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ABSTRACT

Esophageal disorders are related to the mechanical properties and function of the esophageal

wall. Therefore, to understand the underlying fundamental mechanisms behind various

esophageal disorders, it is crucial to map mechanical behavior of the esophageal wall in terms

of mechanics-based parameters corresponding to altered bolus transit and increased intrabolus

pressure. We present a hybrid framework that combines fluid mechanics and machine learning

to identify the underlying physics of various esophageal disorders (motility disorders,

eosinophilic esophagitis, reflux disease, scleroderma esophagus) and maps them onto a

parameter space which we call the virtual disease landscape (VDL). A one-dimensional inverse

model processes the output from an esophageal diagnostic device called the functional lumen

imaging probe (FLIP) to estimate the mechanical “health” of the esophagus by predicting a set

of mechanics-based parameters such as esophageal wall stiffness, muscle contraction pattern

and active relaxation of esophageal walls. The mechanics-based parameters were then used to

train a neural network that consists of a variational autoencoder that generated a latent space

and a side network that predicted mechanical work metrics for estimating esophagogastric

junction motility. The latent vectors along with a set of discrete mechanics-based parameters

define the VDL and formed clusters corresponding to specific esophageal disorders. The VDL

not only distinguishes among disorders but also displayed disease progression over time.

Finally, we demonstrated the clinical applicability of this framework for estimating the

effectiveness of a treatment and tracking patients’ condition after a treatment.

KEYWORDS:

Achalasia, FLIP, convolutional neural network, computational fluid dynamics, dysphagia,

variational autoencoder
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1. INTRODUCTION

Medical diagnoses are often made using devices to measure physical quantities such as

pressure, fluid velocity, or tissue geometry and deformation. Such measurements serve as

surrogates for fundamental physiomarkers such as tissue integrity and neuromuscular function

that define the health of an organ. In fact, since the fundamental physiomarkers are often

unknown or unmeasurable, clinical decisions often need to be based on these physical

quantities. However, such measurements never precisely track the relevant physiomarkers and

this can lead to discrepancies. Experimental and computational frameworks that combine the

diagnostic measurements with the physical laws that govern them could potentially minimize

these discrepancies leading to more accurate clinical decisions. In this work, we present a novel

hybrid approach that uses machine learning and principles of fluid mechanics to process raw

data generated from an esophageal diagnostic device to develop a set of mechanics-based

parameters as fundamental physiomarkers of disease in a patient-specific manner.

A widely used test for evaluating esophageal dysphagia is high-resolution manometry

(HRM) [1-5]. HRM measures swallow-induced pressures at multiple sites within the esophageal

lumen including the esophagogastric junction (EGJ) to make clinical diagnoses according to the

Chicago Classification v4.0 (CCv4.0) [6], the current worldwide standard classification of

esophageal motility disorders. A newer technology for investigating esophageal motility is the

functional luminal imaging probe (FLIP) [7, 8] which assesses the response of the esophagus to

distention. Figure 1 is a schematic diagram of the FLIP probe incorporating 16 impedance

planimetry sensors to measure esophageal luminal cross-sectional area and a pressure sensor

at its distal end. The sensors are housed within a compliant bag that is incrementally filled with

saline. During measurements, the FLIP probe is passed trans-orally and positioned across the

EGJ. Distending the esophagus with the FLIP bag normally induces a contractile response

including periods of repetitive antegrade contractions (RACs), but alternative patterns (or no
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contractile response) can be seen in patients with esophageal motility disorders or other

disease states [9]. Compared to HRM, which evaluates primary peristalsis, FLIP evaluates

secondary peristalsis which is physiologically different. Carlson et al. [10] have shown that

subjects with normal esophageal motility on HRM exhibit abnormal EGJ opening with FLIP.

Other studies [11, 12] have also shown that, unlike other diagnostic tests, FLIP can be used to

estimate the in-vivo mechanical properties of the esophageal wall. Savarino et al. [13] and

Carlson [14] have published reviews of the clinical applicability of FLIP. Additionally, FLIP has

been shown to be used intraoperatively [15, 16] during endoscopic or laparoscopic myotomy to

calibrate the procedure. Figure 2 shows the typical FLIP measurements of cross-sectional areas

in a normal subject as compared to a type I and III achalasia subject.

Figure 1: Schematic diagram of the FLIP probe. The secondary peristaltic contraction and EGJ
tone are evident inside the blue boxes. EGJ tone results from a complex interaction between the
lower esophageal sphincter and the crural diaphragm.
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Figure 2: Variation of cross-sectional area (in mm2) along the FLIP length in a typical (a)
normal, (b) type I, and (c) type II achalasia subject. The low cross-sectional areas (in red)
show the contraction pattern and EGJ tone, while the high cross-sectional values (in blue)
show the relaxed regions. The normal subject shows an antegrade contraction with a relaxed
EGJ, type I achalasia shows no contractility and an unrelaxed EGJ, and type III achalasia
shows unrelaxed EGJ with irregular contractions in the esophageal body.

In this work, we present a framework that works with FLIP measurements to add

precision to clinical interventions. We used the pressure and diameter data obtained from FLIP

to calculate mechanics-based parameters such as esophageal wall properties, muscle

contraction strength, EGJ tone, and active relaxation of the esophageal musculature.

Esophageal biomechanics have been extensively studied using both experimental [17-22] and

computational [23-31] approaches. For our analysis, we used the mathematical framework as

described in Halder et. al. [26] to calculate the mechanics-based parameters since it worked

with clinical fluoroscopy data obtained from the esophagus and makes rapid predictions with

limited computational resources.

The mechanics-based parameters estimate the mechanical “health” of the esophagus in

a patient-specific manner. However, identifying unique patterns in these parameters for specific

esophageal disorders is challenging, especially with parameters that are functions of both time

and location along the esophagus. It is also important that the methodology adjust to errors in

the FLIP device operation such as probe positioning and potential discrepancies introduced by

human input such as manually specifying values for mechanics-based parameters. This is

analogous to manually identifying landmarks on pressure topography plots during the
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interpretation of HRM studies. This challenging task is tackled using machine learning which

has been widely applied in medical diagnosis [32-41]. Machine learning techniques have been

used both for medical image analysis and raw patient data analysis. In gastroenterology,

machine learning has been used mainly for image segmentation and classification tasks [42-45].

The exception is a recent study [46] demonstrating the use of a variational autoencoder (VAE)

[47] to identify contractility patterns from raw HRM data. The clusters generated in the latent

space of the VAE categorized the raw HRM data into patient groups corresponding to specific

motility disorders. However, although the data clusters were beneficial for diagnosis, they do not

have a discrete physical meaning. In this work, we present a novel framework, called

mechanics-informed variational autoencoder (MI-VAE), which forms clusters in a parameter

space corresponding to specific esophageal disorders and these clusters do have physical

meaning because they were generated from mechanics-based parameters. We call this

parameter space the Virtual Disease Landscape (VDL).
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2. METHODS

Distention of the FLIP probe usually elicits esophageal contractions that its sensors

characterize by variations of cross-sectional area along the distal 10-13 cm of the esophagus

(including the EGJ) and pressure within the probe measured at its distal end. Using these

outputs, we estimated the mechanical “health” of the esophagus and identified patterns of

output observed with esophageal motility disorders and other esophageal diseases. This was

done in two steps: 1) using an inverse model to estimate the mechanical “health” of the

esophagus by calculating parameters such as esophageal wall properties, contraction strength,

active relaxation, work done while opening the EGJ (EGJW) and work required to open the EGJ

(EGJROW) [48], and 2) using the calculated mechanics-based parameters as input to a VAE

which generates the VDL in the form of its latent space. The next two subsections discuss these

steps in details.

