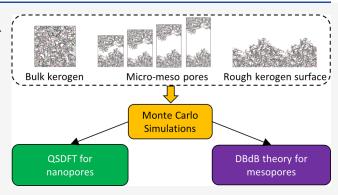


pubs.acs.org/EF Article

Molecular Modeling and Adsorption Characterization of Micro Mesoporous Kerogen Nanostructures

3 Shivam Parashar, Peter I. Ravikovitch, and Alexander V. Neimark*

Cite This: https://doi.org/10.1021/acs.energyfuels.2c02876


ACCESS I

Metrics & More

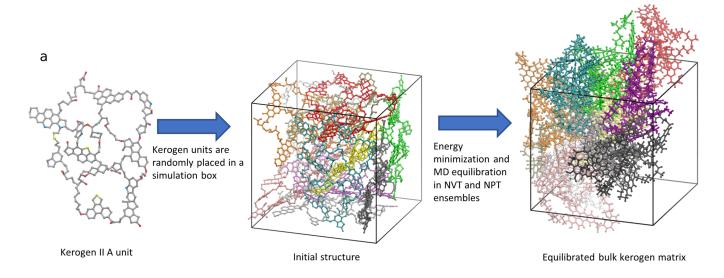
Article Recommendations

s Supporting Information

4 ABSTRACT: The aim of this work is to enhance the understanding of the pore structure and adsorption properties of 6 kerogens as applied to organic-rich shales and mudstone rocks. 7 Conventional methods of adsorption characterization from low-8 temperature N_2 isotherms rely on the use of the so-called standard 9 isotherms on nonporous substrates (typically silica or amorphous 10 carbons), which may not be accurate for the surfaces of kerogens. 11 In this work, we present a new methodology for pore size 12 characterization of kerogens that relies on a realistic molecular 13 model of kerogen surfaces. Taking advantage of recent advances in 14 modeling the molecular structure of kerogens, we create atomistic 15 three-dimensional (3D) models of amorphous bulk kerogens, 16 rough kerogen surfaces, and mesopores imbedded in the

amorphous kerogen matrix. Using grand canonical Monte Carlo (GCMC) simulations, we calculate the reference N_2 adsorption is isotherms in the micropores of the bulk kerogen matrix, on the kerogen surface, as well as in a series of mesopores confined by rough kerogen walls. Next, we parameterized the quenched solid density functional theory (QSDFT) to reproduce the kerogen surface heterogeneity and GCMC-simulated N_2 adsorption isotherms. Furthermore, we approximated the isotherm on the reference kerogen surface by a macroscopic disjoining pressure isotherm, which allows us to use the Derjaguin–Broekhoff–de Boer (DBdB) model to predict adsorption and capillary condensation in meso/macropores. The reference GCMC, QSDFT, and DBdB isotherms are combined into the kernel for calculating the micropore volume, meso- and macropore surfaces, and mesopore size distribution from the experimental adsorption isotherms. The proposed methodology is demonstrated on a typical example of a kerogen II-A sample with a wide mesopore size distribution. The methodology can be extended to other kerogen structures of different maturities to provide a comprehensive characterization of organic porosity in kerogen fractions.

27 INTRODUCTION


28 The long-term growth of natural gas production in the United 29 States comes from shale gas and associated gas from tight oil 30 plays. The latter contributes a major part of the total natural 31 gas production. Organic shales are simultaneously the source 32 and reservoir rock for these unconventional resources. Shales 33 are fine-grained low-permeability sedimentary rocks consisting 34 of inorganic and organic fractions. Detailed characterization of 35 the pore structure of shales is challenging due to heterogeneity 36 and a wide pore size distribution spanning from μ m down to 37 nm size range. ^{1,2} Kerogen, by definition, is an insoluble fraction 38 of organic matter in shales. It is a carbonaceous amorphous 39 matter with the chemical composition (H/C and O/C ratios), 40 density, and mechanical properties that depend strongly on the 41 level of maturity.

A reliable pore structure characterization of kerogen is 43 critical for understanding and predicting the hydrocarbon 44 capacity, connectivity, and transport properties of shale 45 reservoirs. The presence of organic porosity in kerogen has 46 been well documented in the literature using, for instance, 47 various microscopy techniques; however, quantification remains challenging due to the limited resolution. For the 48 gas shales, helium-ion microscopy and small-angle neutron 49 scattering identified the presence of "foamy porosity" and small 50 bubble-like pores down to nm size, which are largely outside of 51 the range of conventional scanning electron microscopy or 52 mercury intrusion techniques (see, e.g., King et al.²).

An adsorption method is the most practical method for 54 evaluating porosity, surface area, and pore size distribution 55 from the experimental adsorption isotherms of nitrogen, argon, 56 or carbon dioxide used as molecular probes. However, 57 calculations of structural parameters require specific models 58 of the pore structure and the adsorption process. While the 59 conventional methods of pore structure analysis, such as 60

Received: August 28, 2022 Revised: October 4, 2022

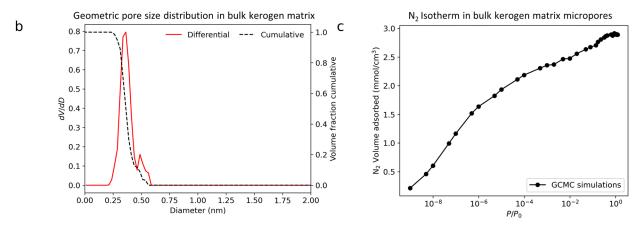


Figure 1. Construction of the molecular model of bulk kerogen and MC simulation of the bulk reference isotherm. (a) Creating the bulk kerogen matrix structure starting from 11 kerogen II-A units 10,21 (b) Differential (red) and cumulative (black dashed line) geometric pore size distribution of the equilibrated bulk kerogen matrix. (c) Reference GCMC adsorption isotherms of N_2 on the equilibrated bulk kerogen matrix.

61 Brunauer-Emmett-Teller (BET), for calculating the specific 62 surface area, and Barrett-Joyner-Halenda (BJH), and more 63 recent molecular model-based density functional theory 64 (DFT) methods have been used for characterization of 65 shales, 3-7 it should be recognized that existing adsorption 66 models have limitations. In particular, models for calculating 67 pore size distributions rely on the use of the so-called standard isotherms on nonporous substrates, which are typically silica, graphitic, or amorphous carbon surfaces, which may not be (and likely are not) an accurate representation of the kerogen surfaces. This is especially true for the low-maturity and oilwindow kerogens as the interactions with the fluid are weaker 73 because of the lower density of carbon atoms. Owing to the 74 low surface areas and porosity, an accurate representation of 75 adsorption on the surface is required for adsorption character-76 ization.

In this work, we hypothesize that the pore structure of 78 kerogen can be represented as a network of mesopores 79 distributed in the microporous kerogen matrix. We present a 80 new methodology for pore size characterization of kerogens 81 that relies on a realistic molecular model of kerogen surfaces. 82 There are several approaches in the literature to develop 83 molecular level models of the kerogen structure. In the

simplest case, the kerogen structure was modeled as graphitic 84 slit pores, which is strong simplification. Eberle et al. 85 modeled increased CH₄ confinement in nm-sized "foamy 86 porosity" of gas shales using a spherical pore model with 87 amorphous carbon walls of density matching that of mature 88 kerogen. Chemically detailed molecular models of kerogen 89 units were developed by Ungerer and co-workers 10 by 90 matching the elemental fraction and number of functional 91 groups obtained from X-ray photoelectron spectroscopy (XPS) 92 and NMR data. 11 Six models of main types of kerogen units (I- 93 A, II-A, II-B, II-C, II-D, III-C) were created corresponding to 94 different maturity and the place of origin. These models were 95 validated by matching the thermodynamic properties (like heat 96 capacity, and absolute entropy) of the experimental kerogen 97 samples with the quantum chemistry calculation. Ungerer's 98 model has become popular for simulating molecular structures 99 of the kerogen microporous matrix with embedded mesopores 100 and modeling adsorption of N₂, CH₄, and CO₂. Bousige et 101 al. created a bulk kerogen matrix model by matching not only 102 chemical composition but also the structure factor, vibrational/ 103 mechanical properties, and density of samples. The authors 104 used the molecular dynamics-hybrid reverse Monte Carlo 105 (MC) method to create four kerogen models with different 106

107 maturities. Their structure predicts that CO₂ derived pore size 108 distributions, vibrational density of states, and stiffness 109 compared to experiments. Using this model, hydrocarbon 110 (from methane to dodecane) transport was studied. Phan et 111 al. Matures in kerogen representing the kerogen micropore 113 fragment by packing benzene molecules in a gap between 114 flat silica surfaces. More elaborated structural models are 115 presented by Liu and Chapman, who studied hydrocarbon 116 dissolution in the kerogen matrix modeled as a packing of 117 asphaltenes and adsorption in slit pores with rough pore walls 118 to represent mesopores.

