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Abstract— The massive growth in the Internet of Things (IoT)
has led to an increase in demand for devices receiving and
transmitting data to and from the cloud during operations.
Edge computing has been developed in an attempt to bring
computations in proximity to the devices to overcome latency
and cost overhead. IoT  applications heavily reliant on machine
learning (ML) tasks such as image or voice recognition can benefit
from edge devices that facilitate real-time operations without
costly data transmission back and forth from memory. In this
work, we develop ME R R C ,  a memristor-enabled reconfigurable
architecture that incorporates processing-in-memory and reser-
voir computing to carry out M L  tasks of image classification at
the edge. This design uses a novel masking circuit to allow for
image segmentation, which is combined with a delay-based
reservoir to form a recurrent neural network. We further
implement the final stage of classification using a fabricated
memristor crossbar. Our hardware measurement results on the
MNIST dataset of the delay-based reservoir with memristor
crossbar arrays provide a recognition accuracy of 98%. On a
more complex image classification dataset of CIFAR-10, M E R R C
shows a high accuracy of 88%, further highlighting the edge
computing capabilities of the architecture.

Index Terms— Edge device, memristor, image recognition,
reservoir computing, processing-in-memory, analog integrated
circuit design.

I . INTRODUC T I ON

HE advent of machine learning (ML) has paved the way
for many applications in the modern world such as speech

recognition, natural language processing and developing soft-
ware for computer vision [1]. While traditional ML methods
faced limitations when analyzing natural data in its original
form, deep learning, a subset of machine learning, is indepen-
dent of prior data processing and possesses the capacity to
automatically extract features from extensive datasets [2], [3].
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Multiple processing layers are used in deep learning where
the preceding layer extracts some features before sending the
data to the next layer [3]. Deep learning, often referred to as
a universal learning approach, has achieved notable success
in speech recognition and image classification. Convolutional
Neural Network (CNN), a branch of deep learning, has shown
extremely high, state-of-the-art accuracies on ImageNet task,
while a 3.57% error rate in the ResNet-152 task, outperforming
human accuracy [4], [5], [6], [7], [8]. With the rapid increase in
the Internet of Things (IoT), there has been a massive growth
in the data on edge devices such as smartphones, IoT sensors
and notebook computers, to bring computations closer to the
devices, a paradigm known as edge computing [9]. As depicted
in Fig. 1, when transitioning from cloud computing to edge
computing, these edge devices dependent on ML tasks benefit
from leveraging deep learning algorithms on applications like
image and speech recognition, overcoming the costly data
transmission to and from the cloud.

The implementation of deep learning algorithms in
application-specific integrated circuit (ASIC) chips is crucial
to edge devices [10], [11]. When deployed on edge devices,
deep learning becomes exceptionally advantageous, especially
in domains like natural language processing, computer vision,
and the IoT [12], [13]. However, their efficient deployment at
the edge is becoming increasingly difficult due to inefficiencies
in the conventional von Neumann architectures [14]. Executing
computations on traditional von Neumann computer systems
entails a significant volume of data moving between physically
distinct memory and processing components [15]. This data
transfer incurs not only time and energy costs but also creates a
fundamental bottleneck in terms of performance. Hence the
conventional von Neumann computing architecture presents
significant issues related to both physical space utilization
and power consumption when dealing with the substantial
computational demands and vast data volumes inherent in
AI  tasks. One promising alternative is processing-in-memory
(PIM) architectures, which offer a compelling solution to
the constraints of von Neumann architectures [16]. In PIM
systems, processing tasks are executed directly in or near
memory, significantly reducing the need for data to traverse
between memory and processing units. Emerging embedded
nonvolatile memory technologies (eNVMs) like memristors
are more suited to performing PIM operations owing to their
high speed, low power consumption and a small area on chip,
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Fig. 1.     IoT data on edge devices.

all critical for performing deep learning algorithms at the edge
[17].

Arising from the multiple layers and training complexity,
implementing deep learning algorithms on AS IC  is especially
challenging on edge devices due to their constraints on area
and power consumption [11]. Furthermore, the noise and
imperfections in circuit components add to the inaccuracies in
the model. A  more hardware-friendly approach is reservoir
computing, a type of recurrent neural network (RNN) that
can resolve some of the issues of training complexity by
only training the output layer. The spatiotemporal information
processing capabilities of reservoir computing have allowed
it to solve complex tasks in the areas of time-series predic-
tion, classification and segmentation, de-noising, and channel
equalization and control [18]. However, the large number of
neurons inside the reservoir becomes challenging to implement
in the hardware [19]. A  delayed dynamical reservoir, which is
a subset of reservoir computing, presents a promising choice
for hardware implementations. In this approach, the reservoir’s
intricate dynamics can be replaced with a single nonlinear
node followed by a delayed loop, effectively generating high-
dimensional patterns. Utilizing such a simplified structure is
beneficial when executing in hardware, bypassing the tedious
connections in a traditional reservoir.

In this work, we address latency and power consumption
issues, and take a hardware-friendly approach to develop a
memristor-enabled reconfigurable low-power reservoir com-
puting architecture (MERRC) at the edge. We primarily focus
on the development of the architecture, including the input
preprocessing through a mask followed by the reservoir non-
linear node and the feedback loop before integrating with the
reconfigurable memristor crossbar to train the output layer.
The MERRC architecture showcases reconfigurability through
its utilization of reservoir computing as well. The reservoir,
by adjusting its delay factor and parameters, can be tailored
to different applications without altering the fundamental
structure of the architecture. The reconfigurability of MERRC
becomes evident when considering the varying requirements
of different applications. By fine-tuning the memristor weights
and adjusting the reservoir parameters, it can effectively adapt
to different datasets and tasks. The key contributions of our
work are summarized below:

• We combine a delayed dynamical feedback reservoir
system (DeDFRS) known for its proficiency in spatiotem-
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poral information processing and hardware simplicity
with a reconfigurable memristor crossbar tailored for
PIM. This facilitates training in the output layer, effec-
tively bringing computation nearer to the data source and
providing support for edge devices.

• For the input preprocessing, we design the first analog
masking circuit to obtain variation and add sequentializa-
tion in response to the input to fully utilize the available
dimensionality in the DeDFRS.

• We further integrate a fabricated memristor crossbar
array in the PIM architecture to carry out the output
layer training of the DeDFRS. Each memristor cell can
be reprogrammed to the specific weight values that is
determined by the output training, making the architecture
reconfigurable.

• We demonstrate our circuits and architecture on the
MERRC board with fabricated memristor crossbar arrays
and carry out evaluations on the MNIST dataset, achiev-
ing an accuracy of 98%.

• Further simulation analysis on the more complex dataset
of CIFAR-10 shows a very high accuracy of 88%, indicat-
ing the capability of the design for a more thorough image
recognition task, making it suitable for edge devices.

I I . ED G E COMPUTING ON A S I C

Data from IoT endpoints often demand real-time processing
in order to reduce the data footprint in AI/ML applications.
Field Programmable Gate Arrays (FPGAs) and Graphical
Processing Units (GPUs) are suitable hardware devices that
can be used for training and inference in such applications.
Unlike FPGAs and GPUs that can be readily configured by
the designer at a much lower cost, ASIC-based hardware is
customizable for a specific application and cannot be used for
general purposes [20]. While FPGAs and GPUs offer cost-
effective reconfigurability, they are burdened by high power
consumption and occupy significant space. To enable real-
time data processing, it becomes crucial to move computations
closer to the data source, a strategy known as edge computing.
In contrast to FPGAs and GPUs, ASICs are better suited
for edge computing due to their advantages of low power
consumption, increased security, compact size and high speed
in processing real-time data. The Edge TPU, Google’s AS IC
for edge computing uses the Cloud IoT and Google’s Cloud
TPU to enable ML applications at the edge using A I  algo-
rithms in hardware with low power and area [11], [21]. The
ShiDianNao is another example of an ASIC-based solution
for edge computing that specializes on image classification
tasks, and when used for CNN-based deep learning tasks it
provides a 30x faster speed than NVIDIA K20M GPU [11],
[22]. In this section, we highlight the concepts of PIM and
reservoir computing to explain their functionality and usage in
edge devices.

