), Serreze et al. (1989), and Maeda et al. (2020),
who found wind angles from —5° to 18°, from 0° to 19°, and
from —10° to 30° (depending on season; winter to summer),
respectively. The spatially averaged angle between present
and previous-day sea ice speed is —8.3° = 6.4°, with spatial
variations as seen in Fig. 7e. When looking at the data, the ex-
pected spatial mean of the angle difference between previous
and present-day sea ice velocity is 0.2° (not shown), which is
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within two standard deviations of the angle found from the
LR parameters.

Wind velocity is found to have the maximum LR coefficient
for predicting sea ice velocity throughout the central Arctic
(dark blue in Fig. 7f). Locations near the coast are dominated
by the sea ice speed (pink regions). This is consistent with re-
sults from previous studies (Thorndike and Colony 1982;
Kimura and Wakatsuchi 2000; Maeda et al. 2020) that con-
clude that the dependence of sea ice velocity on wind velocity
is not as strong in coastal locations where ice stresses become
more important. Additionally, the low coefficient for wind ve-
locity found in the Fram Strait off the east coast of Greenland,
where the transpolar drift acts as a strong and persistent ex-
port pathway for Arctic sea ice (Weiss 2013), has previously
been attributed to strong surface ocean currents (Kimura and
Wakatsuchi 2000).

The LR coefficient for wind speed is related to the spatial
patterns in the mean c; (Figs. 7a and 3i). We find low values
for the LR parameter for wind speed in the Canadian Arctic
Archipelago, a region where ¢; is high and has little temporal
variability (Figs. 3i,1), which is consistent with results from
Kimura and Wakatsuchi (2000) and Maeda et al. (2020). How-
ever, regions of low mean c; often have smaller values for the
LR wind coefficient (i.e., coastal regions in the eastern Arctic,
Baffin Bay, and the Bering Strait). This contradicts results
from Kimura and Wakatsuchi (2000) and Maeda et al. (2020)
in which areas with high ice concentration exhibit a relatively
small wind factor as a result of internal stresses becoming
more important in regions where ice is thick and concentrated.
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However, we note that in contrast to Kimura and Wakatsuchi
(2000), our model also includes u; as a predictor, which in-
creases in importance near the coast. Additionally, our analy-
sis has one LR coefficient at each spatial location throughout
all time from 1992 to 2017, which provides a description of the
relationship between the wind factor and the average c; at
each location. In contrast, Maeda et al. (2020) have a different
LR equation for each month, providing a better picture of the
relationship between the wind factor and the instantaneous c;,
which is more likely to display impacts of ice stresses.

Values of the LR coefficients are related to the performance
of the LR model and to the difference between the CNN and
LR model performance. Figure 8 shows the relationship between
the LR coefficients and the model correlation (Figs. 7a—c), and
the difference between the correlation of the CNN and the LR
(Figs. 7d,~e), as calculated at each grid point. Larger LR coeffi-
cients for wind speed are associated with larger correlation of the
LR model (Fig. 8a) in addition to an improved performance of
the CNN over the LR (Fig. 8d). Conversely, a larger LR coeffi-
cient for sea ice speed is associated with lower correlation
(Fig. 8b) and does not show a statistically significant relationship
with the difference metric corrcny — corrpr (Fig. 8e). A larger
LR parameter for ice concentration is linked to higher model
correlation (Fig. 8c) and tends toward the LR outperforming the
CNN (Fig. 8f). The skill (not shown) exhibits the same patterns
as the correlation.

c. Attribution assessment of model predictive skill

We address our aims to understand (i) reductions in fore-
cast skill and (ii) discrepancies in the performance of the
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different models by comparing the variability of these perfor-
mance metrics (i.e., correnn and correnn — corrpr) to varia-
bles related to ice motion (i.e., distance from coast d,
bathymetric depth d, u,, u;, c;, and the LR coefficients for
wind speed A, ice speed B, and ice concentration C). We fo-
cus on the difference between the CNN and the LR, because
the CNN and LR both outperform the PS for almost all spa-
tial locations.

