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ABSTRACT: The Argo array provides nearly 4000 temperature and salinity profiles of the top 2000 m of the ocean every
10 days. Still, Argo floats will never be able to measure the ocean at all times, everywhere. Optimized Argo float distribu-
tions should match the spatial and temporal variability of the many societally important ocean features that they observe.
Determining these distributions is challenging because float advection is difficult to predict. Using no external models, tran-
sition matrices based on existing Argo trajectories provide statistical inferences about Argo float motion. We use the
24 years of Argo locations to construct an optimal transition matrix that minimizes estimation bias and uncertainty. The op-
timal array is determined to have a 28 3 28 spatial resolution with a 90-day time step. We then use the transition matrix to
predict the probability of future float locations of the core Argo array, the Global Biogeochemical Array, and the Southern
Ocean Carbon and Climate Observations and Modeling (SOCCOM) array. A comparison of transition matrices derived
from floats using Argos system and Iridium communication methods shows the impact of surface displacements, which is
most apparent near the equator. Additionally, we demonstrate the utility of transition matrices for validating models by
comparing the matrix derived from Argo floats with that derived from a particle release experiment in the Southern Ocean
State Estimate (SOSE).

KEYWORDS: Ocean; Advection; Lagrangian circulation/transport; Large-scale motions; Buoy observations;
Statistical forecasting

1. Introduction

The endurance and economy of Argo profiling floats
revolutionized how oceanographers practice their craft by
providing unprecedented spatially distributed and frequent
observations. Since the development of the first Argo proto-
types almost 30 years ago (Davis et al. 1992), the global Argo
array has grown to include more than 3800 active floats and
has collected over 20 years of data (Roemmich et al. 2019).
Core Argo floats observe temperature and salinity from
2000 m to the surface every 10 days. The recent integration of
miniaturized nitrate, oxygen, pH, and optical sensors has en-
abled the development of the biogeochemical (BGC) Argo
float (Johnson et al. 2017). The Southern Ocean Carbon and
Climate Observations and Modeling (SOCCOM) project
(Johnson and Claustre 2016; Talley et al. 2019) has success-
fully deployed an array of BGC Argo floats in the Southern
Ocean, using the same observing protocol as core Argo, and
recently funded projects in multiple countries are deploying
them globally as part of OneArgo.

The substantially higher costs of BGC Argo floats relative
to core Argo floats accelerates the need for informed strategic
decisions about the optimal deployment positions for the
BGC array. Any observing array should be optimized to sam-
ple the temporal and spatial scales of the phenomena of

interest. Each variable measured by BGC floats has distinct
scales of spatial and temporal variability. In the past, core
Argo array deployment locations were selected to optimize a
uniform distribution with a spacing of about 38 3 38 separa-
tion in latitude and longitude (Davis 1991; Roemmich et al.
1998). With increased prior knowledge of the ocean state, re-
cent core Argo array proposals have suggested increasing ar-
ray density where variability is higher, along the equator and
in western boundary regions (Roemmich et al. 2019). The
Biogeochemical Argo Implementation Plan (Johnson and
Claustre 2016) explored spatial variability of measured BGC
variables, concluding that initial deployments should try to
achieve a uniform distribution, but finally suggesting that uni-
form deployments should “be tested as more experience is ob-
tained” (Johnson and Claustre 2016).

This raises the question: Should we update recommended
deployment strategies now that more BGC Argo floats have
been deployed? Past studies have quantified the improvement
BGC float observations make to either modeled and calcu-
lated fields of an individual BGC variable for both random
sampling (Johnson and Claustre 2016; Majkut et al. 2014) and
snapshots of past Argo array distributions (Ford 2021;
Kamenkovich et al. 2017). However, optimal design strategies
on a global scale for the BGC Argo array deserve dedicated
studies.

The work presented here addresses the operational concern
of predicting future float locations. It is one piece of an ex-
panded effort of an optimal ship-based float deploymentCorresponding author: Paul Chamberlain, pchamber@ucsd.edu
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strategy for the integrated Core and BGCArgo arrays. We pro-
pose an array design strategy that consists of three innovations:

1) The system will statistically predict the future location of
currently deployed instruments to recognize the gaps in
coverage at the time of deployment.

2) The array strategy will account for the global inhomoge-
neities of BGC variables in spatial covariance and tempo-
ral variance by putting greater float density in regions of
high temporal variability and low spatial covariance.

3) The optimal array strategy will account for the cross co-
variance of the full BGC Argo float sensor suite by con-
sidering the additional constraint imposed by the prior
knowledge of covarying properties.

The latter two developments are left for a companion man-
uscript (Chamberlain et al. 2023). Several successful pilot
projects have created regional BGC float arrays in regions

that play an outsized role in global biogeochemistry (Morrison
et al. 2015). The largest regional array, the SOCCOM pro-
gram, deploys floats in unique provinces of the Southern
Ocean by analyzing observed float trajectories and numeri-
cal particle release experiments (Talley et al. 2019). This ap-
proach has shortcomings: visual analysis of previous Argo
trajectories is subjective, while particle release experiments
do not consistently reproduce actual Argo trajectories (Talley
et al. 2019).

Indeed, the ocean is a complex system, and Lagrangian
trajectories can be challenging to predict deterministically.
Figure 1 shows an example of historic float trajectories pass-
ing through a region off Cape Agulhas; there exists a time-
varying bifurcation of float trajectories in this complex current
system (Boebel et al. 2003; Van Sebille et al. 2010). Argo float
trajectories depend on the mesoscale eddy field, which models
may not resolve. Eddies result from the intrinsic instabilities

FIG. 1. (a) Historical Argo trajectories off Cape Agulhas passing through the black box. White shading indicates
land, and colored lines indicate individual float tracks. (b) Example of float prediction product ARGONE for a float
in the same region. This panel was created by accessing the product from the Argovis web app and database [recently
upgraded from the app version described in Tucker et al. (2020)], using the Argovis API (https://github.com/argovis/
demo_notebooks). The star symbol indicates the deployment location, and colors of the grid cells represent values of
the float probability density function after 270 days from the deployment.
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of the ocean, and even in eddy-resolving assimilating models
the positions and timing of observed eddies can differ from
modeled eddies due to constraints on dynamical consistency.
The rectified effect of these unresolved or omitted processes
is typically stochastically parameterized in Lagrangian models
(Van Sebille et al. 2018). Argo floats also experience ocean
shear during their ascent and descent and are advected by
winds, currents, and waves at the surface. Some Argo-derived
velocity products do not include these processes (Gray and
Riser 2014), or attempt to actively remove them (Sevellec
et al. 2017; Ollitrault and Rannou 2013; Gille and Romero
2003).

