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Abstract. Symmetry is an important and unifying notion in many areas of physics. In
quantum mechanics, it is possible to eliminate degrees of freedom from a system by lever-
aging symmetry to identify the possible physical transitions. This allows us to simplify
calculations and characterize potentially complicated dynamics of the system with relative
ease. Previous works have focused on devising quantum algorithms to ascertain symmetries
by means of fidelity-based symmetry measures. In our present work, we develop alterna-
tive symmetry testing quantum algorithms that are efficiently implementable on quantum
computers. Our approach estimates asymmetry measures based on the Hilbert—Schmidt
distance, which is significantly easier, in a computational sense, than using fidelity as a
metric. The method is derived to measure symmetries of states, channels, Lindbladians,
and measurements. We apply this method to a number of scenarios involving open quan-
tum systems, including the amplitude damping channel and a spin chain, and we test for
symmetries within and outside the finite symmetry group of the Hamiltonian and Lindblad
operators.

Keywords: Symmetry testing, quantum algorithms, Hilbert-Schmidt distance, Lindblad-
ian evolution.
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We dedicate our paper to the memory of Géran Lindblad (July 9,
1940-November 30, 2022), whose profound contributions to quan-
tum information science, in the form of the Lindblad master equa-
tion [47] and the data-processing inequality for quantum relative
entropy [46], will never be forgotten.

1. Introduction

Symmetry is a fundamental concept in physics, simplifying our understanding
of the physical world [22,27]. In quantum mechanics especially, symmetry
is helpful for determining which physical transitions are allowed [74,1,3] or
in reducing the number of degrees of freedom needed to express a given
physical system, thus making it easier to solve equations or optimization
problems. In practical considerations, the interaction of the system with the
environment can lead to a loss of symmetry, or yet, enforce certain symmetries
(Fig. 1). As such, the concept of symmetry has carried over to quantum
information processing [50], for understanding phenomena like entanglement
[73,19,16, 17,18, 12], coherence [48, 53, 62], and reference frames [3,26]. The
essential role of symmetry has elevated the concept itself to the status of a
quantum resource theory [51,52], in which objects possessing symmetry are
considered freely available and those that break symmetry have value. Most
recently, symmetry is being used in quantum machine learning to improve
the trainability of learning algorithms [43, 54, 61].

Motivated by its fundamental role in physics and related fields, the au-
thors of [40,42] (cf. [39]) developed several quantum algorithms for testing
symmetry of states, Hamiltonians, channels, and measurements on quantum
computers, and a sequel paper places the related problems in the context
of quantum computational complexity theory [41]. A number of these al-
gorithms are efficiently realizable on quantum computers, while others have
computational complexity provably beyond that of the standard BQP com-
plexity class and thus are believed to be difficult even for quantum comput-
ers to solve (here, BQP stands for bounded error quantum polynomial time;
see [71,69] for reviews on quantum computational complexity theory). An-
other contribution of [40] was to develop variational quantum algorithms for
these more difficult problems, by replacing the operations of an unbounded
“prover” with parameterized quantum circuits; this approach works well in
certain instances but does not lead to provable computational runtimes (see
[8,4] for reviews of variational quantum algorithms).

One of the main contributions of the present paper is to develop alter-
native symmetry-testing algorithms that can be efficiently implemented on
quantum computers. In contrast to the prior approaches from [40,42], we
modify the measure being estimated by a quantum computer. Whereas all
of the algorithms from [40] estimate symmetry measures based on fidelity
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Fig. 1. Interactions of systems with the environment can be symmetry pre-
serving or symmetry breaking. The figure depicts an illustrative example
of water waves interacting with wind that blows along different directions,
potentially preserving or breaking the initial symmetry. In the first example
(top), the wind preserves the symmetric structure of the water waves, so that
the wind acts as a covariant channel, while in the second example (bottom),
the wind is too chaotic, breaks the symmetry, and thus does not act as a
covariant channel.

[68], here we develop algorithms that estimate asymmetry measures based
on the Hilbert—Schmidt distance. Since estimating fidelity is considered to
be a difficult problem for a quantum computer (more precisely, complete
for a complexity class called quantum statistical zero knowledge [70]), while
estimating the Hilbert—Schmidt distance is considered easy for a quantum
computer (more precisely, complete for BQP [59]), it is expected that sev-
eral of the symmetry testing algorithms from [40] are difficult for a quantum
computer while the symmetry testing algorithms developed here are easy for
a quantum computer to execute.

In our paper, we develop efficient symmetry testing algorithms for a num-
ber of scenarios involving open quantum systems. Specifically, our contribu-
tions consist of the following:

1. Given a state p and a unitary representation {U(g)},c of a group G,
our first algorithm estimates the following asymmetry measure:

|Cﬂ| SO 9), AlI2, (1)

geG
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where
|Ally = /Tr[ATA] (2)

is the Hilbert—Schmidt norm of an operator A. This measure is a
faithful asymmetry measure, in the sense that it is equal to zero if
and only if [U(g),p] = 0 for all g € G, the latter being the defining
condition for symmetry of the state p with respect to the representation

{U(9)}geq 13,26,50].

. Given a quantum channel N' and a unitary channel representation
{U(9)} e of a group G, where U(g)(-) := U(9)(-)U(g)T, our next algo-
rithm estimates the following asymmetry measure:

,;ZG |G ® eata). v (@)

2

, 3)

2

where id denotes the identity superoperator, [U(g), N] represents the
superoperator commutator (see, e.g., [3, Section II-C]), defined for su-
peroperators A and B as

[A,B] :=AoB—-BoA, (4)
and ]
od:= p > il @ liXs] (5)
2
is the standard maximally entangled state of Schmidt rank d. Thus,

(id ® U(g),N) (@) (6)
= (id® U(g) oN)) (@) — (id @ (N oU(g) (@F).  (7)

As we show later on, the measure in (3) is a faithful asymmetry mea-
sure, in the sense that it is equal to zero if and only if

U(g),N]=0 Vgei, (8)
or, equivalently, if and only if
U(g)oN = N olU(g) VgeqG. (9)

The latter is the defining condition for covariance symmetry of the chan-
nel N with respect to the unitary channel representation {U(g)}secc
[33,50]. In words, the equality above means that the channel A/ com-
mutes with every unitary channel representation U(g) of a group ele-
ment g € G. Our algorithm for this task builds on an efficient subrou-
tine for estimating the Hilbert—Schmidt distance of the Choi states of
two quantum channels, which may be of independent interest for other
purposes in quantum computing.
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3. As a special case of the above, we consider testing covariance sym-
metry of measurement channels, which have the form p — M(p) :=
> Tr[Mypl|z)x|, where {M,}, is a positive operator-valued measure
and {|x)}; is an orthonormal basis that encodes the measurement out-
come. Specifically, we provide an algorithm that estimates the following
asymmetry measure:

ey e AT
geG

where {U(g) }gec and {W(g) }4ec are unitary channel representations of
a group G, with the latter realizing a shift of the measurement outcome

W(g)(Jx)z[) = |mg(x))mg(2)], (11)

for m, a permutation. As discussed later on, this asymmetry measure
is equal to zero if and only if the measurement is covariant [14, 34], i.e.,
such that U(g)(M,) is an element of the POVM for all ¢ € G. Here
again our algorithm builds on an efficient subroutine for estimating the
Hilbert—Schmidt distance between two measurement channels, which
we show is easier to perform than the aforementioned subroutine for
general channels with quantum inputs and quantum outputs. We also
believe that this subroutine should be of independent interest for other
purposes in quantum computing.