A. Memristor-Based Processing-in-Memory
Processing-in-memory (PIM) is a non-von Neumann com-

puting paradigm that was developed in an attempt to alleviate
the issue of the Memory Wall [16], [17] By carrying out
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computations near or in memory, PIM has the potential
to achieve massive parallelism especially in deep learning
operations. The computation process of deep learning involves
large amounts of vector-matrix multiplications (VMMs) in the
different layers that involve storing and fetching weights to and
from the memory hierarchy. Utilizing PIM for VMM opera-
tions can significantly improve performance in terms of power
and latency, saving ample amount of time in transmitting and
receiving data [23].

In recent years, PIM has received immense attention in the
area of deep learning owing to its ability to accelerate ML
operations by carrying out computations at the source of the
data. There have been several notable works on PIM-based
deep learning accelerators using SRAM, DRAM and emerging
eNVMs as the core memory element [24], [25], [26], [27],
[28], [29]. However, the traditional memory technologies of
DRAM and SRAM rely on the charge storage phenomenon
and as technology scales, there is a high possibility of unreli-
ability arising from lost charges [30]. Memristor, a particular
emerging eNVM, is a promising candidate for PIM operations
and is considered suitable for analog edge computing for
processing data generated from IoT devices [31]. With their
nonvolatile memory property, compatibility to be integrated
with CMOS technology, ability to mimic biological synapses,
and their analog conductance modulation properties, memris-
tors have successfully carried out ML tasks in hardware [30],
[32], [33], [34]. Memristors have a compact size in the scale of
nanometers and can be used to form dense crossbar structures.
Their fast-switching speed and capacity to store data and
perform computations on them makes memristors a convenient
replacement for their SRAM and DRAM counterparts and
hence suitable to be used in edge devices.

B. Reservoir Computing
The two major types of deep neural networks (DNNs) are

feedforward neural networks (FNNs) that possess the ability
to process static input data and recurrent neural networks
(RNNs) that can process both temporal and spatial input data.
In contrast to FNNs, RNNs exhibit dynamic behavior due
to recurrent connections in the hidden layer, allowing data
to persist within the network for a certain duration [35].
While RNNs closely mimic the biological nervous system,
they entail complex, resource-intensive, and time-consuming
training procedures. As a response to this challenge, reservoir
computing emerged as a potential solution by significantly
simplifying training, focusing solely on the output layer [19].
By employing small training datasets and linear optimization,
reservoir computing demands fewer computational resources.

Generally, reservoir computing has three interconnected
layers of neurons, the input layer, the physical reservoir and
the output layer, where the activations of the network units are
given by x (t ) =  (x1(t ), . . . , xN (t )), r (t ) =  (r1(t ), . . . , rN (t ))
and y(t ) =  (y1(t ), . . . , yN (t )) respectively for each time step
t. The activations between the internal units are carried out
using Equation (1) with α =  (α1, . . . , αM ) as the activation
function of the internal units inside the reservoir,

r (t +  1) =  αW i n{x(t +  1) +  W r (t ) +  W ir y(t )} (1)

3

y(t +  1) =  βW out {x(t +  1), r (t +  1), y(t )} (2)

where W i n is the weight matrix between the input and the
internal units and W is the internal weight matrix inside the
reservoir. The weight matrix from the output to the internal
reservoir is W ir and the weight matrix from the reservoir
to the output is W out in Equation (2). In order to prevent the
issue of vanishing gradient in the training procedure, the
connections between the input and the reservoir are randomly
initialized and the connections in the output layer are trained
via a regularized linear least-square optimization technique,
drastically streamlining the training process [36], [37].

Echo State Networks (ESNs) and Liquid State Machines
(LSMs) are two subsets of reservoir computing that follow
the fundamental idea that the connections from both the
input to the reservoir as well as the internal connections
inside the reservoir are fixed and random. While both the
networks follow the procedure of training the output layer,
the key difference lies in the structure of ESN and LSM,
where ESN is a rate-based approximation and LSM is based
on biologically inspired spiking neural network (SNN) [38].
Implementing ESN and LSM using ASICs proves to be
considerably resource-intensive due to the extensive connec-
tions within the reservoir. In contrast, the delayed dynamical
feedback reservoir system (DeDFRS), an innovation derived
from reservoir computing, significantly reduces the resource
requirements and time consumption by substituting the entire
reservoir with a delay node. Owing to its simplicity and
nonlinear nature, various implementations of DeDFRS have
emerged in the fields of electronics, optoelectronics, and
optics [39], [40], [41], [42]. By introducing the dynamic and
feedback properties the DeDFRS can replicate the operating
procedure of the typical reservoir, making it a favorable choice
for hardware implementations, especially well-suited for edge
devices.

I I I . M E R R C A R C H I T E C T U R E

In this paper, we introduce a reconfigurable memristor-based
processing-in-memory architecture with reservoir computing,
MERRC, designed for edge devices. Our primary aim is
to bring computations closer to the source of the data to
overcome the issues of latency and power consumption. With
the use of the DeDFRS, this architecture benefits from the
spatial temporal information processing capability of RNNs
while having a simplified hardware structure, significantly
reducing the number of resources and reducing the area
consumption. As depicted in Fig. 2, since the DeDFRS has
the advantages of overcoming the training complexity by only
training the output layer, we incorporate a memristor-based
PIM architecture to allow for classification. Our memris-tor
crossbars are reconfigurable, implying that they can be
reprogrammed to required values based on the training of
edge devices, providing the architecture of the flexibility
lacking in general ASIC-based implementations. Furthermore,
the MERRC architecture demonstrates its versatility through
reservoir computing. By adjusting delay factors and parame-
ters, the reservoir can be customized for various applications
without altering the core structure. This adaptability shines

Authorized licensed use limited to: Yang Yi. Downloaded on December 21,2023 at 18:55:26 UTC from IEEE Xplore. Restrictions apply.



i

i
N

k k

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE  TRANSACTIONS ON CIRCUITS AND SYSTEMS— I :  REGULAR PAPERS

Fig. 2.     Overview of the memristor-enabled reconfigurable architecture using reservoir computing (MERRC).

Fig. 3.     Implementation of masking.

when addressing diverse application requirements. MERRC
can effectively adapt to a range of datasets and tasks by repro-
gramming the memristor weights and the reservoir parameters.
This section covers the details of our implementation, focusing
on the circuit designs of MERRC, including the novel masking
design and the design of the DeDFRS and the integration of
our fabricated memristor crossbar arrays.

A. Masking in DeDFRS
As discussed in the preceding section, reservoir computing

significantly reduces the training complexity by only training
the output layer of the neural network while possessing the
spatiotemporal information processing capability. Time-
delayed reservoir systems further simplifies this procedure by
undergoing time-multiplexing of a nonlinear neuron onto a
delayed feedback loop forming the RNN [43], [44], [45].
The high-dimensional states for computation are provided by
the virtual nodes specified along the time delay. In the time-
delayed reservoir, one nonlinear node is responsible for driving
all the virtual nodes in the delay line, and since the states
of every node are generated from the same transformation,
scaling factors cannot be introduced in the virtual nodes for
variability in the network. However, a masking technique is
used at the time-delayed reservoir’s input to acquire the variety
in the virtual nodes’ responses to an input signal. In the past,
this procedure has been carried out by randomly introducing a
series of values, each allocated to a virtual reservoir node
[46], [47], [48], [49].