2.1. Mechanics model

Figure 3: Example of graphical output from a normal FLIP study. (a) Bag volume and pressure
in the FLIP probe. The pressure variations are caused by antegrade contractions. The black
circles indicate minimum distal pressure at each fill volume. These low-pressure points are
assumed to correspond to ᵰ�~1, (b) Iso-area contour plot of cross-sectional area data for the
time interval delineated by the dashed lines in (a). The EGJ is located between the dashed
white lines. It is seen to distend as the contraction moves from the proximal to the distal end of
the FLIP probe.
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Figure 3 illustrates output from a normal FLIP study during a period of RACs as the

distention volume is incrementally increased at about 30 second intervals. With a RAC pattern,

repetitive antegrade contractions are observed at a frequency of 6±3 per minute. Each

antegrade contraction leads to a rise in bag pressure (red tracing in Figure 3a). Output from the

16 impedance planimetry sensors are displayed as an iso-area topography plot in Figure 3b by

interpolating data between sensors. The deep red band in Figure 3b is an antegrade contraction

which is associated with an increase in cross-sectional area at the EGJ shown by the blue

region near the distal end. Note that since FLIP output is of cross-sectional area there is no

information regarding the actual three-dimensional geometry of the esophageal lumen. Hence,

for simplicity and to conserve computational resources we modeled the FLIP as a one-

dimensional flexible tube.

2.1.1. Governing equations

The one-dimensional mass and momentum equations that describe fluid flow through a

flexible tube [49-52] are as follows:

ᵱ�ᵆ� 
+ 
ᵱ�ᵆ� 

= 0,

ᵱ�ᵄ� ᵱ� ᵄ� ! ᵃ� ᵱ�ᵄ� 8ᵰ�ᵰ�ᵄ�

ᵱ�ᵆ� ᵱ�ᵆ� ᵃ� ᵰ� ᵱ�ᵆ� ᵰ�ᵃ�

(1)

(2)

where ᵃ� is the cross-sectional area of the FLIP, ᵄ� and ᵄ� are the flowrate and pressure in the

fluid inside the FLIP, respectively. ᵆ� and ᵆ� represent the position on the probe and time,

respectively. ᵰ� and ᵰ� are the density and dynamic viscosity of the fluid, respectively. In

equations (1) and (2), ᵃ� was known for all ᵆ� and ᵆ�.
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The fluid pressure inside the esophagus has been found to be linearly proportional to its

cross-sectional area [11, 12]. Hence, it is possible to relate the fluid pressure inside the

esophagus with its stiffness as shown below:

ᵄ� = ᵄ� + ᵃ� 8
ᵰ�ᵃ�" 

− 1: , (3)

where ᵃ� is the stiffness of the esophageal walls, ᵄ� is the pressure outside the esophagus

(mostly thoracic pressure), ᵃ�" is the relaxed cross-sectional area of the esophageal lumen, and

ᵰ� is the activation parameter. When the esophagus is in its inactive state, ᵰ� = 1. At this state,

ᵃ� = ᵃ�" , and ᵄ� = ᵄ� i.e., the pressure inside the esophagus is equal to the pressure outside it.

When ᵰ� < 1, a contraction is induced in the esophagus and the pressure rises. ᵰ� > 1 indicates

active relaxation characterized by reduced pressure and increased cross-sectional area.

The non-dimensional form of equations (1)-(3) can be written as follows:

ᵱ�ᵰ� 
+ 
ᵱ�ᵱ� 

= 0, (4)
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. / 0 $  

C
+ 

D. Equation (3) was

used to replace ᵄ� in equation (2) and non-dimensionalized to obtain equation (5). The velocity

scale ᵅ� was taken to be 3 cm /s which is typically the speed of a peristaltic contraction. The ratio

ᵃ�/ᵃ�" can be considered as a measure of the stiffness of the esophageal walls.

2.1.2 Numerical implementation

The FLIP is closed at its two ends, so it is necessary to enforce zero flow rate boundary

conditions at ᵱ� = 0 and ᵱ� = 1. Since equation (4) requires only one boundary condition for ᵅ�, we

differentiate it with respect to ᵱ� to obtain a second order form as follows:
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ᵱ�ᵰ�ᵱ�ᵱ� 
+ 
ᵱ�ᵱ�

ᵅ� 
= 0. (6)

We do the same for equation (5) to specify a Dirichlet boundary condition for pressure at the

distal end (as measured by the pressure sensor) and zero pressure gradient at the proximal end

as typically observed in practice. Equation (5) takes the following form after differentiating with

respect to ᵱ�:

! ! !

ᵱ�ᵰ�ᵱ�ᵱ� 
+ 
ᵱ�ᵱ� ! 

/ 0 + 
ᵱ�ᵱ� 

Mᵯ�

 
ᵱ�ᵱ�

C DN + ᵱ� 
ᵱ�ᵱ� 

C D = 0. (7)

With ᵯ� known for all ᵱ� and ᵰ�, equation (6) was solved to calculate ᵅ�. Following this, equation (7)

was solved to calculate 
2 

with the known values of ᵯ� and the calculated values of ᵅ�. Equations

(6) and (7) are solved using the finite volume method as described in Halder et. al. [26] on a grid

as shown in Figure 4.

Figure 4: Schematic of the discretized domain. The green markers show the cell boundaries,
and the red markers show the cell centers.

The discretized form of equations (6) and (7) are shown below:

ᵅ�3 − 
2

(ᵅ�345 + ᵅ�365) = 
2Δᵰ� 

(ᵯ�7 − ᵯ�765 − ᵯ�7 + ᵯ�765), (8)

(ᵯ�7 + ᵯ�765) C D
3 
− ᵯ�7 C D

345 
− ᵯ�765 C

ᵯ�
D

365 
= 

Δᵱ� 
(ᵅ�345 − ᵅ�365 − ᵅ�345 + ᵅ�365)

+ /
ᵅ�345 

+ 
ᵅ�365 

− 
2ᵅ�

3

 
0 + 

ᵱ� 
8
ᵅ�345 

− 
ᵅ�365

: , (9)

345 365 3 345 365

where, ᵅ�, ᵃ� = 1,2,… ,ᵄ�. The non-dimensional cross-sectional areas ᵯ� were known from the

impedance sensors.
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2.1.3 Initial and boundary conditions

Equations (6) and (7) were used to solve for ᵅ� and 
2 

respectively. Note that ᵯ� and ᵰ� were

grouped here for simplicity. Once 
2 

is known, calculating ᵰ� is straightforward with the known

values of ᵯ�. During operation, the FLIP probe is a flexible tube closed at both ends. Since

equations (6) and (7) are second-order in ᵱ�, we need two boundary conditions for ᵅ� and 
2 

at ᵱ� =

0 and ᵱ� = 1. Additionally, we need one initial condition for ᵅ� since equation (7) is first-order in ᵰ�.