As a particular application of our algorithm for estimating (3), we investigate
the symmetry of Lindbladian evolutions, i.e., evolutions that correspond to
the solution of the well known Lindblad master equation [47]:

dp , 1

ot = Llp) = —ilH,p] + > LipLf - §{L2kap}7 (12)
k

where H is a Hamiltonian, {Ly}, is a set of Lindblad operators, and L is a

superoperator known as the Lindbladian. It is well known that the solution

of (12) is the following quantum channel:

oo

LM(p)t"
o) = 3 EOT (13)
n=0
where L£™ denotes n repeated applications of the superoperator £. We ac-
complish symmetry testing of a Lindbladian £ by employing our algorithm
for estimating (3) with the substitution A" = e**, and later on, we remark on
how symmetry testing of the channel e“! is equivalent to symmetry testing

of the Lindbladian L.
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Similar to how understanding symmetries of Hamiltonians can be helpful
for deducing which physical transitions are allowed and which are not, the
same can be said for understanding symmetries of the more general Lind-
bladian evolutions. As a particular example of this phenomenon, consider a
Lindbladian in which the Hamiltonian is the photon number operator [25] and
there is one Lindblad operator, which is also the photon number operator.
Then the only states that are invariant under the resulting channel et are
the photon number states and mixtures thereof, because every other state be-
comes dephased by this evolution. Thus, under these dynamics and for long
times, it is not possible to transition from a probabilistic mixture of photon
number states to a coherent superposition of them, the latter of which is
resourceful for estimation tasks in quantum metrology [67]. More generally,
our algorithm is helpful for understanding symmetries of Lindbladian evolu-
tions that are efficiently realizable on quantum computers, by means of any
of the several quantum algorithms that have been proposed for simulating
open systems dynamics [9, 13, 36, 60, 65] (see [55] for a review).

Before proceeding with the content of our paper, we note here that the
symmetry testing quantum algorithms proposed here, like those from [40, 42],
are most useful in the regime in which the states, channels, Lindbladians, or
measurements being tested, as well as the group representation unitaries
being considered, involve a large number of qubits and are nontrivial. In this
regime, it is likely not possible to simulate these tests efficiently by means
of a classical computer, as shown in [42,41], based on the conjecture that
the complexity class BQP strictly contains the complexity class BPP (the
latter being the class of problems that are efficiently implementable on a
classical probabilistic computer). The previous statement, less formally, is
equivalent to the widespread belief that quantum computers, in principle,
are generally more powerful than classical computers. Furthermore, it is
certainly of interest to employ quantum computers for the task of learning
symmetries (see, e.g., [49]), and we consider the ability to test symmetries to
be an important component of the learning process (either while the learning
is occurring or after learning has completed, as a way of testing whether the
learned symmetry is indeed correct).

In the rest of our paper, we provide details of our algorithms and evaluate
their performance for some exemplary physical systems of interest. In partic-
ular, Sect. 2 reviews some basic notation and concepts used throughout the
rest of our paper. Sect. 3 develops the theory behind our quantum algorithms
for testing symmetry of states (Sect. 3.1), channels (Sect. 3.3), and Lindbladi-
ans (Sect. 3.4). As part of our algorithm for testing symmetries of channels,
we develop an efficient subroutine for estimating the Hilbert—Schmidt dis-
tance of the Choi states of two quantum channels (Sect. 3.2), which may be
of independent interest for other purposes in quantum computing. Specifi-
cally, this algorithm significantly reduces the number of qubits needed for the
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estimation, when compared to a naive approach to this problem. In Sect. 4,
we test out our algorithms for estimating symmetries of Lindbladians for two
example scenarios, using Qiskit’s noiseless and noisy simulators [66]. Sect. 5
particularizes the development for quantum channels to the case of quan-
tum measurement channels, proposing both a procedure for estimating the
Hilbert—Schmidt distance of the Choi states of two such channels, as well
as for estimating an asymmetry measure for a given measurement channel.
Finally, in Sect. 6, we conclude with a summary of our contributions, along
with a discussion of prospects for implementing the developed algorithms on
near-term quantum hardware.

2. Notation and Background

This section provides some notation and background used throughout the
rest of our paper. See [28,75,72,35,37] for further background on quantum
information. A quantum state (density operator) is described by a positive
semidefinite operator with unit trace. A quantum channel is a completely
positive, trace-preserving superoperator. The Choi state ®V of a channel A/
is given by sending one share of a maximally entangled state ®¢, defined
in (5), through the channel

N = (ideN) (@), (14)

where we have assumed that the input space of N is d-dimensional.
2.1. HILBERT-SCHMIDT DISTANCE

The Hilbert—Schmidt distance between two states p and o, induced by the
norm in (2), is given by ||p — o||,. It is faithful, in the sense that ||p — o], =0
if and only if p = o. It obeys the data-processing inequality for unital
channels [58], but it does not obey it in general [57]; that is, the following
inequality holds whenever N is a unital channel (satisfying N'(I) = I, where I
is the identity operator):

lp=ally = [N(p) = N(o)ll, - (15)

When p and ¢ are multi-qubit states and one can prepare many copies of
them on a quantum computer, it is easy to estimate the square of their
Hilbert—Schmidt distance by means of the destructive SWAP test (reviewed
in Sect. 2.2 below). This follows by considering the expansion

2
lp—ollz = Trlp?] + Tr[o?] — 2 Tr[po] (16)
and the algorithm reviewed in the next section. In fact, it is known that
estimating the Hilbert—Schmidt distance of quantum states p and o prepared

by circuits is a BQP-complete problem [59, Theorem 14], so that this problem
captures and is equivalent to the full power of quantum computation.
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2.2. REVIEW OF DESTRUCTIVE SWAP TEST

Let us define the unitary swap operator as

SWAP = Z 0] @ [7)l; (17)

and note the following identity:
Tr[CD] = Tr[SWAP(C @ D)], (18)

which holds for arbitrary linear operators C' and D and plays a key role in
our algorithms that follow. Recall that, if the SWAP operator acts on qubit
systems, then
SWAP = > (-1)7 &7, (19)
i,je{0,1}

where
W =0t oYV=0", dN=u" ol=vu". (20)

In the above, 1 = |@T)DH|, &~ =[O~ YO~ |, YT = |[UT)NTT| and ¥~ =
| U~ )P~ are the standard Bell states, defined through

1 1
V2 V2

This means that the SWAP observable for qubits can be measured by means
of a Bell measurement and classical post-processing, a fact that is used in
the destructive SWAP test method for measuring the SWAP observable [24]
(see also [6,64] and (26)—(37) of [59] for a review of this method).

For convenience, we briefly review the destructive SWAP test [24] for
estimating the overlap term Tr[po], where p and o are n-qubit states, with p
a state of qubits 1, ..., n and o a state of qubits n + 1, ..., 2n. The idea
behind it is a consequence of the following observation:

|9F) := —= (l00) £[11)),  |¥F) = —=(|01) £10)). (21)

Trjpo] = Tr[SWAP™(p® o)) (22)
= Y (D™ peo), (23)
k,Zefo,1}"
where
k (k1,kay ... kn), L= (l1,0y,....0), (24)
O = ofth @oll, @ ool (25)
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and we used the identity in (19), as well as the fact that

SWAP(™ = SWAP®" (26)
= (X e e e (X (0 el) @0)
klaél kn,gn
= Y (—1)FL R (28)
Efe{0,1}"

By setting Z = ([2 ,E) to be a multi-indexed random variable taking the
value (—1)** with probability

—

p(B, D) = Te[ok (p o o), (29)

we find from (22)—(23) that its expectation is given by
Eiz] = Y (DY@ (pe o)) = Trpo]. (30)

kfe{0,1}"

This observation then leads to the following quantum algorithm (destructive
SWAP test) for estimating Tr[pc|, within additive error ¢ and with success
probability at least 1 — d, where ¢ > 0 and 6 € (0,1).

ALGORITHM 5 Given are quantum circuits to prepare the n-qubit states p
and o.

1. Fixe >0and § € (0,1). Set T' > €%ln(%) and set ¢ = 1.

2. Prepare the states p and o on 2n qubits (using the ordering specified
in (25)).

3. Perform the Bell measurement {‘PEZ}E[ on the 2n qubits, which leads
to the measurement outcomes k and /.

4. Set Z; = (—1)M*.

5. Increment t.

6. Repeat Steps 2.-5. until ¢ > T and then output Z := % Zle Z; as an
estimate of Tr[po].

Fig. 2 depicts the core quantum subroutine of Algorithm 5. By the Hoeffding
inequality (recalled as Theorem 1 below), we are guaranteed that the output
of Algorithm 5 satisfies

Pr[|Z — Tr[po]| < €] >1-4, (31)

2350017-9
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Fig. 2: Depiction of the core quantum subroutine given in Steps 2.-3. of
Algorithm 5, for the three-qubit states p and o. This algorithm estimates
the overlap Tr[po].

due to the choice T > 5% ln(%).