For optimal utilization of the newly established state space
within the reservoir, it is essential to introduce diversity in

the input sequence. To achieve uniform connectivity between
every virtual node and the processed input signal, the masking
procedure is replicated for each temporal delay in the reservoir.
In earlier implementations of masking, waveform generators
were employed to time-multiplex input data in the fields of
optoelectronics and optics [50], [51], [52]. While there have
been some works on implementing the masking procedure
solely on software as part of the input preprocessing technique
[43], there have been other works on generating a digital
binary mask and a six-level digital mask [53], [54]. There
is a lack of proper implementation of masking for reservoir
computing in the analog domain as well as the ability to
time-multiplex the input data with the masking signal. There-
fore, in this work, we design a novel masking circuit, depicted
in Fig. 3, that combines both the input and the masked signal
for the nonlinear node in the reservoir.

To imprint coupling weights from the input to the reservoir,
W in , onto the input data stream, a piecewise function, the
masking function, can be used with a certain period τ and in
intervals of φ. Equations (3) and (4) defines such a masking
function and the corresponding output resulting from the
imprinting of the input,

Vmask =  W in for     (i −  1)φ ≤  t ≤  iφ (3)

Vout(t ) =  
X  

Vin(t ) · Vmask(t ). (4)
k =1

To implement Equation (4), we use our design from Fig. 3
where Vin is the input data stream which is initially sampled
using the clock signal C L K  and the output signal Vin+     is
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applied to the gates of the transistors M3 and M9. Using
the opamp inversion technique, the sampled input signal Vin in
converted to Vi n−  to drive the transistors M5 and M11. The
masking function Vmask , responsible for the variations in the
input data has its positive node applied at the gates of the
transistors M4 and M12, and the negative node applied at the
gates of transistors M6 and M10.

The design from Fig. 3 utilizes the operational procedure of
a differential amplifier with the current mirror structure. The
current variation due to the voltage of Vmask is carried on to
the branches of Vo+ and Vo−  through the mirror connection.
Through the concept of transconductance gm and gain in
differential amplifier, Equation (5) can be formulated as,

Av =  
Vi n + 

−  V
i n−  

=  −gm 5,9 
 
R3,4 � ro5,9 � ro6,10. (5)

Using the relationship between the transconductance and the
drain current ID , we

 
can

 
rewrite the Equation (5) as follows,

Vo+ −  Vo−  =  2 K ′ ( )5 ID52Vi n (R3 � ro5 � ro6) (6)
r

Vo+ −  Vo−  = K ′2 ( 
L  

)5(Vm −V t p)2Vi n R3 � ro5 � ro6     (7)

where ID5 was replaced by the drain current in Equation (7)
from the transistors M6 and M10 which are operating in the
saturation regime. The final output Vout can be calculated
using Equation (8) and replacing Vo + − Vo−  from Equation (7)
given by,

Vout =  
R

5,6 · (Vo+ −  Vo− ). (8)

The ratio of the resistors R5,6 and R3,4 is used to determine the
amplification range of the output signal, which is the
multiplied input and mask signal for each portion of the data
stream in the intervals of φ.

B. Delayed Dynamical Feedback Reservoir
The complete structure of the developed DeDFRS core

is depicted in Fig. 4, consisting of 5 major modules of
nonlinearity, analog to spike encoder (ASE), neuron core,
decoder core and feedback. The details of the circuits and
architecture are discussed in this section.

1) Nonlinearity: In order to translate the incoming inputs
nonlinearly onto outputs, we incorporate a type of activation
function known as the Mackey-Glass function. Mathematical
models of biological systems are often defined using delayed
differential equations, where one equation can represent count-
less number of ordinary differential equations [55], [56]. A
modified version of the delayed differential equation is the
Mackey-Glass function shown in Equation (9) that includes
the embedded delay property of dynamical systems, which is
crucial when implementing the DeDFRS [57].

xt =  
1 +  un −  α · u (9)

From Equation (9) it is evident that the current input
depends on the present and the historical input data where uτ
is the input at the time of (t −  τ ). This delayed property

5

allows the Mackey-Glass function to have a variable gradient
which is essential in RNNs to avoid the issue of vanishing
gradients. The scaling parameters of β and α as well as the
nonlinear exponent n further assist in the tuning and shaping of
the nonlinear function as well as increasing its strength to find
the optimal hyperparameters [43] In the past there have been
several analog electronic implementations of this function to
control chaos in the analog delay line, owing to the simplistic
implementation and hyperparameter tuning of the circuit [43],
[58], [59].

To implement this function, we optimize and modify our
circuitry from [60] to fit the Mackey-Glass equation using the
circuit from Fig. 4. Without the use of any external supply,
this circuit effectively tracks incoming input when the signal
falls within the lower range, resulting in a positive gradient.
As the signal surpasses the threshold of the nmos transistors,
the output gradually discharges, yielding a negative gradient.
In contrast to the previous implementation detailed in [60],
this circuitry offers a broader range of output values, negating
the necessity for additional transistor components and buffers.
As a result, it significantly reduces both the circuit’s footprint
and latency.

2) Analog to Spike Encoder: Converting the incoming ana-
log signals to spiking signals has the potential to offer higher
power and energy efficiency, arising from the binary spiking
nature of signals which can significantly simplify the circuitry
[61]. Spiking signals emulate the neurons in the biological
systems more closely, firing each time a defined threshold is
exceeded [62]. Therefore, when implementing the DeDFRS,
injecting spiking signals is a more viable option when adding
the delay constant rather than applying the delay factor to a
fully analog signal which will suffer from noise and low
robustness.

Electronic neuron models can imitate the functionality of
biological neurons, and to date there have been several
implementations including the Hodgkin-Huxley, Izhikevich
and Leaky-Integrate-and-Fire (LIF) models [63], [64], [65].
Compared to their counterparts, L I F  neuron models possess
a simplistic hardware implementation while incorporating the
leakage factor similar to biological neurons offering efficiency
in terms of power and latency [66]. Furthermore, the L I F  neu-
rons also offer a good approximation of the complex models
of Hodgkin-Huxley and the Izhikevich neurons, deeming them a
more suitable option. In this work, we incorporate these L I F
neurons for the transformation of the analog signals however,
the main working mechanism of the L I F  neurons is based on a
capacitor sensing technique which relies on the magnitude of
the incoming current. We use a transconductance-based
amplifier in our A S E  block from Fig. 4 to convert the nonlin-
ear outputs into current values. The diode-connected current
mirror structure facilitates the elimination of the load varia-
tion affecting the output currents. The transistors (M4, M5),
(M6, M7) and (M8, M9) are matched pairs and the linear
scaled values of I1 and I2 are applied to the L I F  neurons.

Once the currents enter the L I F  neuron, the voltage of V eak
ensures a small leakage from the input while the capacitor is
allowed to charge to a voltage potential of 0.8V specified at
the gate of M4 at the L I F  neuron. This instigates the firing of
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Fig. 4.     Individual modules of the DeDFRS core.

the spike where the time is given by Equation (10).

t =  C  
Z

0

Vthr     

(W / L )5 
I1 −  Ileak 

dV (10)

The spike signal is strengthened by the cascaded buffers in
the neuron which also resets the charged capacitor with the
transistor M2 until the incoming voltage. A  clock signal of
10MHz controls spike settings of L I F  neurons influencing the
window of the firing time. The output signal generated from
this A S E  is a combination of two spike trains where t1 is the
spike time from the first neuron and t2 is the spike time of the
second neuron.

3) Reservoir Core: The spike train originating from the
A S E  comprises two spikes during each clock cycle, and these
are introduced into the reservoir core. This core is composed
of a cluster of L I F  neurons, interconnected sequentially as
depicted in Fig. 2 within the MERRC architecture. These
neurons work in the similar manner discussed in the preceding
section, however, the incoming input current for capacitor
charging is applied from the nonlinearly transformed input.
The spike train generated from the former neuron is applied as
the clock of the latter neuron, ensuing the subsequent spiking
times in the neurons that follow. This creates a delay factor
of τ inside the DeDFRS where the discrete reservoir state can
be given by:

Fig. 5.     Cross-section image of the memristor crossbar.

neurons in the reservoir core and θ is the interval between the
neurons defined by τ/N .