In section 5, we find high model performance is linked to
large distances from the coast, depths [Fig. 4 in section 5a(2)],
wind speed, ice speed, ice concentration, [Fig. 6 in section 5a(4)],
and values of the LR coefficients for wind speed and ice concen-
tration (Fig. 8 in section 5b). Additionally, the difference be-
tween the correlation of the CNN and LR models is typically
smaller for high wind speed and ice speed, and larger for high
sea ice concentration [Figs. 6d-f in section 5a(4)], large distances
from the coast, and large depths [Fig. 4 in section 5a(2)]. We
aim to confirm these findings by comparing the spatial and
temporal variability in model correlation (Figs. 3a—f and 5a-g)
to that of the various properties linked to ice motion (Figs. 3g-1
and 5h-j), as well as to the spatial variability of the LR coeffi-
cients (Figs. 7a—c).

We analyze four spatial divisions (Fig. 1a) that are made
based on overall model performance and the difference be-
tween the performance of the CNN and LR models. The
Greenland Sea division (dark blue in Fig. 1a) covers the re-
gion to the east of Greenland where the model correlation is
variable, but the LR largely outperforms the CNN. The east-
ern Arctic division (light blue in Fig. 1a) represents the region
of the eastern Arctic where the correlation is low and the LR
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FIG. 9. Overall mean of the performance metrics (a) correnn, and (b) correnn — corry g and properties related to ice motion (c) u, (ms 1),
(d) u; ms™Y), (e) ¢; () d (m), (j) d. (km); and the LR coefficients for (g) u,, (h) u;, and (i) ¢;. Different colors represent the different spatial
divisions, as indicated in the legend. Error bars represent the standard deviation within each division. The black line in each panel represents
the mean value for the overall Arctic (ALL in the legend) for comparison.

outperforms the CNN. The central Arctic division (light red
in Fig. 1a) includes the central Arctic, the Beaufort Sea, and
the regions to the north of the Canadian Arctic Archipelago.
The Baffin Bay division (dark red in Fig. 1a) is the region
where the model correlation is variable, but the CNN consis-
tently outperforms the LR. The gray shading in Fig. 1a indi-
cates regions that are not included in the following analysis.
We discuss how the variability in the input parameters is
linked to (i) model performance, (ii) the difference between
the performance of the CNN and LR models, and (iii) the val-
ues for the LR coefficients in each division. We note the dis-
tinction between interdivisional comparisons and analysis
within each division, both of which are discussed below.

A summary of the interdivisional comparisons is shown in
Fig. 9. Here, the average values of the metrics and properties
are shown for each division, and error bars represent the stan-
dard deviation. While the mean over any given division falls
within one standard deviation of the mean for the other divi-
sion for many properties, significance testing shows that for
each property, the differences between the mean value for
each individual division and all other divisions are statistically
significant (not shown). Analysis within each division is sum-
marized in Fig. 10, which shows the ensemble-averaged corre-
lation between each of the performance metrics and each of
the properties related to ice motion within each division. The
correlation between the maps of the performance metrics
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(Figs. 3a,f) and the average of the properties throughout time
(Figs. 3g—i) are shown in Figs. 10a and 10b. The correlation
between the daily time series of the performance metrics and
the spatially averaged properties (similar to Figs. 5d,g vs
Figs. Sh—j but using daily rather than monthly values) are shown
in Figs. 10c and 10d. The properties are compared to the model
correlation (circles in Figs. 10a,c) and the difference between
the CNN and LR correlation, correnny — corrpr (triangles in
Figs. 10b,d). The different divisions are represented by the dif-
ferent colors, as indicated in the legend. Values greater than
zero are representative of cases where increases in the property
are linked to increases in the model performance metric, while
values less than zero indicate an inverse relationship between
the property and performance metric.

1) MODEL PREDICTIVE SKILL VERSUS PROPERTIES
RELATED TO ICE MOTION

Interdivisional comparisons suggest that low correlation of
the CNN is typically linked to low depth, distance from coast,
and ice speed, which is consistent with results from Fig. 6. For
example, the eastern Arctic division has the lowest corrcny as
well as the lowest mean of the properties listed above in com-
parison to the other divisions (Fig. 9).