Clearly, by the expansion in (16) and repeating Algorithm 5 three times,
one can use O(ai2 ln(%)) samples of p and ¢ in order to obtain an estimate
of (16) within additive error € > 0 and with success probability not smaller
than 1 — ¢, where ¢ € (0,1).

THEOREM 1 (Hoeffding Inequality [29]) Suppose that we are given T inde-
pendent samples Y1, ..., Y of a bounded random variable Y taking values in
the interval [a,b] and having mean p. Set Yy := (Y1 + -+ Y1) to be the
sample mean. Let € > 0 be the desired accuracy, and let 1 — § be the desired
success probability, where 6 € (0,1). Then

Pr|Yr —p| < ¢ > 1-9, (32)
if T > %ln(%), where M :=b — a.

2350017-10
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3. Quantum Algorithms for Testing Symmetries
3.1. TESTING SYMMETRIES OF STATES

Let us now introduce a simple quantum algorithm for testing symmetry of the
state p with respect to the unitary representation {U(g)} gec of a group G.
Specifically, the goal is to estimate the normalized commutator norm in (1).
As discussed around (1), this asymmetry measure is equal to zero if and only
if [U(g),p] =0 for all g € G. To start off, we establish the following lemma,
which provides a direct link between the asymmetry measure in (1), and an
approach we can use for estimating it on a quantum computer.

LEMMA 1 Given a state p and a unitary representation {U(g)}gec of a
group G, the following equality holds:

@ Z 11U (9) plll3 = 2 (Tx[p”] = Tx[pTc(p)]) , (33)
geG
where Tg s the twirl channel given by
=3 Z Ulyg (34)
geG

Proof. Consider the following equalities:

IW(@).oll2 = [10U(g) — Ulg)ell3 (35)
- [o-viwwiar]; 2
= Tx[p?) + Te[(U(9)pU(9))?] — 2T [oU (9)pU (9)1] (37
= 2(Te[p?] - U (9)pU (9)1]) (38)

where the second equality is due to the unitary invariance of the Hilbert—
Schmidt norm, the third from the expansion in (16), and the final one from
cyclicity of trace. Thus, we see that

Zn Al |Z (Telo?] - U (9)pU (9)T])  (39)

QGG geq

- 2(Tr[p |~ Te[oTe(p)]) - (40)

concluding the proof. O

Now suppose that the state p is an n-qubit state and efficiently preparable
on a quantum computer, either by a quantum circuit or other means, and
that, for all g € G, there exists a circuit that efficiently realizes the n-qubit
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unitary U(g). Then the idea for estimating the asymmetry measure in (1)
is simple: Perform the destructive SWAP test (Algorithm 5) to estimate
Tr[p?] and perform the same test, using instead p and its twirled version
T (p), to estimate Tr[pTa(p)]. When estimating the latter term, we modify
Algorithm 5 to be as follows:

ALGORITHM 6 Given is a quantum circuit to prepare the n-qubit state p
and circuits to generate the unitaries in the representation {U(g)}4ec-

1. Fixe >0and § € (0,1). Set T' > E%ln(%) and set t = 1.

2. Pick g € G uniformly at random. Prepare the states p and U(g)pU(g)T
on 2n qubits (using the ordering specified in (25)).

3. Perform the Bell measurement {@EZ}EE on the 2n qubits, which leads

to the measurement outcomes k and /.
4. Set Z; = (—1)**.
5. Increment t¢.

6. Repeat Steps 2.-5. until ¢ > T and then output Z := % Zthl Z; as an
estimate of Tr[pTa(p)].

Thus, by combining the estimates of Tr[p?] and Tr[pT(p)] according to (33),
it follows that this approach uses O( L ln(%)) samples of p in order to obtain
an estimate of the asymmetry measure in (1) within additive error ¢ > 0 and
with success probability not smaller than 1 — ¢, where ¢ € (0,1).

3.2. ESTIMATING THE HILBERT-SCHMIDT DISTANCE OF THE CHOI STATES
OF CHANNELS

Let us now introduce a method for estimating the Hilbert—Schmidt distance
between the Choi states of two quantum channels, as a generalization of the
destructive SWAP test used for estimating the Hilbert—Schmidt distance be-
tween two states. This algorithm has applications beyond symmetry testing,
for example, in quantum channel compilation as a generalization of compiling
states (see [21] for the latter).

To begin with, recall that two channels AV and M are equal if and only
if their Choi states are equal [75, Section 4.4.2]; i.e

N=M = V=M (41)

where the Choi states &V and ®M are defined in (14). One way to determine
whether the equality above holds approximately is to employ the Hilbert—
Schmidt distance of the Choi states:

[o% — oM, . (42)

2350017-12
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where the Hilbert—Schmidt norm is defined in (2). This is due to the positive
definiteness or faithfulness of the norm, i.e.,

eV —eM|, =0 « oV = oM. (43)

Using the expansion in (16), consider that
@V — M2 = Tr[(@)?] + Tr[(@M)%) — 2Te[@V M|, (44)
The following lemma gives a way of rewriting the overlap Tr[<I>N ®M] in terms

of the SWAP observable, and it is critical to our simplified approach for esti-
mating the Hilbert—Schmidt distance between the Choi states of two channels.

LEMMA 2 Let N and M be channels with Choi states ® and dM | respec-
tively, and d-dimensional inputs. Then

TeeN oM = %TY[SWAP(/\/’ % M)(SWAP)]. (45)

Proof. Consider that

Tr[@N oM = Tr[(id @ V) (%) (id @ M)(9)] (46)
= % > Tr[(|a)] @ N(i)1)) (k) @ M([kXL))] (47)

1,5,k
= % > (Llixlk) @ TrN(Ja)G )M kX)) (48)

1,7,k 0
= S TN M) (49)

i,J

= DT THSWAP (W e M) (1] @ 1Kl (50)
_ %Tr[SWAP (N ® M) (SWAP)]. (51)
The penultimate equality follows from (18). O

Now suppose that the channels N and M each accept n qubits as input and
output m qubits. Then each of the terms in (44) can be efficiently measured
on a quantum computer. For example, to measure the last term Tr[@N <IJM],
one could prepare the tensor-product state N © &M and then perform a
destructive SWAP test, as recalled in Algorithm 5. This approach, which
we consider to be a naive approach in light of Algorithm 7 below, requires
2(n + m) qubits in total, for a circuit width of 2(n + m) qubits. However,
what follows as a consequence of Lemma 2 is that there is a simpler procedure
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for estimating Tr[<I>N ®M], which requires preparing only 2n qubits at the
input and acting on 2m qubits at the output, and thus for a circuit width of
max{2n,2m} qubits.

Indeed, Lemma 2 establishes that

Tr[oN eM] = Q%TI[SWAP(T”) (N ® M) (SWAP™)], (52)

where the superscript notation explicitly indicates the number of qubits on
which the swap operator acts. Next recall (26)—(28), which implies that

Tr[SWAP™ (N @ M) (SWAP™)]

- Y Y ()T (W e M) (0], (53)

22n
0,j€{0,1}™ k,0e{0,13"

22

where
; = (i17i27"'7im)7 ; = (j17j27"'7jm)7 (54)
k‘ = (]{21,]6'2,...,]{3 ), f = (fl,ﬁz,...,fn), (55)
OV = R @I, @ ®<I>Z;Té?;7 (56)
ke _ k1l kot
H = L @O, @ @Oy (57)

Equation (53) and Lemma 2 are the key insights that lead to a simplified
quantum algorithm for estimating the term Tr[CDN ®M], which requires only
2n qubits at the input and 2m qubits at the output. In the above, we have
implicitly used the following ordering: the channel A/ acts on input qubits
1,...,n and produces output qubits 1,...,m, the channel M acts on input
qubits n 4+ 1,...,2n and produces output qubits m + 1,...,2m, and the
qubits for the Bell states are labelled as subscripts above. By setting Y =

(I, J, K, L) to be a multi-indexed random variable taking the value (—1)55 Rl
with probability

p(k, 0,7, 7) = p(i, |k, £) p(k, 0), (58)
where
Lo 1
D) = o (59)
p(i, 1k, 0) = Tr[@7 (N @ M) (@), (60)

we find from (52)-(53) that its expectation is given by

E[Y] = %Tr[SWAP(m) (N @ M) (SWAP™)] = Tr[@VoM].  (61)
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The observation in (61) then leads to the following quantum algorithm for
estimating Tr[<I>N ®M], within additive error £ and with success probability
not smaller than 1 — §, where ¢ > 0 and § € (0,1).