At ᵰ� = 0, we specified ᵅ� = 0 for all ᵱ�. Since the two ends of the FLIP bag are closed, ᵅ� = 0 at

ᵱ� = 0 and ᵱ� = 1. Additionally, with the distal pressure (ᵄ� ), ᵄ� = ᵄ� (ᵆ�) at ᵱ� = 1. Therefore at ᵱ� =

1, the corresponding value of 1 is *& 6(*
#

6+)
. At ᵱ� = 0, we specified ;  

C
1

D = 0. This follows

directly from equation (5) since ᵅ� = 0 at ᵱ� = 0 for all values of ᵰ�.

2.1.4. Calculation of the primary mechanics-based parameters

Figure 5: Mechanics-based parameters. (a) The variation FLIP pressure with the reference
cross-sectional area. The slope and y-intercept of the fitted line yield ᵃ�/ᵃ�" and ᵄ� − ᵃ�,
respectively. (b) Variation of the activation parameter corresponding to the cross-sectional area
variation shown in Figure 3(b).

Solving equations (6) and (7) requires the knowledge of the parameters ᵃ�/ᵃ�" and ᵄ� − ᵃ� in a

patient-specific manner. They were calculated using the approach as described in Acharya et al.
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[48]. As described in equation (3), ᵄ� and ᵃ� are linearly proportional to each other. Thus, in a

scenario where the esophagus is inactive (which corresponds to ᵰ� = 1) and distended, a plot of

ᵄ� vs. ᵃ� should be a straight line with its slope and intercept as ᵃ�/ᵃ�" and ᵄ� − ᵃ�, respectively.

This inactive but distended esophagus would take the shape of a cylinder with a reference

cross-sectional area ᵃ�= as follows:

ᵃ�= = 
ᵃ� 

, (10)

where ᵄ� is the FLIP bag volume and ᵃ� is the length of the FLIP. But identifying the

corresponding pressure inside the esophagus is not so straightforward. Usually, the time

instants at which the distal pressure (ᵄ� ) readings are the lowest values for every bag volume,

correspond to the time instants when it is reasonable to assume ᵰ�~1 as shown in Figure 3(a).

We selected these pressures readings and the corresponding reference cross-sectional areas

ᵃ�= and fitted a straight line between them, and the slope and intercept of this line estimated

ᵃ�/ᵃ�" and ᵄ� − ᵃ�, respectively as shown by Figure 5(a). Note that there is only one value for ᵃ�=

for each bag volume but multiple pressure readings based on the time instant at which the

pressure was considered. This is why there is a vertical spread of data in Figure 5(a) for each

value of ᵃ�=.

With ᵃ�/ᵃ�" known, we calculated the scaling cross-sectional area ᵃ� ,  and the viscosity parameter

ᵱ� in equation (7). With (ᵄ� − ᵃ�) known, and ᵄ�     known at the distal end, we calculated the

boundary condition for 
2 

as described in Section 2.1.3.

In general, the mechanics model described above works on FLIP data for selected segments of

recordings, for instance, the time taken for an antegrade contraction to traverse the probe and

merge with the EGJ as shown in Figure 3b.

2.1.5 Physical significance of the primary mechanics-based parameters
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In summary, there are seven primary mechanics-based parameters: a measure of stiffness

(ᵃ�/ᵃ�"), an estimate of the external pressure (ᵄ� − ᵃ�), the maximum distal pressure recorded

during the selected time interval of interest (ᵄ� ?@), the time taken by an antegrade contraction to

traverse the FLIP (ᵄ�), FLIP bag volume (ᵄ�), and the contraction and relaxation pattern

described through the activation parameter (ᵰ�(ᵆ�, ᵆ�)). The parameters ᵃ�/ᵃ�" and ᵄ� − ᵃ� were

calculated in a patient-specific manner and had a single value for each patient, while the other

parameters had different values for each patient based on the time interval of data considered.

The parameter ᵃ�/ᵃ�" estimates the mechanical properties of the esophagus and helps in

identifying the relation between the wall properties with the esophageal function. The parameter

ᵄ� − ᵃ� quantifies the state outside the esophagus. The maximum distal pressure ᵄ� ?@ is the net

effect of the contraction strength and EGJ tone, and hence is an important parameter in

estimating esophageal motility. The parameter ᵄ� indirectly estimates the speed of an antegrade

contraction i.e., slower contractions have higher ᵄ� and vice versa, thus estimating an important

feature of the esophageal function. The bag volume ᵄ� controls the extent to which the

esophagus is distended which impacts on the passive behavior of the esophageal walls. The

activation parameter estimates the contraction strength and pattern, the EGJ tone, and the

active relaxation of the esophageal walls. The activation parameter essentially drives the

mechanics of esophageal transport and in the context of the FLIP, it helps estimate esophageal

contractility. Active relaxation can be estimated through the maximum value of ᵰ�, ᵰ�>?@, which

was considered as another primary mechanics-based parameter because active relaxation aids

in bolus transport and EGJ relaxation. We call these parameters primary since they completely

define the mechanical state of the esophagus, and other mechanics-based parameters can be

calculated using combinations of them.

2.1.6. Calculation of the secondary mechanics-based parameters: EGJ work metrics
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The EGJ work metrics as described in Acharya et. al. [48] were considered for

secondary parameters. The first EGJ work metric i.e., the work done in opening the EGJ is

defined as follows:

&#     ##

ᵃ�ᵃ�ᵃ�ᵄ� = ]  ]  ᵄ� 
ᵱ�ᵆ� 

ᵅ�ᵆ�ᵅ�ᵆ� , (11)
&’     # ’

where ᵆ�5 and ᵆ�!  are the time instants between which the EGJ opens from its least to greatest

diameter, and ᵆ�5 and ᵆ�!  are the proximal and distal boundaries of the EGJ. The second EGJ

work metric i.e. the work required to open the EGJ is defined as follows:

) #

ᵃ�ᵃ�ᵃ�ᵄ�ᵄ�ᵄ� = ]  a8
ᵃ� ᵰ�

: ᵃ� + (ᵄ� − ᵃ�)b (ᵆ�! − ᵆ�5)ᵅ�ᵃ�, (12)
) ’

where ᵃ�5 and ᵃ� !  are the least and greatest reference cross-sectional areas at the EGJ as

measured on FLIP corresponding to diameters of 3 mm and 22 mm, respectively. Since ᵰ� is a

function of both ᵆ� and ᵆ�, ᵃ�ᵃ�ᵃ�ᵄ�ᵄ�ᵄ� is also a function of ᵆ� and ᵆ�. For simplicity, we choose three

values of ᵃ�ᵃ�ᵃ�ᵄ�ᵄ�ᵄ� corresponding to: 1) ᵰ� calculated at ᵆ�5 (ᵃ�ᵃ�ᵃ�ᵄ�ᵄ�ᵄ� ), 2) median value of ᵰ�

calculated between ᵆ�5 and ᵆ�!  (ᵃ�ᵃ�ᵃ�ᵄ�ᵄ�ᵄ� ), and 3) minimum value of ᵰ� calculate between ᵆ�5 and

ᵆ�!  (ᵃ�ᵃ�ᵃ�ᵄ�ᵄ�ᵄ� ).

