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Utilizing photonic band gap

in triangular silicon carbide
structures for efficient quantum
nanophotonic hardware
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Silicon carbide is among the leading quantum information material platforms due to the long spin
coherence and single-photon emitting properties of its color center defects. Applications of silicon
carbide in quantum networking, computing, and sensing rely on the efficient collection of color center
emission into a single optical mode. Recent hardware development in this platform has focused on
angle-etching processes that preserve emitter properties and produce triangularly shaped devices.
However, little is known about the light propagation in this geometry. We explore the formation

of photonic band gap in structures with a triangular cross-section, which can be used as a guiding
principle in developing efficient quantum nanophotonic hardware in silicon carbide. Furthermore,
we propose applications in three areas: the TE-pass filter, the TM-pass filter, and the highly reflective
photonic crystal mirror, which can be utilized for efficient collection and propagating mode selection
of light emission.

Color centers are defects in wide band gap single-crystal materials that can emit single-photons and spin-
entangled photons which act as quantum information carriers. Silicon carbide (SiC) is one of the most notable
quantum hardware platforms since it hosts a collection of optically addressable color centers' with long spin
coherence times=%, excellent brightness®, nuclear spins”?, and telecommunication wavelength emissions", which
are suitable properties for quantum information processing. On top of that, SiC has a large bandgap, high thermal
conductivity, strong second-order nonlinearity, mechanical stability, and mature industrial presence'®!' mak-
ing it a reliable platform for a variety of applications. Recently, photonics in triangular geometry has come into
focus for increasing the efficiency of such solid-state quantum emitter processes™”'>!*. Triangular cross-section
waveguide results from a bulk nanofabrication process called the angle-etch method that has been successfully
implemented in both diamond!*!* and SiC>'*. Previous fabrication processes were challenged by various imper-
fections that deteriorated the optical properties of the color centers or limited the robustness of the nanophotonic
devices’. On the other hand, triangular geometry offers emitter implantation in bulk substrates (free-standing
waveguides), which ensures high-quality color centers with better coupling and can pave the way for efficient
quantum photonic hardware.

Advancement of quantum information technology greatly depends on the realization of robust quantum
networks®!>1¢ and generation of arbitrary all-photonic cluster states!’-!* which, in color center platforms, are
limited by the low photon collection efficiency. Color centers can have both transverse electric (TE) and trans-
verse magnetic (TM) optical dipole-like emissions with a solid angle covering 4. Hence, it is important to
understand the TE/TM dispersion relations, in the triangular waveguide geometry, with a view to controlling
and steering the quantum light emitted from the color center by PBG formation for higher collection efficiency.

The formation of photonic band gaps (PBGs) in photonic crystals (PhCs) has been explored in the past
three decades after the discovery made by Yablonovitch and John?*?!. Although wave propagation in peri-
odic structures has almost been a century-long study®?, PhCs have gained attention due to their robust light
confinement capability, scalability, and small footprint*>**. Combination of different scatterers with unique
lattice geometries'®!1?>-%* has led to wider PBGs by reducing the structure symmetry and found applications in
polarization beam splitters*?**, optical logic gates***’, mirrors®®?*, sensors***!, lasers*>*, solar cells**, and more.
Nevertheless, most of these studies have been conducted on either slab, rectangular, or cylindrical geometry.
On the other hand, triangular cross-section PhCs have mostly been studied for constructing active photonic
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devices!***” whereas the dispersion relations and PBG formations are yet to be discussed in detail. We explore

these properties to advance the photonic integration in SiC color center based quantum devices.

In this paper, we begin with defining the relevant parameters for analyzing PBG formation in SiC triangular
cross-section PhCs. Using the plane wave expansion (PWE) method, we calculate the band structures and discuss
the dispersion relations related to individual geometry. We then observe the effects of parameter variation on
PBGs and examine the designs in terms of nanofabrication. We conclude by proposing three photonic devices
along with their structural configurations and operational wavelength ranges which have the potential to be
essential components of integrated photonic circuits.