ALGORITHM 7 Given are quantum circuits to implement the channels N
and M.

1. Fixe >0and § € (0,1). Set T > 6%ln(%) and set t = 1.
2. Generate the bit vectors k and ¢ uniformly at random.

3. Prepare the Bell state O on 2n qubits (using the ordering specified
in (57)).

4. Apply the tensor-product channel N'® M (using the ordering specified
after (57)).

5. Perform the Bell measurement {@ﬁ};; on the 2m output qubits, which

leads to the measurement outcomes 7 and ;
6. Set Y; = (—1)" Ttk
7. Increment t.

8. Repeat Steps 2.-7. until ¢t > T and then output Y := %Zle Y; as an
estimate of Tr[®V ®M].

Fig. 3 depicts the core quantum subroutine of Algorithm 7. By the Hoeffding
inequality (recalled as Theorem 1), we are guaranteed that the output of
Algorithm 7 satisfies

Pr[[Y - Te[eVNoM]| < ¢] > 194, (62)
due to the choice T' > 6% ln(%). By employing Algorithm 7 three times, we
can thus estimate (44) within additive error ¢ and with success probability

not smaller than 1 — §, by using O(E%ln(%)) samples of the channels N
and M.

3.3. TESTING SYMMETRIES OF CHANNELS

In this section, we leverage the methods for estimating the Hilbert—Schmidt
asymmetry measure for states (Sect. 3.1), as well as the method for esti-
mating the Hilbert—Schmidt distance between the Choi states of channels
(Sect. 3.2), in order to develop an approach for estimating the covariance
symmetry of a quantum channel A/ with respect to a unitary channel repre-
sentation {U(g)}4eca-
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Fig. 3: Depiction of the core quantum subroutine given in Steps 2.-5. of
Algorithm 7, such that the quantum channels N' and M have three-qubit
inputs and outputs. This algorithm estimates the overlap Tr[®V ®M] of the
Choi states of the channels. In this example, the algorithm begins by prepar-
ing the classical state |ky, k2, k3, €1, {2, {3), where the values ki, ko, k3, (1, (2, {3
are chosen uniformly at random, followed by a sequence of controlled NOTs
and Hadamards. Before the channels are applied, the state is thus \(IJ’W), as
described in Algorithm 7. After the channels are applied, Bell measurements
are performed, which lead to the classical bit string i1i2i3717j2j3. In the di-
agram, we depict the realization of the channels NV and M as black boxes,
but in a simulation of them, one might make use of additional environment
qubits that are prepared and then discarded.

Recalling the superoperator commutator notation defined in (4), we are
interested in estimating the following asymmetry measure:

1G] 4 Z

As discussed around (3), this asymmetry measure is equal to zero if and only
if N olUd(g) =U(g) o N holds for every g € G.
We begin with the following lemma:

(id ® U(g), M) (@) (63)

2

LEMMA 3 Given a quantum channel N' and a unitary channel representa-
tion {L{(g)}geg, the following equality holds:

€] ZH (ide U ])(fbd)H2 = ﬁTr[SWAP(N®N)(SWAP)]
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dQ [SWAP(M Z (U(g) ON)®(Nou(g)))(SWAP)}. (64)

Proof. Consider that, for all g € G,

2
|G pig), A @)
2
_ H(I)M(g)o/\/ o (I)Nolxl(g)Hz (65)
_ Tr[(q)L{(g)oN)2] + Tr[(q)./\/'ou(g))2] . QTT[(I)Z/I(Q)ON(I)NOZ/{(g)] (66)
— 2 (Tr[(CDN )2] — Tr[@U(@)oN N OU(H)]) , (67)
where we made use of the expansion in (16), as well as the equalities

Tr[(@40°N)?) = T((@V)?),  T(@MUD)] = Tr[(eV)].  (68)

The equalities in (68) follow because

Te[(@H@N)?] = Tr[{(id ® (U(g) o N))(@%)}?] (69)
= Tr[{od@fv)@d)}] (70)
= Tr[(@)?, (71)
Te[(@VU9)?) = Tr[{(id @ (N oU(g)))(@H)}?] (72)
= Tr[{(U ()@N)(@d»?] (73)
= Tr[{<1d®N><<1>d>}1 (74)
= Tr[(e")?. (75)

The equalities in (70) and (74) in turn follow because the function Tr[o?]
depends only on the eigenvalues of o, and its eigenvalues are invariant under
the action of a unitary channel. The equality in (73) follows from the trans-
pose trick [75, Exercise 3.7.12]; i.e., the identity (id @U)(®?) = (U” @id) (D)
holds for every unitary channel U, where the transpose channel is defined as
UT () = UT(-)U, with U the matrix realized from U by entrywise complex
conjugation. Now employing Lemma 2, we can write

Tr[(@V)?] = ﬁTr[SWAP(N@V') (SWAP)], (76)
Tr[@U(@)N pNU9)] — ﬁTr[SWAP(( (9) o N) & (N oU(g)))(SWAP)],(77)
which finally implies the claim in (64). O

In order to estimate the channel asymmetry measure in (63), it follows from
Lemma 3 that we can make use of Algorithm 7 to estimate the following two
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quantities:
%Tr[SWAP(N@N)(SWAP)], (78)
1 1
- [SWAP(@ g; U(g) o N) @ (W oU(g)) ) (SWAP) |, (79)

subtract the estimates, and multiply by two. For estimating the quantity
in (79), similar to how we did in Algorithm 6, we can slightly revise Algo-
rithm 7 such that g € G is chosen uniformly at random in each step.

Remark 1 More generally, a quantum channel N can possess a covariance
symmetry of the following form:

NolU(g) = V(g)o N  Vgea, (80)

where {U(9)}4ec and {V(g)}4eq are unitary channel representations of a
group G. This more general symmetry occurs especially in the case in which
the dimensions of the channel input and output differ (as is the case, e.g., for
the quantum erasure channel [75]).

We note here that all of the observations from this section apply to this
more general case. Namely, the asymmetry measure from (63) generalizes to

yla| 3 H@N‘ﬂ(g) _ V)N HZ - %TﬂSWAP(Af@N )(SWAP)] (81)
geG
2 1
- 5T [SWAP(@ gez;; (V(g) o N) @ (N o U(g)) ) (SWAP)] :

where the equality follows from essentially the same proof given for Lemma 3.
Then we can again make use of Algorithm 7, in a similar fashion as discussed
around (79), in order to estimate the asymmetry measure above.

3.4. TESTING SYMMETRIES OF LINDBLADIANS

In this section, we apply the symmetry testing algorithm from Sect. 3.3 to
the task of measuring the symmetry of a Lindbladian £, as defined in (12).
Given that the channel realized by the master equation in (12) is e?, our basic
idea is to test for symmetry of this channel by means of the algorithm from
Sect. 3.3. As discussed previously, this amounts to estimating the two terms
in (78) and (79) using Algorithm 7, but with the replacement A" — e, and
combining the estimates according to (64). The result is to form an estimate
of the following asymmetry measure:

2

a(L,t,{U(9)}gec) = @ZH(M Utg). e @ . 52)
geG
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In order to do so, we require a means by which the channel e£* can be realized
or simulated. We can accomplish the latter by employing one of several
quantum algorithms for simulating Lindbladian evolutions [9,13, 36, 60, 65]
(see [55] for a review).