Since Argo floats are not propelled, Argo managers should
carefully choose deployment locations to optimize Argo array
distribution throughout the lifetime of the float. To address
these challenges, we generate a statistical model, known as a
transition matrix, from existing Argo array trajectories to pre-
dict the probability density function (PDF) of future float lo-
cations. The large number of Argo float trajectories can be
used to diagnose the probability that a float transitions from
one location to the other in a given time step (Fig. 2). Transi-
tion matrices represent a potential complement to dynamical

models because they contain a probabilistic representation of
the complexities of the eddy field, ocean shear, and surface
processes that models may miss. Transition matrices are also
a way of quantifying the information gained from visually in-
specting previous float trajectories.

Transition matrices are an established method (Markov
1906; Van Sebille et al. 2012; Maximenko et al. 2012; Sevellec
et al. 2017; Drouin et al. 2022; Miron et al. 2022; Abernathey
et al. 2022) to model semi-Lagrangian ocean drifters, and
have been primarily applied to surface ocean drifters (Maximenko
et al. 2012; Van Sebille et al. 2012) and surface drifter array de-
sign (Lumpkin et al. 2016). Sevellec et al. (2017) generated a
transition matrix based on processed Argo trajectories ob-
tained from the ANDRO dataset (Ollitrault and Rannou 2013)
to study the evolution of deep water masses. The ANDRO da-
taset estimates the displacements of Argo floats at their drift
depth and removes displacements due to ocean shear and sur-
face currents. However, these displacements are important for
operational float prediction and should not be removed, so
for float deployment analyses a new transition matrix was
required.

Here we first broadly explain the relatively simple theory of
the construction and use of transition matrices (section 3). The
biases and uncertainties of the estimates that transition matri-
ces produce are sensitive to spatial and temporal spacing and
are quantified in section 4a. In this section, we also define the
criteria for the optimal transition matrix that minimizes these
biases and uncertainties, based on the available datasets.

To apply this analysis, in section 4b we use our optimal
transition matrix to estimate the future density of the existing
core Argo array and the future array health of the core Argo
and SOCCOM Arrays. In section 4c, we consider the poten-
tial future locations of floats deployed from upcoming GO-
SHIP cruise tracks over the float life cycle of 5 years. Then, in
section 4d, we quantify the different drift patterns of Argos
system and Iridium-equipped floats using transition matrices
derived from these different float trajectories.

BGC Argo floats do not all carry the same sensor suite, and
some BGC sensors are more ubiquitous in the ocean than
others. Estimating where individual BGC sensors will observe
the ocean is important for BGC Argo managers to determine
where to deploy BGC floats and where the gaps will be in our
BGC observing systems. In section 4e, we quantify sampling
probability by BGC sensor type.

Finally, in section 4f, the Argo float transition matrix is
compared against a transition matrix derived from the mod-
eled particle trajectories derived from the Southern Ocean
State Estimate (SOSE) (Mazloff et al. 2010). Modeled par-
ticles were programmed to profile to the surface every
10 days, similar to real Argo floats, and were advected by
SOSE currents.

2. Data

a. Argo floats

These results use Argo float trajectories from the October
2022 Argo snapshot (Argo 2022). The data processing for

FIG. 2. Cartoon of transition matrix calculation for an arbitrary
Cellblue. Gray lines represent hypothetical paths of three distinct
floats, and circles represent independent float profile locations
given transition matrix time step. The time steps are long enough
(e.g., greater than 30 days) that each segment can be considered in-
dependent even if they come from the same float. Black squares
represent grid cells. Blue lines represent trajectory segments origi-
nating from Cellblue. Colored circles and “11” text represents tra-
jectory segments that ended in correspondingly colored grid cells.
Small gray circles represent float positions that are not included in
the transition statistics for Cellblue. Total probability for each ele-
ment of the transition matrix will equal the total number of transi-
tions within a grid cell divided by the total number of transitions in
the dataset (Ntotal

blue ).
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Argo files excluded trajectories with the following conditions:
poor quality flags for position, time, and pressure; floats with
problematic file formats; floats that were functioning in a
manner outside of core Argo mission parameters of 1000 db
drift depths and 10-day surface intervals; and floats that had
unrealistic velocities or traveled over 500 nm in successive po-
sitions. After these quality control procedures, the total data-
set comprised 2 167 492 positions collected by 14 331 unique
floats. These trajectories were measured from 13 May 1998
to 10 October 2022, and spanned the globe from 77.78S to
89.78N.

Floats have used two different means for satellite communi-
cations: 8506 floats used the Argos system constellation, and
5825 floats used Iridium (Fig. 3). The Iridium and Argos con-
stellations of satellites are both low-Earth orbiting. Floats
transmit their data more efficiently to Iridium satellites than
to Argos; therefore, Iridium-enabled floats typically spend
less than 1 h at the surface compared to the 8 h that Argos-
enabled floats usually spend at the surface.

b. Southern Ocean State Estimate

To validate the results based on Argo float trajectories, we
also built an independent transition matrix from a Lagrangian
particle release experiment in the SOSE (Mazloff et al. 2010).
SOSE is an eddy-permitting 0.168 configuration of the Massa-
chusetts Institute of Technology General Circulation Model
(MITgcm), which is fit by constrained least squares to avail-
able Southern Ocean satellite and hydrographic observations.
The current SOSE version (iteration 100) spans 6 years (2005–10)
and is calculated from 24.78 to 788S. For the particle experi-
ment using Octopus (http://github.com/jinbow/Octopus), we
randomly released 10000 particles over the spatial domain and
tracked their motion over the full 6 years of model output. The
particles in this release experiment were programmed to drift
at 1000 m, dive to 2000 m, then surface once every 10 days
with an ascent mission and surface time similar to real Argo

floats to simulate the effect of upper-ocean shear on particle
trajectories.