2.2. Mechanics-informed variational autoencoder

The mechanics-based parameters calculated by the 1D inverse model yield a

quantitative estimate of the mechanical “health” of the esophagus through the wall mechanical

properties and esophageal contractility. Identifying similarities and dissimilarities of these

parameters across patient groups is a crucial step in the development of the VDL. This was

done in an unsupervised manner with the help of a VAE. Since this neural network works
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entirely on the mechanics-based parameters, we call it the mechanics informed variational

autoencoder (MI-VAE).

2.2.1. Network Architecture

The mechanics-based parameters are as follows: ᵰ�(ᵆ�, ᵆ�), ᵃ�/ᵃ�", ᵄ� − ᵃ�, ᵄ� ?@, ᵄ�, ᵄ�, ᵰ�>?@,

ᵃ�ᵃ�ᵃ�ᵄ�, and the 3 measures of ᵃ�ᵃ�ᵃ�ᵄ�ᵄ�ᵄ�. These are all scalar values except ᵰ�, which varies with

ᵆ� and ᵆ� so simple statistics can be used to identify patterns of these quantities. However,

identifying patterns quantitatively with the activation parameter ᵰ�, which describes the

esophageal contractility, requires a different approach. Since the variation of ᵰ� takes the form of

a matrix, as shown in Figure 5b, we used a convolutional neural network-based VAE, which we

called network 1, to identify the unique patterns of disordered contractility through the generated

latent space.

Figure 6: Network architecture of the mechanics-informed variational autoencoder. In the
architecture for network 1, the numbers on the top of the boxes represent the number of
channels; the numbers and the output size are represented on the side. For network 2, the
numbers on the top represent the number of hidden units.
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We used a latent space of 24 dimensions. We used ReLU as the activation function for

all layers of network 1. Additionally, we merged a 6-dimensional vector consisting of a set of

discrete parameters to the 24-dimensional vectors generated in the latent space of network 1.

Combined, these 30-dimensional vectors populate a parameter space that forms the VDL. The

details of the network architecture are shown in Figure 6.

The combined 30-dimensional vector generated with the latent space of network 1 and

the vector of discrete parameters became input to a second neural network, which we called

network 2, to predict ᵃ�ᵃ�ᵃ�ᵄ� and the 3 measures of ᵃ�ᵃ�ᵃ�ᵄ�ᵄ�ᵄ�. Network 2 consisted of a densely

connected neural network of 3 hidden layers with 75 hidden units each. We used ReLU as the

activation function for all layers of network 2. Together, networks 1 and 2 form the MI-VAE that

develops the VDL and gives physical significance to the vectors in the VDL.

The work metrics, ᵃ�ᵃ�ᵃ�ᵄ� and ᵃ�ᵃ�ᵃ�ᵄ�ᵄ�ᵄ�, were not included in the 30-dimensional vectors

of VDL but kept as separate entities to be predicted by network 2. This was done so that the

VDL was based entirely on primary mechanics-based parameters which define the mechanical

state and functioning of the esophagus. The work metrics are secondary mechanical

parameters that were kept separate to avoid unnecessary biasing of VDL. Network 2 not only

predicts the work metrics, but also forms a framework to test different derivable parameters that

can potentially be used as physiomarkers for disease states.

2.2.2. Data

FLIP data used to train the MI-VAE were collected from a cohort of 804 volunteer

subjects and patients, the details of which are provided in Table 1. Note that we have included

the ‘HRM inconclusive’ to investigate how they appear on FLIP, which is potentially different.

The MI-VAE was trained without the disease labels. Hence, the inclusion of the ‘HRM

inconclusive’ has no impact on the training but increases the generalizability of the predictions.
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Table 1: Cohort details that contributed to training MI-VAE

Group

Normal

Type I achalasia (Ach 1)

Type II achalasia (Ach 2)

Type III achalasia (Ach 3)

EGJ outflow obstruction (EGJOO)

Hypercontractile esophagus (HC)

Distal esophageal spasm (DES)

Ineffective esophageal motility (IEM)

Absent contractility (AC)

Eosinophilic esophagitis (EoE)

Gastroesophageal reflux disease (GERD)

Scleroderma (SSc)

Inconclusive (Inc)

# Subjects

237

76

148

47

27

13

11

44

17

45

11

5

123

Pressure vs distention plots (e.g. Figure 3a) from each FLIP study were visually

inspected to isolate 6-12 areas of interest for analysis (e.g. Figure 3b), characterized by

antegrade contractions and/or maximal pressure variations. HRM studies were also done on all

subjects and patient groups were based on their CCv4.0 HRM diagnoses or medical history.

Within this cohort, there were 24 achalasia patients with data available before and after

treatment with pneumatic dilation, laparoscopic Heller myotomy (LHM) or peroral endoscopic

myotomy (POEM) and 20 eosinophilic esophagitis (EoE) patients with data before and after

treatment with swallowed topical steroid. Additionally, there was one achalasia patient for whom

post-POEM data were available for tracking (years 1, 4, and 7). The distributions of the primary

and secondary mechanical parameters are shown in Figures 7 and 8, respectively. The work

metrics show trends similar to those reported in Acharya et. al. [48].
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Figure 7: Box plots showing the distribution of the 4 mechanics-based parameters: ᵃ�/ᵃ�", ᵄ� C#,
ᵄ�, and ᵰ�BC# . The groups are: Normal esophageal motility, Type I achalasia (Ach 1), Type II
achalasia (Ach 2), Type III achalasia (Ach 3), gastroesophageal reflux disease (GERD),
eosinophilic esophagitis (EoE), scleroderma (SSc), absent contractility (AC), EGJ outflow
obstruction (EGJOO), hypercontractile esophagus (HC), distal esophageal spasm (DES),
ineffective esophageal motility (IEM), and inconclusive (Inc).
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Figure 8: Box plots showing distribution of the EGJ work metrics. The groups are: Normal
esophageal motility, Type I achalasia (Ach 1), Type II achalasia (Ach 2), Type III achalasia (Ach
3), gastroesophageal reflux disease (GERD), eosinophilic esophagitis (EoE), scleroderma
(SSc), absent contractility (AC), EGJ outflow obstruction (EGJOO), hypercontractile esophagus
(HC), distal esophageal spasm (DES), ineffective esophageal motility (IEM), and inconclusive
(Inc).