The basic condition for symmetry of a Lindbladian £ with respect to a
unitary channel representation is as follows [30, 32, 31]:

LoU(g) = U(g)oL VgeqG. (83)

An alternative definition for symmetry of a Lindbladian £ with respect to

a unitary channel representation {{(g)}4ecq is similar to what we defined in
(8)—(9), for channel symmetry [30, 32, 31]:

“loll(g) = U(g)oe®t VieR, ged. (84)

In the following proposition, we recall the well known fact that these two
definitions are actually equivalent:

PROPOSITION 1 The symmetry condition in (84) holds if and only if it
holds for the Lindbladian L.

Proof. Suppose that (84) holds. We then find that

(85)

The left-hand side then evaluates to £ o U(g) and the right-hand side to
U(g) o L, concluding the proof of the if-part of the proposition. To see the
other implication (the only-if part), suppose that (83) holds. Then

0o o) O Y4
eLloll(g) = Z ; E) (86)

where the second equality follows from repeated application of (83). ([

In fact, the main finding of [30] establishes a much stronger result: the sym-
metry condition in (83) is equivalent to the existence of a representation of £
of the form in (12), such that the completely positive map () = >, Lk(-)LL
is covariant with respect to {U(g)}4ec and [U(g), H] =0 for all g € G.

For small ¢, we perform a Taylor expansion of the Lindbladian term con-
tained in the asymmetry measure as defined in (82), in order to elucidate a
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relation between approximate symmetry of the channel ! and the Lindbla-
dian L:

1
a2

2

(id @ [U(g), 1)) (@)

:
_ ’é'g; (id® Ulg),id + £t + O))) (@) (88)
_ ’(1}’2 (1d ® ((g), id] + [(a), £1] + U(g), 0())) (@) (89)
- llGlgeG (1d e ((g), Lt + U(e), 0G)])) (@) (90)
= a2 [ v @] o (o)

4. Simulations

In this section, we first describe two examples of open quantum systems,
namely, the amplitude damping channel and a two-qubit spin chain. We
subsequently present simulation results obtained from Qiskit implementa-
tions of the aforementioned systems, wherein we test them for symmetry
with respect to the finite discrete group Zs.?

In the case of the amplitude damping channel, we use the algorithm
discussed around (78)—(79) to estimate the asymmetry measure in (64) and
then plot the same as a function of I't, where I' represents the rate of decay
per unit time and ¢ denotes time. We find that, for all values of I't, when
testing for Z symmetry (i.e., when our chosen unitary group representation
for Zo is {U(9)}gez, = {I,Z}), the asymmetry measure is approximately
equal to zero with accuracy ¢ = 0.01. On the other hand, we find that the X
asymmetry measure diverges from zero with increasing values of I't, which
is consistent with the well known fact that the amplitude damping channel
is not symmetric with respect to the representation {I, X'}. Later in this

section, we show that it varies with I't as %
with our simulation results.

Similarly, we test a two-qubit spin-chain system for SWAP, 7175, and
X1 X5 symmetries. We find symmetry to be preserved in the first two cases,
wherein the corresponding asymmetry measures are found to be equal to zero.
In the case of the X;.X5 symmetry test, however, we find that symmetry is

broken. Later in this section, we derive the precise formula according to

(1- e‘Ft)Q, which is consistent

2All code used to run simulations, generate plots, and perform proof-related calculations
is available at https://github.com/radulaski/SymmetryTestingQuantumAlgorithms.
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[0) [0) [0) [0)

Fig. 4: Illustration of the action of the I' = 1 amplitude damping channel on
the Bloch sphere over time. All states decay exponentially fast to |0).

which the X; X5 asymmetry measure is found to depend on I'; ¢, and J.
Both of the aforementioned examples are discussed in more detail in the
subsequent subsections, along with the obtained simulation results and the
methods whereby the simulations were performed.

4.1. AMPLITUDE DAMPING CHANNEL

The amplitude damping channel is a quantum channel that models loss of
energy from a system to its environment. This can be used to describe open
quantum systems that interact with their environment via processes such as
spontaneous emission of a single photon from a two-level atomic system.

Continuous-time amplitude damping is generated by a Lindbladian using
the raising operator o := (X +iY)/2 as a jump operator:

£(p) = T(o*po — 5 {o7o%0}). (92)

where I' > 0 represents the rate of |1) — |0) decay per unit time and o~ :=
(™) = (X —iY)/2. We can obtain the superoperator e“* representing
time evolution under this Lindbladian for a time ¢ by mapping Hilbert space
operators to Liouville-Fock superoperators under the rule

ApB — (BT @ A)lp) , (93)
where A and B are Hilbert space operators, and |p)) is the “vectorized” ver-

sion of the density operator, formed by stacking the columns of p. Applying
this to the Lindbladian yields

L(p) = F(O‘+p0'_ - % {U_U+,p}) (94)
— L) = (0" ®0t ~ L T®(070%) ~ Lo o) & 1)ln),
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so that the time evolution superoperator corresponds to

0 0 0 Tt 1 0 0 1—e '
oM — oxp 0o -% o0 o |_|o0 e Tt2 0
o o -t o 0 0 el 0
0 0 0 -T¢ 0 0 0 et
(95)
The action of this matrix on a vectorized density matrix is
o poo + (1 —e o1
eLt| ) = Gl | PO | e T2py, (96)
= po1 B 6_”/2/)01 '
P11 G_Ftpn

De-vectorizing the above, we find that
ct poo + (L—e Tpyy e T2py ]
e = . 97
(p) [ eTt2p,, e Tty (97)

It is well known that the time-independent amplitude damping channel D,
for a probability of decay v can be represented by Kraus operators as

I A P F

so that

_ t t | pootypr V1—"po1
Dolo) = Kopkiy + Fapky = [mmo a-yen |- @

The equivalence of the two representations of the amplitude damping channel
in (97) and (99) shows that y =1 — eIt

4.1.1.  Dependence of X asymmetry measure on I't

PROPOSITION 2 For the amplitude damping channel in (97), the X asym-
metry measure defined from (82) is given by

(Lot {1, X}) = %(1 T2 (100)

where X 1is the ox Pauli matrix.

Proof. Let us consider two channels, denoted by Dy and X. D, is the
amplitude damping channel, where ~ denotes the probability of decay. Its
action on a density matrix p is defined as in (99). The action of X is defined
as X(p) = XpXT. Using these definitions, we calculate the actions of these
channels on the elementary matrices {|i)(j|}; jc(o 1) as follows:
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D, (|0)(0[) = [0)0] X (0)X01) = [1)(1]
D, (|0)1]) = /T —~|0)1] X (|0)1]) = [1)0]
D, (|1)(0]) = /I = ~[1)0] X ([1)}0]) = |0)1]
Dy ([1)(L]) = v]0)X0[ + (1 — ) [1)(1] | X([1)1]) = |0XO]
Next, we define two channels {\, M}, as follows:
N = XoD,, M :=D,0X. (101)

The actions of the above defined channels with respect to a density matrix p
are given by N(p) = X(D,(p)) and M(p) = D,(X(p)). Again, we may use
the above definitions to calculate the following actions:

N (|0)0[) = [1X1] M{[0X0[) = 7[0)XO0[ + (1 — ) [1)1]
N(I0)1]) = VT =~1)}0] M(0X1]) = vT =~[1)0]
N(1)(0]) = vT—~/0)1] M([1)0]) = vT —~[0X1]

N(1XL]) = (1 = 7)[0X0[ +~[1)X1] M(1)(1]) = |0)0]

Let us consider a general unitary representation of the finite discrete group
Zo, given by {U(g) }gez, = {1, W}, where I is the two-qubit identity operator,
and W is some two-qubit unitary operator satisfying W?2 = I. Furthermore,
let the unitary channels constituting {¢/(g)}4ez, and corresponding to I and
W be denoted by Z and W, respectively. We may then define the asymmetry
measure given in (82), with respect to some Lindbladian channel e~ and the
aforementioned unitary representation {I, W}, as follows:

a(L,t,{I,W})
= 13 e o)) (59 02)
= 5 (I6ae [z.c#) @)+ | (a2 [w,e=]) (@2)]) (108
- 5 (1620 e (97)]2) oy
- ;(H@WW q’eUOWHD' (105)