Visual inspection of spatial (Fig. 3) and temporal (Fig. 5)
results also support this. For example, the low correny found
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FIG. 10. Ensemble mean of the correlation between the model performance metrics [circles for correny in (a) and (c); triangles for
correnn — corrp g in (b) and (d)] and the various properties related to ice motion within each of the spatial divisions (different shades of
red and blue, as indicated in the legend). Correlations are calculated to understand how (a),(b) spatially mapped performance metrics are
related to spatial variability in time-averaged u,,, u;, ¢;, d, and d,, and the LR parameters for wind (LRu,), ice speed (LRu;), and ice con-
centration (LRc;); and (c),(d) temporal variability in performance is linked to daily averages of u,, u;, and c; within each division. Error
bars represent the standard deviation of the ensemble runs within each division.

in the eastern Arctic division (Fig. 3c) is coincident with low
values for depth, distance from coast (Figs. 1b,c), wind speed,
ice speed, and ice concentration (Figs. 3g-i). Temporally, the
exceptionally low correlation in the eastern Arctic division
from November to May (Figs. Sb—d) is coincident with values
of u; for the eastern Arctic division that are lower than all of
the other divisions (Fig. 5i). Additionally, the Central Arctic
division exhibits a higher correlation than the other divisions,
particularly during May—October, when the central Arctic has
higher u,, u;, and ¢; in comparison to the other divisions. Tem-
poral analysis also shows that divisions that have a lower sea-
sonal minimum ¢; also exhibit a lower correlation relative to
the other divisions, and in August-September, the ordering
for both ¢; and corrcnn between divisions is Baffin Bay <
eastern Arctic < Greenland Sea < central Arctic.

Within each division, large corrcny is typically related to
high depth, distance from coast, wind speed, ice speed, and
ice concentration, which is consistent with results from Fig. 6.
This can be seen in Figs. 10a and 10c, where data points for all
divisions are typically greater than zero (above the black
line), which indicates that spatial (Fig. 10a) and temporal
(Fig. 10c) variability of the properties listed on the x axis are
linked to variability in the correlation of the CNN. There are
a few exceptions to this relationship when comparing spatial
variability of performance metrics to the mean field of the
properties: large wind speed is linked to low corrcnn Within
the central Arctic and the overall Arctic; within the eastern
Arctic division large ice concentration, depth, and distance
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from coast are linked to low corrcnn. Interestingly, many of
these exceptions lie within the Eastern Arctic division, where
overall depth, distance from coast, wind speed, ice speed, and
ice concentration are significantly lower than other divisions.
However, the values of these exceptions are within one stan-
dard deviation of zero, which indicates neither a positive nor
a negative correlation between the model performance and
the respective property. We note that the spatial comparisons
(Fig. 10a) make use of the mean fields of u,, u;, and ¢;, while
temporal analyses (Fig. 10c) look at the daily time series that
are averaged over the spatial domain of each division. We use
spatial and temporal analyses here as a confirmation of results
in Fig. 6 but do not expect perfect adherence due to the differ-
ences caused by averaging across space and time.

While Figs. 10a and 10c provide a quantitative analysis of
the comparisons of spatial (Fig. 3¢ vs Figs. 3g-i) and temporal
(Fig. 5d vs Figs. 5h—j) variability in the model correlation with
respect to these properties, we can also see the link through
visual inspection. For example, spatial patterns of high corre-
lation within the Greenland Sea division (i.e., increasing from
west to east; Figs. 3a—c) are coincident with high depth, dis-
tance from coast, ice speed, and wind speed, while low corre-
lation is seen in locations with high ice concentration. Within
the eastern Arctic division, low correlation is largely linked to
low depth and ice speed (Fig. 10a). High correlation within
the central Arctic division is generally coincident with high
depth, distance from coast, ice speed, and ice concentration.
Slightly lower correlations are seen in regions with lower
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values of u, and u; (western side) and lower c; (eastern side
and near the Bering Strait). Interestingly, the Beaufort Sea
has high values of skill and correlation despite its proximity to
land. However, the Beaufort Sea is relatively deep and has ex-
ceptionally high mean u, and u; in comparison to other coastal
regions, properties that are linked to higher model perform-
ances (Figs. 4d and 6a,b). Last, high model correlation in the
Baffin Bay division (Fig. 3) is aligned with large depth
(Fig. 1b), u,, u;, and ¢; (Figs. 3g-i). These spatial patterns of
correlation within each of the divisions tend to be consistent
with results from Figs. 4d and 6a and 6b, the main exceptions
being the link between low correlation and high ¢; within the
Greenland Sea division and the high correlation found close
to the coast in the Beaufort Sea.