Triangular cross-section photonic crystal

In this section, we define the parameters of the triangular cross-section photonic crystal. Traditionally, the peri-
odic dielectric waveguides have periodicity along the direction of light propagation*. The triangular cross-section
PhC in this study is realized in a similar fashion. Our 1D PhC structure is designed by inserting cylindrical air
holes along y axis in the SiC triangular cross-section waveguide as shown in Figure la. The most significant
parameters of the PhC are its lattice constant a, waveguide width w, hole radius r, and etch angle . We exam-
ine three o values 35°, 45°, and 60°, which fall under realistic fabrication parameters of the state-of-the-art
processes™'>*. We vary the width w from 1.2a to 2.25a, and the radius r from 0.254 to 0.454. We consider the
refractive index of SiC to be ngic = 2.6.

Based on the existence of a mirror symmetry plane (z = 0) perpendicular to the direction of periodicity, the
photonic modes can be decoupled into TE-like and TM-like polarizations as illustrated in Fig. 1b. Modes with
electric field lines having odd symmetry about z = 0 plane are TE-like as the main component of the electric
field lies in the device plane. On the other hand, TM-like modes have even symmetry around z = 0 plane and
the electric field lies in a direction perpendicular to the device plane.

We use the effective refractive index (n) as a useful parameter for understanding the modal profiles in a
photonic device’™*”*. It is defined as the ratio of propagation constant (8) of a mode to the vacuum wavenumber
(2w /2). In triangular geometry, the TE/TM polarized modes supported by the structure propagate according to
their corresponding n.g values. Modes with lower #g are not well contained within the structure and become
evanescent’. As guided modes depend on g, which is a strong function of the effective dielectric present in
the photonic device, its value can help us interpret the dispersion relations and changes in PBGs due to param-
eter variation in the proposed 1D PhC. Hence, in the following, we come up with an analytical expression for
estimated n.q4 derived from the volumetric fill factor (VFF) of SiC in the PhC structure:

nefi = VEE x nic + (1 — VFF) X ngir (1)
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Figure 1. (a) Schematic of the 1D photonic crystal unit cell. (b) Electric field lines (arrow) associated with
corresponding TE-like (red) and TM-like (blue) modes. (c) neg and VFF calculation as a function of 7/a for
o = 45°
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Figure 1c demonstrates the changes in VFF and #.g as a function of the normalized hole radii (v/a) in the 45°
angle-etched waveguide with various w values. The plots show that n.g reduces for higher r/a and increases for
higher w. The latter happens due to the enlargement of the triangular cross-section with incremental w which
leads to greater n.g and more supported modes. We observe similar trends and values for 35° and 60°.

Methods

Dispersion relations in triangular geometry. While extensively studied in rectangular cross-section
photonic crystals, the dispersion relations and PBG formations are not well understood in triangular geometry.
Plane wave expansion (PWE) method has been widely used for analyzing PhCs due to its efficiency and accuracy
in computing PBGs®*»*2 1t is a direct frequency eigensolver method, derived from Maxwell’s equations for a
sourceless medium, where the eigenvalues are mode frequencies, and the eigenstates (plane wave solutions)
are characterized by wavevector k and a band number. The irreducible Brillouin zone, which contains allowed
wavevectors with non-redundant mode frequencies, lies in the range of (0, 0, 0) to (0, /4, 0) in the k-space for
1D PhC according to our definition of periodicity®*. We have used MIT Photonic Bands (MPB)** to employ the
PWE method for investigating band structure and PBG formation in the above mentioned irreducible Brillouin
zone of the triangular cross-section PhC.

The dispersion relations for three different PhC parameter sets («, w, r) are presented in Fig. 2. In the band
structure, the first TE/TM band (dielectric band) is the fundamental mode with the fewest nodes and the lowest
frequency. The fundamental mode is well guided by the structure in all three PhCs. However, the higher-order
mode (air band) for TE/TM is not entirely guided due to the light line effect, and becomes more radiative with
o getting larger, as depicted in Fig. 2. The TE (red) and TM (blue) PBGs are formed between the minima of
the air band and the maxima of the dielectric band of their respective polarizations. All three angle-etched 1D
PhCs show both TE and TM band gaps. TE band gaps are larger than TM gaps due to the connected dielectric
lattice structure which is in accordance with the general intuition®. Figure 2 also shows that 45° and 60° PhCs
exhibit comparable TE gaps, while the TE band gap is reduced for 35° PhC. On the other hand, the TM gaps are
comparable in 35° and 45° cases, and reduced for 60°.