3. Methods

A transition matrix is a square matrix used to define the
transitions of a discrete-time Markov chain of a state vector in
the state space. For our application, the state space is a dis-
crete spatial grid S. In the real ocean, Argo float position is
continuous; one approximation of this method is that it re-
stricts the locations where Argo floats can be in the ocean to
the positional grid cells of S. The state vector is the distribu-
tion of the Argo floats that we wish to study. The Markov
chain is the future probability of these originally deployed
Argo floats at subsequent locations. The distribution of Argo
floats (the state vector) could be a single float or the entire ar-
ray. This is expressed mathematically as

r(t 1 k) 5 Hr(t), H 5 Qk, (1)

where Q is a square S 3 S matrix and is the transition matrix
calculated at the original time step, H is the product of Q mul-
tiplied by itself k times and defines the probability of transi-
tion to the kth time step, and r(t) is a column vector in the
state space of dimension S 3 1 at a given time step t and rep-
resents the distribution of Argo floats at the original time
step. Using Eq. (1), the probability of an initial array of Argo
floats, r(t), propagating to a future state at the kth time step,
r(t1 k), can be quantified. The process for creating a transi-
tion matrix from Lagrangian data is well described (Sevellec
et al. 2017), so we provide only a brief explanation here. All
algorithms used in these calculations are made publicly avail-
able in a GitHub repository (https://github.com/Chamberpain/
TransitionMatrix; Chamberlain 2023b).

First, we spatially and temporally quantize the trajectory
data by a defined time step and spatial grid (Fig. 2). These
choices define the dimension of the state space S and the

FIG. 3. Initial deployment locations for all Argo floats in the dataset, using both Argos system (red) and Iridium (blue)
communications.
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nature of the discrete-time Markov chain. For our application,
these choices determine the spatial grid of latitude and longi-
tude that Argo floats transition between and the time step in
days of these transitions.

A consideration of space–time resolution is the representa-
tiveness of positioning: the approximation-induced error of
projecting continuous Argo trajectories onto a discrete spatial
grid increases when the grid cells are larger. This approxima-
tion can lead to biases and uncertainties in estimating future
float distribution produced by a transition matrix. For exam-
ple, if the spatial grid size is too large, some floats may enter
along the edge of grid cells and quickly leave; this will cause a
bias in transition statistics compared with floats that transit
across the entirety of the grid cell. Using large grid cells can
also result in underestimating float motion when the grid
spacing is larger than coherent structures in the mesoscale
eddy field, as floats can recirculate within the grid cell without
transitioning to an adjacent grid cell.

Decreasing gridcell size reduces position discrepancies be-
tween grid centers and edges. However, it can also lead to
fewer transition data per grid cell as smaller grid cells will
typically have fewer floats pass through them. Transition ma-
trices are uninformed by dynamics and need many data to
resolve skillful transition statistics. Section 4a explores the
trade-offs between gridcell size, time step, and data density.
The distribution of floats relative to the nature of the velocity
field is another potential bias; unequally spaced float arrays
placed in fields of inhomogeneous diffusivity may infer biased
velocity statistics that do not resolve the mean (Freeland et al.
1975; Davis 1991). For example, many floats placed in the
middle of a random velocity field with no mean flow may ap-
pear divergent due to simple Brownian motion. For these cal-
culations, we assumed the float density to be homogeneous.

Float trajectories incorporated into the transition matrix
must be temporally statistically independent. Successful floats
carry out extended missions (5 years or more), much longer
than any transition matrix considered in this analysis. There-
fore, we break these longer float trajectories down into
shorter trajectories equal to the time step of the transition
matrix. Figure 2 shows the segments corresponding to these
shorter trajectories as black circles. Our algorithm tolerated
small overlaps between the shorter trajectories to increase
data density. The time separation between the start of
the smaller trajectories was the greater of either 30 days
(Gille and Romero 2003) or one-third of the transition ma-
trix time step; e.g., the time separation for the start of tra-
jectories must be 30 days for a 60-day time step and 60 days
for a 180-day time step.

We now describe how we quantify the transition probability
for an arbitrary spatial grid cell (which we call Cellblue in
Fig. 2). This process must be repeated for all spatial grid cells
in the domain. The number of spatial grid cells is equal to S,
the dimension of the state space. First, all of the independent
Argo profiles that start in Cellblue are identified (colored
circles in Fig. 2); N total

blue defines the total number of starting po-
sitions (blue circles in Fig. 2). Figure 2 shows the float trajec-
tory segments that start in Cellblue as blue lines. We next
count the total number of floats that start in Cellblue and have

ended up in the surrounding grid cells. In Fig. 2, the grid cells
connected to Cellblue via trajectories are Cellgreen, Cellred, and
Cellyellow with number of transitions into each grid cell of
Ngreen

blue , Nred
blue, and Nyellow

blue , respectively. The colored circles sur-
rounding the “11” text in Fig. 2 denote a trajectory segment
that has ended in a grid cell and are included in the total count
of transition statistics. It is possible (and, depending on the lo-
cation of the ocean and the gridcell size, probable) for floats
to stay in the grid cell they started in. The blue circle sur-
rounding the “11” text in Fig. 2 represents a trajectory seg-
ment that started and stayed in Cellblue. Therefore, in this
example, Nblue

blue 5 1.
The probability of a float transitioning from Cellblue (arbi-

trarily of index k) to Cellred (arbitrarily of index q) is equal to
Nred

blue/N
total
blue and is the value of the transition matrix in the in-

dex kth column and qth row. The probability of a float staying
in the grid cell it started in (the probability of a float transi-
tioning from the Cellblue to Cellblue) is found on the diagonal
of the transition matrix and calculated as Nblue

blue /N
total
blue . Our

model does not consider the possibility of float failure: floats
can neither be created nor destroyed. Consequently, we im-
pose a conservative tracer constraint such that all columns of
the transition matrix sum to one, and the entire column vector
is scaled accordingly. For dynamical reasons, the transition
matrix is very sparse: floats in the middle of the Atlantic
have no chance of transitioning to the Pacific in weeks or
months. The number of nonzero rows in each column will equal
the number of grid cells into which floats transition during the
time step. To ensure statistically likely transitions over long time
steps, grid cells with a probability less than 4% of the mean tran-
sition were set to zero at each step of the Markov chain, and the
transition matrix was rescaled. After performing this calculation
for all spatial grid cells, the resultant matrix is S3 S.