Temporally, the seasonal cycle for correlation follows that
of u,, u;, and ¢;, with minimum model correlations occurring
during the months of minimum u,, u;, and ¢; (August-September)
for most models and divisions. The exceptions here are the east-
ern and central Arctic divisions where the correlation does not
follow the seasonal cycle for c;. This is likely a result of the low u,
and u; in the eastern and central Arctic division during this time.
Additionally, low seasonal variability in correlation within the
central Arctic division could be linked to the relatively small
seasonal variations in u,, u;, and ¢; in comparison to the other
divisions.

2) DIFFERENCE BETWEEN PREDICTIVE SKILL OF THE
CNN AND LR MODELS VERSUS PROPERTIES
RELATED TO ICE MOTION

Interdivisional analysis suggests that low values for the dif-
ference metric corrcyy — corrpr (the Greenland Sea and
Eastern Arctic divisions in Fig. 9b) are linked to low depth,
distance from coast, and ice concentration (the Greenland
Sea and eastern Arctic division in Figs. 9e.fj). Additionally, a
low difference metric is linked to high u, and u; in the Greenland
Sea division. Conversely, low u; is linked to a low difference
metric in the eastern Arctic division (Fig. 9d). The high dif-
ference metric in the Baffin Bay division is also linked to a
lower mean u,. As noted above, while the mean value of a
particular division may fall within one standard deviation
of that for other divisions, significance testing shows that
the differences between means among divisions for a given
property are statistically significant. For the case of ¢;, these
interdivisional comparisons are consistent with results from
Figs. 6d—f, where a high difference metric is linked to high
¢;. Additionally, these results are consistent with the rela-
tionship between high corrcnny — corrpr and low wind and
ice speeds found in Figs. 6d-f for the Greenland Sea
(u, and u;) and Baffin Bay (u,) divisions, but not the east-
ern Arctic division (u, and u;).

Visual inspection of spatial (Fig. 3f vs Figs. 1b,c and 3h-j)
and temporal (Fig. 5S¢ vs Figs. Sh—j) results also supports this.
Spatially, the low difference metric corrcnyny — corrpg in com-
bination with relatively low depth, distance from coast, ice
concentration, and exceptionally high wind and ice speeds in
the Greenland Sea division compared to the rest of the Arctic
is consistent with results in Figs. 6d—f. Additionally, temporal
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analysis shows the difference metric for the Greenland Sea di-
vision remains lower than that for the entire Arctic (the dark
blue line is below the black line), while «, and u; are higher in
the Greenland Sea division than in other divisions during the
months of October—April. Similarly, for the eastern Arctic di-
vision, a relatively low depth, distance from coast, and ice
concentration are linked to a low difference metric. However,
contrary to patterns found in Fig. 6, the difference metric in
the eastern Arctic division is low, while u, and u; are also low
in both spatial and temporal analyses. The difference metric
for the eastern Arctic division is lower than that for the
Greenland Sea division from January to April, despite lower
¢; and higher u, and u; in the Greenland Sea division, all of
which are expected to contribute to a lower difference metric
(Fig. 6). Spatially, the high difference metric in the central
Arctic division is linked to high c;, low u,, and high u; relative
to other divisions, which is consistent with results in Fig. 6,
with the exception of the tendency of u;. However, in tempo-
ral analysis of the central Arctic division, the difference metric
is particularly high compared to other divisions when u; is
lower in January—-May, which is consistent with results in Fig.
6. The notably high difference metric in the Baffin Bay divi-
sion compared to other divisions is linked to low u, in both
spatial and temporal (December—June in Figs. 5g,h) analyses.