In this work, we suggest a new methodology for character-120 ization of kerogen pore structures based on implementation of 121 the 3D molecular models into the practical theoretical methods 122 of pore size distribution calculations, such as Derjaguin-123 Broekhoff—de Boer (DBdB)^{16,17} and quenched solid density 124 functional theory (QSDFT) methods. ^{18,19} This implementa-125 tion allows for pore size distribution calculations in the whole 126 range of pore sizes from micropores (<2 nm) to mesopores 127 (2-50 nm) to marcopores (>50 nm) that are present in 128 hierarchical kerogens. Using Ungerer's model of Kerogen II-129 A, 10 we create molecular structures of kerogen pores and by 130 grand canonical Monte Carlo (GCMC) simulations, the 131 reference adsorption isotherms of N₂ in the bulk microporous 132 kerogen matrix, on the kerogen surface, and in slit pores of 133 different sizes between molecularly rough kerogen surfaces. 134 These reference isotherms are used for (a) constructing a 135 bespoke QSDFT model of the mesopore pore walls and (b) 136 parameterizing the disjoining pressure isotherm of the 137 adsorption film on the kerogen surface for the DBdB model. 138 The parameterized QSDFT and DBdB models verified against 139 GCMC simulations are further used for predicting adsorp-140 tion-desorption hysteretic isotherms in slit-shaped and 141 cylindrical kerogen mesopores in the wide range of pore 142 sizes from 1 to 10 nm. An original computational scheme is 143 designed for calculating the pore size distributions from 144 experimental isotherms that considers the hierarchical nature 145 of the kerogen pore structure. The proposed method is 146 illustrated on the pore structure characterization of a sample of 147 Kimmeridge kerogen.²⁰

148 METHODOLOGY

Creating Bulk Kerogen Structure. To study the adsorption properties of kerogen at the molecular scale, we solve constructed a bulk structure using Ungerer's molecular models of kerogen units. As a case-study example, we consider II-A sa kerogen, which is rich in hydrogen and low in carbon, and it is Kerogen II-A unit (Figure 1a) contains 252 carbon atoms with molecular formula $C_{252}H_{294}O_{24}N_6S_3$. Around 40% of the tarbon atoms are a part of an aromatic ring, and on average, 158 11.4 carbon atoms constitute one aromatic cluster. The oxygen atoms are located in ether bridges, carbonyl, hydroxyl, and carboxylic groups, whereas the nitrogen atoms are present as thiophenic and pyridinic rings. Sulfur is present in aromatic rings as sulfides and thiols.

To generate the bulk kerogen matrix, we place 11 kerogen 164 II-A units in a simulation box (Figure 1a) in a random 165 orientation. Energy minimization of the structure is followed 166 by molecular dynamics (MD) simulations in NVT and NPT 167 ensembles at 900 K and subsequently reducing the temper-168 ature to 300 K (see Table S3 in the Supporting Information).

MD simulations are performed using the general amber force 169 field (GAFF)²³ in LAMMPS.²⁴ The atomic charges were 170 calculated using the charge equilibration method²⁵ imple- 171 mented in RASPA.²⁶ The final temperature and pressure (300 172 K and 20 MPa) are characteristic to shale reservoirs.²¹ The 173 density of the equilibrated kerogen matrix (1.05 g/cm³) is 174 close to the density of experimental samples of kerogen II A.²⁷ 175 The size of the corresponding simulation box is 40.732 Å.

The kerogen matrix represents a structure with intrinsic 177 microporosity. To characterize the porosity, surface area, and 178 pore size distribution in the equilibrated kerogen matrix, we 179 use the geometric method implemented in Poreblazer.²⁸ The 180 geometric method is based on sampling the molecular 181 structure with virtual spherical probe particles of different 182 sizes and constructing the Connolly surface enveloping the 183 pores larger that the diameter of the probe. As shown in Figure 184 1b, the bulk kerogen matrix contains molecular size interstitial 185 micropores in the range of 0.25-0.6 nm. The micropore 186 volume determined by a "helium" probe is 0.12 cm³/g, and the 187 pore surface area determined by a "nitrogen" probe is 17.04 188 m²/g. These geometric parameters reflect the specifics of the 189 bulk kerogen microporosity. However, they should be used 190 with a caution for predicting adsorption on practical samples 191 due to potential micropore blockage by remaining hydro- 192 carbons and limited accessibility.

Grand Canonical Monte Carlo (GCMC). The equili- 194 brated structure of kerogen matrix is used to calculate the 195 adsorption isotherms of N₂ using the GCMC simulations. The 196 simulations are performed using the open-source software 197 package RASPA.²⁶ A minimum of 100000 Monte Carlo moves 198 are attempted for equilibration and averages over at least 199 200,000 moves are performed for production. The proba-200 bilities for molecule translation, rotation, reinsertion, and swap 201 moves are 0.2, 0.2, 0.2, and 0.4, respectively. All of the 202 isotherms are simulated at the N2 normal boiling temperatures 203 of 77.4 K. N_2 is modeled as a rigid three-center molecule 204 described by the TraPPE force field.²⁹ Interaction parameters 205 of the adsorbate with the framework atoms are computed using 206 Lorentz-Berthelot mixing rules.³¹ The LJ potentials for 207 adsorbate interactions are truncated at 17 Å for N₂. Framework 208 charges are obtained using the charge equilibration method, 25 209 and long-range electrostatic contributions are accounted with 210 the Ewald summation method. The force field parameters for 211 C, H, N, O, and S atoms are taken from the Dreiding force 212 field, 30 which are summarized in Table S1 in the Supporting 213 Information.

■ RESULTS AND DISCUSSION

Reference GCMC Isotherms on Bulk Kerogen. We 216 perform GCMC simulations on the kerogen matrix to generate 217 N_2 adsorption isotherms at their normal boiling temperature of 218 77.4 K (Figure 1c). This isotherm, $N_{\text{bulk}}^{\text{ref}}$ expressed per unit of 219 kerogen matrix volume in mmol/cm³ or per unit mass of 220 kerogen in mmol/g, serves as the reference adsorption 221 isotherm in kerogen micropores.

Modeling Kerogen Surface and Simulation of Reference 223
Surface Isotherm. It is assumed that mesopores are embedded 224
into the kerogen matrix. To model the mesopore surface and 225
simulate the reference isotherm associated with surface 226
adsorption, we consider a 10 nm slit pore confined by kerogen 227
surfaces as 10 nm width is enough to diminish the interactions 228
from the opposite walls. To build the molecular structure of 229
the pore wall, we split the equilibrated bulk kerogen structure 230 f2

215

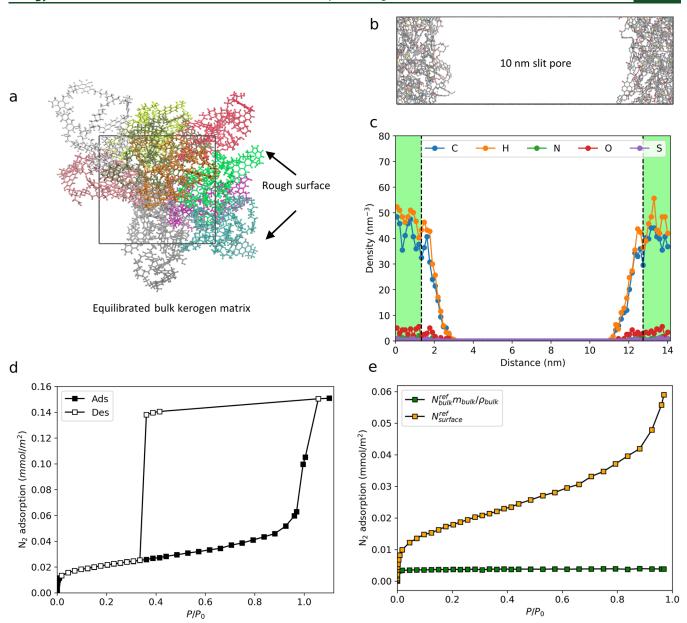



Figure 2. Construction of the molecular model of the kerogen surface and GCMC simulation of the surface reference isotherms. (a) Equilibrated kerogen matrix with a rough surface. (b) Snapshot of the molecular model of a 10 nm wide slit pore used for simulating the surface isotherm. (c) Density profiles of kerogen atoms along the slit pore. Broken lines separate the region of the bulk kerogen matrix of constant density (shaded in green) and the surface diffuse layer of varying density. (d) GCMC-simulated isotherm of N_2 in a 10 nm slit pore of kerogen. (e) Reference isotherm on the surface of kerogen $N_{\text{surface}}^{\text{ref}}$ and contribution of N_2 adsorption in the kerogen matrix $N_{\text{bulk}}^{\text{ref}}/\rho_{\text{bulk}}$, which is proportional to the reference isotherm in bulk kerogen.

231 (Figure 2a) by introducing a space of 10 nm along the z 232 direction without breaking any kerogen units. As shown in 233 Figure 2b, the pore walls possess a rough surface due to 234 different orientations of the kerogen units at the location of 235 split. The density profiles of the kerogen atoms are shown in 236 Figure 2c. The density of the kerogen wall at the surface 237 gradually decreases from the density of bulk kerogen of \sim 40 238 carbon atoms/nm³ in the wall center to zero at the center of 239 the pore. Extended equilibration of the pore wall molecular 240 structure at 300 K provides slight fluctuations of density 241 profiles along the simulation trajectory, which on average fit a 242 linearly decaying ramp distribution. The pore wall can be 243 divided into the central part of the bulk kerogen density and 244 the diffused surface layer of decreasing density. The thickness

of the bulk part is 1.3 nm, and the extension of the diffused $_{245}$ surface layer is 1.4 nm. Using the terminology of QSDFT, the $_{246}$ half-width of the diffused surface layer is called the roughness $_{247}$ parameter, δ . The roughness parameter, δ = 0.7 nm, $_{248}$ characterizes geometric inhomogeneity of the pore wall of $_{249}$ the molecular level.