To quantify the transition matrix’s biases and uncertainties,
we considered transition matrix performance at several differ-
ent spatial and temporal resolutions. Time steps ranged from
30 to 180 days, and grid cells ranged in size from 18 3 18 to
483 68. Table 1 lists these time steps and grid sizes.

Low trajectory density or errors in the trajectory dataset
can create isolated grid cells disconnected from the rest of the
transition matrix. These points have no predictive value and
are removed. Eigenvector decomposition and analysis (Miron
et al. 2019; Froyland et al. 2014) provides intuition about the
connected float distribution modes; regions defined by eigen-
vectors with eigenvalues close to one tend to have closed

TABLE 1. Spatial resolution of all transition matrices calculated
and the temporal resolution (time step) of transition matrices
calculated for each spatial resolution.

Grid size (lat 3 lon) Time step (days)

18 3 18 30
18 3 28 60
28 3 28 90
28 3 38 120
38 3 38 160
48 3 48 180
48 3 68
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circulations and are difficult for floats to leave. To eliminate
isolated grid cells, we required all 50 largest eigenvectors to
have at least three grid cells and a total number of at least
three transitions in each grid cell of the transition matrix. The
limiting values for minimum grid cells and transitions were
chosen empirically based on the data density.

Ocean dynamics vary in time; therefore, the statistics of
where floats are advected must also have seasonal and climate
time scale variability. The Argo trajectory dataset is not suffi-
ciently large to resolve seasonal dynamics, and, by necessity,
we assumed these statistics are stationary in time. This as-
sumption is a fundamental gap in our analysis, adding uncer-
tainty to our estimates.

Expanding this statistical prediction for two special cases
relevant to the Argo array, the probability of a float sampling
a given region within a range of time steps is expressed as

Ptotal 5 ∑
n

k51
Qkr, (2)

where Ptotal is the probability of sampling and n is the number
of time steps considered. And the probability of a float sam-
pling a given region within all time steps is expressed as

P
range
j 5 *{(Qkr)j : k 5 1, …, n}, (3)

where the product is taken elementwise over the product
Qkr. The first statistical moment of a generic spatial grid k
can be expressed as

Rj 5 ∑
M

i51
qiri, (4)

where ri is the relative displacement vector from spatial grid j
to spatial grid i, and qi is the probability of transition from
spatial grid j to spatial grid i. The second statistical moment of
the generic grid k can be expressed as the following:

mj 5

��������������������
∑
M

i51
qi(Rj 2 ri)2

√
: (5)

These calculations are the first and second moments of a
probability distribution. Equations (4) and (5) can be inter-
preted as the expected value and variance (the tendency for
Lagrangian particles to disperse) for a linear probability dis-
tribution. These metrics may not be appropriate in regions
where a strong bifurcation in the advection statistics predicts
two (or more) distinct and narrowly defined probability distri-
butions. Fortunately for our analysis, most of the ocean does
not behave this way.

Standard error relates the second moment of the probabil-
ity distribution to the number of realizations. It quantifies the
quality of our transition matrix as an estimator of the most
probable trajectory. The standard error is

mj 5
mj��������
Ntotal

j

√ , (6)

where mj is the second moment from Eq. (5), and Ntotal
j is the

transition density (Ntotal
blue in Fig. 2).

Standard error also determines the statistical significance of dif-
ferences between distributions in aZ test. TheZ test is defined as

Zj 5
Xj 2 Rj

mj

, (7)

where X is the sample mean of the jth grid cell and Rj is the
first moment of the jth grid cell.

4. Results and discussion

Previous BGC Argo array design studies have considered
both the actual Argo array at snapshots in time and randomly
distributed float arrays (Johnson and Claustre 2016; Majkut
et al. 2014; Ford 2021; Kamenkovich et al. 2017). The omis-
sion of float displacement has been a major limitation. Ac-
counting for this float motion is critical for planning arrays
over time spans long enough for instruments to drift signifi-
cantly, as is the case with Argo. Ocean currents, and the tra-
jectories of floats carried by these currents, follow predictable
patterns. Inspired by this, we consider the construction and
assessment of a transition matrix approach for float prediction
in several applications: section 4a quantifies the biases and un-
certainties of transition matrices of various spatial and tempo-
ral resolutions and presents our justification criteria for the
optimal transition matrix; section 4b predicts the future distri-
bution of the existing Argo array; section 4c predicts the
future distribution of Argo floats deployed from planned
GO-SHIP cruises within the next 5 years; section 4d estimates
the regions of convergence and divergence for Argos system
and Iridium floats; section 4e predicts the future sampling
of existing BGC Argo floats broken down by sensor class;
section 4f estimates the effective diffusivity of the SOSE
model with derived transition matrices.

a. Bias and uncertainty quantification

Although computationally straightforward, a limiting as-
sumption of the transition matrix is that it is a linear approxi-
mation to a nonlinear process (Lagrangian Argo trajectories
in the ocean) (McAdam and van Sebille 2018). Given a data-
set of finite size, the choice of resolution and time step is
fundamentally a trade-off of model bias versus model uncer-
tainty. Using short space and long time scales reduces the
impact of errors from the linearity assumption (less bias).
However, these dimensional choices also reduce the amount
of data available to construct the transition matrix (more un-
certainty). As such, the time step and grid spacing, which de-
fine the transition matrix, are factors that determine the
accuracy of transition matrix prediction.

A representation of the difference in estimates derived
from approximating a longer time step transition matrix by
multiplying many short time step transition matrices together
is shown for an example grid cell in the Antarctic Circumpo-
lar Current (ACC) in Figs. 4a and 4b. While this is only one
example, it illustrates the uncertainty in the linear approxima-
tion made in this method: approximating long-term float be-
havior with short-term float statistics will result in a smoothed
PDF distribution. Indeed, this approximation-induced smoothing

J OURNAL OF ATMOS PHER I C AND OCEAN I C TECHNOLOGY VOLUME 401088

Brought to you by University of Colorado Libraries | Unauthenticated | Downloaded 12/20/23 05:37 AM UTC



can change the first moment [Eq. (4)] of the future float PDF.
Over long durations, these differences compound (Figs. 4c,d); in
the aggregated, globally calculated statistics of this figure, misfit
in mean transition and standard deviation generally decrease
with increasing time step. The slope of the misfit decrease is simi-
lar among two groups of resolution: resolutions of 18 3 18,
18 3 28, 28 3 28, and 28 3 38 of latitude and longitude; and reso-
lutions of 38 3 38, 48 3 48, and 48 3 68 of latitude and longitude.
The former had a lower misfit at the shortest time step and a
shallower slope of misfit decrease with increasing time step. In
comparison, the latter had a higher misfit at the shortest time
step and showed a steeper misfit decrease with increasing time
step. The misfit of the higher-resolution group also plateaued
at the 90-day time step.