Within each division, comparisons of corrcnny — corr g
with the properties related to ice motion are more nuanced,
as data points in Figs. 10b and 10d do not consistently lie
above or below zero for a given property, particularly with
spatial comparisons using the mean fields (Fig. 10b). From re-
sults in Fig. 6, we would expect points in Fig. 10b to be above
zero for ¢; and below zero for u, and u; (i.e., high correnn —
corrp g is linked to high ¢;, low u,, and low u;), which is only
the case for some divisions. The region containing the entire
Arctic (black) is consistent with this pattern for all variables
on the x axis, except for u;. Additionally, these results are con-
sistent with Fig. 6 for the following cases: the coincidence of
high corrcnn — corrpg with low u,, low u;, and high ¢; in the
Greenland Sea division; the coincidence of high correnn —
corrpr With low u, but high ¢; and depth in the central Arctic re-
gion; and the coincidence of high corrcnn — corrp g with low u,
in the Baffin Bay region. We find the following exceptions to
the trends in Fig. 6: the coincidence of high correny — corrir
and low d and d, in the Greenland Sea division; the coincidence
of high correnn — corrpr with high #; and low ¢; in the eastern
Arctic division; and the coincidence of high corrcyny — corr g
with high u;, low ¢;, low depth, and low distance from coast in
the Baffin Bay division.

Comparisons between temporal variability of the difference
metric and the various properties are more straightforward
and tend to show results that are consistent with what is found
in Fig. 6, where a high difference metric is linked to low u,,
low u;, and high ¢;. This is true (i.e., data for u, and u; exist be-
low the black line, and points for ¢; are above), except in the
case of the region containing the entire Arctic, the central
Arctic division, and the Baffin Bay division for both u, and u;,
as well as the Greenland Sea division for c¢; Additionally,
while the ensemble mean value of the correlation between u;
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and the difference metric is negative for the Greenland Sea
division, it lies within one standard deviation of zero.

Looking at the time series (Figs. 5g—j), it is clear that the
low difference metric in the eastern Arctic division from
December to May is linked to low u; and high ¢;, which is the
opposite of what is expected from Fig. 6. Within the central
Arctic division, low corrcnyn — corrpr is linked to low ¢; in
June—October, while a slightly higher corrcyny — corrp g from
December to May is linked to high u, and low u;. Within the
Baffin Bay division, low corrcnn — corrpg is linked to low ¢;
(Figs. 5g,j and 10d): during months of low c;, the difference
metric is not statistically different from zero (May-November,
except August), while for all other months the opposite is true,
and corr g < correnn. Additionally, high correnny — corrpr
during January—April is coincident with a low u,. Temporal re-
sults from Figs. 5¢g—j tend to be consistent with results from
Fig. 6, with the following exceptions: the coincidence of low
corr g < correnn With low u; and high ¢; from December to
May within the eastern Arctic division; and the coincidence of
high corr g < corrcnn and high u, from December to May in
the central Arctic division.

3) IMPACT OF LR PARAMETERS ON MODEL
PERFORMANCE METRICS

We find that the performance metrics (correnny and
correnn — corrpr) are related to the values of the LR coeffi-
cients for the different input parameters (Fig. 8 in section 5b).
These results come from comparing the LR coefficient at
each location (Figs. 7a—c) with the mapped values for the
performance metrics (Figs. 3c,f). We use divisional analyses
to confirm the maximum LR coefficient in each division
(Figs. 9g-i vs Fig. 7f), as well as the relationship between the
performance metrics and the LR coefficients within each divi-
sion (Figs. 10a,b vs Fig. 8). We also aim to understand
whether the variable with the highest LR coefficient has the
strongest relationship to model performance.

Interdivisional comparisons (Figs. 9g—i) show that the mean
LR coefficient for u, is higher than all other coefficients in the
central Arctic division and the region covering the entire
Arctic. For all other divisions, the means of the LR coeffi-
cients are within one standard deviation of each other and the
maximum coefficient within each division is not conclusive.
The mean LR coefficient within the overall Arctic and the
central Arctic division (Figs. 9¢—i) is consistent with what is
seen spatially (Fig. 7f). We find that variability in model per-
formance is not necessarily linked most strongly to the prop-
erty that exhibits the dominant LR coefficient within each
division (i.e., a high LR coefficient for u, does not necessarily
mean that the correlation between either performance metric
and u, will be stronger than that between the performance
metric and u; or ¢;). In other words, the high value of the LR
coefficient for u, in comparison to that for u; or ¢; for the cen-
tral Arctic division in Fig. 9g is not linked to the correlation
between model performance and u, being higher than that for
u; or ¢; in Fig. 10.