Figure 2d shows the N_2 adsorption isotherm at 77.4 K in a $_{251}$ 10 nm slit pore calculated using GCMC simulations. The $_{252}$ adsorption isotherm corresponds to the filling of the $_{253}$ micropores in the kerogen wall at low pressure ($P/P_0 < _{254}$ 0.01) and subsequent formation of the adsorption film on the $_{255}$ pore surface that proceeds even beyond the saturation ($P/P_0 > _{256}$ 1). Complete pore filling due to capillary condensation occurs $_{257}$ above saturation due to an unsurpassable energy barrier in $_{258}$

Figure 3. Comparison of the GCMC-simulated isotherms in slit pores of widths 1 (skyblue), 2 (orange), 3 (green), 4 (magenta), and 10 (black) nm. The 10 nm pore isotherm serves as the reference isotherm representing adsorption in the bulk kerogen matrix and on the surface of kerogen pores.

259 such wide pores. Note that this is characteristic to the 260 experimental isotherms on kerogen, which commonly do not 261 achieve a plateau at the saturation which indicates the 262 existence of wide pores being unfilled. The desorption 263 isotherm exhibits a pronounced step that reflects evaporation 264 of a condensed fluid via cavitation that is also characteristic of 265 kerogen samples containing embedded mesopores. The 266 condensation and evaporation steps occur near $P/P_0 \sim 1$ and 267 $P/P_0 \sim 0.35$, respectively, resulting in a wide hysteresis (Figure 268 2d).

The simulated adsorption isotherm in the 10 nm slit pore includes contributions from adsorption in the bulk region of the pore wall and on the rough surface. The former is proportional to the bulk reference isotherm and the latter to its surface reference isotherm. To extract the reference surface rough isotherm $N_{\rm surface}^{\rm ref}$ from the total GCMC isotherm $N_{\rm total}$ [mmol/275 m²], we subtract the contribution from adsorption in matrix micropores shown by the shaded green region in Figure 2c,

$$N_{\text{surface}}^{\text{ref}} = N_{\text{total}} - N_{\text{bulk}}^{\text{ref}} m_{\text{bulk}} / \rho_{\text{bulk}}$$
(1)

278 Here, $N_{\rm bulk}^{\rm ref}$ [mmol/cm³] is the reference isotherm in the bulk 279 kerogen shown in Figure 1c, $m_{\rm bulk}$ [g/m²] is the mass of the 280 kerogen wall per unit area, and $\rho_{\rm bulk}$ [g/cm³] is the density of 281 the bulk kerogen structure in Figure 1a. The surface adsorption 282 isotherm $N_{\rm surface}^{\rm ref}$ [mmol/m²] is presented in Figure 2e together 283 with the respective isotherm in the pore wall micropores. The 284 constructed isotherm, $N_{\rm surface}^{\rm ref}$, is further employed as a 285 reference surface isotherm for modeling adsorption in 286 mesopores.

In Figure 3, we present the GCMC N_2 adsorption— 288 desorption isotherms in the slit pores of sizes 1, 2, 3, and 4 289 nm with the molecularly rough walls. These pores are 290 constructed with the same kerogen pore walls as the 10 nm 291 pore (Figure 2b). The adsorption isotherm in the 10 nm pore 292 is shown for comparison. The isotherms presented on a per 293 unit area basis in mmol/m² display several noteworthy 294 features. First, all isotherms exhibit a sharp step and coincide 295 with each other for relative pressures less than 10^{-3} . This 296 region corresponds to adsorption in the micropores of kerogen 297 pore walls, which are the same for all pores. Second, the deviations from the 10 nm pore isotherm, which represent the 298 sum of the reference bulk and surface isotherms, occur at the 299 onset of the filling of the gap between the pore walls that is 300 clearly seen on the isotherm plots in the semi-logarithmic scale. 301 This similarity confirms that adsorption on the kerogen surface 302 occurs in a similar manner regardless of the pore size, and with 303 minimal interactions of the adsorbate with the opposite pore 304 wall. Third, all isotherms, except for the smallest 1 nm 305 micropore, are irreversible and exhibit a hysteresis loop with 306 distinct capillary condensation and desorption steps. The 307 condensation and evaporation steps are delayed because of the 308 formation of the metastable state and restricted fluctuations in 309 the GCMC simulations that are insufficient to cross the energy 310 barrier between vapor-like and liquid-like states.

The vapor-liquid equilibrium pressure of a fluid confined to 312 nanopores is lower compared to the bulk fluid. The position of 313 the capillary condensation—desorption equilibrium is located 314 somewhere between the GCMC condensation and evaporation 315 steps, and it cannot be determined using the GCMC 316 simulations. Applications of more advanced MC simulation 317 methods, like the gauge cell mesocanonical ensemble MC 318 (MCEMC), 33-35 or the Widom insertion method, the 319 canonical ensemble (NVT),³⁶ require expensive simulations 320 and, in the case of kerogen, are impractical due to relatively 321 wide mesopores. Calculations of the adsorption and equili- 322 brium isotherms in the wide range kerogen mesopores can be 323 done using quenched solid density functional theory 324 (QSDFT)^{37,18} and Derjaguin–Broekhoff–de Boer (DBdB) 325 theory, 16,17,38 parameterized and verified against the GCMC 326 simulations. The bulk and surface kerogen isotherms 327 determined by simulating adsorption in the 10 nm wide pore 328 serve as the reference isotherms for modeling adsorption in 329 nanopores of any size and shape.

It is interesting to compare the GCMC-constructed 331 reference surface isotherm, $N_{\text{surface}}^{\text{ref}}$, with the standard 332 Harkins–Jura (HJ) isotherm, or the t-curve of de Boer, that 333 is used in the classical Barret–Joyner–Halenda (BJH) method 334 for calculating the pore size distributions from experimental 335 adsorption isotherms. 39 In doing so, we should note that the 336 HJ isotherm is normalized by the BET area, that is, the BET

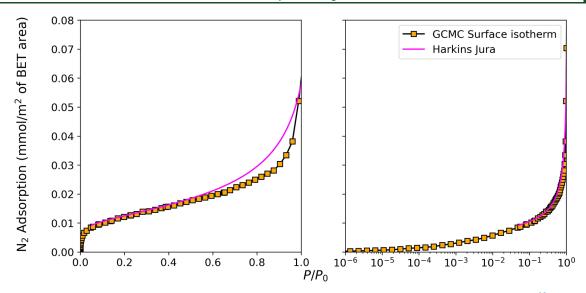


Figure 4. Comparison of the BET area-reduced GCMC kerogen surface isotherm and the standard Harkins-Jura isotherm.

338 surface calculated from the HJ isotherm is 1 m². However, the 339 HJ isotherm is considered as a reference isotherm of 340 adsorption on a nonporous adsorbent, surfaces of which are 341 not geometrically smooth. In contrast, the GCMC surface 342 isotherm is normalized by the geometric area of the kerogen 343 wall. Applying the BET method to the GCMC surface 344 isotherm, one determines the ratio of the BET area of the 345 kerogen wall to its geometric area $S_{\rm BET}/S_{\rm geom} = 1.5$. This factor 346 effectively characterizes the surface roughness of kerogen, and 347 compares to the inherent roughness of standard nonporous 348 adsorbents used for verifying the HJ isotherm. In Figure 4, we 349 compare the BET area-reduced GCMC surface isotherm, $N_{\text{surface}}^{\text{ret}}/(S_{\text{BET}}/S_{\text{geom}})$, and the HJ isotherm. After normalization, 351 the isotherms practically coincide in the region $0.05 < P/P_0 <$ 352 0.5. Deviations at higher pressures reflect the morphological 353 and chemical specifics of the kerogen surface.

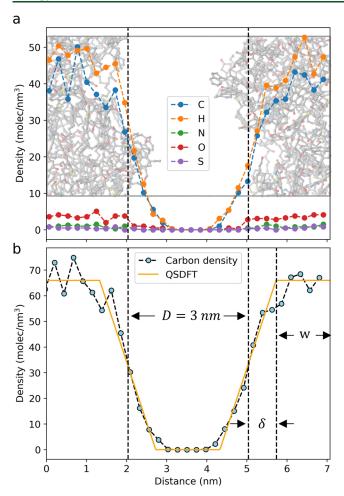
QSDFT Model of Kerogen Mesopores. Upon con-355 struction of the reference GCMC isotherms in the bulk 356 kerogen and on the kerogen surface, our next step is to mimic 357 these reference isotherms using the QSDFT model. QSDFT 358 represents the adsorption system as a two-component mixture 359 of solid and fluid (adsorbate) particles interacting via LJ 360 potentials. 18,19,37 The solid matrix microporosity and pore wall 361 surface roughness are accounted by the solid density 362 distribution that is gradually reduced at the surface from the 363 constant bulk solid density to zero. The near-surface layer of 364 varying density is called the diffuse layer, and its extension is 365 characterized by the roughness parameter, δ . The roughness 366 parameter, δ , represents the half-width of the diffuse layer. A 367 detailed description of the QSDFT model is given in section A 368 of the Supporting Information.