4) Decoder: The output from each neuron in the reservoir
core is applied to the decoder core consisting of N number of
modules demonstrated in Fig. 4. The incoming input is applied
at the drain of the transistor M1, while the spiking signal
from each output neuron controls the charging of the capacitor
in the decoder unit. The output signal from the decoder is
strengthened by the buffer unit and the final output from the
DeDFRS is given by Equation (12) where ρ is the scaling
factor of the input.

ri ( j ) =  x ( jτ −  (N −  i )θ ), (11) y(t ) =  mg{x (t ), x (t −  τ ) +  ρx (t )} (12)

where for each time step j , x is the nonlinearly transformed
input for each node from i to N , where N is the number of

5) Feedback: The DeDFRS requires a feedback module to
incorporate the past and current input before injecting the input
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Fig. 6.     Plot of the DeDFRS modules. (a) Masking circuit output. (b) Mackey-Glass function output. (c) Simulation of the ASE  and delay modules in the
DeDFRS. (d) Decoder output simulation results.

signal to the complete MERRC architecture. This feedback
is implemented with a summing amplifier module shown in
Fig. 4. By controlling the ratios of the resistors in the summing
amplifier of R1 and R2, a smaller factor of the feedback
signal from the previous loop in the DeDFRS is combined
with an amplified incoming masked input to be applied to
the loop in the MERRC architecture. This helps to improve
the performance and accuracy of the DeDFRS architecture by
incorporating the temporal context of the input signal.

C. Processing-In-Memory Using Memristor Crossbar Arrays

To further enhance power efficiency and boost overall
system throughput, we implemented a one-layer perceptron
classifier using 1T1R (one transistor one memristor) crossbar
arrays in parallel with analog VMMs. The outputs from
the DeDFRS layer, serving as inputs for the perceptron, are
encoded by varying the amplitude of input voltages to the
memristor arrays. The perceptron’s weights are translated into
the conductance of two memristors arranged as differential
pairs, where voltages of identical amplitude but opposite
polarities are applied. These weights undergo initial offline
training and are subsequently programmed onto the on-chip
memristors. The input voltages are applied to the rows of the

memristor arrays at the same time while the output currents are
collected at the columns as the results of the parallel VMMs
which is shown in Equation (13)

n

I j = (Gi j −  Gi j )Vi (13)
i = 0

where G +  and G −  is the conductance of the differential
memristors, respectively, Vi is the input voltage of the i-th
row, and I j is the output current of the j-th column.

The transistor and the interconnection between the cells
were fabricated in a commercial foundry using 2–µm tech-
nology. The memristor devices were integrated on top of the
CMOS substrates at the university cleanroom. We cleaned the
exposed metal vias on the CMOS substrates with argon plasma
to remove the native oxide. Three different metal layers– 7-nm
Ag, 3-nm Ti, and 50-nm Pd–were deposited sequentially by
DC sputtering under an 8.8 ×  10−7–torr background vacuum,
lifted off in acetone with a sonication process for 10s at room
temperature, and then annealed at 300-◦C for 40 minutes in
N2 atmosphere. The bottom electrode which consists of 20-nm Pt
with a 2 to 2.5-nm Ti adhesion layer was then patterned and
evaporated onto the metal pads, followed by liftoff in
acetone. A  5-nm T a2 O5 blank layer was sputtered in 90-W
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radio frequency power with 20 standard cubic centimeters per
minute (sccm) Ar flow (background vacuum in the sputterer
was better than 3.3 ×  10−7 torr). The top electrode which is
20-nm Ta and 20-nm Pt was patterned by photolithography,
deposited by DC sputtering, and then lifted off in acetone at
room temperature [67]. The crossbar structure and the
cross-section image of our memristor are demonstrated in
Fig. 5.

I V. M E A S U R E M E N T R E S U LT S  A N A LY S I S

We developed a prototype of the DeDRFS in
GlobalFoundries (GF) standard 180nm CMOS technology
to verify and demonstrate the functionality of each of the
modules. The design occupies a total area of 0.0126mm2 and
consumes 10.8mW of power.

IEEE  TRANSACTIONS ON CIRCUITS AND SYSTEMS— I :  REGULAR PAPERS

TA B L E  I
POW E R A N D A R E A  O F T H E  M E R R C A R C H I T E C T U R E

A. DeDFRS Performance Evaluation
In order to evaluate the prototype, we initially created our

masking circuit from Fig. 3. To demonstrate the functionality
of masking, a sine wave of 1MHz is applied to the input
terminals of the masking circuit with a square wave repre-
senting a binary mask with an amplitude of 250mV at the
mask terminals of Fig 3. Equation (7) can be simplified and
modified to Equation (14) as

Vout =  α · Vin · Vmask (14) Fig. 7.     Layout of the DeDFRS.

where α is the scaling factor to amplify the output signal
from the circuit. The results from Fig. 6(a) demonstrate the
amplified output imprinted with the mask signal that was
applied indicative of the variability in this network. Fig. 6(b)
indicates the output of the Mackey-Glass nonlinearity function,
simulated for inputs in the range of 0 to 1.8V. Based on
these simulation results, the function can spread out the input
data nonlinearly before injecting it into the DeDFRS reservoir
core. The system performance is improved by this novel
Mackey-Glass nonlinear circuit.

The resulting signal from the nonlinearly transformed
masked input is applied to the A E S  with its output demon-
strated in Fig. 6(c). The input spikes generated from the two
L I F  neurons are spaced 0.5µs apart. With the combination
of these two spike trains, the input signal injected into the
neuron is portrayed as the spike train with two spikes per clock
cycle. The delayed spike train with a factor of τ =  0.25µs
can be observed from the plot in Fig. 6(c). The delay factor τ
for each spike train in each neuron in the reservoir core can
be calibrated for the DeDFRS by changing the value of the
input current. The system’s capacity for calibration enhances
its ability to function effectively over a broad range, thereby
leading to an improvement in overall system performance. The
output signal from the delayed module is sent as spikes and
we demonstrate the output from the spike to the analog signal
converter in Fig. 6(d). Based on the spike arrival time, the
decoder charges and discharges producing the analog output.
The plot from Fig. 6(d) depicts the variation in the output
signal based on the timing of the spikes. As evident from
our plot, the timing between the spikes determines the analog
output range of the decoder. This output can then be applied to
the final layer of the reservoir for classification purposes.

We evaluate the power and area of the design using
post-layout simulations on GF-’s standard 180nm CMOS
technology with a supply voltage of 1.8V as demonstrated in
Table I. The major components on the DeDFRS consisting of
the ASE, the neuron and the decoder consumes 0.5mW of
power while the masking circuit consumes 2.59mW of power.
Each neuron in this design consumes a significantly low power
of merely 2.023 ×  10−8m W . As these neurons dictate the
reservoir’s size, specifically the size of the node, increasing
the reservoir leads to reduced overall power consumption.
Therefore, on the post-layout simulations with 6 neurons in the
reservoir neuron core followed by 6 decoders in the decoder
core as well as our control circuity blocks, the total power
consumed by this design is 10.8mW .

With the use of proper layout techniques, planning and using
multi-finger transistors, our post layout simulation showed
insignificant drops in voltage. From the post-layout mea-
surements, the area occupied by each module is shown in
Table I  and the complete layout consisting of the mask and
the DeDFRS is demonstrated in Fig. 7. With each neuron and
decoder occupying 22.4µm ×  23µm and 22.4µm ×  40.1µm
respectively, the complete design encompasses an area of
0.0126mm2 with 6 neurons and 6 decoders each. The fab-
ricated memristor cell with the 1T1R structure has a junction
area of 4µm ×  4µm each. Our reconfigurable memristors in
the crossbar allow us to utilize the size of the classification
layer based on the input datasets.