In Fig. 8, high model correlation is found in locations with
large LR coefficient for u, and ¢; but a low LR coefficient for
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u;. Analysis of the LR coefficient within each division
(Figs. 10a,b) confirms this and shows that high corrcny is re-
lated to high a high LR coefficient for u, and ¢; within all four
divisions. The relationship between high corrcny and a low
LR coefficient for u; is also seen for all divisions except the
eastern Arctic division (light blue in Fig. 10a). While the gen-
eral trend in Fig. 8 suggests high correlation is linked to a low
LR coefficient for u;, it is clear that when corrcnny < 0.6
(which is the case for the eastern Arctic division, where the
mean correny is 0.5 = 0.02), a high LR coefficient for u; is
linked to higher corrcnn.

The relationship between a high difference metric and a
high LR coefficient for u, seen in Fig. 8 is confirmed within all
divisions, except for the Baffin Bay division (Fig. 10b); how-
ever, the central Arctic division is within one standard devia-
tion of zero. The relationship between high correnny — corrp g
and a low LR coefficient for ¢; seen in Fig. 8c is only found
within the Greenland Sea division. While the general pattern
in Fig. 8c suggests a link between high corrcyn — corr g and
a low LR coefficient for c;, this is largely true where the LR
coefficient for ¢; is high (>0.6), which is the case for the
Greenland Sea division (0.69 = 0.34). When the LR coefficient
for ¢; < 0.6, the opposite is true, and high corrcnn — corrp g is
linked to a high LR coefficient for c;, which is the case for the
Greenland Sea, eastern Arctic, and Baffin Bay divisions. Thus,
Fig. 10b confirms results from Fig. 8.

6. Conclusions

a. A CNN can make skillful predictions of sea ice motion
on I-day time scales

As sea ice in the Arctic declines and opens new pathways
for maritime transportation, the skill of sea ice motion predic-
tions becomes increasingly important (Bennett et al. 2020;
Cao et al. 2022). This work uses machine learning models to
make 1-day predictions of sea ice motion for operational fore-
casting. We show that a CNN can make skillful predictions of
sea ice velocity and outperforms other statistical models in
most instances. In comparison to the other models, the CNN
has the benefit of incorporating nonlinearities between inputs
and spatial information when making predictions. We also
show that a gridwise LR model performs almost as well as a
CNN in most instances and comes with the benefit of de-
creased complexity in comparison to neural networks. Both
the CNN and LR models outperform the baseline PS model.
Additionally, we find that the CNN shows improved perfor-
mance in comparison to the models of Maeda et al. (2020)
and Kimura and Wakatsuchi (2000), discussed in section 2:
the correlation of the CNN is as low as 0.4 in the eastern
Arctic, and 0.7 in the Canadian Arctic Archipelago (Fig. 3c),
where Maeda et al. (2020) find correlation between ice mo-
tion and geostrophic wind as low as 0 and 0.4 in the same re-
gions. Last, while comparing the model performance to that
of a dynamical model was outside the scope of this study, our
model was an extension of that presented by Zhai and Bitz
(2021) (differences between the two models are identified in
Table S1), which was found to have higher correlations for
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sea ice velocity with satellite observations than the CICES
dynamical model for sea ice.

b. Model predictive skill and discrepancies between
model performances are linked to various properties
related to sea ice motion

Model performances vary spatially and seasonally and are
linked to variability in properties related to sea ice motion.
Although there are exceptions that come with having differ-
ent combinations of these properties, in general, better model
performance is linked to

e increased bathymetric depth and distance from the coast;

e larger mean values of u,, u;, and ¢; and larger LR coeffi-
cients for u, and c;;

e smaller LR coefficient for u;.