Now, in order to compute our desired asymmetry measure, we simply substi-
tute the Lindbladian channel ! by D., and the unitary channel W by X.
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We then have

a(L,t,{I, X))
_ % (H(I)A,/QDW B (I)Dwoxuz) (106)
= 5 (v = aM) (107
_ % (Tr[(qﬂ)ﬂ n Tr[(@Mﬂ _ 2Tr[<I>NcI>M]) (108)
= Tr [(@™)°] - T [@VeM], (109)

where the last line follows because Tr[(®P7)?] = Tr[(®V)?] = Tr[(@M)?],
which in turn follows from (68). Additionally, from (49), we know that for
any two quantum channels N' and M, the overlap term Tr [<I>N <I>M] may be
expressed as

T[eVeM) = 5 37T (KGN MUKiD) (110)

Using the above formula, we find that

[i)g| | Te[Dy ()G )P4 (15XD] | Tr V()G )M )il)]
10)0] 1 1—7
j0X1] 1—v 1 -
|1)0] 1— 1 -~
1)1 7+ (1—9)° 1—7

We can now calculate each of the two terms in (109). For Tr[(®P)2], we
have:

Te[(@P7)?] = %ZTI"[Dv(‘iijD“/(Uxim (111)
i.j

= JlHI—atloy 44—y (12)

= %[72—27+2]. (113)

For Tr [CIJN @M], we have

TV = ST TG M ) (114)
iJ
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1
= Z[l—’y—i—l—’y—i—l—’y—kl—v] (115)
= 1—7. (116)

Plugging the above obtained results into (109), and recalling the identification
v =1—e " made in the previous subsection, we conclude that

2 —T't\2

1—

2 2
We have thus computed X asymmetry measure both as a function of the
overall probability of decay «, as well as the probability of decay per unit
time, I', and time t. [l

We note here that it is interesting to compare the value in Proposition 2
with Proposition IV.2 of [44]. The latter proposition evaluated an asymme-
try measure of the amplitude damping channel in terms of the normalized
diamond distance, which is another method for measuring the distance be-
tween two quantum channels. Therein, a value of % (1 —e T t) was reported.
Thus, both measures increase with increasing I't, as would be expected for
any X-asymmetry measure for the amplitude damping channel; however,
they increase differently, due to the differing choices of measures.

4.1.2.  Amplitude damping channel simulation results

We used Qiskit’s QasmSimulator to simulate the execution of Algorithm 7
on an idealized quantum processor in order to calculate the X and Z sym-
metries of the amplitude damping channel. We implement the (nonunitary)
amplitude damping channel D, by means of a unitary extension D., which
requires an additional “environment” qubit:

0 V7 —IT—=7 0
0 0 0

1
Dy=11 0 0|’ (118)
0 vi=v 4 0
so that
D, (p) = Tu| D, ([0)0] @ p) D] . (119)

Using (118) to implement the amplitude damping channel, we constructed
Algorithm 7 in Qiskit and used it to measure the X and Z asymmetries of
the channel. We executed the algorithm on Qiskit’s QasmSimulator, which
emulates an idealized quantum processor with no decoherence. The results,
plotted in Fig. 5, show the expected Z symmetry and X asymmetry, in
agreement with the analytical expression.

We also executed the same symmetry tests using Qiskit’s FakeLima back-
end, which provides a depolarizing noise model with parameters estimated
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Fig. 5: Simulated results of applying Algorithm 7 to measure X and Z asym-
metries of the single-qubit amplitude damping channel, using Qiskit’s noise-
less QasmSimulator. The simulation shows that the system maintains Z
symmetry for any value of amplitude dissipation I't, while X symmetry is
lost for I't > 0. The measure of X asymmetry closely matches the analyt-
ical expression % (1 — e_Ft)2 in the absence of noise. All simulations were
run with a total number of shots determined by the Hoeffding inequality
(Theorem 1) with €, = 0.01.

from a real quantum processor. These results are plotted in Fig. 6. The
Z asymmetry remains zero, while the X asymmetry shows a slight reduc-
tion relative to the analytical expression, which accords with the presence of
depolarizing noise.

4.2. XX SPIN CHAIN

Systems of spin-1/2 particles with nearest-neighbor exchange interactions
have been studied for nearly a century and are foundational models in the
exploration of magnetism in condensed matter physics [45]; see Fig. 7 for a
visualisation. In the context of quantum information, spin chains have been
studied for potential applications to quantum state transfer. We consider an
open X X Heisenberg spin chain consisting of two particles, each of which is
subject to amplitude damping dissipation. This system is governed by the
Lindblad master equation

2
L(p) = ~ilH.pl+)_Li(p). (120)
i=1
where the Hamiltonian H is given by
H = J(X1X2 + Y1Y2) , (121)
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Fig. 6: Simulated results of applying Algorithm 7 to measure X and Z
symmetries of the single-qubit amplitude damping channel, using Qiskit’s
FakeLima backend. The simulation shows that the system maintains Z sym-
metry for any value of amplitude dissipation I't, while X symmetry is lost for
I't > 0. The measure of X asymmetry deviates slightly from the analytical
relationship % (1 — e_Ft)2 due to the simulated depolarizing noise. All sim-
ulations were run with a total number of shots determined by the Hoeffding

inequality (Theorem 1) with €, = 0.01.

Fig. 7: Visualization of a spin chain. Each particle’s spin couples to that of
its neighbors at a rate J. We use Algorithm 7 to examine various symmetries
of a two-particle spin chain.

and each £; term acts on qubit ¢ and is an amplitude dissipation Lindbladian,
as defined in (92). In the above, J > 0 represents the rate at which excitations
hop from one site in the chain to the other.

4.2.1.  Spin-chain asymmetries as a function of I't

Since amplitude damping dissipation is a longitudinal interaction, this system
is manifestly Z; Zo-symmetric for any amount of damping I't. Conversely, the
X1 X9 symmetry of the Hamiltonian is broken by nonzero energy dissipation.
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Finally, the interactions between the two halves of the system are symmet-
rical, and so the system is manifestly symmetric under a SWAP of the two
particles. Here we use direct calculation of (82) to show the Z; Zs and SWAP
symmetries, and calculate the measure of X7 X5 asymmetry as a function of
I't.

PROPOSITION 3 For the open two-qubit X X spin chain defined in (120),
the Z1Z5, SWAP, and X1 Xy asymmetry measures defined from (82) are given

by
a(L,t,{1,7,Z:}) =0,  a(L,t,{I,SWAP}) =0, (122)

and
a(L,t,{I, X1Xs}) (123)

e~ (4212 cos(4) — 1672 cosh(tT') + (16.J2 + t>T'2) cosh(2tT"))
322 + 24212 '

Proof. We calculate the Choi states in (105) in terms of the superoperator
representations of the channels W and e“*. Applying the prescription (93) to
the terms of the Lindbladian (120) and operator W, we obtain W +— WTQW,
and

L — —i(I®H)— (H ®1)) (124)

1 1
+ 30 (of @07 - e (070 - Jorot) 01).
%

The latter is straightforwardly exponentiated to obtain a superoperator ma-
trix form of e£t.

Applying these representations to (14), inserting these Choi states into
(105) and simplifying with the aid of the computer algebra system Mathe-
matica, for the three cases of interest W € {Z;Z5, SWAP, X; X5} we obtain
the expressions given in the proposition. O

4.2.2.  Spin-chain simulation results

To emulate the dynamics described by (120) on a quantum processor as part
of the algorithm discussed around (82), we must address two issues. First,
the dissipative terms in £ must be replaced by unitary extensions acting on
additional “environment” qubits, in order to make them implementable by
unitary gates. Second, noncommuting terms in £ make it necessary to use
Trotterization to implement et
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Fig. 8: Simulation results for applying Algorithm 7 to the two-qubit spin
chain using Qiskit’s noiseless QasmSimulator. We test the system for X; X5,
Z1Zy, and SWAP symmetries. In the latter two cases, the system exhibits
symmetry; the asymmetry measure deviates from zero only due to sampling
error. In contrast, the system’s lack of X X5 symmetry is evident for nonzero
values of I't, and the value of the asymmetry measure in this case agrees
closely with the analytical result from (123).