B. MERRC Board Implementation
To substantiate the functionality and efficiency of our

MERRC circuits and architecture, we experimented utilizing
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Fig. 8.     Measurement data of the MERRC Board.

Fig. 9.     The memristor crossbar array measurement setup.

the MNIST dataset. The experiment was facilitated using
a hybrid setup comprising a Printed Circuit Board (PCB),
an 8GB RAM Raspberry Pi 4 Computer Module B  and a
memristor crossbar. Leveraging the detailed circuitry concep-
tualized in Cadence Virtuoso, we transitioned the design onto a
PCB board to realistically emulate the MERRC architecture.
The design of the masking circuits was implemented on the
PCB by using the Eagle software. The equations and
functionality of the circuitry was translated into a layout
that could be realized on the PCB. This involved adapting
the circuitry’s behavior into components that are feasible to
construct using PCB fabrication techniques.

The masking circuit shown in Fig. 3 implemented on 180nm
technology was replicated on the PCB board using the same
circuit topology and transistors following the similar width to
length ratio and scale. Similarly, the reservoir core that was ini-
tially designed using Cadence Virtuoso at the 180 nm CMOS
transistor level was translated to the Raspberry Pi through
the use of the same circuit equations and functional logic.
This essentially means that the core’s behavior was captured
in equations that could be executed on the Raspberry Pi’s
computing platform. Since reservoir computing only trains the
output layer, our reconfigurable memristor crossbar embodies
the output layer, the only layer subjected to training in
the architecture. These memristor crossbars offer remarkable

flexibility, capable of being reprogrammed to accommodate
varying values based on edge device training, a feature not
commonly found in standard ASIC-based implementations.

Due to budget constraints and current limitations in utilizing
GF fabrication services, we have opted to implement the
MERRC architecture in a PCB format. Our objective is to
uphold its functionality and validate the proof of concept
within the confines of our resources at this time. We adopted
PCB prototyping as a faster yet robust alternative for validating
our technology, thus providing valuable insights into its poten-
tial real-world performance. While implementing a 180 nm
CMOS transistor-level design on a PCB board involves trans-
lating complex transistor-level behavior since PCBs operate
on a different scale and technology, the circuit components
were approximated and adapted to match PCB fabrication
possibilities. Our overall objective was to achieve successful
emulation of the CMOS design’s behavior, functions, and tasks
within the constraints and capabilities of PCB fabrication

This approach effectively bridged the gap between theo-
retical and real-world simulations, allowing for a thorough
examination of the MERRC architecture and masking circuits
within a simulated chip environment. Therefore, combining the
PCB board consisting of the masking circuitry, the DeDFRS
in the Raspberry Pi and the memristor crossbars in the
output layer, we have a complete MERRC architecture. and
accomplished a successful trial run of our design using the
MNIST dataset. This step not only demonstrated the viability
and functionality of our design but also established a robust
platform for further exploration and fine-tuning of the tech-
nology in a practical context.

Furthermore, in our experiments, we processed the images
from the MNIST dataset using an “area interpolation” tech-
nique. This method, followed by an unrolling procedure,
effectively condensed the original 28 × 28 pixel representation
of each digit to a compact 1 × 12 format, facilitating smoother
processing and analysis. The “interpolation by area” method
is based on calculating the average pixel value of each area
within the image and utilizing this value to determine the new
pixel value in the resized image. This process facilitates the
preservation of crucial features while ensuring that the result-
ing image maintains a high level of precision and accuracy.

Authorized licensed use limited to: Yang Yi. Downloaded on December 21,2023 at 18:55:26 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE  TRANSACTIONS ON CIRCUITS AND SYSTEMS— I :  REGULAR PAPERS

In Fig. 8, we demonstrate the image pixel rescaling process,
wherein each image is channeled through the DAC module
on the MERRC board, integrating it into the architecture.
Incorporating a binary mask in the form of a square wave,
we infuse randomness and variability in the data and imprint
this signal on the input wave consisting of the pixels of each
digit from the MNIST dataset. The MERRC board successfully
applied the mask onto the input signal, as shown in the plots
from Fig. 8. We used the Raspberry Pi module to implement
the Reservoir Core, as detailed in Algorithm 1. This allows
us to efficiently process the MNIST dataset and validate the
design of the MERRC architecture.

Algorithm 1 Reservoir Core
Initialize: Parameters of the Reservoir including the number
of nodes N and weight matrix dimensions W
Initialize: Array for the virtual nodes N and reservoir
history matrix R
Initialize: Nonlinearity function of Mackey-Glass mg with
β and n
Data: Input of masked image data U[n ×  m]
for i =  1 to m do

for j =  1 to N do
delay =  r[ j −  1 : 1] ←  add delay from previous
a =  mg(delay +  U [i ], β , n)
V n =  U · (V n +  a) ←  calculate the virtual node

end for
r =  [V n · W i n +  rprev · Wres]
y =  Wout · r +  W i n · U +  bias
r prev =  r ←  set the current term to the previous term
h1 =  r elu(Wh1 · y +  bi as)
h2 =  r elu(Wh2 · h1 +  bi as)
out =  r elu(h2)

end for

C. Hybrid Memristor and CMOS Platform for MERRC

The experimental evaluation of the PIM perceptron is con-
ducted with a 32 × 32 1T1R array. The 1T1R chip is landed on
a probe station under a customized probe card, which is elec-
trically connected to a set of customized PCBs with high-speed
cables. The PCBs are designed with onboard analog-to-digital
converters (ADCs), digital-to-analog converters (DACs), and
trans-impedance amplifiers (TIA) to facilitate the reading and
programming of memristor arrays. The PCBs communicate
with a peripheral computer through a microcontroller unit
(MCU) on the motherboard. In the programming phase, the
set or reset voltages are applied to the rows or columns of
the 1T1R array by DACs on the PCBs. Multiple set/reset
voltages are used to tune the conductance of memristors to
the target conductance range representing the weights of the
output layer trained offline. In the inference phase, the input
voltages (0-0.2V) are applied to the rows of the 1T1R array
by DACs and output currents from the columns are converted to
voltages by TIAs. The output voltages are then converted to
digital signals by ADCs and sent to the peripheral computer
for further processing using the MCU. The measurement setup

Fig. 10. Measurement results from the memristor crossbar. (a) Outputs from
digits 0 to 4. (b) Outputs from digits 5 to 9. (c) Output from 3 noisy images of
digit 1. (d) Output from 3 noisy images of digit 3.

of the memristor arrays with the MCU and PCB units similar
to [65] is depicted in Fig. 9.

We use the weights from the final classification layer from
the MERRC architecture to map onto the crossbar array. For
10 output digits, we program the 28 ×  10 crossbar array with
the weights of the classification layer. With the memristor
crossbar emulating the fully connected layers of the final train-
ing portion of the MERRC architecture, the output currents
from the crossbar are converted to voltages using ADCs in
the PCBs and transferred to the peripheral computer via the
MCU unit. We plot the output voltages after passing through
the final activation layer of ReLU unit as depicted in Fig. 10.

The memristor output layer is not immune to the effects of
noise and variation. Any perturbations introduced in the stored
weights or conductance states of memristors can impact the
accuracy of the final classification outcomes. Moreover, noise
can accumulate during readout, potentially leading to errors in
the classification process. When programming our memristors
to the specific values, we experienced weight fluctuations and
inaccuracies as well as deviations from the exact conductance
value. However, despite experiencing these noise and variation
effects, our architecture was able to successfully classify the
MNIST images. Based on the simulation results it is evident
that for each digit inputted, we obtain the final output indicated
by the highest value for the MNIST digits from 0 to 9 shown
in Fig. 10(a) and (b).