QSDFT parameters are available for carbons and silica-based materials, 18,38 but they are unsuitable for kerogen because of its 10 kerogen because of its 271 low density, which causes weaker interactions compared to 272 activated carbons or graphite. We use the atomistic structure 273 and GCMC reference isotherm on bulk kerogen to parametrize 274 the QSDFT model. The QSDFT parameters for modeling N_2 275 adsorption on kerogen are given in Table 1. A detailed 276 description of how these parameters are calculated is discussed 277 below using an example of a 3 nm slit pore.

In Figure 5a, we show the density profiles of kerogen components, C, H, N, O, and S, within a 3 nm wide slit pore

Table 1. QSDFT Parameters for a N2 Kerogen System

parameters	value
roughness δ (nm)	0.7
fluid-fluid LJ parameters σ_{ff} (nm) and ϵ_{ff} (K)	0.3549 and 95.77
solid–fluid LJ parameters $\sigma_{ m sf}$ (nm) and $\epsilon_{ m sf}$ (K)	0.269 and 150
hard sphere diameter of solid atoms $d_{ m hs}$ (nm)	0.233
density of effective carbon atoms $ ho_{\rm S}^0~({\rm nm}^{-3})$	66


and the atomistic structure of the kerogen pore walls in the 380 background. The density profiles gradually reduce to zero 381 within the diffuse layer near the surface. Since the QSDFT 382 model operates with one type of solid particles, we introduce 383 the density of the effective QSDFT solid particles by weighting 384 the density profile of kerogen components by the ratio of the 385 LJ energy parameters (Dreiding force field 30) of the solid 386 fluid interaction, $\epsilon_{\rm sf}$ to the respective LJ energy parameter for 387 carbon, $\epsilon_{\rm sf}^{\rm C}$ to obtain an equivalent density of effective solid 388 particles, $\rho_{\rm S}$ (z).

$$\rho_{\rm S}(z) = \sum_{i} \left(\epsilon_{\rm sf}^{i} / \epsilon_{\rm sf}^{\rm C} \right) \rho_{i}(z) \tag{2}$$

Here, i is the kerogen components C, N, O, S, and H. We 391 chose to represent the kerogen by effective carbon particles 392 because it is the main constituent of kerogen and QSDFT 393 interaction parameters of carbon with N₂ available in the 394 literature. The spatial variation of the solid density $\rho_{\rm S}$ (z) is 395 well approximated using the following linear ramp as shown in 396 Figure 5b

$$\rho_{S}(z) = \begin{cases} \rho_{S}^{0} & 0 \le z < w \\ \rho_{S}^{0} \left(\frac{z - w}{2\delta} - 1\right) & w \le z < w + 2\delta \\ 0 & w + 2\delta \le z \\ < w + 2\delta + D/2 \end{cases}$$

Here, $\rho_S^0 = 66 \text{ nm}^{-3}$ is the density of bulk solid particles. Fitting 399 the equivalent density of effective solid particles to the linear 400 ramp in 3 allows us to define the QSDFT geometric 401 parameters such as the pore diameter, D; surface roughness 402

Figure 5. QSDFT model of a 3 nm kerogen slit pore. (a) Density profile of carbon, hydrogen, nitrogen, oxygen, and sulfur. Molecular structure of kerogen pore walls is shown in the background. (b) Density profile of carbon that mimics the solid—fluid interactions with five elements approximated by a linear density profile used in the QSDFT model.

403 parameter, δ ; and bulk wall thickness, w. The pore diameter in 404 OSDFT is defined according to the Gibbs rule of zero excess of 405 solid particles that, in the slit geometry, equals to the distance 406 between the points of half the maximum density. The 407 roughness parameter, δ , is defined as the half-width of the 408 linear ramp of the solid density profile. For the pore of 409 diameter D = 3 nm, the roughness parameter, $\delta = 0.7$ nm and 410 the wall thickness, w = 1.3 nm (Figure 5b). The LJ potentials 411 of fluid-fluid and solid-fluid are approximated according to 412 the Weeks-Chandler-Andersen (WCA) scheme, 40 which, in 413 addition, contains the LJ diameter, σ_i accounting for particle 414 attraction and the hard-core diameter, d, accounting for 415 repulsion. While the fluid-fluid interaction parameters are 416 taken from the literature, 18 the fluid-solid hard-core diameter, $d_{\rm hs}$ = 0.233 nm, was chosen to ensure that the adsorption 418 capacity at $P/P_0 = 1$ within the bulk kerogen matrix is the same 419 as calculated using the GCMC simulations.

In Figure 6, the QSDFT isotherms in the slit pores of sizes 1, 421 2, 3, 4, and 10 nm calculated with the parameters listed in 422 Table 1 are compared with the GCMC isotherms. For all 423 pores, the QSDFT and GCMC isotherms are well correlated in 424 terms of the adsorption capacity and the positions of the pore 425 fillings. These isotherms consistently show the transition from

reversible to hysteretic isotherms as the pore size increases. In 426 the smallest 1 nm micropore, the isotherm is reversible. The 2 427 mm pore is a borderline: the QSDFT isotherm exhibits a 428 narrow hysteresis, while the GCMC isotherm is still reversible. 429 In wider mesopores (>3 nm), the QSDFT and GCMC 430 hysteresis loops practically coincide except for the positions of 431 capillary condensation and desorption. Most importantly, 432 QSDFT predicts the GCMC isotherms nicely during the 433 adsorption film formation in mesopores from $P/P_0 \sim 10^{-2}$ up 434 to the capillary condensation.

At low pressures, $P/P_0 < 10^{-3}$, QSDFT underpredicts the 436 adsorption compared to GCMC, which can be seen in the 437 semi-log plot for the 1 nm slit pore. The reason of this 438 mismatch at low pressures is that the QSDFT model was 439 parametrized with an objective to predict the adsorption on the 440 surface and in slit pores with comparable accuracy to GCMC. 441 Modeling the microporosity within the kerogen matrix using 442 QSDFT is beyond the scope of this work and is not required 443 for further analysis. The GCMC reference isotherm in the bulk 444 kerogen matrix is sufficient to account for the adsorption in 445 micropores.

As expected, the QSDFT adsorption-desorption isotherms 447 in mesopores exhibit a wider hysteresis loop and predicts 448 higher condensation pressure and lower desorption pressure 449 compared to GCMC. This is explained by the fact that the 450 DFT approach neglects the effects of density fluctuations, and 451 the phase transition occurs at the spinodals. The positions of 452 GCMC phase transitions are determined by the probabilities of 453 nucleation and crossing the energy barriers; the wider the pore, 454 the closer the spinodal transition occurs. This is clearly seen for 455 a 10 nm pore with practically overlapping QSDFT and GCMC 456 hysteresis loops. The advantage of the QSDFT is the ability to 457 predict the equilibrium transition that is located between the 458 condensation and desorption transitions. This allows us to 459 construct the equilibrium adsorption isotherms that are used 460 for calculating the pore size distributions from experimental 461 adsorption isotherms.

Adopting the DBdB Method for Modeling Capillary 463 Condensation and Desorption in Kerogen Mesopores. 464 The DBdB theory presents surface adsorption as a layer of bulk 465 fluid density, thickness *t* of which at given adsorbate pressure 466 corresponds to the surface adsorption isotherm. 467

$$t(P/P_0) = V_L N_{\text{surface}}^{\text{ref}}(P/P_0) \tag{4}$$

Here, $V_{\rm L}$ is the bulk liquid molar volume. This representation 469 in 4 is similar to the common definition of the adsorbed film 470 thickness used in the t-curve of the de Bour method. Hermodynamics of the adsorbed liquid film of thickness t is 472 characterized by the disjoining pressure, $\Pi(t)$, which is 473 determined from the condition of equality of chemical 474 potentials in the adsorbed film and in the gas phase at given P. 475

$$\Pi(t) = -RT/V_{L}\ln(P/P_{0})$$
 (5) ₄₇₆

5 implies that the adsorbed film is considered as a layer of 477 homogeneous incompressible liquid in equilibrium with an 478 ideal gas. In Figure 7, the GCMC reference isotherm is plotted 479 f7 in terms of disjoining pressure dependence on the effective film 480 thickness, $\Pi(t)$ using 5. The GCMC disjoining pressure 481 isotherm is approximated by an exponential function, $\Pi(t)=482$ $Ae^{-t/b}$, where $A=2.2\times10^8$ Pa and b=0.31 nm. A represents 483 the strength of the solid—fluid interactions and b represents the 484