An example of the differences introduced by choices in spa-
tial resolution is shown for the same example grid cell in the
ACC (Figs. 5a,b). These differences have also been quantified
for transition matrices of different grid resolutions and time
steps (Fig. 5c). Mean misfit is proportional to time step and in-
versely proportional to resolution, and the misfit slope is gen-
erally lowest between the 60- and 90-day time steps.

Figure 6 shows standard error [Eq. (6)] for two matrices of
differing resolution. Spatial area decreases geometrically with
increasing resolution, and, broadly speaking, because the core
Argo distribution is homogeneous, the number of Argo tra-
jectories through a grid cell will be proportional to the gridcell
size. Unsurprisingly, we see from this example that the lower-
resolution transition matrix has a lower mean standard error

FIG. 4. Examples of 28 3 28 180-day transition probabilities starting from red 3 for (a) a native 180-day transition
matrix and (b) a 30 day transition matrix multiplied by itself 5 times. Blue shading represents transition probability
and orange 3 represents spatial mean of all transition probabilities. Beige shading represents land. (c) Mean differ-
ence over all grid cells in the first statistical moment [Eq. (4)] of transition matrices of various time steps and transition
matrix with 180-day time step of same spatial resolution. (d) Mean difference over all grid cells in the second statistical
moment [Eq. (5)] of transition matrices of various time steps and transition matrix with 180-day time step of same spa-
tial resolution. Colored lines represent different resolutions.
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and will produce estimates of the expected value and variance
[Eqs. (4) and (5)] with less uncertainty.

For all transition matrices considered, the mean standard
error is proportional to resolution and time step except for
the 18 3 18 30-day transition matrix, which has a lower mean
standard error than its 18 3 28 30-day counterpart (Fig. 5d).
This is due to the specific criteria for transition matrix con-
struction that exclude certain high-variance regions from the
18 3 18 transition matrix (viz., the southern ACC where tra-
jectory variance is high and data density is low).

Comparing specific matrices and time steps, we notice that
Fig. 4c shows substantial misfit improvement between the
18 3 28 and the 28 3 28 resolutions, but slight improvement
between the 28 3 28 and the 28 3 38 resolutions, as well as a
curvature minimum at the 90-day time step 28 3 28 transition

matrix. Figure 4d shows a misfit minimum for the 283 28 reso-
lution transition matrix. Figure 5c shows a misfit plateau be-
tween the 60 and 90 time steps in the 28 3 28 resolution. For
these reasons, the 28 3 28 spatial resolution and 90-day time
step is considered the optimal transition matrix configuration
and was used in several subsequent calculations. The sensitiv-
ity of this transition matrix to data density was tested with a
data withholding experiment. Those results are shown in
appendix B.

The transition density of each grid cell (Ntotal
blue in Fig. 2) of

the optimal transition matrix dataset (Fig. 7) shows near-
global coverage with 8037 grid cells. Transition density suffers
primarily in ice-covered regions, where data are sparse, and
selection criteria often reject data. The mean number of tran-
sitions per grid cell is 76.3 6 43.9. The mean transition and

FIG. 5. Examples of 180-day transition probabilities starting from red 3 symbols for (a) a 28 3 28 transition matrix
and (b) a 48 3 48 transition matrix. Shading represents transition probability, green 3 symbols represent mean transi-
tion from individual grid cells, and orange 3 represents spatial mean of all transition probabilities. (c) Difference in
derived mean transition between 18 3 18 derived mean transition and reduced resolution transition matrices derived
from 18 3 18 transition statistics. Difference is calculated as the mean difference over all grid cells. (d) Mean of stan-
dard error of transition matrices over all grid cells. Colored lines represent different resolutions.

J OURNAL OF ATMOS PHER I C AND OCEAN I C TECHNOLOGY VOLUME 401090

Brought to you by University of Colorado Libraries | Unauthenticated | Downloaded 12/20/23 05:37 AM UTC



variance ellipse of the derived transition matrix (plotted in
Fig. 8) resolve the major features of ocean circulation. Regions
of large mean transition are also regions of considerable ob-
served kinetic energy. The 3-yr mean Lagrangian pathways of
each grid cell are computed from the transition matrix (Fig. 9)
and show the first statistical moment [Eq. (4)] at 12 time steps
of the Markov chain. The overall pattern of this figure gener-
ally resembles the known circulation features in the ocean and
closely resembles a composite of the 200 and 1000 db absolute
geostrophic streamfunction maps from Gray and Riser (2014).

b. Argo array prediction

Starting from the actual Argo float distribution of 10 October
2022, with 3262 floats, the transition matrix projected the float
array density forward for 1 and 2 years. We show the current
and projected float spacing of the array in Fig. 10 and resulting
projected density maps for the Pacific, Atlantic, and Southern
Ocean in Figs. 11–13, respectively. Argo floats older than
4 years were removed from the array estimate due to the high
likelihood of poor sensor performance or float failure, as is a
common practice by Argo managers. From these projections,
large and growing holes in array distribution exist in the north-
central and eastern equatorial Pacific; sparse distributions exist
in the Benguela Current, and the middle of the North Atlantic

subtropical gyre; and the Pacific sector of the Southern Ocean
will become sparsely observed. Based on this October 2022 ex-
ample, we would then recommend that Argo deployments pri-
oritize ships transiting or conducting operations in these areas.
Such a projection could be performed during each year’s Argo
planning process.