The patient cohort generated a total dataset of size 7,187 parameter sets (mean of 8.9

per subject). This was augmented to generate a larger dataset of 222,797 parameter sets. The

parameters ᵃ�/ᵃ�", ᵄ� − ᵃ�, ᵄ� , and ᵄ� ?@ were augmented by multiplying with a factor ᵅ� calculated

as follows:

ᵅ� = 1 + 0.05ℕ, (13)
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where ℕ is a random sampling from a normal distribution with its magnitude less than 2. The

raw cross-sectional area variation ᵃ�(ᵆ�, ᵆ�) was augmented using a combination of grid

distortional, elastic transformation, and motion blur available in the opensource Python library

Albumentations [53], the details of which are provided in Table 2.

Table 2: Augmentation details for cross-sectional area

Augmentation type

Grid distortion

Elastic transformation

Motion blur

Albumentations parameters

p=0.9, num_steps=4, distort_limit = (-0.2,0.2)

p=0.8, alpha=5.0, sigma=100, alpha_affine = 2.0

p=0.7, blur_limit = (3,6)

Using the augmented cross-sectional areas and the augmented values for ᵃ�/ᵃ�", ᵄ� − ᵃ�,

ᵄ� and ᵄ�, we solved equations (6) and (7) to obtain ᵰ�(ᵆ�, ᵆ�). Finally, the corresponding ᵰ�>?@ and

ᵄ� ?@ were calculated by taking the maximum of ᵰ� and ᵄ� , respectively.

2.2.3. Training and prediction

The final form of the loss function used for network 1 is as follows:

G D

ᵃ�D5 ≔ 
2ᵄ� 

g
3  

h1 + logᵰ�E,3 − ᵰ�E,3 − ᵰ�E,3m + 
ᵄ� 

g
H  

oᵰ� − ᵰ� q
!  

, (14)

wherein ᵅ� represents each component of the latent space and ᵅ� represents each component of

the matrices ᵰ� and ᵰ�. ᵄ� is the dimension of the latent space and ᵄ� is the product of the two

spatial dimensions of the input and generated output. In this case, ᵄ� = 24 and ᵄ� = 256. The

first term is the Kullback-Leibler divergence (KLD), and the second term is the reconstruction

loss. Here ᵅ�(ᵆ�|ᵰ�) is the approximate posterior distribution which is a Gaussian distribution with a

mean and standard deviation of ᵰ�E and ᵰ�E, respectively. The details of the derivation of the KLD

term are provided in the Appendix. ᵯ� is a scaling parameter used to balance the magnitudes of

the reconstruction loss and the KLD for proper training of network 1. We found that ᵯ� = 1000
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resulted in a good balance between the two losses. The loss function shown in equation (14) is

described for each input. While training, we defined the total loss as the mean of ᵃ�D5 calculated

over the mini-batch dataset.

We trained network 1 first followed by network 2 with the mean latent space variables

and the discrete mechanics-based parameters merged as its input. The input of network 1 i.e.,

ᵰ�, was scaled to lie between 0 and 1, and then subtracted from 1 so that the lesser values at the

contraction zones would have greater values instead. Thus, network 1 focusses on minimizing

the reconstruction error at the contraction zones since they have the most impact in the

variation of ᵰ�. Of the 222,797 mechanics-based parameters, 204,000 were used for training and

the remainder for testing. Network 1 was trained for 250 epochs. We used a learning rate of

1 × 106I for the first 100 epochs, 3.3 × 106J  for the next 100 epochs, and finally 5 × 106K for the

final 50 epochs. Adam [54] was used as the optimizer. Network 1 achieved an average mean-

squared error between input and generated output as 1.36 × 106A and a KLD loss of 1.54.

The input and output of network 2 are shown in Figure 6. The input and output were

scaled to lie between 0 and 1. We used a mean-squared error loss function for network 2. Of

the total dataset, 2048 were used for validation and the remainder for training. To train this

network, we used a learning rate of 10-3 and used RMSprop as optimizer. Network 2 was trained

for 1000 epochs, and it achieved a mean-squared error accuracy of 1.88 × 106 J      on the

validation dataset. We used Keras [55] running on top of TensorFlow [56] to train network 1 and

2. The learning curves for network 1 and 2 are provided in the Appendix.

2.3. Post-processing

The 30-dimensional VDL was reduced to 3 dimensions for visualization. This

dimensional reduction was done using two methods: linear discriminant analysis (LDA) and

principal component analysis (PCA). LDA is a supervised approach whereby HRM CCv4.0
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diagnoses were used. LDA minimizes the distance between VDL points with the same CCv4.0

diagnosis and maximizes the distance between points with different diagnoses. This was done

by finding directions in the high-dimensional space that most effectively separated the data into

groups. Alternatively, PCA is an unsupervised approach that reduces dimensions by projecting

the 30-dimensional VDL vectors onto 3 vectors with the greatest variances in data. We used an

open source Python library Scikit-learn [57] to perform dimension reduction using LDA and PCA.

The proportion of variance attributable to the greatest three principal components in PCA were

0.151, 0.100, and 0.074, respectively. The proportion of variance attributable to each of the

selected components in LDA were 0.639, 0.154, and 0.076. Note that the proportion of variance

for LDA is different from that of PCA. In PCA, the proportional of variance attributable to the 3

principal components are the 3 greatest eigenvalues of the covariance matrix for the whole

dataset. In LDA, the proportion of variance attributable to its 3 components are the 3 greatest

eigenvalues of the product of the inverse of the within-class covariance matrix and the between-

class covariance matrix. Note that when we used LDA for the dimension reduction, we did not

use the ‘inconclusive’ label for training, but only the conclusive diagnoses on HRM. The LDA

trained on conclusive diagnoses was used to predict on the ‘inconclusive’ data. Thus, the

inconclusive data labels did not add noise to our analysis.

LDA and PCA are both based on linear models to find optimal projection from high-

dimensional space to low-dimensional space, in which the former aims to maximize the cross-

class variation constrained by in-class variation, and the latter aims to maximize the variation

without class information (i.e., unsupervised). Singular value decomposition (SVD) on

covariance matrix will be identical to PCA. Compared with other techniques such as t-distributed

stochastic neighbor embedding (t-SNE) and uniform manifold approximation and projection

(UMAP), which involve nonlinear projection (or dimension reduction), LDA and PCA are simpler

and more easily explained. Moreover, the current projection starts from latent space after data
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transformation by encoder model. The entire transformation from raw data to projected space is

actual a composite mapping, consisting of an encoder mapping followed by projection mapping.

With a well-trained sophisticated encoder model, nonlinear transformation, by t-SNE or UMAP is

unnecessary, although they may be more useful when directly projecting the raw data. Also, t-

SNE and UMAP creates a low-dimensional visualization of the high-dimensional data through a

process of iteration. This leads to not only a general increase in computational time, but also

necessitates the search and selection of the maximum number of iterations. These two methods

have additional parameters including perplexity (in the case of t-SNE) and number of neighbors

(UMAP), which require interpretation by the user and tuning. The resulting visualizations may

differ based on the parameters. It is also worth noting that the initialization of t-SNE is random,

causing potential issues with robustness/repeatability. Last but not the least, we used LDA and

PCA just to have a simple visualization tool after the latent space is generated using the MI-

VAE. The actual VDL and its application is in the higher dimension of 30 and does not change

based on how the data are visualized.