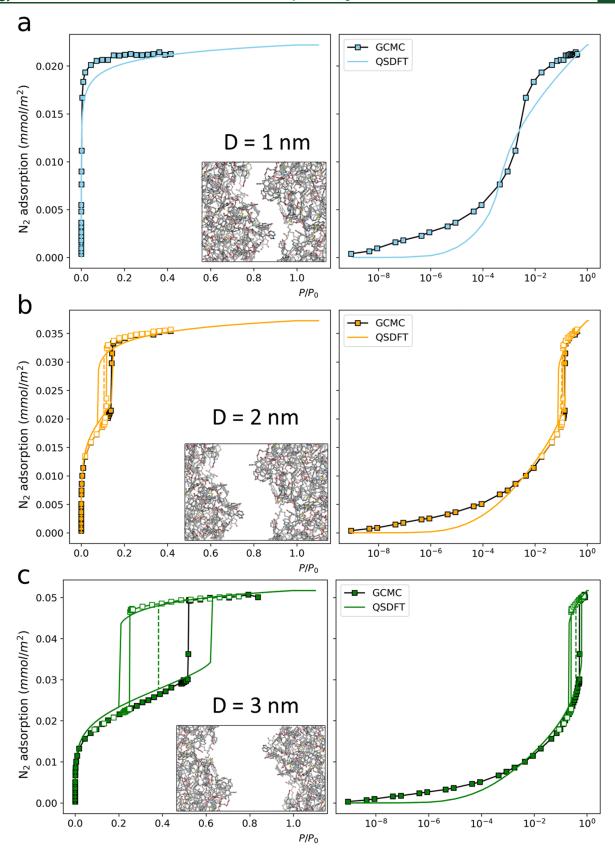


Figure 6. continued

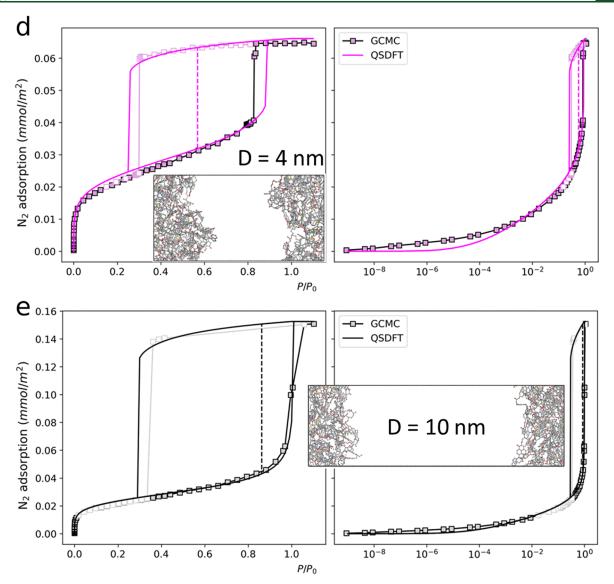
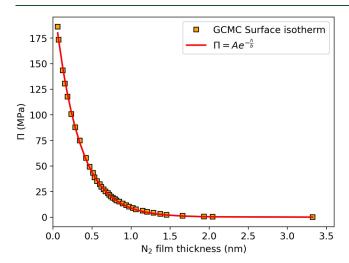



Figure 6. Comparison of N_2 isotherm computed using GCMC and QSDFT in slit pores of sizes (a) 1 nm (b) 2 nm (c) 3 nm (d) 4 nm, and (e) 10 nm. The vertical dashed lines are the equilibrium vapor—liquid transition pressures predicted by QSDFT.

ı

Figure 7. Disjoining pressure isotherm, $\Pi(t)$, for the kerogen surface constructed from the GCMC reference surface isotherm. Approximation by the exponentially decaying function, $\Pi(t) = A \mathrm{e}^{-t/b}$ (red).

decay length. This functional form of disjoining pressure is $_{485}$ frequently used in the literature for different systems. $_{41-43}$

The DBdB theory allows us to estimate the position of $_{487}$ equilibrium capillary condensation and desorption in meso- $_{488}$ pores depending on the disjoining pressure isotherm, $\Pi(t)$, and $_{489}$ the surface tension of liquid adsorbate, γ . The DBdB $_{490}$ condition for vapor—liquid equilibrium in a pore of given size, $_{491}$ D, is given by the system of equations with respect to the $_{492}$ equilibrium relative pressure, P/P_0 , and respective adsorbed $_{493}$ film thickness, t.

For slit pores, 495

$$\begin{cases} \Pi(t) = -(RT/V_L)\ln(P/P_0) & (6) \\ RT \ln(P/P_0) - \frac{V_L}{D/2 - t} \int_t^{D/2} \Pi(t) dt & (7) \\ = -\frac{\gamma V_L}{D/2 - t} & (6) \end{cases}$$

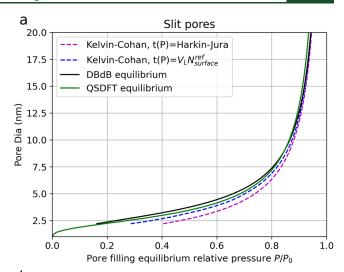
For cylindrical pores,

$$\left\{ \operatorname{RT} \ln(P/P_0) + \Pi(t) V_{\mathrm{L}} = -\frac{\gamma V_{\mathrm{L}}}{D/2 - t} \right\}$$
 (8)

$$\begin{cases} \operatorname{RT} \ln(P/P_0) - \frac{2V_L}{(D/2 - t)^2} \int_t^{D/2} (r_p - t) \Pi(t) dt & (9) \\ = -\frac{2\gamma V_L}{D/2 - t} & \end{cases}$$

497 Here, the pore size, D, represents the width of the slit pore and 498 the diameter of the cylindrical pore, and the exponential 499 function approximation of the disjoining pressure is used, $\Pi(t)$ $500 = Ae^{-t/b}$. The DBdB approach neglects the dependence of the 501 disjoining pressure on the pore wall curvature, and therefore, 502 the disjoining pressure of the adsorbed film in the cylindrical 503 pore does not depend on the pore size.

The DBdB theory represents an improvement over the 505 Kelvin-Cohan (KC) equations, which constitute the basis of 506 the conventional BJH method⁴⁴ for pore size distribution 507 calculations. KC equations predict the equilibrium capillary 508 condensation pressure from the condition of equilibrium 509 meniscus without accounting for the solid-fluid interactions in 510 the adsorbed film. The condition of equilibrium using KC 511 equations represents Laplace-Kelvin equations for cylindrical 512 and spherical menisci in slit and cylindrical pores, respectively.


$$\begin{cases} RT \ln(P/P_0) = -\frac{\gamma V_L}{D/2 - t} \\ RT \ln(P/P_0) = -\frac{2\gamma V_L}{D/2 - t} \end{cases}$$
(10)

$$RT \ln(P/P_0) = -\frac{2\gamma V_L}{D/2 - t}$$
 (11)

513 The DBdB eqs 6 and 9, reduce to KC eqs 10 and 11 when the 514 disjoining pressure, $\Pi(t)$, is neglected. Therefore, DBdB and 515 KC equations asymptotically merge as the pore size increases. 516 Note that KC eqs 10 and 11, require a certain reference 517 adsorption isotherm expressed as the film thickness depend-518 ence on the relative pressure, $t(P/P_0)$. Commonly, the film 519 thickness is calculated using the t-curve of the de Bour or 520 Harkins-Jura (HJ) equation. 45 The latter is an universal 521 isotherm that is applied for various solid surfaces disregarding 522 of their chemistry and molecular structure.

The solution of the DBdB equations with the disjoining 524 isotherm, $\Pi(t) = Ae^{-t/b}$, provides the sought pore size 525 dependence of the equilibrium capillary condensation pressure 526 in kerogen mesopores of slit and cylindrical shapes. The 527 dependencies are given in Figure 8 in comparison with the 528 respective QSDFT and KC dependencies. For both slit and cylindrical pores, QSDFT and DBdB agree perfectly even up to 530 a small pore diameter of 2.5 nm. The KC equations with the 531 standard HJ isotherm predict higher pore filling pressures 532 compared to QSDFT and DBdB. Implementation of the 533 GCMC reference isotherm on the kerogen surface in KC 534 equations instead of the HJ isotherm provides a better 535 prediction of pore filling pressures, still overestimates the 536 equilibrium pressure.

The equilibrium DBdB isotherm in the pore of size D is 538 calculated as following. In the region of the adsorbed film 539 formation before the capillary condensation pressure, the s40 isotherm is determined by the film thickness $t(\bar{P}/P_0)$ defined 541 from eq 6 for slit pores and from eq 8 for cylindrical pores. At 542 the capillary condensation pressure, the isotherm exhibits a 543 step and achieves a plateau corresponding to the complete 544 pore filling with a liquid adsorbate of bulk density. The DBdB

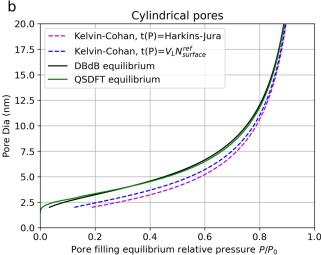


Figure 8. Comparison of the pore size dependencies of the equilibrium capillary condensation pressure predicted using QSDFT (green), DBdB (black), Kelvin-Cohan with Harkins-Jura film thickness isotherm (magenta), and with the GCMC reference surface isotherm (blue) for N2 confined in (a) slit pores and (b) cylindrical

equilibrium isotherms for the pore sizes from 2 to 200 nm are 545 further used a kernel for calculating the mesopore size 546 distribution from experimental adsorption isotherms.