As another example of the utility of transition matrices, we
demonstrate an improvement of the density/age map cur-
rently calculated and used by Argo managers (https://www.
ocean-ops.org/board) as a metric of core Argo array health.
Repopulating old or sparse regions of the network is a goal
of Argo managers; the density/age map displays the density of
Argo floats within a grid cell divided by the average age of
those Argo floats. Array health maps use a present snapshot
of float distribution and do not estimate the future density/
age map. Procurement and cruise organization occur many
months before putting a float in the water, and estimates of
how Argo array health will change in the future could im-
prove planning. The optimal transition matrix can propagate
the density/age map forward in time to assess the future distri-
bution of the array, which has been done for the core Argo
and SOCCOM arrays (Fig. 14). This example shows core
Argo array health deficits in the Southern Ocean and off the
east coast of Africa.

FIG. 6. Standard error for (a) a 28 3 28 transition matrix and (b) a 48 3 48 transition matrix at 90-day time step.
Color map represents standard error; gray shading represents areas outside domain of the transition matrix; beige
shading represents land.
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c. Estimating future array density from float deployments
along set ship tracks

Research ships of opportunity often deploy Argo floats,
with the ship tracks set by other projects. BGC Argo deploy-
ments are preferably from projects such as GO-SHIP that
provide high-quality biogeochemical data that can be used as
a reference to validate BGC sensor calibrations. To determine
what fraction of the ocean future GO-SHIP cruises may popu-
late with floats, grid cells containing GO-SHIP cruise track
lines were initialized with floats at the time these GO-SHIP
cruises are scheduled to sail (Table 2 and red lines in Fig. 15).
The optimal transition matrix estimated ocean sampling in
the next 5 years based on these deployments. Typically, only a
handful of BGC floats are deployed on any cruise. We are
showing the greatest possible extent by initializing all grid
cells along the track line.

The resultant sampling densities and mean Lagrangian
pathways (Fig. 15) show that in many of the regions where
floats could be deployed, they do not travel very far during
their lifetimes. Based on these projections, GO-SHIP alone
cannot populate the world with floats. Holes will exist in the
eastern and western equatorial Pacific, the Gulf of Mexico,
the Gulf Stream, and the western tropical Indian Ocean.
Moreover, the decadal GO-SHIP transects are not occupied
frequently enough to retain optimal sampling density. To
achieve uniform distributions of the core Argo and BGC
Argo arrays, these areas will need additional ships of opportu-
nity for deployments.

d. Iridium versus Argos system communications

Long-term differences in Argos system and Iridium
equipped float trajectories are well known due to the differ-
ence in surface transmission times (Wong et al. 2020). For the

first time, the transition matrix methodology allows us to
quantify the implications of the increased surface time of
Argos-enabled floats distributed over many profiles. Argo
floats transmit data through two distinct satellite constella-
tions: Iridium and the Argos system. Floats have the hardware
to transmit via one system or the other, but not both. Data
transmission is much faster via the Iridium constellation. Con-
sequently, Iridium-enabled floats spend about 15 min at the
surface compared to their Argos counterparts, which can take
up to 12 h. Surface velocities are also different from velocities
at 1000 m depth (the typical Argo drift depth), and Argo
floats are undrogued and advected by winds and waves while
transmitting.

Dividing the full trajectory dataset into only Argos or
Iridium enabled trajectories results in significantly less data
density for both; we accommodate this by reducing spatial
resolution. Transition matrices were constructed using 28 3 38
grid cells of latitude and longitude and a 180-day time step.
The statistical difference between the Argos and Iridium en-
abled transition matrices is subtle and could not be distin-
guished from the null hypothesis by a Z test [Eq. (7)].

Transition matrices were multiplied by themselves 15 times
to estimate the transition statistics after 8 years}the upper
range of current Argo float lifetimes}to highlight the differ-
ences in transition statistics. We then uniformly seeded the
World Ocean with theoretical Argo floats and considered the
differences in resultant future float densities predicted with
the transition matrix (Fig. 16). In the long-term estimates, the
relative density of Iridium-enabled floats stays relatively uni-
form, and the regional differences in float density do not have
a spatial structure consistent with known circulation. In con-
trast, the Argos system–derived prediction shows strong ag-
gregation in the middle of the subtropical gyres and relative
divergence of floats along the equator. This corresponds to

FIG. 7. Transition density based on global Argo trajectories binned in 28 3 28 grid cells with a 90-day time step.
Color map represents transition density of each grid cell; gray shading represents areas outside domain of the transi-
tion matrix; beige shading represents land.
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divergence in surface currents similar to transition matrices
derived from surface drifters (Van Sebille et al. 2012).

This analysis has several implications. First, Argos-enabled
floats do not stay on the equator because they are more sus-
ceptible to the divergent Ekman transport caused by easterly
trade winds. In the Roemmich et al. (2019) vision of the fu-
ture Argo array, the equator is a prioritized region for in-
creased float density. This analysis supports the decision
made by Argo managers that floats deployed near the equator
be equipped with Iridium communications to prevent them
from being advected off the equator during their time at the
surface. Second, Argos- and Iridium-enabled floats move dif-
ferently, especially on long time scales: the performance of
hybrid transition matrices derived from both types of floats
may be degraded, primarily in equatorial regions.

For this reason, our data products provide Argos system and
Iridium transition matrices separately. However, improved res-
olution and data density in hybrid transition matrices may

offer enhanced performance for shorter-duration predictions.
Because the current Argo fleet is composed of Iridium- and
Argos-enabled floats, the hybrid matrix has general utility for
predicting Argo fleet dynamics. Further, the innovation of new
sensors has increased the quantity of data that BGC floats
transmit; the increased data require an average time of an
hour at the surface (S. Riser 2022, personal communication),
and, depending on the sensor suite, traditional core Argo
Iridium-enabled float statistics may underrepresent surface
advection.

e. BGC Argo sampling predictions

Temperature and salinity sensors are ubiquitous within the
Argo fleet, but recently developed and more expensive BGC
sensors are not. BGC float managers need to know where spe-
cific BGC sensors will be when planning deployment cruises.

Motivated by the spatial inhomogeneities of BGC sensors,
we estimate the future probability of sampling by sensor class.

FIG. 8. (a) Mean transition and (b) variance ellipses based on 28 3 28 binned 90-day time-step transition matrix. Ar-
rows represent the mean transition vectors. Blue shapes represent variance ellipses. Gray shading represents areas
outside domain of the transition matrix; beige shading represents land.
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For these calculations, we used a transition matrix with 38 3 38
grid cells of latitude and longitude and a 90-day time step to match
the designed separation of the core Argo array (Roemmich et al.
1998). This is a departure from the optimal transition matrix of

section 4a and is used to match maps like Fig. 10 commonly used
by Argo managers.