We also generated probability-based boundaries of the VDL points corresponding to

different disease groups to quantify the distribution of patient groups as captured in the VDL.

This is essentially a supervised classification task where a probability is assigned to every VDL

point for each of the 12 patient groups shown in Table 1. This was done using a Random Forest

classifier labeling each 30-dimensional VDL vector with the patient diagnosis. For this training,

only the original dataset was used and not the augmented ones since the diagnoses of the

augmented ones were unknown. 25% of the original dataset of 6244 were used for testing and

the remainder for training. We used Scikit-learn for the Random Forest analysis. We tried all

combinations of the numbers of estimators (100, 250, 500, 1000, 2000, 3000) and maximum

depth (64, 128, 256, and nodes are expanded until all the leaves are pure or all leaves contain

less than 2 samples) of each tree using the Scikit learn python library. We selected 1000
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estimators and the maximum depth of 128 because they gave the greatest accuracy (Subset

accuracy or Exact match of 0.74) on the test dataset. We also trained a Random Forest

classifier to predict the probability of a point in the VDL to be an antegrade contraction or not.

The parameters of the classifier as well as the train-test split were the same as described

above. Each data point was manually labelled as 1 for antegrade contraction or 0 for not an

antegrade contraction. The Jaccard score on this test set was 0.94. Further details on accuracy

are provided in the Appendix. The trained Random Forest classifiers add another capability to

the MI-VAE framework to automate the diagnostic process such that it can predict a diagnosis

as well its peristaltic behavior without manual intervention.
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3. RESULTS AND DISCUSSION

3.1. Virtual disease landscape in reduced dimensions

The VDL was populated with points corresponding to the original dataset rather than the

augmented data since only their diagnoses were known. Figures 9 and 10 show the dimension

reduced VDL generated by LDA and PCA, respectively.

Figure 9: Dimension-reduced VDL using LDA. Patient groups are shown with different colors
and each group is shown in isolation in the smaller plots. The black points are the ‘inconclusive’
subjects.
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Figure 10: Dimension-reduced VDL using PCA. Patient groups are shown with different colors
and each group is shown in isolation in the smaller plots. The black points are the ‘inconclusive’
subjects.

The patient groups clustered into different regions of the VDL, but these clusters overlapped. As

shown in Figure 9 with the dimension reduced VDL using LDA (ldaVDL), most of the normal

subjects, GERD, and EoE patients lay on the left side of the VDL, whereas achalasia, EGJOO,

and absent contractility patients lay on the right side. The other diseases were distributed

between the extremes. The overlap and separation among groups mirrored the similarity of their

contractile responses on FLIP testing. For instance, normal subjects and GERD usually have

similar FLIP patterns with both exhibiting antegrade contractions and normal EGJ opening. On

the other hand, type 1 and 2 achalasia patients both show no antegrade contractions and
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reduced EGJ opening. The other patient groups exhibit varied contractile behavior ranging from

weak antegrade contractions to an irregular contractile response along with normal or borderline

EGJ opening. Similar behavior was observed in the dimension reduced VDL using PCA

(pcaVDL) shown in Figure 10. However, the overlap among patient groups in pcaVDL was

greater compared to that of ldaVDL. This is visualized more quantitatively in the distance matrix

heatmaps of Figure 11.

Figure 11: Distance matrix showing the median distance between points of each patient group
specified by columns with the centroid of disease cluster specified by the rows. Each row has
been normalized to represent distances as percentage and so each row adds up to 100.

An element in the i-th row and j-th column of the distance matrix is the median distance

between the points of the j-th cluster and the centroid of the i-th cluster. Thus, for a good

separation between clusters, the diagonal elements should have lesser values compared to the

off-diagonal elements. As shown in Figure 11, the diagonal elements of distance matrix for

ldaVDL were less than those of pcaVDL. Also, the off-diagonal elements of the distance matrix

for ldaVDL were greater compared to those of pcaVDL. Hence, the LDA better segregated the

patient groups consistent with it being based on a supervised approach of labeling points.

However, it should be noted that the 30-dimensional VDL was generated in an unsupervised

manner. This high-dimensional VDL captures the similar and dissimilar features of the input
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corresponding to the patient groups. Thus, dimension reduction based on the variance of the

data in an unsupervised manner as done in PCA provides insight into the structure of the 30-

dimensional VDL. The clusters still observable after PCA demonstrated that the VDL

successfully identified features distinguishing among these esophageal disorders. The distance

matrix shown in Figure 11a also quantifies the similarities that some patient groups share as

can be seen qualitatively in Figure 9. For instance, in row 1 (normal subjects), normal and

GERD had lower values and in row 11 (GERD), the median values for normal and GERD

subjects had lower values. Similarly, in rows 2-3 which correspond to achalasia Type I and Type

II, the median distance values were very similar and much lower than the other patient groups.

Similar, though less prominent, characteristics can be observed in Figure 11b. Hence, the VDL

captured both similarities and dissimilarities among these esophageal disorders. The choice

between ldaVDL and pcaVDL depends on the application; pcaVDL should be chosen if there is

low confidence in diagnostic distinctions within the data.

Figure 12: Specific motility groups represented in the ldaVDL. Type III achalasia,
hypercontractile esophagus, distal esophageal spasm, and absent contractility are specially
compared here. Type III achalasia, hypercontractile esophagus, and distal esophageal spasm
have significant overlap while absent contractility cluster distinctly from the rest.
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The availability of the data for the various disease groups determined the simple sizes.

The main purpose for the MI-VAE is to generate the VDL and not predictive analysis. Thus, the

diseases with smaller sample sizes appear as smaller clusters on the VDL and their location

with respect to the other groups is determined by their contraction pattern. Additionally, the most

distinct responses to FLIP distention occurs for normal subjects and achalasia groups. Both

groups are of comparable sizes (normal: 237, achalasia (including type I and II): 224). Rest of

the diseases lie somewhere between these two groups and often have very similar FLIP

responses in terms of their contraction pattern as shown in Figure 10. Since no labels were

used in training the MI-VAE, this proves the accurate representation of the diseases through the

VDL by the MI-VAE. Augmenting the dataset also makes the MI-VAE more generalizable. Thus,

a high training and validation accuracy (or low values of losses) ensures that all the diseases

are accurately represented on the VDL (through the MI-VAE’s latent space).