We Trotterize the Lindbladian following the prescription in [10, Proposi-
tion 2]:

eft = exp (ti£i> ~ <ﬁe£"t/2N ﬁ eﬁit/ﬂv)N. (125)
i=1 i=1 j=m

The specific ordering of terms in this product (forwards and then backwards)
results in the first and second orders of the Taylor expansions of the left and
right sides of (125) to agree exactly.

We note that the terms —i[H}, (- )] arising from the Hamiltonian induce
unitary evolution, and so can be implemented simply as e . The two
dissipative Lindblad terms can be implemented using D.,, the unitary exten-
sion of the amplitude damping channel (118), provided that the environment
qubit is reset to zero before each application of D.. Therefore, each Trotter
step of the spin chain Lindbladian can be implemented using

m
Lit/2N —iX1Xot/2N —iY1Y2t/2N 1yl 2
He / s e iXa ot/ e~ M 2t/ Dl_e*Ft/2N‘D1—e*Ft/2N’ (126)
=1
1
Lit/2N 2 1 —1Y1Yot/2N —i X1 Xot/2N
L 5 = DY vyan Dy ey MHPN XN (197)

=m
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Fig. 9: Simulation results for applying Algorithm 7 to the two-qubit spin
chain using Qiskit’s FakeLima backend, which includes realistic depolarizing
noise. We test the system for X1Xs, Z1Z5, and SWAP symmetries. As in
the noiseless simulation (Fig. 8), we verify Z;Z; and SWAP symmetries, and
X1 X5 asymmetry, although the latter deviates from its analytical expression
slightly due to the depolarizing noise.

This implementation is essentially the same as that presented in Fig. 1 of [13],
up to a Trotterization of the unitary dynamics, and reordering of the Trotter
terms.

We used this formulation to implement Algorithm 7 in Qiskit. We then
executed it on Qiskit’s QasmSimulator to test the 2-particle spin chain system
for X1 X5, Z1Z5, and SWAP symmetries, using a number of shots determined
by Hoeffding inequality (Theorem 1) with €, = 0.01. The resulting estimates
of the asymmetry measure are plotted in Fig. 8, where we can see that 717,
and SWAP symmetries are maintained in the presence of amplitude damping,
while X; X symmetry is broken to the degree specified in (123).

As in the case of our previous simulations of the amplitude damping
channel, we also test our spin-chain system for symmetry in the presence of
a depolarizing noise model. We do this, as before, by running our code using
Qiskit’s FakeLima backend. Consistent with the nature of the noise model
imported, we find in Fig. 9 that the obtained plot of the X1 Xo asymmetry
measure is slightly reduced with respect to the analytical expression as given
in (123), while both Z;Z; and SWAP symmetries appear to be preserved.

5. Measurements: Estimating Hilbert—Schmidt Distance and
Testing Symmetries

In this section, we consider a special case of the developments in Sects. 3.2
and 3.3, when the channels of interest are measurement channels, meaning
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that they can be written in the following form:

N(w) =) Tr[N,w]|z)a|, (128)

where w is an input state being measured, {N,}, is a positive operator-
valued measure (POVM) (satisfying N, > 0 for all = and >, N, = I), and
{lx)}, is an orthonormal basis, such that the classical state |z)(z| encodes
the measurement outcome.

We begin by providing an algorithm for estimating the Hilbert—Schmidt
distance of the Choi states of two measurement channels (Sect. 5.1). In
principle, since measurement channels are a particular kind of channel, one
could simply apply Algorithm 7 for this task. However, our developments
below demonstrate that this algorithm can be significantly simplified in this
case, as a consequence of the channel outputs being classical.

After that, we then recall the definition of covariance symmetry of measu-
rement channels and devise an algorithm for testing this symmetry (Sect. 5.2).
We note that this kind of symmetry is a special case of the channel symmetry
mentioned in Remark 1.

5.1. ESTIMATING THE HILBERT-SCHMIDT DISTANCE OF THE CHOI STATES
OF MEASUREMENT CHANNELS

We are interested in estimating the Hilbert—Schmidt distance between the
Choi states of two measurement channels, defined as in (129) below. Since
measurement channels are indeed channels, the expression for the Hilbert—
Schmidt distance is precisely the same as that given in (44).

We begin our development with the following lemma, which shows how
the various terms in (44) simplify when N and M are measurement channels.

LEMMA 4 Let N and M be measurement channels with d-dimensional in-
puts, so that

Nw) =) TrNwllzXe|,  Mw) = > Tr[Muw]lz)z|,  (129)
where {N;}, and {M,}, are POVMs. Then

Tr[eVoM] = % > " 6ay Tr[(N: ® M,) (SWAP)]. (130)

x?y

Proof. Recalling (46)—(49), we find that
Tr[oV M (131)
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= dQZTr ML)l (132)
= ;zzTr[(ZTrm e (22 i) ] 133
- dﬂZ T[N 1) T My [ T el ) (134)
= dﬂz 8,y T[N |i)( [ Tx[M, | )il] (135)
_ de’z’:’dx,yTr[(Nw@)My) (SWAP)] , (136)
concluding the pzof. 0

If the inputs to the channels are n-qubit states and the outputs are m-bit
strings & and ¢, then following the development and notation from (52)—(57),
we can write

Tr[eV oM = o Za FTr[(Nz ® My) (SWAP™M)] (137)

-

_ 2% Z S Ga g (—1)FUTH (Vg @ My) (@F0)]. (138)

Z,5€{0,1}™ g 7e{0,1}"

Now, by setting Z = ()Z,?,I?,Ij) to be a multi-indexed random variable
taking the value 0z 5 (—1)k'Z with probability

p(Z, 7,k 0) = p(&@, gk, 0) p(k, 0) (139)
where
- 1
(& Gk 0) = Tr[(Nz® M) (®F)], (141)

we find from the above that its expectation is given by
E[Z] = Tr[eV oM. (142)

This leads to the following quantum algorithm for estimating Tr[® ®M],
within additive error € and with success probability not smaller than 1 — 6,
where € > 0 and ¢ € (0,1).

ALGORITHM 8 Given are quantum circuits to implement the measurement
channels N and M.
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1. Fixe >0and § € (0,1). Set T > {_%ln(%) and set t = 1.
2. Generate the bit vectors k and ¢ uniformly at random.

3. Prepare the Bell state O on 2n qubits (using the ordering specified
in (57)).

4. Apply the tensor-product measurement channel N'® M (using the or-
dering specified after (57)), which leads to the measurement outcomes
Z and /.

5. Set Y; = (5575(—1)]6.5.
6. Increment ¢.

7. Repeat Steps 2.-6. until ¢ > T and then output Y := %Zthl Y; as an
estimate of Tr[®V M.

Fig. 10 depicts the core quantum subroutine of Algorithm 8. By the
Hoeffding inequality (recalled as Theorem 1), we are guaranteed that the
output of Algorithm 8 satisfies

Pr[|Y — Te[@VoM]| < ¢] > 1-4, (143)

due to the choice T > 5% ln(%).

By employing Algorithm 8 three times, we can thus estimate (44) for
two measurement channels N/ and M within additive error ¢ and with suc-
cess probability not smaller than 1 — §, by using O(gi2 ln(%)) samples of the
measurement channels N and M.