Furthermore, the system is also robust against noise where
with the use of multiple noisy images of the same digit
yields the correct output. We demonstrate the outputs for the
digits 1 in Fig. 10(c) and 3 in Fig. 10(d) for three different
noisy inputs each to indicate the robustness of the system.
We further compare our MERRC architecture encompassing
all its integrated components, including the masking circuit,
reservoir core, and the memristor crossbar with the state-of-
the-art memristor-based architectures shown in Table II. This
comprehensive evaluation allows us to assess the overall
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ON T H E  C I FA R - 1 0 D AT A S E T

power, performance, and efficiency of the architecture in
practical scenarios, considering the collective contribution of
all components. With a power consumption of 10.8mW , our
design can be comparable to other state-of-the-art works. With
the MNIST dataset using 3 layers, our MERRC architecture
can achieve the highest accuracy of 98% among other designs.

D. Evaluation on the CIFAR-10 Dataset
The MERRC architecture has exhibited remarkable efficacy

in processing and categorizing small-scale image datasets.
However, it posed an interesting challenge when it came
to simulation, especially for larger datasets like CIFAR-10.
To bridge this gap between the architecture’s design and
practical simulations, we replicated our hardware parameters
onto a software environment following Algorithm 1. In this
software simulation, we utilized the computational power of a
12-GB NVIDIA Tesla K80 GPU with 13G RAM. While the
MERRC architecture itself is rooted in hardware design, we
harnessed the capabilities of this powerful GPU to simulate the
behavior of the architecture and assess its performance with
the CIFAR-10 dataset. Through a process of transla-tion, we
mimicked the hardware parameters and behavior of the
MERRC architecture on the software platform. This step
allowed us to execute the architecture’s algorithms and
processing logic in a simulated manner, thus enabling us
to assess its performance without physically fabricating the
entire hardware setup. To introduce the necessary randomness
and nonlinearity that are characteristic of real-world image
datasets, we applied a randomized mask to the simulation.
This mask, combined with the MG function, enhanced the
architecture’s responses to input data, making the simulation
more representative of actual operational scenarios.

We extended our evaluations to the CIFAR-10 dataset
to assess the architecture’s capability to handle larger and
more intricate image data. To accommodate this complex-
ity, we expanded the reservoir’s size to 1600 nodes. This
adjustment, along with the randomized mask, contributed to
achieving an impressive accuracy rate of 88% on the
CIFAR-10 dataset. Comparing the MERRC architecture’s
performance with other memristor-based designs on the
CIFAR-10 dataset, as showcased in Table III, highlighted

its potential to achieve high accuracy rates. These results
underscore the MERRC architecture’s viability for efficiently
classifying large-scale image datasets, offering a promising
solution for real-world image classification challenges. The
simulations conducted using the NVIDIA Tesla K80 GPU,
combined with the architecture’s design principles and param-
eters, validate its efficacy in handling larger datasets. The
fusion of a reservoir with a memristor crossbar layer, alongside
the ADAM optimizer, emerges as an efficient strategy to
enhance the architecture’s performance.

V. CO N C L US I O N

In this work, we introduce a memristor-enabled reconfig-
urable reservoir computing architecture, MERRC, particularly
for edge devices. Our design consists of reconfigurable mem-
ristive synapses that can deploy a trained model onto the
MERRC device and thus bring computations close to the
source of data, eliminating power and latency issues. We intro-
duce the first analog novel masking design that can add
variability to the network and utilize the dimensionality in
the reservoir. The DeDFRS developed can process spatiotem-
poral information and simplifies the training complexity by
only training the output layer. Hardware simulations on the
hybrid MERRC board combined with the fabricated mem-
ristor crossbar array provide the optimum accuracy of 98%
with the MNIST dataset and consume 10.8mW of power
and a small area of 0.0216mm2. Simulations with a more
complex image dataset of CIFAR-10 provide an accuracy
of 88% for the MERRC architecture. Our findings suggest
that the MERRC architecture could be an optimal choice for
edge devices where memory and processing power are
limited, yet efficient and accurate image recognition is crucial.
Therefore, the MERRC architecture could significantly impact
edge computing and real-time image processing applications
where speed, accuracy, and efficiency are crucial.

R E F E R E N C E S

[1] A. I. Khan and S. Al-Habsi, “Machine learning in computer vision,”
Proc. Comput. Sci., vol. 167, pp. 1444–1451, Jan. 2020.

[2] J. Wäldchen and P. Mäder, “Machine learning for image based species
identification,” Methods Ecol. Evol., vol. 9, no. 11, pp. 2216–2225,
Nov. 2018.

[3] Y.  LeCun, Y.  Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[4] N. Rusk, “Deep learning,” Nature Methods, vol. 13, no. 1, p. 35, 2016.
[5] M. Z. Alom et al., “A state-of-the-art survey on deep learning theory

and architectures,” Electronics, vol. 8, no. 3, p. 292, Mar. 2019.
[6] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification

with deep convolutional neural networks,” Commun. ACM, vol. 60, no. 6,
pp. 84–90, May 2017.

Authorized licensed use limited to: Yang Yi. Downloaded on December 21,2023 at 18:55:26 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12

[7] K .  Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” 2014, arXiv:1409.1556.

[8] C. Szegedy et al., “Going deeper with convolutions,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015, pp. 1–9.

[9] K .  Cao, Y.  Liu, G. Meng, and Q. Sun, “An overview on edge computing
research,” IEEE  Access, vol. 8, pp. 85714–85728, 2020.

[10] R. Machupalli, M. Hossain, and M. Mandal, “Review of AS IC  accel-
erators for deep neural network,” Microprocessors Microsyst., vol. 89,
Mar. 2022, Art. no. 104441.

[11] S. Miryala et al., “Design and challenges of edge computing ASICs on
front-end electronics,” in Proc. 23rd Int. Symp. Quality Electron. Design
(ISQED), Apr. 2022, pp. 19–27.

[12] J. Chen and X.  Ran, “Deep learning with edge computing: A  review,”
Proc. IEEE, vol. 107, no. 8, pp. 1655–1674, Aug. 2019.

[13] S. Deng, H. Zhao, W. Fang, J. Yin, S. Dustdar, and A. Y.  Zomaya,
“Edge intelligence: The confluence of edge computing and artificial
intelligence,” IEEE  Internet Things J., vol. 7, no. 8, pp. 7457–7469,
Aug. 2020.

[14] E. Garzón, A. Teman, M. Lanuzza, and L .  Yavits, “AIDA: Associative in-
memory deep learning accelerator,” IEEE  Micro, vol. 42, no. 6, pp.
67–75, Nov. 2022.

[15] E. Eleftheriou et al., “Deep learning acceleration based on in-memory
computing,” IBM J. Res. Develop., vol. 63, no. 6, pp. 7:1–7:16,
Nov. 2019.

[16] O. Mutlu, S. Ghose, J. Gómez-Luna, and R. Ausavarungnirun, “A mod-
ern primer on processing in memory,” in Emerging Computing: From
Devices to Systems. Cham, Switzerland: Springer, 2022, pp. 171–243.

[17] P. Kumar, K .  Zhu, X .  Gao, S.-D. Wang, M. Lanza, and C. S. Thakur,
“Hybrid architecture based on two-dimensional memristor crossbar array
and CMOS integrated circuit for edge computing,” NPJ 2D Mater. Appl.,
vol. 6, no. 1, p. 8, Jan. 2022.

[18] A. Canziani, A. Paszke, and E. Culurciello, “An analysis of deep neural
network models for practical applications,” 2016, arXiv:1605.07678.

[19] K .  Nakajima and I. Fischer, Reservoir Computing. Cham, Switzerland:
Springer, 2021.

[20] F. Liu, G. Tang, Y.  Li, Z. Cai, X .  Zhang, and T. Zhou, “A survey on
edge computing systems and tools,” Proc. IEEE, vol. 107, no. 8, pp.
1537–1562, Aug. 2019.