Characterization of a Kimmeridge Kerogen Sample. 548 The proposed methodology is illustrated on a typical example 549 of the N₂ isotherm of a sample of Kimmeridge kerogen. 550 Kimmeridge kerogen is extracted from the marine, clastic 551 source rock consisting majorly type II kerogen with a pinch of 552 type III and lies in the middle of the oil window.²² The 553 Kimmeridge isotherm (Figure 9a) is of type II by the IUPAC 554 f9 classification with a negligible hysteresis, insignificant uptake at 555 low pressures that would be characteristic to filling of 556 micropores. Note that the isotherm does not achieve a plateau 557 that would correspond to the incomplete pore filling 558 approaching the saturation. This behavior is typical for 559 kerogen samples and suggests the existence for wide macro- 560 pores (D > 50 nm) that are filled via a capillary condensation 561 mechanism. The isotherm rise at $P/P_0 \rightarrow 1$ is due to 562 continuing adsorption on the surfaces of unfilled pores. This 563 factor is considered while calculating the pore size distribu- 564 tions.

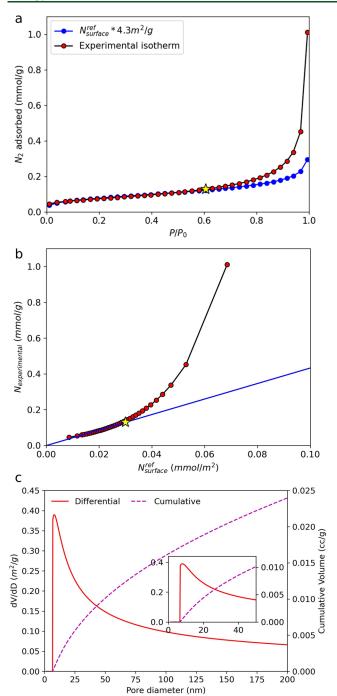


Figure 9. (a) Experimental isotherm of N_2 at 77 K on the Kimmeridge berogen sample (red squares) compared with the reference isotherm on the kerogen surface calculated using GCMC simulations. The yellow star shows the point after which the experimental isotherm deviates from the reference surface isotherm. (b) Calculation of the surface area and micropore volume of Kimmeridge kerogen using a comparison plot method. The yellow star marks the point after which the experimental isotherm deviates from the reference surface isotherm. (c) Differential and cumulative pore size distributions of Kimmeridge kerogen calculated using the DBdB cylindrical pore kernel.

First, we determine the contributions from the micropore adsorption and adsorbed film formation in mesopores before the onset of capillary condensation. The comparison method allows us to calculate the micropore volume and mesopore surface area of the kerogen sample. In Figure 9b, we plot the

experimental isotherm on Kimmeridge kerogen on y-axis 571 against the reference surface isotherm, $N_{\text{surface}}^{\text{ref}}$ on the x-axis. 572 The resulting comparison plot shows the correlation of the 573 experimental isotherm with the reference surface isotherm. 574 The linear part of the plot shows that the experimental 575 isotherm is proportional to the reference surface isotherm up 576 to $P/P_0 \sim 0.6$ (shown by yellow star); it is fitted by the blue 577 straight line in Figure 9b. Since the reference surface isotherm 578 is given per unit surface area, the slope of the linear part of the 579 comparative plot equals to the total mesopore surface area of 580 the sample available to N_2 adsorption. The y-axis intercept of 581 the linear approximation represents the micropore volume. For 582 this sample, the micropore volume is negligible, suggesting that 583 kerogen micropores are not accessible for N₂ adsorption. The 584 slope corresponds to the mesopore surface area of $4.3 \text{ m}^2/\text{g}$. 585 This value is lower compared to the BET area of 6.6 m^2/g 586 determined from the experimental isotherm. The reason is that 587 the kerogen reference surface isotherm is calculated per 588 geometric area of the kerogen surface, which is molecularly 589 rough, and the area of 4.3 m²/g represents the geometric area 590 of the kerogen surface. The BET area is higher as it represents 591 the effective area of the plain surface that would have the same 592 adsorption as on the molecularly rough surface. The ratio, 6.6/ 593 4.3 = 1.5, characterizes the inherent roughness of the kerogen 594 surface.

Upon scaling the $N_{\rm surface}^{\rm ref}$ by the surface area of 4.3 m²/g 596 determined from the comparison plot, we get a nice agreement 597 with the experimental isotherm up to $P/P_0 = 0.6$, which is 598 shown by yellow star in Figure 9a. The deviation of the 599 experimental isotherm from the surface isotherm is due to the 600 mesopore pore filling, and the point of $P/P_0 = 0.6$ is considered 601 as the onset of capillary condensation in smallest mesopores of 602 the sample. Based on the DBdB approach, $P/P_0 = 0.6$ 603 corresponds to the filling pressure of 6.5 nm pores. This means 604 that the smallest pores within this sample are of diameter $D_{\rm min}$ 605 = 6.5 nm. For calculating the pore size distribution, we 606 generated the kernel of reference isotherms in kerogen 607 cylindrical mesopores composed of the equilibrium DBdB 608 isotherms in the pores of different diameters, D_p starting from 609 6.5 to 200 nm.

A sharp uptake in the experimental isotherm near saturation 611 indicates that not all pores are filled at the last point of the 612 isotherm. We assume that adsorption in the unfilled pores 613 proceeds according to the reference surface isotherm. This 614 contribution is accounted for by adding the surface isotherm to 615 the kernel and calculating the pore size distribution, f(D), and 616 the surface of unfilled macropores, $S_{\rm ma}$, from the modified 617 generalized adsorption equation.

$$N_{\text{exp}}(P/P_0) = V_{\text{mi}} N_{\text{mi}}^{\text{ref}}(P/P_0) + \int_{D_{\text{min}}}^{D_{\text{max}}} K(P/P_0, D) f(D) dD + S_{\text{ma}} N_{\text{surface}}^{\text{ref}}(P/P_0)$$
(12) 619

Equation 12 represents the experimental isotherm as the sum 620 of the adsorption isotherms in micropores, mesopores, and on 621 the surface of unfilled macropores. Here, $N_{\rm exp}$ (P/P_0) [mol/g] 622 is the experimental isotherm, $V_{\rm mi}$ is the micropore volume, $N_{\rm mi}^{\rm ref}$ 623 is the reference isotherm in micropores, f(D) [m²/g] is the 624 pore size distribution function, $K(P/P_0, D)$ [mol/m³] is the 625 kernel of the isotherms measured in moles of N_2 adsorption 626 per unit volume of the cylindrical pores, $N_{\rm surface}^{\rm ref}$ [mol/m²] is 627 the reference surface isotherm on the kerogen surface, and $S_{\rm ma}$ 628 [m²/g] is the area of the unfilled macropores.

For the sample considered, the lower and upper limits of the mesopore sizes, $D_{\rm min}=6.5$ nm and $D_{\rm max}=200$ nm, size respectively, are determined by the sizes of pores that are sizes filled at the onset of capillary condensation at $P/P_0=0.6$ and at significant the last measured point on the experimental isotherm at $P/P_0=0.6$ and at measured point on the experimental isotherm at $P/P_0=0.6$ and at measured point on the experimental isotherm at $P/P_0=0.6$ and at measured point on the experimental isotherm at $P/P_0=0.6$ and at measured point on the experimental isotherm at $P/P_0=0.6$ and at measured point on the experimental isotherm at $P/P_0=0.6$ and at measured point on the conventional maximum size of mesopores. The solution of eq 12 is done with mesopore area of mesopores surface area that includes the areas of filled and unfilled mesopores equal to the total mesopore area of 4.3 m²/g determined by the comparative plot. The micropore volume is set to zero according to the comparative plot that does not indicate a sizable microporosity in the sample considered. The method of solution of eq 12 is explained in section B of the Supporting Information.

Equation 12 is an ill-posed problem and slight fluctuations in the experimental points can lead to artificial peaks in the pore different distribution. To counter this issue, we interpolate the measured points and fit the experimental isotherm $N_{\rm exp}$ (P) in the range $0.01-0.99~P/P_0$ to the Frenkel–Halsey–Hill (FHH) equation $N^{\rm FHH}=N_{\rm m}~(\log(P_0/P))^{-1/s}$ and obtain a nice fit (with $N_{\rm m}=0.071~{\rm mmol/g}$ and s=2.2). The pore size distribution was calculated based on the FHH function up to $P_0=0.99$, which corresponds to a cylindrical pore of size $P_0=0.99$, which corresponds to a cylindrical pore of size minimum size of the mesopores determined from the comparison plot is relatively large ($P_0=0.99$), the use of DBdB approach is justifiable for the assessment of the complete range of pores.

673 CONCLUSIONS

674 Kerogen fractions of shales possess a hierarchical pore 675 structure with a wide pore size distribution spanning the 676 whole range of micro-, meso-, and macropores. This pore 677 structure heterogeneity is reflected in adsorption isotherms, 678 which in many cases demonstrate a gradual unlimited increase 679 approaching the saturation pressure, as shown by a typical 680 example of N2 adsorption on the Kimmeridge kerogen sample 681 shown in Figure 9. We suggest a multiscale methodology for 682 constructing realistic molecular models of kerogen micro-683 porous matrices with embedded mesopores and calculating the 684 adsorption isotherms using a combination of MC simulations, 685 quenched solid density functional theory (QSDFT), and 686 macroscopic Derjaguin-Broekhoff-de Boer (DBdB) theory. 687 The proposed approach allows us to create a kernel of the 688 reference isotherms of adsorption in kerogen micropores, 689 kerogen surface, and mesopores in the range from 2 to 200 nm 690 for calculating the microporosity, surface area, and pore size 691 distribution from experimental adsorption isotherms. As a characteristic example, the kerogen II-A chemical structure is 692 chosen to demonstrate the capabilities of the proposed 693 approach.