The CNN outperforms the LR in most cases. We have
shown that the following are related to increases in the perfor-
mance of the CNN over the LR:

e longer distance from coast and greater bathymetric depth;
e smaller mean u, and u;, and larger mean c;
e larger LR coefficient for u,, and smaller LR coefficients for c;.

Interestingly, the LR model tends to outperform the CNN
model in some coastal regions where nonlinear effects might
be expected to play a large role. However, the locations where
this happens exhibit shallow depths, and when coastal waters
are deep (i.e., the Beaufort Sea), the CNN outperforms the
LR. We note that sharp discontinuities between ocean and
land pixels may reduce the quality of the CNN predictions
due to the way the CNN incorporates spatial filters and nonlo-
cal information in its predictions (Sonnewald et al. 2021). This
may also impact our result showing that the LR outperforms
the CNN at shallower depths because depth increases with in-
creasing distance from the coast. To address this, in future
analyses we will apply a nonlocal LR at each grid point for a
more direct comparison between LR and CNN models. How-
ever, even with nonlocalities built in, the LR does not apply
spatial filters in the same way that the CNN does, so we may
not be able to reproduce the same decreases in performance
inherent to the CNN in coastal regions.

The LR typically outperforms the CNN in regions where
wind speed is not the dominant LR coefficient: ice velocity is
the dominant LR coefficient in the coastal regions of the east-
ern Arctic, and sea ice concentration dominates the LR pre-
dictions in the coastal region to the east of Greenland.
Conversely, wind speed is found to be the dominant LR coef-
ficient wherever the CNN outperforms the LR. This suggests
that the relationship between wind velocity and ice velocity
includes nonlinearities that are captured by the CNN (and not
the LR), leading to an improved performance.

We find that larger LR coefficients for a given parameter
are not necessarily linked to larger parameter values (e.g., in
the Greenland Sea division, ice concentration is the dominant
predictor in regions where wind and ice speed are exception-
ally high). However, we find that the LR coefficient for wind
speed tends to be lower in regions with low mean ¢;. This
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contradicts previous findings in which areas with high ¢; are
known to exhibit larger internal ice stresses, which leads to a
reduction in the dependence of ice motion on wind (Kimura
and Wakatsuchi 2000; Maeda et al. 2020). We note that this
particular conclusion does not take into account instanta-
neous effects, as it is a comparison between a mean c¢; over
time and an LR coefficient that is descriptive of ice motion
over the duration of the study. Future work could decrease
the time period over which LR is run to obtain equations that
are more descriptive of instantaneous effects, such as that of
ice stresses due to high c; Last, we find that variability in
model performance is not necessarily linked to the dominant
LR coefficient within each region.

c¢. Wind velocity plays the largest role in predicting
ice velocity

We find that the spatial average of the wind factor over the
Arctic is 0.72% (Fig. S2). The wind factor is higher for regions
in the central Arctic in comparison to coastal regions, confirm-
ing historical results (Thorndike and Colony 1982; Serreze et al.
1989; Kimura and Wakatsuchi 2000; Maeda et al. 2020). We
also show an average turning angle to the wind of 24.9° = 11.3°,
which is consistent with the cited historical results. Analysis of
LR parameters shows that of all of the input predictors, wind
velocity has the largest importance in predicting sea ice veloc-
ity. This relationship is particularly strong in the central Arctic
and is reduced in coastal regions. Furthermore, an increased de-
pendence of the models on wind speed is related to increased
model performance for the CNN, which provides further evi-
dence as to why the models are not as skillful at predicting ice
speed in coastal regions (i.e., ice speed is not as dependent on
the training information in these regions). Future work will
build on these results and look at using outputs from machine
learning models to understand how the relationship between
wind and ice velocity is changing in time as the ice melts.
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Microwave Data, version 1, are made available by the NSIDC and
can be accessed at https:/doi.org/10.5067/8GQSLZQVLOVL. The
International Bathymetric Chart of the Arctic Ocean (IBCAO)
is available at https://www.gebco.net/data_and_products/gridded_
bathymetry_data/arctic_ocean/. All of the data and files used for
processing for this paper can be accessed at https:/doiorg/
10.6075/J0X06774.
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