Using Eq. (2), the probability of current Argo sensors sam-
pling in the next year is inhomogeneously distributed by

FIG. 9. Mean Lagrangian pathways for Argo floats at each step in a 12-step Markov chain initialized at each grid
cell. The Markov chain is derived from 28 3 28 grid cell 90-day time-step transition matrix [Eqs. (1) and (4)]. Colored
lines represent time of mean transition. Gray shading represents areas outside domain of the transition matrix; beige
shading represents land.

FIG. 10. (a) Current and (b) 1-yr prediction of density of core Argo array. Prediction based on the Lagrangian path-
ways of Fig. 9 and a float lifetime of 4 years. Color map is calculated on a 0.58 3 0.58 grid and represents the distance
to closest float; 334 km spacing is quantified as “1X” nominal coverage. Beige shading represents land.
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various sensor classes (Figs. 17 and 18). Temperature and
salinity sensors achieve global sampling over the course of a
year (Fig. 17). Oxygen sensors are the second most widely
deployed, with a mean chance of any annual sampling of
35.5% over the spatial domain and no ocean regions omitted

(Fig. 18a). Chlorophyll is the third most widely deployed sen-
sor, with a mean chance of any annual sampling of 21.8%
over the spatial domain and a potential hole in the northeast
Atlantic Ocean (Fig. 18b). Finally, pH is the most sparsely de-
ployed sensor, with a mean chance of sampling any annual

FIG. 11. (a) 1- and (b) 2-yr predictions of density of core Argo array in the Pacific Ocean. Colored
lines represent time of mean transition. Gridcell shading represents estimated array density. Gray
shading represents areas outside domain of the transition matrix; beige shading represents land.

FIG. 12. (a) 1- and (b) 2-yr predictions of array density of core Argo array in the Atlantic Ocean. Colored lines rep-
resent time of mean transition. Gridcell shading represents estimated array density. Gray shading represents areas
outside domain of the transition matrix; beige shading represents land.
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sampling of 15.8% over the spatial domain and holes in the
Indian and northwest Pacific Oceans (Fig. 18c).

Another important metric to consider is the regions of the
ocean that will be sampled year-round. Historically, BGC var-
iables have only been sampled during hydrographic cruises
with follow-up cruises years or decades later. Indeed, BGC
float observations in the Southern Ocean have led to discover-
ies about the seasonal variability of BGC variables following
fully resolved seasonal observations (Gray et al. 2018).
Equation (3) was used to calculate the chance of year-round
observation for temperature and salinity observations (Fig. 17).
Temperature and salinity have the highest probability of

year-round sampling, with a mean chance of 44.9% of the
domain covered. The BGC array is not yet a fully devel-
oped network, and year-round sampling has thus far rarely
been achieved. The year-round oxygen sampling has a
chance of 1.2% of the domain covered. Chlorophyll and
pH have a substantially smaller than 1% chance of year-
round sampling in the domain.

Strong currents, such as the ACC, require a uniform density
of float coverage to achieve year-round sampling (Davis
1991), and creative methods such as creating regional compo-
sites of observations to resolve seasonal signals (Gray et al.
2018) may be necessary for some time.

f. SOSE comparison

Models, including the SOSE, have been used to predict La-
grangian trajectories for both operational (Talley et al. 2019)
and scientific (Tamsitt et al. 2017) applications. However,
models generally do not reproduce Argo float dispersion well,
even when the Lagrangian particles simulate the full Argo
10-day cycle (Talley et al. 2019). As a validation for both the
SOSE model and the transition matrices, we compared

FIG. 14. A 180-day projection of (a) SOCCOM and (b) Argo ar-
rays measure of survivability. Color map represents probability
density divided by age. High probability density divided by low age
indicates locations where having a surviving float is likely. Magenta
stars indicate active SOCCOM floats, red dots indicate active core
Argo floats. Gray shading represents areas outside domain of the
transition matrix; beige shading represents land.

TABLE 2. Planned GO-SHIP cruises.

Cruise section Year planned

I5 2022
A12 2022
SR4 2022
A13.5 2022
P2 2022
P4 2022
I9 2023
I8 2023
A16 2023
P16 2024
P15 2024
S4P 2025
ARC1 2025
P6 2026

FIG. 13. (a) 1- and (b) 2-yr predictions of array density of core Argo array in the Southern Ocean. Colored lines rep-
resent time of mean transition. Gridcell shading represents estimated array density. Gray shading represents areas
outside domain of the transition matrix; beige shading represents land.
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transition matrices derived from SOSE model-based trajecto-
ries with the Argo-derived transition matrices.

Transition matrices composed of 183 28 and 48 3 68 grid cells
of latitude and longitude with a 180-day time step recreated the

upper and lower limits of available grid resolution for this re-
gion. Across both resolution levels, the zonal mean transitions in
the ACC were greater in the SOSE-derived matrices. The
18 3 28 matrix comparison had a 1 cm s21 increase in the ACC

FIG. 15. Chance of observation for floats deployed in each grid cell along ship tracks of
GO-SHIP cruises organized for the next 5 years. Color map represents chance of observation;
white shading indicates a less than 1% chance of observation; colored lines represent time of
mean transition. Lines represent gray shading represents areas outside domain of the transition
matrix; beige shading represents land.

FIG. 16. Comparison of hypothetical future array density for (a) Argos system and (b) Iridium communications de-
rived transition matrices at 28 3 38 grid resolution and 180-day time step. Transition matrices were propagated for-
ward 8 years with initial array containing one float in each grid cell. Color map represents future array density. Gray
shading represents areas outside domain of the transition matrix; beige shading represents land.
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while the 4 3 6 comparison had a 0.5 cm s21 increase. The
second moment was also compared [Eq. (5), Fig. 19] and shows
that SOSE consistently underrepresents ACC Lagrangian diffu-
sion in the high-resolution case with a mean difference of
26.8 3 1021 6 6.2 3 1021 cm2 s22, and well resolves ACC
diffusion in the low-resolution case with a mean difference of
0.006 5.83 1021 cm2 s22.