Complete PBG refers to the region of forbidden propagation frequencies in the band structure regardless of
polarization and is formed in the overlap of the TE and TM band gaps. Though conventional multilayered 1D
PhCs lack a complete PBG®, the triangular cross-section geometry offers complete PBG for all three studied
angles . As a number of color centers in SiC have both TE-like and TM-like emissions, it is desired to obtain
a polarization-agnostic design with as wide complete PBG as possible. Figure 2 demonstrates that the largest
complete PBG can be achieved with the 45° structure when the TM gap is completely buried within the TE gap.
This condition occurs due to the TE gaps being larger than the TM gaps in our triangular cross-section photonic
crystal design. Complete PBG in the other two cross-sections occurs from a small overlapping region between the
TE and TM band gaps. Even though in two (w, r) sets, the 60° geometry shows buried complete PBGs, these gaps
are about four times narrower compared to the 45° case. Therefore, 45° angle-etched triangular cross-section 1D
PhC is more favorable for polarization-independent light confinement.

Effects of parameters on PBG formation for @ = 45°. In this section, we further analyze the effects of
parameters to achieve the best performing design in the 45° angle-etched waveguide. Scale-invariant nature of
Maxwell’s equations actuates the idea of presenting parameters and results in terms of lattice constant a. Conse-
quently, the gap width Af, where fis frequency expressed in units of ¢/a, is not a useful measure to understand
the extent of a PBG. The gap to midgap ratio Af /fim (fm is the midgap frequency), also known as the gap size, is a
more telling characterization of the gap width as it is independent of the scaling. Figure 3 manifests TE-TM gap
(c/a) and gap size (%) variation with r/a in & = 45° waveguides having several widths w. With incremental r/a,
the neq decreases leading to an increase in fp, for both the TE and TM band gaps, consistent with the literature.
The opposite happens when w increases, due to the increased nc, for a corresponding r/a value.

In smaller w such as 1.2a4 and 1.35a, the TE gap size initially increases with r/a owing to fewer supported
modes as a result of lower VFF and n.g, but shrinks after reaching the resonant condition at which the gap size is
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Figure 2. Dispersion relations for TE (red) and TM (blue) modes in the triangular cross-section 1D
photonic crystal. The red (blue) shaded regions show the photonic band gaps for the TE (TM) modes.
Parameters of the photonic crystal are: (a) @ = 35°, w = 1.2a,7 = 0.35a. (b) & = 45°,w = 1.2a,r = 0.4a. (c)
o = 60°,w = 1.35a,r = 0.43a.
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Figure 3. (a)-(d) TE/TM photonic band gap in frequency (c/a) and gap size (%) w.r.t. normalized hole radii
(r/a) for the 45° triangular cross-section waveguide with w values of 1.2a, 1.35a, 1.5a, and 1.75a, respectively.
In the frequency plots, the center points are midgap ( fin) frequencies and the error bars indicate band widths
(Af) for the corresponding TE/TM modes. The dashed circle shows the TE-TM gap overlap for the dispersion
relations demonstrated in Fig. 2b.

maximum. This happens on account of the reduction in effective dielectric contrast with higher r/a values. Appar-
ently, TE gap size in PhCs with larger widths w is smaller due to greater #.g, and TE band gap vanishes above
w = 1.75a. On the contrary, the TM gap size monotonically grows with r/a, however, the band gap disappears
for larger widths, identical to the TE case. From Fig. 3 and the above discussion, it is evident that complete PBG
(either buried or overlap) mostly occurs for smaller widths and TE/TM band gap totally vanishes for waveguides
with larger widths (w > 1.75a).

Results and discussion

The demonstrated work provides insights into the dispersion relations in the non-standard, triangular, geometry
of photonic crystals. Figure 4 delineates a general comparison of TE/TM gap sizes among three etch angles for a
constant width (w = 1.2a). We observe that unique trend emerges from unique geometry. For the 35° triangular
cross-section, the TE gap size appears stable with changes in hole radii, whereas the TM gap size variation is
identical to the 45° case. On the other hand, the TE and TM gap sizes in the 60° geometry follow the same trend
as the 45° TE case. In general, TE gaps in 35° and TM gaps in 60° cease to exist for PhCs with w > 1.5a.
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Figure 4. TE/TM gap size (%) in w = 1.2a with varying normalized hole radii (1/a) for three o values.