Based on Ungerer's model of kerogen II A units, 10 we build 695 the 3D atomistic models of the bulk kerogen matrix and 696 kerogen surface. Using GCMC, we calculate the reference 697 adsorption isotherms of N $_2$ at 77.4 K in the microporous 698 kerogen matrix and molecularly rough kerogen surface that are 699 further used for pore structure characterization. The effective 700 BET surface calculated from the GCMC isotherm exceeds the 701 geometric projection surface by the factor of 1.5 reflecting the 702 kerogen surface molecular heterogeneity. It is worth noting 703 that the GCMC reference surface isotherm reduced to the 704 BET surface coincides with the standard Harking–Jura (HJ) 705 isotherm in the region 706 707

The GCMC isotherms generated in the model slit pores 708 between the kerogen surfaces demonstrate the transition from 709 the reversible pore filling in micropores (<2 nm) to 710 pronounced capillary condensation—desorption hysteresis in 711 mesopores as the pore size increases. The adsorption isotherms 712 in mesopores in the region before the capillary condensation 713 coincide with the reference surface isotherm. Further, the 714 GCMC generated adsorption isotherms are used as references 715 for building theoretical models of adsorption on kerogen 716 mesopores.

Based on the kerogen surface density profile, we build a 718 QSDFT model of molecularly rough surface with the 719 roughness parameter $\delta = 0.7$ that is parameterized to 720 reproduce the GCMC reference surface isotherms. A good 721 agreement between QSDFT and GCMC isotherms in slit 722 pores validates the QSDFT parameterization. The QSDFT 723 model allows us to determine the positions of the equilibrium 724 capillary condensation-desorption transition within the 725 hysteresis loops that are unavailable in the GCMC simulations. 726 Furthermore, we parameterize the DBdB model by trans- 727 forming the reference surface isotherm on the kerogen surface 728 into the effective disjoining pressure isotherm approximated by 729 an exponentially decaying function, $\Pi(t) = Ae^{-t/b}$. Using the 730 DBdB theory, we calculate the positions of equilibrium 731 capillary condensation-desorption transitions and build the 732 adsorption isotherms in mesopores of slit and cylindrical 733 shapes. The DBdB results are found in a close agreement with 734 the QSDFT calculations. It is worth noting that the 735 conventional Kelvin-Cohan equation, which forms the basis 736 of the BJH method, significantly overestimates the pore size 737 dependence of the equilibrium condensation pressures 738 compared with our calculations, which account for the realistic 739 molecular structure of kerogen.

The constructed GCMC, QSDFT, and DBdB isotherms 741 calculated in the wide range of pore sizes represents the kernels 742 of reference isotherms used for calculating pore size 743 distributions from experimental adsorption isotherms. With 744 the example of an experimental isotherm of N₂ on the 745 Kimmeridge kerogen sample, we show the advantages of the 746 proposed approach. We show that the comparison plot based 747 on the reference kerogen surface isotherm allows us to 748 determine the micropore volume, the total surface area of 749 meso- and macropores, and the lower limit of the range of 750 mesopore sizes. The upper limit of pore sizes is determined by 751 the highest experimentally measured pressure. The pore size 752 distribution is calculated using the DBdB kernel of equilibrium 753 isotherms calculated for model cylindrical pores with 754

755 molecularly rough kerogen walls. Complementing the DBdB 756 kernel with the reference surface isotherm allows us to 757 determine the area of unfilled macropores at the highest 758 experimentally measured pressure.

Further work is needed to develop similar models for other 760 kerogens of different maturity and develop hybrid kernels of 761 reference isotherms. It is desirable to build the QSDFT and 762 DBdB for kerogen of different maturities and chemical 763 composition. The parameters of these models are to be 764 customized for each kerogen to reflect the difference in the 765 sample density and carbon fraction. This will allow for 766 determining from the experimental adsorption isotherm the 767 distribution of different types of kerogen fractions in the 768 sample, as well as the micro-, meso-, and microporosity; meso-769 and macropore surface area; and pore size distributions. Like 770 the conventional NLDFT and QSDFT methods for carbon, 771 the hybrid kernels for kerogens can be built using model pores 772 of different pore shapes: slit, cylindrical, and spherical. The 773 further advancement of the 3D molecular models will provide a 774 comprehensive characterization of hierarchical porosity in 775 kerogens and shales.

76 ■ ASSOCIATED CONTENT

7 S Supporting Information

778 The Supporting Information is available free of charge at 779 https://pubs.acs.org/doi/10.1021/acs.energyfuels.2c02876.

Supporting Information with simulation methods, approach to solve adsorption integral equation, comparison of reference surface isotherms, construction of the kerogen matrix structure, and QSDFT and DBdB kernels in cylindrical pores (PDF)

785 **AUTHOR INFORMATION**

786 Corresponding Author

Alexander V. Neimark – Department of Chemical and
Biochemical Engineering, Rutgers, The State University of
New Jersey, Piscataway, New Jersey 08854, United States;
o orcid.org/0000-0002-3443-0389; Email: aneimark@
rutgers.edu

792 Authors

780

781

782

783

784

Shivam Parashar – Department of Chemical and Biochemical
 Engineering, Rutgers, The State University of New Jersey,
 Piscataway, New Jersey 08854, United States; orcid.org/
 0000-0002-0323-7391

Peter I. Ravikovitch – ExxonMobil Technology and
 Engineering Company, Annandale, New Jersey 08801, United
 States

800 Complete contact information is available at: 801 https://pubs.acs.org/10.1021/acs.energyfuels.2c02876

802 Author Contributions

803 All authors have given approval to the final version of the 804 manuscript.

805 Notes

806 The authors declare no competing financial interest.

807 **ACKNOWLEDGMENTS**

808 This work was supported by the National Science Foundation 809 (CBET Grant 18334339) and ExxonMobil Technology and 810 Engineering Company.

REFERENCES

- (1) Bousige, C.; Ghimbeu, C. M.; Vix-Guterl, C.; Pomerantz, A. E.; 812 Suleimenova, A.; Vaughan, G.; Garbarino, G.; Feygenson, M.; 813 Wildgruber, C.; Ulm, F.-J.; Pellenq, R. J. M.; Coasne, B. Realistic 814 molecular model of kerogen's nanostructure. *Nat. Mater.* **2016**, *15*, 815 576–582.
- (2) King, H. E.; Eberle, A. P. R.; Walters, C. C.; Kliewer, C. E.; Ertas, 817 D.; Huynh, C. Pore Architecture and Connectivity in Gas Shale. 818 Energy Fuels 2015, 29, 1375–1390.
- (3) Wang, R.; Zhang, N.; Liu, X.; Wu, X.; Chen, J.; Ma, L. 820 Characteristics of Pore Volume Distribution and Methane Adsorption 821 on Shales. *Adsorpt. Sci. Technol.* **2015**, 33, 915–937.
- (4) Liang, Z.; Jiang, Z.; Li, Z.; Song, Y.; Gao, F.; Liu, X.; Xiang, S. 823 Nanopores Structure and Multifractal Characterization of Bulk Shale 824 and Isolated Kerogen—An Application in Songliao Basin, China. 825 Energy Fuels 2021, 35, 5818–5842.
- (5) Suleimenova, A.; Bake, K. D.; Ozkan, A.; Valenza, J. J.; 827 Kleinberg, R. L.; Burnham, A. K.; Ferralis, N.; Pomerantz, A. E. Acid 828 demineralization with critical point drying: A method for kerogen 829 isolation that preserves microstructure. *Fuel* 2014, 135, 492–497. 830
- (6) Valenza, J. J.; Drenzek, N.; Marques, F.; Pagels, M.; Mastalerz, 831
 M. Geochemical controls on shale microstructure. *Geology* 2013, 41, 832
 611–614.
- (7) Kuila, U.; Prasad, M. Specific surface area and pore-size 834 distribution in clays and shales. *Geophys. Prospect.* **2013**, *61*, 341–362. 835
- (8) Xiong, J.; Liu, X.; Liang, L.; Zeng, Q. Methane Adsorption on 836 Carbon Models of the Organic Matter of Organic-Rich Shales. *Energy* 837 Fuels **2017**, 31, 1489–1501.
- (9) Eberle, A. P. R.; King, H. E.; Ravikovitch, P. I.; Walters, C. C.; 839 Rother, G.; Wesolowski, D. J. Direct Measure of the Dense Methane 840 Phase in Gas Shale Organic Porosity by Neutron Scattering. *Energy & 841 Fuels* **2016**, *30*, 9022–9027.
- (10) Ungerer, P.; Collell, J.; Yiannourakou, M. Molecular Modeling 843 of the Volumetric and Thermodynamic Properties of Kerogen: 844 Influence of Organic Type and Maturity. *Energy Fuels* **2015**, 29, 91–845 105.
- (11) Kelemen, S. R.; Afeworki, M.; Gorbaty, M. L.; Sansone, M.; 847 Kwiatek, P. J.; Walters, C. C.; Freund, H.; Siskin, M.; Bence, A. E.; 848 Curry, D. J.; Solum, M.; Pugmire, R. J.; Vandenbroucke, M.; Leblond, 849 M.; Behar, F. Direct Characterization of Kerogen by X-ray and Solid-850 State 13C Nuclear Magnetic Resonance Methods. *Energy Fuels* **2007**, 851 21, 1548–1561.
- (12) Wang, T.-Y.; Tian, S.-C.; Liu, Q.-L.; Li, G.-S.; Sheng, M.; Ren, 853 W.-X.; Zhang, P.-P. Pore structure characterization and its effect on 854 methane adsorption in shale kerogen. *Pet. Sci.* **2021**, *18*, 565–578.
- (13) Obliger, A.; Ulm, F.-J.; Pellenq, R. Impact of Nanoporosity on 856 Hydrocarbon Transport in Shales' Organic Matter. *Nano Lett.* **2018**, 857 18, 832–837.
- (14) Phan, A.; Striolo, A. Evidence of Facilitated Transport in 859 Crowded Nanopores. J. Phys. Chem. Lett. 2020, 11, 1814–1821.
- (15) Liu, J.; Chapman, W. G. Thermodynamic Modeling of the 861 Equilibrium Partitioning of Hydrocarbons in Nanoporous Kerogen 862 Particles. *Energy Fuels* **2019**, *33*, 891–904.
- (16) Broekhoff, J. C. P.; de Boer, J. H. Studies on pore systems in 864 catalysts: XIV. Calculation of the cumulative distribution functions for 865 slit-shaped pores from the desorption branch of a nitrogen sorption 866 isotherm. *J. Catal.* **1968**, *10*, 391–400.
- (17) Broekhoff, J. C. P.; de Boer, J. H. Studies on pore systems in 868 catalysts: XII. Pore distributions from the desorption branch of a 869 nitrogen sorption isotherm in the case of cylindrical pores A. An 870 analysis of the capillary evaporation process. *Journal of Catalysis* **1968**, 871 10 (4), 368–376.
- (18) Neimark, A. V.; Lin, Y.; Ravikovitch, P. I.; Thommes, M. 873 Quenched solid density functional theory and pore size analysis of 874 micro-mesoporous carbons. *Carbon* **2009**, 47, 1617–1628.
- (19) Gor, G. Y.; Thommes, M.; Cychosz, K. A.; Neimark, A. V. 876 Quenched solid density functional theory method for characterization 877 of mesoporous carbons by nitrogen adsorption. *Carbon* **2012**, *50*, 878 1583–1590.