[21] Edge TPU. (2019). Google’s Purpose-Built ASIC Designed to Run Infer-
ence at the Edge. [Online]. Available: https://cloud.google.com/edge-
tpu/

[22] Z. Du et al., “ShiDianNao: Shifting vision processing closer to the
sensor,” in Proc. ACM/IEEE 42nd Annu. Int. Symp. Comput. Archit.
(ISCA), Jun. 2015, pp. 92–104.

[23] X .  Yang, S. Li, Q. Zheng, and Y.  Chen, “Improving the robustness and
efficiency of PIM-based architecture by SW/HW co-design,” in Proc.
28th Asia South Pacific Design Autom. Conf. (ASP-DAC), Jan. 2023,
pp. 618–623.

[24] X .  Si et al., “A twin-8T SRAM computation-in-memory macro for
multiple-bit CNN-based machine learning,” in IEEE  Int. Solid-State
Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2019, pp. 396–398.

[25] W.-H.     Chen     et     al.,     “CMOS-integrated     memristive     non-volatile
computing-in-memory for A I  edge processors,” Nature Electron., vol. 2,
no. 9, pp. 420–428, Aug. 2019.

[26] H. Kim, T. Yoo, T. T. Kim, and B. Kim, “Colonnade: A  reconfig-
urable SRAM-based digital bit-serial compute-in-memory macro for
processing neural networks,” IEEE  J. Solid-State Circuits, vol. 56, no. 7,
pp. 2221–2233, Jul. 2021.

[27] B. Sun et al., “MRAM co-designed processing-in-memory CNN accel-
erator for mobile and IoT applications,” 2018, arXiv:1811.12179.

[28] P. Chi et al., “PRIME: A  novel processing-in-memory architecture for
neural network computation in ReRAM-based main memory,” ACM
SIGARCH Comput. Archit. News, vol. 44, no. 3, pp. 27–39, 2016.

[29] Y.  Long, T. Na, and S. Mukhopadhyay, “ReRAM-based processing-in-
memory architecture for recurrent neural network acceleration,” IEEE
Trans. Very Large Scale Integr. (VLSI) Syst., vol. 26, no. 12, pp. 2781–
2794, Dec. 2018.

[30] N. K .  Upadhyay, H. Jiang, Z. Wang, S. Asapu, Q. Xia, and J. J. Yang,
“Emerging memory devices for neuromorphic computing,” Adv. Mater.
Technol., vol. 4, no. 4, Apr. 2019, Art. no. 1800589.

[31] H. Zhao et al., “Memristor-based signal processing for edge computing,”
Tsinghua Sci. Technol., vol. 27, no. 3, pp. 455–471, Jun. 2022.

[32] J. Moon et al., “Temporal data classification and forecasting using a
memristor-based reservoir computing system,” Nature Electron., vol. 2,
no. 10, pp. 480–487, Oct. 2019.

IEEE  TRANSACTIONS ON CIRCUITS AND SYSTEMS— I :  REGULAR PAPERS

[33] C. L i  et al., “Long short-term memory networks in memristor crossbar
arrays,” Nature Mach. Intell., vol. 1, no. 1, pp. 49–57, Jan. 2019.

[34] Z. Wang et al., “Reinforcement learning with analogue memristor
arrays,” Nature Electron., vol. 2, no. 3, pp. 115–124, Mar. 2019.

[35] R. Pascanu, C. Gulcehre, K .  Cho, and Y.  Bengio, “How to construct
deep recurrent neural networks,” 2013, arXiv:1312.6026.

[36] Y.  Bengio, N. Boulanger-Lewandowski, and R. Pascanu, “Advances in
optimizing recurrent networks,” in Proc. IEEE  Int. Conf. Acoust., Speech
Signal Process., May 2013, pp. 8624–8628.

[37] C. R. Vogel, Computational Methods for Inverse Problems. Philadelphia,
PA, USA: SIAM, 2002.

[38] N. Soures and D. Kudithipudi, “Deep liquid state machines with neural
plasticity for video activity recognition,” Frontiers Neurosci., vol. 13, p.
686, Jul. 2019.

[39] K .  Bai and Y.  Yi ,  “DFR: An energy-efficient analog delay feed-back
reservoir computing system for brain-inspired computing,” ACM J.
Emerg. Technol. Comput. Syst., vol. 14, no. 4, pp. 1–22, Oct. 2018.

[40] L .  Larger et al., “Photonic information processing beyond Turing: An
optoelectronic implementation of reservoir computing,” Opt. Exp., vol.
20, no. 3, pp. 3241–3249, Jan. 2012.

[41] R. Martinenghi, S. Rybalko, M. Jacquot, Y.  K .  Chembo, and L.  Larger,
“Photonic nonlinear transient computing with multiple-delay wavelength
dynamics,” Phys. Rev. Lett., vol. 108, no. 24, Jun. 2012, Art. no. 244101.

[42] M. C. Soriano et al., “Delay-based reservoir computing: Noise effects in
a combined analog and digital implementation,” IEEE  Trans. Neural
Netw. Learn. Syst., vol. 26, no. 2, pp. 388–393, Feb. 2015.

[43] L .  Appeltant et al., “Information processing using a single dynamical
node as complex system,” Nature Commun., vol. 2, no. 1, p. 468,
Sep. 2011.

[44] L .  Larger, A. Baylón-Fuentes, R. Martinenghi, V. S. Udaltsov, Y.
K .  Chembo, and M. Jacquot, “High-speed photonic reservoir com-
puting using a time-delay-based architecture: Million words per second
classification,” Phys. Rev. X, vol. 7, no. 1, Feb. 2017, Art. no. 011015.

[45] M. C. Soriano, J. García-Ojalvo, C. R. Mirasso, and I. Fischer, “Complex
photonics: Dynamics and applications of delay-coupled semiconductors
lasers,” Rev. Mod. Phys., vol. 85, no. 1, pp. 421–470, Mar. 2013.

[46] F. Duport, A. Smerieri, A. Akrout, M. Haelterman, and S. Massar, “Fully
analogue photonic reservoir computer,” Sci. Rep., vol. 6, no. 1, p. 22381,
Mar. 2016.

[47] J. Nakayama, K .  Kanno, and A. Uchida, “Laser dynamical reservoir
computing with consistency: An approach of a chaos mask signal,” Opt.
Exp., vol. 24, no. 8, pp. 8679–8692, Apr. 2016.

[48] Q. Vinckier et al., “High-performance photonic reservoir computer based
on a coherently driven passive cavity,” Optica, vol. 2, pp. 438–446,
May 2015.

[49] Y.  Kuriki, J. Nakayama, K .  Takano, and A. Uchida, “Impact of input
mask signals on delay-based photonic reservoir computing with semi-
conductor lasers,” Opt. Exp., vol. 26, no. 5, pp. 5777–5788, Mar. 2018.

[50] W. Liang et al., “High spectral purity Kerr frequency comb radio
frequency photonic oscillator,” Nature Commun., vol. 6, no. 1, p. 7957,
Aug. 2015.

[51] K .  E. Callan, L .  Illing, Z. Gao, D. J. Gauthier, and E. Schöll, “Broad-
band chaos generated by an optoelectronic oscillator,” Phys. Rev. Lett.,
vol. 104, no. 11, Mar. 2010, Art. no. 113901.

[52] L .  Larger and J. M. Dudley, “Optoelectronic chaos,” Nature, vol. 465,
no. 7294, pp. 41–42, May 2010.

[53] M. C. Soriano et al., “Optoelectronic reservoir computing: Tackling
noise-induced performance degradation,” Opt. Exp., vol. 21, no. 1, pp.
12–20, Jan. 2013.

[54] L .  Appeltant, G. Van der Sande, J. Danckaert, and I. Fischer, “Con-
structing optimized binary masks for reservoir computing with delay
systems,” Sci. Rep., vol. 4, no. 1, p. 3629, Jan. 2014.