SOSE is an eddy-permitting model but does not have suffi-
cient resolution to fully resolve high-latitude eddies. This
analysis suggests that SOSE ACC kinetic energy, at high reso-
lution, is concentrated in the mean flow and does not suffi-
ciently cascade into smaller-scale features; this manifests in
lower diffusivity. The low-resolution case seems to have the
effect of smoothing these differences. From this analysis, sci-
entific conclusions derived from SOSE Lagrangian particle
statistics should only be considered accurate for coarse-
resolution studies. Changes in parameterized diffusivities in
the offline Lagrangian model Octopus could potentially ad-
dress these problems, but these changes have not been stud-
ied. A higher-resolution 1/128 gridcell solution is now also
available and may improve mesoscale statistics, but this has
not been tested.

5. Conclusions

In this paper, we have explained, justified, and tested the
construction of a transition matrix for Argo float location pre-
diction, following the surface drifter work by Van Sebille et al.
(2012). Our work is in the broader context of BGC Argo
global array design, and a companion paper will describe an
optimal float deployment algorithm.

After quantifying a wide range of temporal and spatial
biases and uncertainties, we have concluded that using the
available Argo trajectory data, the transition matrix con-
structed from a 28 3 28 spatial resolution at a 90-day time
step is optimal. This transition matrix is used for core Argo
predictions, GO-SHIP deployment predictions, and array
health products. A description of publicly available web
applications and code repositories to predict future Argo
float locations with the transition matrix can be found in
appendix A.

We will update the transition matrix as more trajectory
data are made available. The present transition matrix is
available in appendix A. This transition matrix is a hybrid of
Argos- and Iridium-enabled float trajectories.

FIG. 17. Chance of (a) any observation within the next year [Eq. (2)] and (b) seasonal observation within the
next year [Eq. (3)] of temperature and salinity sensor equipped Argo floats. Argo distribution is taken from the
10 Oct 2022 snapshot and is composed of 3262 floats. Color map represents chance of observation; gray shading repre-
sents areas outside domain of the transition matrix; white shading indicates a less than 1% chance of observation;
beige shading represents land. All projections are based on multiples of a 38 3 38 90-day transition matrix.
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We have shown a significant difference in transition matrices
derived from floats equipped with different communication sys-
tems. We recommend that floats deployed in equatorial waters
use Iridium communications. We additionally provide appendix A
for the Argos and Iridium transition matrices for investigators
who wish to make specific predictions based on communica-
tion type.

Finally, we compared the Argo transition matrices to transi-
tion matrices derived from a particle release experiment in

the SOSE model. We found that the overall mean particle
transition in the ACC was greater in the SOSE transition ma-
trix, and particle diffusion was too low in the SOSE transition
matrix at high resolution but consistent with the Argo-derived
transition matrix at low resolution. We hypothesize that
SOSE does not fully resolve the mesoscale eddy field.

The ever-growing Argo float dataset will continue to im-
prove both the statistical accuracy and resolution of transition
matrices. However, we find that the array is already of

FIG. 18. Chance of any observation within the next year [Eq. (2)] of (a) oxygen sensor–equipped Argo floats,
(b) chlorophyll sensor–equipped Argo floats, and (c) pH sensor–equipped Argo floats. Color map represents chance
of observation; gray shading represents areas outside domain of the transition matrix; white shading indicates a less
than 1% chance of observation; beige shading represents land. All projections are based on multiples of a 38 3 38
90-day transition matrix.
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sufficient size for transition matrix construction, enabling sig-
nificant insights into difficult questions that BGC Argo man-
agers face now. BGC Argo floats offer new technology to
answer questions of critical societal importance. We hope
the transition matrix tools presented here will contribute to
the ongoing community conversation regarding optimal array
design.
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APPENDIX A

Transition Matrix Web Applications and Repositories

Argo float location prediction is an observing system pri-
ority. Because of this, we worked with the Argovis team at
University of Colorado Boulder to add the product ARGONE
to the Argovis web app and database [https://github.com/
argovis/demo_notebooks, recently upgraded from the app
version described in Tucker et al. (2020)]. A demo notebook
leveraging the new Argovis API to access the product
ARGONE (described in this paper) and predict Argo float
locations is available at https://github.com/argovis/demo_
notebooks and the product will also be featured on the
web app front end in the future.

The Argovis web app serves the statistical prediction of
Argo float locations (using ARGONE) up to about 5 years
in the future (the target float lifetime). Figure 1 shows an
example of accessing ARGONE through Argovis.

The ARGONE GitHub repository (https://github.com/
Chamberpain/ARGONE; Chamberlain 2023a) is publicly
available and produces future probabilities of a float array.
Figure A1 shows an example of these results.

FIG. 19. Difference of standard deviation around the mean of SOSE and Argo derived matrices for (a) 18 3 28 and
(b) 48 3 68 grid cells with a 180-day time step. Shading represents SOSE–Argo standard deviation of transition.
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APPENDIX B

Data Withholding Experiment

To test the data sensitivity of the recommended 28 3 28
grid cell at 90-day time step transition matrix, we performed
a data withholding experiment. The data withholding experi-
ment compared transition matrices created from subsets of
the Argo trajectory dataset with the transition matrix made
from the full Argo trajectory dataset. The subsets of the
Argo trajectory database were generated by randomly with-
holding floats from the full Argo database. The dependence
on data density was tested by increasing the number of with-
held floats from 5% to 30% of the total number of Argo
floats in 5% increments. The 30-, 60-, and 90-day transition

matrices generated from these randomly generated subsets
were compared to the original transition matrices 50 times at
each data density. The difference in mean transition [Eq. (4)]
between each data withheld matrix and the original transition
matrix was calculated for every grid cell (Fig. B1).

There exist 2 distributions in the mean differences at
5%–15% withheld and 15%–30% withheld. These distribu-
tions have a mean difference of 0.37 and 0.11 km, respec-
tively, for the 90-day transition matrix. The small difference
in the 85%–95% distribution suggests that the mean of the
full transition matrix may not be significantly sensitive to
new data. The standard deviation of the difference is in-
versely proportional to the data density and larger than the
mean difference for all cases considered.

FIG. A1. Example of ARGONE repository output (https://github.com/Chamberpain/
ARGONE; Chamberlain 2023a) for an example float array. Green markers represent initial
Argo float array locations, and colored grid cells represents Argo float probability density func-
tion after 180 days with initial deployment at float icon.
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