The differences between the esophageal motility disorders cannot be visualized clearly

in the ldaVDL shown in Figure 10 because of the large number of groups included. Figure 12

isolates four motility disorders: absent contractility, type III achalasia, hypercontractile

esophagus, and distal esophageal spasm (DES). Absent contractility exhibits no contractile

activity and low EGJ tone whereas type III achalasia, hypercontractile esophagus, and DES

show excessive or aberrant contractile activity with variable, often increase EGJ tone. These

disorders are displayed in Figure 13 wherein absent contractility points cluster separately from

the other three groups which extensively overlap each other. Of note, type III achalasia, which

shows great variability in its HRM contraction pattern, exhibits the greatest scatter of points in

Figure 12. Figure 13 extends this concept by subdividing all of the patient groups in Figures 9

and 10 into motility disorders (type I, II, III achalasia, EGJOO, hypercontractile esophagus, DES,

IEM, and absent contractility) and not primarily defined by abnormal esophageal motility (EoE,

GERD, and scleroderma).
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Figure 13: LDA performed separately for: (a) esophageal motility disorders vs normal
esophageal motility and (b) other esophageal diseases vs normal esophageal motility.
Esophageal motility disorders display similar segregation from the normal motility as in Figure 9
whereas the other diseases extensively overlap with the normal controls, which now display
better segregation.

In Figure 13, each of these subgroups is compared to normal controls. Comparing Figure 13a

(motility disorders) to Figure 13b (other disorders), the LDA segregates the motility disorders

from the normal controls much more effectively than it does the other disorders which

extensively intermix with the normal controls.

3.2. Antegrade contractions represented in the VDL

Most of the patient groups in Figures 9 and 10 correspond to diagnoses based on

CCv4.0. Motility diagnoses were based on HRM rather than the FLIP study because: 1) a formal

classification standard for FLIP has not been validated as with the CCv4.0 for HRM and 2) some

diagnoses distinguished using HRM are not differentiated with FLIP e.g., achalasia type I and II.

However, when diagnoses were used to visualize the VDL in ldaVDL, the similarities and

dissimilarities between the disease groups could be quantified thereby providing an estimate of

the capability and limitations of FLIP in distinguishing these disorders.

Even though the colors representing patient groups provide valuable insight into the distribution

of each condition on the VDL, the diagnoses do not directly represent any specific characteristic

of esophageal contractility or esophageal wall properties. For instance, a normal subject might
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have a normal antegrade contraction only 70% of the time. In such a case, all points

corresponding to this subject would be labelled the same irrespective of the abnormal

contractions in 30% of them. Hence, the designation ‘normal subject’ is not a fundamental

physiomarker, but a normal antegrade contraction is. Additionally, some subjects might respond

differently on FLIP compared to HRM [9]. We, therefore, investigated the contraction

characteristics of all the points that populate the VDL.

Figure 14 shows the point cloud of ldaVDL and pcaVDL with labels indicating contraction

characteristics. A Random Forest classifier predicted the probability of a point in the VDL being

a normal antegrade contraction or not. The probabilities of the points in the VDL are shown in

reduced dimensions in Figures 14c and 14f for ldaVDL and pcaVDL, respectively. The VDL

points for normal antegrade contractions and abnormal contractions cluster nicely without

significant overlap, which is also evident from the high accuracy of the Random Forest classifier.

This was because the distinction between normal antegrade contractions and abnormal

contractions is a more fundamental criterion than the CCv4.0 label imposed through

manometry. The contractile characteristics as identified by network 1 was an important hidden

feature of ᵰ� variations, and therefore, the latent space variable captured this and led to the

clustering as shown in Figure 14b,c and 14e,f. The effectiveness of clustering based on

contractile characteristics is illustrated more quantitatively in the distance matrices in Figure

14h. Clearly there was a significant difference between the diagonal and off-diagonal values of

the distance matrices, which signifies that the points in each grouping (normal antegrade

contraction or abnormal contraction) remain close to each other and segregate from the other

group. The bar plot in Figure 14(g) quantitatively estimates the percentage of each disease

group that exhibit normal antegrade contractions.
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Figure 14: Antegrade contractions within disease groups. (a) LDA representation of the VDL for
all disease groups (ldaVDL, i.e Figure 9); (b) data in panel a redisplayed as normal antegrade
contractions (blue) or not a normal antegrade contraction (red) irrespective of disease group; (c)
normal antegrade contractions (upper) vs abnormal contractions (lower) from panel b classified
using Random Forest; (d) PCA representation of the VDL for all disease groups (pcaVDL, ie
Figure 10); (e) data in panel d redisplayed as normal antegrade contractions (blue) or not a
normal antegrade contraction (red) irrespective of disease group; (f) normal antegrade
contractions (upper) vs abnormal contractions (lower) from panel e classified using Random
Forest; (g) Bar plots showing the percentage of ᵰ� variations of each disease group being either
normal antegrade contraction or abnormal contraction; (h) Distance matrices measuring the
effectiveness of clustering for contractile behavior in ldaVDL and pcaVDL. The intensity of each
point in panels c and f corresponds to the probability of that point being in each of the two
groups as predicted by the Random Forest classifier.
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3.3. Continuous behavior of the VDL

Figure 15: The continuous behavior of the VDL is shown through points selected from its two
extremes: Normal subjects and achalasia Type I and II patients. (a) and (b) show a typical
contraction pattern in normal subjects with strong antegrade contraction and relaxed EGJ. (d)
and (e) show the characteristics of typical achalasia patients with no contraction at the
esophageal body and a strong tone at the EGJ marked by the horizontal red zone. (c) VDL
represents of the contraction patterns 1-4.

The ability of the VDL to identify the similarities and dissimilarities among patient groups is

further illustrated in Figure 15. Two points in close proximity were selected from the extreme left

end of the normal subjects and two from the extreme right end of the achalasia type II. The

normal subjects both showed normal antegrade contractions (oblique red band) and a relaxed

EGJ (blue region ahead of the contraction). Similarly, the two points of achalasia type II showed

similar variation of the activation parameter; both exhibited no contraction and the EGJ

remained closed as evident by the horizontal red band at the distal esophagus. The large

separation between points 1 and 2 from points 3 and 4 indicates that they displayed completely

different behavior. On the other hand, comparing points 3 and 4, we see that the location of the

EGJ band was positioned differently in the two cases, they were still in close proximity on the

VDL. Hence, we conclude that the VDL visualized in reduced dimensions using LDA is not

dependent on consistent placement of the FLIP eliminating that as a potential source of error.



Page 35 of 50

3.4 Generative property of the MI-VAE

An important feature of the MI-VAE is its generative capability. Due to the continuous

nature of the VDL, new vectors from the VDL i.e., those which were not present in the training

set can generate meaningful representations of the mechanics-based parameters. Figure 16

illustrates the transition from a point at the extreme of the normal cohort to another point at the

extreme of achalasia type II.

Figure 16: Example to describe the continuous nature of the VDL. Points 1 and 5 are chosen at
the extremes of normal subjects and achalasia Type II patients, respectively. Points 2-4 are
equi-spaced along the vector joining 1 and 5. The ᵰ� variations generated for 2-4 show the
transition from normal to achalasia characteristics.

A 30-dimensional vector was calculated between these points and 3 equispaced

intermediate points along this vector. Thus, the 2 endpoints were known but the 3 intermediate

points were new and generated mechanics-based parameters not known before. As the

transition occurs between the extremes, we see that the antegrade contraction progressively

weakens and EGJ tone strengthens. Note that the vector (or line) shown in Figure 16 does not

represent an actual case, but a hypothetical one to demonstrate the capability of the VDL. In an
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actual scenario, the disease progression won’t necessarily be linear as suggested in Figure 16.