- 880 (20) Zhao, H.; Lai, Z.; Firoozabadi, A. Sorption Hysteresis of Light 881 Hydrocarbons and Carbon Dioxide in Shale and Kerogen. *Sci. Rep.* 882 **2017**, 7, No. 16209.
- 883 (21) Collell, J.; Ungerer, P.; Galliero, G.; Yiannourakou, M.; Montel, 884 F.; Pujol, M. Molecular Simulation of Bulk Organic Matter in Type II 885 Shales in the Middle of the Oil Formation Window. *Energy Fuels* 886 **2014**, 28, 7457–7466.
- 887 (22) Okiongbo, K. S.; Aplin, A. C.; Larter, S. R. Changes in Type II 888 Kerogen Density as a Function of Maturity: Evidence from the 889 Kimmeridge Clay Formation. *Energy Fuels* **2005**, *19*, 2495–2499.
- 890 (23) Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. 891 A. Development and testing of a general amber force field. *J. Comput.* 892 Chem. 2004, 25, 1157–1174.
- 893 (24) Plimpton, S. Fast Parallel Algorithms for Short-Range 894 Molecular Dynamics. *J. Comput. Phys.* **1995**, *117*, 1–19.
- 895 (25) Rappe, A. K.; Goddard, W. A. Charge equilibration for 896 molecular dynamics simulations. *J. Phys. Chem. A* **1991**, 95, 3358–897 3363.
- 898 (26) Dubbeldam, D.; Calero, S.; Ellis, D. E.; Snurr, R. Q. RASPA: 899 Molecular simulation software for adsorption and diffusion in flexible 900 nanoporous materials. *Mol. Simul.* **2016**, *42*, 81–101.
- 901 (27) Okiongbo, K. S.; Aplin, A. C.; Larter, S. R. Changes in type II 902 kerogen density as a function of maturity: Evidence from the 903 Kimmeridge Clay Formation. *Energy Fuels* **2005**, *19*, 2495–2499.
- 904 (28) Sarkisov, L.; Harrison, A. Computational structure character-905 isation tools in application to ordered and disordered porous 906 materials. *Mol. Simul.* **2011**, 37, 1248–1257.
- 907 (29) Potoff, J. J.; Siepmann, J. I. Vapor—liquid equilibria of mixtures 908 containing alkanes, carbon dioxide, and nitrogen. *AIChE J.* **2001**, *47*, 909 1676—1682.
- 910 (30) Mayo, S. L.; Olafson, B. D.; Goddard, W. A. Dreiding a 911 Generic Force-Field for Molecular Simulations. *J. Phys. Chem. C* **1990**, 912 94. 8897–8909.
- 913 (31) Ungerer, P.; Tavitian, B.; Boutin, A. Application of Molecular 914 Simulation in the Oil and Gas Industry. Monte Carlo Methods; Editions 915 TECHNIP, 2005.
- 916 (32) Psarras, P.; Holmes, R.; Vishal, V.; Wilcox, J. Methane and 917 CO2 Adsorption Capacities of Kerogen in the Eagle Ford Shale from 918 Molecular Simulation. *Acc. Chem. Res.* **2017**, *50*, 1818–1828.
- 919 (33) Neimark, A. V.; Vishnyakov, A. Gauge cell method for 920 simulation studies of phase transitions in confined systems. *Physical* 921 *Review E* **2000**, *62*, 4611–4622.
- 922 (34) Vishnyakov, A.; Neimark, A. V. Studies of Liquid–Vapor 923 Equilibria, Criticality, and Spinodal Transitions in Nanopores by the 924 Gauge Cell Monte Carlo Simulation Method. *J. Phys. Chem. B* **2001**, 925 *105*, 7009–7020.
- 926 (35) Neimark, A. V.; Vishnyakov, A. A simulation method for the 927 calculation of chemical potentials in small, inhomogeneous, and dense 928 systems. *J. Chem. Phys.* **2005**, 122, No. 234108.
- 929 (36) Widom, B. Some Topics in the Theory of Fluids. *J. Chem. Phys.* 930 **1963**, 39, 2808–2812.
- 931 (37) Ravikovitch, P. I.; Neimark, A. V. Density Functional Theory 932 Model of Adsorption on Amorphous and Microporous Silica 933 Materials. *Langmuir* **2006**, 22, 11171–11179.
- 934 (38) Ravikovitch, P. I.; Neimark, A. V. Density Functional Theory of 935 Adsorption in Spherical Cavities and Pore Size Characterization of 936 Templated Nanoporous Silicas with Cubic and Three-Dimensional 937 Hexagonal Structures. *Langmuir* 2002, *18*, 1550–1560.
- 938 (39) Harkins, W. D.; Jura, G. An adsorption method for the 939 determination of the area of a solid without the assumption of a 940 molecular area, and the area occupied by nitrogen molecules on the 941 surfaces of solids. *The Journal of Chemical Physics* **1943**, *11*, 431.
- 942 (40) Weeks, J. D.; Chandler, D.; Andersen, H. C. Role of Repulsive 943 Forces in Determining the Equilibrium Structure of Simple Liquids. *J.* 944 *Chem. Phys.* **1971**, *54*, 5237–5247.
- 945 (41) Schlangen, L. J. M.; Koopal, L. K.; Stuart, M. A. C.; Lyklema, J.; 946 Robin, M.; Toulhoat, H. Thin Hydrocarbon and Water Films on Bare 947 and Methylated Silica: Vapor Adsorption, Wettability, Adhesion, and 948 Surface Forces. *Langmuir* 1995, 11, 1701–1710.

- (42) Ravikovitch, P. I.; Vishnyakov, A.; Neimark, A. V.; Ribeiro 949 Carrott, M. M. L.; Russo, P. A.; Carrott, P. J. Characterization of 950 Micro-Mesoporous Materials from Nitrogen and Toluene Adsorp- 951 tion: Experiment and Modeling. *Langmuir* 2006, 22, 513–516.
- (43) Gor, G. Y.; Paris, O.; Prass, J.; Russo, P. A.; Ribeiro Carrott, M. 953 M. L.; Neimark, A. V. Adsorption of n-Pentane on Mesoporous Silica 954 and Adsorbent Deformation. *Langmuir* **2013**, *29*, 8601–8608.
- (44) Barrett, E. P.; Joyner, L. G.; Halenda, P. P. The Determination 956 of Pore Volume and Area Distributions in Porous Substances. I. 957 Computations from Nitrogen Isotherms. *J. Am. Chem. Soc.* **1951**, 73, 958 373–380.
- (45) Harkins, W. D.; Jura, G. Surfaces of Solids. XII. An Absolute 960 Method for the Determination of the Area of a Finely Divided 961 Crystalline Solid. *J. Am. Chem. Soc.* **1944**, 66, 1362–1366.