In addition to discussing the formation of photonic band gaps in photonic crystals with variation in param-
eters, it is imperative to evaluate the practicality and robustness of the designs in terms of fabrication. For
instance, it is challenging to fabricate larger holes (r > 0.43a) in smaller widths (w < 1.35a) because of the
following two issues: i) there is < 18% (of waveguide width w) space between the edge of the waveguide and
the holes, and ii) only < 14% (of unit cell a) room available between two adjacent holes. Therefore, a trade-off
may need to be made deliberately, depending on the application, between the PBG size and the complexity of
fabricating the device. Our recent work illustrates the design of a 60° angle-etched triangular cross-section 1D
PhC mirror for enhancing the quantum efficiency of in situ superconducting nanowire single photon detectors
(SNSPDs)*. Even though 60° geometry does not provide the largest complete PBG, waveguide in this geometry
supports single mode propagation for NV center emission in 4H-SiC which is essential for single photon detec-
tion as well as quantum communication®*%°,

Individual geometry offers distinct applications based on the PBG formation. We foresee three such applica-
tions from which integrated photonics with triangular geometry can benefit greatly. Operational ranges, discussed
in the following, are scaled to fit wavelengths of different 4H-SiC color center emissions by updating lattice
constant a which depends on the choice of the center wavelength of the band gap.

Quantum communication through optical fiber network requires emission around the telecommunication
bands for minimal loss of information. Vanadium (V#*) defects in 4H-SiC covers the entire O-band spectrum
with 25-50% Debye—Waller factor®’. The photoluminescence features show that V4* in 4H-SiC mostly emits
TE-polarized light®>. One can make a TE-pass filter (Figure 5a) for vanadium color center emission in the
1285-1344 nm range where the TM band gap forms in the 35° waveguide with (a, w,r) = (390, 682, 156) nm
photonic crystal parameters.

Silicon (Vi) vacancy in 4H-SiC exhibits excellent optical stability and coherent spin control even in trian-
gular waveguide structures with emissions from 861 nm to 918 nm>>%. The dipole polarization of single silicon
vacancy center in 4H-SiC is mostly TM® and 60° waveguide with (a, w,r) = (337,590, 135) nm operates as a
TM-pass filter (Fig. 5¢) for Vs; emission from 840 nm to 1015 nm where the TE band gap is formed.

Longer spin coherence time is necessary for photonic-cluster based quantum computation and communica-
tion. With the combination of isotopic purification and dynamic decoupling, spin coherence time of 5s has been
reported in neutral divacancy (VV?) in SiC which is the highest among the defect spin qubits in SiC. Due to
the nature of electronic structure, selection rules, and symmetry®®®’, divacancy emission has both TE and TM
polarizations with zero-phonon line ranging from 1078 to 1132 nm. A polarization-independent mirror (Fig. 5b)
for divacancy emission can be constructed using the 45° waveguide with the parameters (a, w, r) = (475, 570, 190)
nm that provides complete PBG from 1087 nm to 1132 nm. This happens because of the large overlapping TE-TM
band gap region formed in the v = 45° triangular cross-section waveguide PhC.

Conclusion

Photonic integration of SiC color centers is known to enhance the efficiency of quantum hardware'. Here, the
triangular geometry of devices can provide a combination of the pristine optical properties of the implanted
color centers and the sample-agnostic nanofabrication. We have presented how photonic band gaps can be
formed and applied in this geometry. As color centers have optical dipole-like emissions, the exploration of
the dispersion relations and PBG formations in triangular cross-section 1D PhCs can play a significant role for
robust light confinement in quantum photonic hardware. Our simulated results show that the nature of PBG
configurations primarily depends on the etch-angle and varies intuitively with other PhC parameters. The three
proposed devices can control quantum light propagation with mode selectivity and the parameter features are
suitable for nanofabrication as well. These designs have the potential to improve the performance of integrated
photonic devices with applications in quantum communication and quantum computing.
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Figure 5. (a) TE-pass filter in 35° waveguide with (a, w, r) = (390, 682, 156) nm. (b) Polarization-independent
mirror in 45° waveguide with (a, w, r) = (475, 570, 190) nm. (c) TM-pass filter in 60° waveguide with
(a, w,r) = (337,590, 135) nm. The dashed (black) arrow shows the direction of light propagation.
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