[55] L .  Berezansky and E. Braverman, “A note on stability of Mackey–Glass
equations with two delays,” J. Math. Anal. Appl., vol. 450, no. 2, pp.
1208–1228, Jun. 2017.

[56] P. Amil, C. Cabeza, and A. C. Marti, “Exact discrete-time implemen-
tation of the Mackey–Glass delayed model,” IEEE  Trans. Circuits Syst.
II, Exp. Briefs, vol. 62, no. 7, pp. 681–685, Jul. 2015.

[57] L .  Glass and M. Mackey, “Mackey-glass equation,” Scholarpedia, vol. 5,
no. 3, p. 6908, 2010.

[58] M. Tateno and A. Uchida, “Nonlinear dynamics and chaos synchro-
nization in Mackey-Glass electronic circuits with multiple time-delayed
feedback,” Nonlinear Theory Appl., vol. 3, no. 2, pp. 155–164, 2012.

Authorized licensed use limited to: Yang Yi. Downloaded on December 21,2023 at 18:55:26 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

NOWSHIN et al.: MERRC: A  MERRC AT  THE EDGE

[59] L .  Junges and J. A. C. Gallas, “Intricate routes to chaos in the
Mackey–Glass delayed feedback system,” Phys. Lett. A, vol. 376,
nos. 30–31, pp. 2109–2116, Jun. 2012.

[60] F. Nowshin, L .  Liu, and Y.  Yi ,  “Energy efficient and adaptive analog IC
design for delay-based reservoir computing,” in Proc. IEEE  63rd Int.
Midwest Symp. Circuits Syst. (MWSCAS), Aug. 2020, pp. 592–595.

[61] W. Maass, “Networks of spiking neurons: The third generation of
neural network models,” Neural Netw., vol. 10, no. 9, pp. 1659–1671,
Dec. 1997.

[62] S. Ghosh-Dastidar and H. Adeli, “Spiking neural networks,” Int. J. Neu-
ral Syst., vol. 19, no. 4, pp. 295–308, Aug. 2009.

[63] A. L .  Hodgkin and A. F. Huxley, “A quantitative description of mem-
brane current and its application to conduction and excitation in nerve,” J.
Physiol., vol. 117, no. 4, pp. 500–544, Aug. 1952.

[64] E. M. Izhikevich, “Simple model of spiking neurons,” IEEE  Trans.
Neural Netw., vol. 14, no. 6, pp. 1569–1572, Nov. 2003.

[65] R. A. Vazquez and A. Cachón, “Integrate and fire neurons and their
application in pattern recognition,” in Proc. 7th Int. Conf. Electr. Eng.
Comput. Sci. Autom. Control, Sep. 2010, pp. 424–428.

[66] D. I. Standage and T. P. Trappenberg, “Differences in the subthreshold
dynamics of leaky integrate-and-fire and Hodgkin–Huxley neuron mod-
els,” in Proc. IEEE  Int. Joint Conf. Neural Netw., 2005, pp. 396–399.

[67] F. Kiani, J. Yin, Z. Wang, J. J. Yang, and Q. Xia, “A fully hardware-
based memristive multilayer neural network,” Sci. Adv., vol. 7, no. 48,
Nov. 2021, Art. no. eabj4801.

[68] Y.  Zhong, J. Tang, X .  Li, B. Gao, H. Qian, and H. Wu, “Dynamic
memristor-based reservoir computing for high-efficiency temporal signal
processing,” Nature Commun., vol. 12, no. 1, p. 408, Jan. 2021.

[69] X .  Liu and Z. Zeng, “Memristor crossbar architectures for implementing
deep neural networks,” Complex Intell. Syst., vol. 2022, pp. 1–16,
Apr. 2022.

[70] K .  Smagulova, O. Krestinskaya, and A. P. James, “A memristor-based
long short term memory circuit,” Anal. Integr. Circuits Signal Process.,
vol. 95, no. 3, pp. 467–472, Jun. 2018.

[71] G. Kim et al., “Self-clocking fast and variation tolerant true random
number generator based on a stochastic Mott memristor,” Nature Com-
mun., vol. 12, no. 1, p. 2906, May 2021.

[72] P. Yao et al., “Fully hardware-implemented memristor convolutional
neural network,” Nature, vol. 577, no. 7792, pp. 641–646, Jan. 2020.

[73] J. Chen et al., “High-precision symmetric weight update of memristor by
gate voltage ramping method for convolutional neural network
accelerator,” IEEE  Electron Device Lett., vol. 41, no. 3, pp. 353–356,
Mar. 2020.

[74] H. Ran et al., “Memristor-based edge computing of blaze block for
image recognition,” IEEE  Trans. Neural Netw. Learn. Syst., vol. 33,
no. 5, pp. 2121–2131, May 2022.

[75] T. V. Nguyen, J. An, and K.-S. Min, “Memristor-CMOS hybrid neuron
circuit with nonideal-effect correction related to parasitic resistance for
binary-memristor-crossbar neural networks,” Micromachines, vol. 12,
no. 7, p. 791, Jul. 2021.

[76] R. K i  and R. Sukuma, “Memristor based object detection using neu-ral
network,” High-Confidence Comput., vol. 2, no. 4, Dec. 2022, Art.
no. 100085.

[77] X .  F. Lu et al., “Exploring low power and ultrafast memristor on p-
type van der Waals SnS,” Nano Lett., vol. 21, no. 20, pp. 8800–8807, Oct.
2021.

Fabiha Nowshin received the B.S. and M.S.
degrees in electrical engineering from Virginia Tech,
Blacksburg, VA, USA, in 2019 and 2021, respec-
tively, where she is currently pursuing the Ph.D.
degree with the Bradley Department of Electrical
and Computer Engineering. Her research interests
include analog-mixed signal circuit design, neuro-
morphic computing, emerging memory technologies,
and computing-in-memory architectures.

13

Yi  Huang (Graduate Student Member, IEEE)
received the B.Eng. degree in system engineer-
ing and the M.Sc. degree in control science and
engineering from the School of Artificial Intel-
ligence and Automation, Huazhong University of
Science and Technology, Wuhan, China, in 2016 and
2019, respectively. He is currently pursuing the
Ph.D. degree in electrical and computer engineering
with the University of Massachusetts Amherst, MA,
USA. His research interests include mixed-signal
circuit design and neuromorphic computing based
on memristors.

Md. Rubel Sarkar received the B.Sc. degree
in electrical and electronic engineering from the
Ahsanullah University of Science and Technology,
Dhaka, Bangladesh, in 2017. He is currently pursu-
ing the Ph.D. degree with the Bradley Department
of Electrical and Computer Engineering, Virginia
Tech, Blacksburg, USA. He joined Virginia Tech in
August 2022. His ongoing research interests
include neuromorphic computing, hyperdimensional
computing, in-memory computing, and low power
V L S I  systems.

Qiangfei Xia (Fellow, IEEE) received the Ph.D.
degree in electrical engineering from Princeton Uni-
versity in 2007. He is currently a Professor in
electrical and computer engineering with the Univer-
sity of Massachusetts (UMass) Amherst, MA, USA,
and the Head of the Nanodevices and Integrated
Systems Laboratory. Prior to UMass, he spent three
years at Hewlett-Packard Laboratories. His research
interests include beyond-CMOS devices, integrated
systems, and enabling technologies with applications
in machine intelligence, reconfigurable RF  systems,
and hardware security.

Yang Y i  (Senior Member, IEEE) is currently an
Associate Professor with the Bradley Department
of Electrical Engineering and Computer engineer-
ing, Virginia Tech, Blacksburg, VA, USA. Her
research interests include V L S I  circuits and sys-
tems, computer-aided design (CAD), neuromorphic
architecture for brain-inspired computing systems,
and low-power circuits design with advanced
nano-technologies for high-speed wireless systems.

Authorized licensed use limited to: Yang Yi. Downloaded on December 21,2023 at 18:55:26 UTC from IEEE Xplore. Restrictions apply.