5.2. TESTING SYMMETRIES OF MEASUREMENT CHANNELS

A POVM {N,}, is covariant if there exists a unitary representation {U(g)}
of a group G such that

geG

U(Q)TNmU(g) €{Nz}. VgeG, . (144)

Covariant POVMs have been studied previously [14,34,7,15], and they ap-
pear in several applications, including state discrimination [38] and estima-
tion [11]. Connecting to our previous notion of channel symmetry from Re-
mark 1, a measurement channel N is covariant if there exist unitary channel
representations {U/(g)},cq and {W(g)} e such that

Nol(g) = W(g)oN Vged. (145)
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k1) Hl—e N g S
|k2) H . N A= 22
|k3) H . — A= 13
|01) D A= 1
|£2) D M — A= Y2
|43) D — A= Y3

Fig. 10: Depiction of the core quantum subroutine given in Steps 2.-4. of
Algorithm 8, such that the measurement channels NV and M have three-
qublt inputs and three-bit outputs. This algorithm estimates the overlap
Tr[®N ®M] of the Choi states of the measurement channels. In this exam-
ple, the algorithm begins by preparing the classical state |ky, ko, ks, 01, l2, {3),
where the values kq, ko, ks, £1, {2, £3 are chosen uniformly at random, followed
by a sequence of controlled NOTs and Hadamards. Before the measurement

channels are applied, the state is thus |<I>M), as described in Algorithm 8. The
measurement channels are then applied, leading to the classical bit string
T1ToT3y1Yy2Yy3. In the diagram, we depict the realization of the measurement
channels N' and M as black boxes, but in a simulation of them, one might
make use of additional environment qubits that are prepared and then dis-
carded.

Plugging into (128), the condition in (145) becomes

ZTr 9) N.U(g)p ZTr LOIW (9)|zXz|W (g)! Yged.

(146)
Given that the output system is classical, we can restrict the unitary W(g)
to be a shift operator that realizes a permutation 7, of the classical letter z,
so that

W(g)lz) = [my(x)), (147)
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and thus (146) becomes

> TU(9) N U(g)pllaalx = > Tr[Nupllmy(a)mg(z)[x  (148)
- ZTT[NW;I(x)p]IfBXwIX. (149)

Since this equation holds for every input state p, we conclude that the fol-
lowing condition holds for a covariant measurement channel:

U(g)TN,U(g) = N1 Y9€G, z, (150)
coinciding with the definition given in (144).

We are interested in testing the covariance symmetry of the measurement
channel N, and we can do so by testing the following asymmetry measure:

yla| 3 [t - q)W(g)oNHz, (151)
geG

related to the asymmetry measure from (63). By invoking Lemma 3, we find
that

1 Nol(g) _ gWgeN'||* _ 2
|G;g§”® ® H2 = STSWAP (VW ® N) (SWAP)]  (152)

1

BRI [SWAP(|G|

= > Wig) o N) & (N oU(g)) ) (SWAP) | .

geG

Now invoking Lemma 4, we conclude that

Tr[SWAP (M ® ) (SWAP)] = ) 4,,Tr[(N, ® N,) (SWAP)],  (153)
T,y

and
1

Tr [SWAP( rel

> (Wlg) o N) & (W oU(g)) ) (SWAP) |

geG

_ |c1:y ST 6r iy Tr [(Nx ® UT(g)NyU(g)) (SWAP)] . (154)

geG xy

The latter equality follows because N oU(g) is a measurement channel with
measurement operators {UT(g)N,U (g)}m while W(g) o N is a measurement
channel with measurement operators {ng_l( th)}5,;. As such, we can employ Al-
gorithm 8 to estimate both terms in (153) and (154), and thus estimate (151)
by subtracting them and multiplying the result by d%. For estimating the lat-
ter term, in each step of the algorithm, we pick g € G uniformly at random,
as before.
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6. Conclusion and Discussion

In this work, we proposed asymmetry measures for quantum states, chan-
nels, and measurements, as well as efficient quantum algorithms for esti-
mating these measures. A key component of the algorithms for channels
and measurements are methods for efficiently estimating the overlap of their
Choi states. We demonstrated the channel symmetry testing algorithm in
two cases: the single-qubit amplitude damping channel and an open XX
spin chain subject to amplitude dissipation. In both cases, we simulated our
algorithm using Qiskit’s simulator and found excellent agreement with the
analytical expression of the asymmetry measure. Finally, we discussed which
near-term QPU architectures maximize the system size to be tested using
the developed algorithms.

Prospects for implementing on near-term quantum hardware — The de-
veloped quantum algorithms for symmetry testing can be readily imple-
mented on near-term quantum hardware, as well as potentially guide the
development of architectures for upcoming quantum testbeds. We have im-
plemented the Lindbladian symmetry testing algorithm in such a way that
the number of physical qubits in hardware is at least four times the number
of qubits in the model. The depth of the circuit depends on the selection of
Trotterization parameters, and for a specific quantum processing unit (QPU),
these parameters should be selected within the hardware coherence limits.

Furthermore, the qubit connectivity has an important practical role in en-
abling implementation of the developed algorithms. Each of the algorithms
requires the model to be mapped twice to physical qubits in what we will
call subcircuits A and B (Fig. 11). Entangling gates are applied to pairs of
qubits in subcircuits A and B close to the beginning and/or the end of the
algorithm, while the rest of the algorithm requires only local gates inside
the subcircuits. This algorithmic split into two computing layers that are
cross-connected only once or twice during the implementation of the sym-
metry testing algorithms lends itself well to upcoming QPU architectures on
the IBM Quantum roadmap [23], Crossbill and Flamingo, for the purposes
of maximizing the computable model size. These multi-chip processors are
connected either with a smaller number of higher fidelity quantum gates im-
plemented via short chip-to-chip connectors (Crossbill), or a larger number of
slower and lower-fidelity quantum gates implemented via long-range couplers
(Flamingo). In terms of symmetry testing algorithms where subcircuits A
and B would be implemented on different chips, the Crossbill architecture
would be suitable for models with a smaller number of qubits and deeper
quantum algorithms, while the Flamingo architecture would be more suit-
able for larger systems that are either implemented via shallower circuits or
are executed for algorithms that require only one time-step entanglement via
the long-range connectors (SWAP test or measurement channel symmetry
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Fig. 11: Examples of the compatibility of symmetry testing quantum algo-
rithms with quantum processing units (QPUs) of variable connectivity. a)
The two subcircuit abstraction of the developed algorithms and their imple-
mentation steps. The top chip represents subcircuit A and the bottom the
subcircuit B. b) A two-dimensional array of qubits can explore symmetries
in open quantum systems using a one-dimensional chain of nearest-neighbor
interactions. c¢) Two all-to-all connected QPUs with pre-entangled system
qubits in an event-ready scheme can explore symmetries of measurements for
arbitrary qubit interactions.

test).

Some of the existing monolithic quantum processors can be used to effi-
ciently implement symmetry testing of open quantum systems in one-dimen-
sional chain Hamiltonians, which are zoned into subcircuits A and B, as
shown in Fig. 11b. Here, the nearest-neighbor connectivity can be supported
by the Google Sycamore superconducting architecture [2], while the beyond-
the-nearest-neighbor interaction and multi-qubit interactions can be imple-
mented using QuEra Aquila [76] and recent neutral atom quantum hardware
advances [20], respectively.

For testing models with higher connectivity, all-to-all connected QPUs,
like those offered by IonQ [56] and Quantinuum [63] trapped ion hardware or
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by solid state spin-qubit systems [5], can provide more versatility. Since
qubits in these systems can generate spin-photon entanglement, multiple
QPUs can be connected via photon-mediated entanglement distribution and
double the model size in the symmetry testing algorithms (Fig. 11c). Here,
the success of the entanglement distribution is statistical and can be utilized
in the event-ready scheme, a frequently employed approach introduced in [77]
where photons originating from separate entangling processes in nonlocal sys-
tems become entangled on a beam-splitter and their quantum state projected
in a photon-detection process. Obtaining the desired quantum state in the
measurement usually takes multiple attempts, and further processing takes
place only upon its confirmation when pairs of qubits in separate systems are
projected onto desired Bell states. This process is suitable for implementation
of the measurement symmetry test (Fig. 11a) which requires entanglement
between subcircuits A and B only at the beginning of the algorithm. To be
able to expand this two-QPU implementation from measurement symmetry
testing to the state, channel, and Lindbladian symmetry testing, additional
work is needed to adapt the protocol to nondeterministic Bell measurements.
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