In fact, it won’t necessarily progress at all. However, if the disease remains stable or progresses

in an irregular manner, we can still use the VDL to extrapolate to the likely future ‘mechanical’

state in an average sense based on the pattern of past data.

Additionally, we can retrieve the other mechanics-based parameters apart from the ᵰ�

variation (ᵃ�/ᵃ�", ᵄ� ?@, ᵄ�, ᵰ�>?@) and the four EGJ work metrics (ᵃ�ᵃ�ᵃ�ᵄ�, ᵃ�ᵃ�ᵃ�ᵄ�ᵄ�ᵄ� , ᵃ�ᵃ�ᵃ�ᵄ�ᵄ�ᵄ� , and

ᵃ�ᵃ�ᵃ�ᵄ�ᵄ�ᵄ� ) through network 2. This was the main reason for choosing mechanics-based

parameters as the input of the MI-VAE rather than the raw distal pressure and cross-sectional

area variations. The generated parameters reflect on the mechanical health of the organ unlike

the raw data generated from FLIP. Additionally, with the application of mechanics, the two

distributed measurements (cross-sectional area, ᵃ�(ᵆ�, ᵆ�), and distal pressure ᵄ� (ᵆ�)) were

combined into one activation parameter ᵰ�(ᵆ�, ᵆ�), which not only simplified application of the MI-

VAE, but also has physical meaning since it estimates esophageal muscle contraction.

With this framework, it is possible to track the progression of an esophageal disorder

over time and, using this time-series data, it is possible to extrapolate in the VDL the likely future

state of the esophagus. For instance, if the contraction pattern of a subject is found to move

from 1 to 2 in Figure 16 in year 1, and from 2 to 3 in year 2, then it can be extrapolated that the

state of the esophagus most likely progress to contraction pattern 4 and eventually 5.

3.5. Estimating the effectiveness of a treatment

Treatment strategy varies depending on the mechanical ‘health’ of the esophagus. For

example, achalasia shows a ᵰ� variation with a strong tone (low values of ᵰ�) at the EGJ that

does not relax, and the severity of the scenario is greater with progressively lower values of ᵰ�.

Less ‘potent’ treatment with pneumatic dilation [58-60] could suffice for less severe cases while

using laparoscopic Heller myotomy (LHM) myotomy [61, 62], or peroral endoscopic myotomy
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(POEM) [63, 64] for severe cases. EoE usually show higher values of stiffness (ᵃ�/ᵃ�") as shown

in Figure 7 and is treated with topical steroids. We hypothesize that our framework could be

used to guide the need for treatment by quantifying the severity as well as aid in early discovery

of the disorders. FLIP studies can be obtained before and after these procedures to evaluate

the effectiveness of a treatment as well as for tracking the esophageal condition for years after

treatment. In the next two subsections, we discuss two such scenarios where the MI-VAE

framework can be applied to aid FLIP diagnosis.

3.5.1. Pre- and post-treatment state of the esophagus in achalasia patients

With a myotomy, the circular muscle fibers of the lower esophageal sphincter are cut to weaken

the inherent tone at the EGJ making it easier for swallowed food and fluid to empty from the

esophagus. POEM is an endoscopic myotomy wherein the circular muscle fibers of the lower

esophageal sphincter ± the distal esophagus are cut. Using the MI-VAE framework, we present

a quantitative approach for assessing the effectiveness of a POEM procedure. We tested this

on three achalasia patients, one for each achalasia subtype. Figure 17 illustrates the contraction

patterns before and after POEM along with their placement on the VDL. We selected the

“typical” ᵰ� variation for each case by identifying the most effective contraction and the least EGJ

tone observed at the same 50 mL FLIP bag volume. In Figure 17a, it is evident that after POEM,

the EGJ tone had decreased significantly with improvement in contraction strength up to the

proximal limit of the myotomy. On the VDL, this corresponded to the movement from achalasia

zone toward the normal subjects. For the type II patient shown in Figure 17b, lower esophageal

sphincter tone was clearly diminished by treatment but there was minimal recovery of the

esophageal contraction and movement on the VDL is toward the absent contractility sector.
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Figure 17: Estimating the effectiveness of a POEM procedure on achalasia patients using MI-
VAE. (a)-(c) show the ᵰ� variation before treatment in achalasia types I, II, and III, respectively
and the figures on the right show the ᵰ� variations after treatment. The figures in the center
show the VDL representations of the contour plots with the arrows going from before to after
treatment.

In Figure 17c, we see that for the Type III patient, the contraction strength improved significantly

after POEM (albeit not antegrade) and EGJ was reduced such that the corresponding point in

the VDL lay more in the normal cohort zone than that seen in Figures 17a and 17b. The

improvement after treatment can be estimated quantitatively by the magnitude of the vector

drawn from the initial to the final point in the VDL. The direction of the vector quantitatively
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estimates the direction of improvement. This vector corresponds not only to the ᵰ� variation, but

also to the discrete mechanics-based parameters adding physical meaning to the quantitative

assessment to treatment effectiveness.

3.5.2. Post-treatment tracking

Figure 18: Tracking the state and motility of the esophagus after POEM for 7 years. Three ᵰ�
variations are shown as observed in the 1st, 4th, and 7th year. These are plotted in their VDL
representation. The three points lie close to each other indicting that the patient has stable
esophageal motility charcateristics for the 7 years they have been tracked.

After treatment, it is often necessary to periodically re-evaluate patients over time. We

tested our MI-VAE framework by tracking the condition of one patient who had undergone

POEM and had FLIP data was available for years 1, 4, and 7 after POEM. The ᵰ� variations for

each of these three years are shown in Figure 18 and are in close proximity to each other

suggesting that the patient’s condition was stable over the years. This example shows how the
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MI-VAE framework can be used for post-POEM tracking of patient condition but can be applied

very easily to other treatment procedures as well.

FLIP has been shown to uniquely identify various esophageal disorders in some cases

that appeared normal on HRM and other diagnostic tests. Hirano et al. [65] reports the

application of FLIP in the clinical management of esophageal disorders. Although, the

application of FLIP has been shown in various clinical situations, it is still relatively new and

lacks a standard classification as available for HRM, i.e., CCv4.0. With the help of VDL

developed by the MI-VAE, we demonstrated a formal approach to use FLIP data that can be

translated to clinical applications through quantitative assessment of esophageal disorders

through FLIP. However, it must be noted that at its current state, AI by itself does not have an

advantage over human judgement based on FLIP panometry. The framework we have

presented is not meant to replace human judgement in interpreting FLIP data, but rather to

provide a computational tool that can formalize the diagnostic process based on mechanics-

informed machine learning. This framework is intended as an aid to medical professionals in

their assessment of various esophageal disorders by adding quantitative elements to their

diagnostic approach as well as speed up the process.

3.6. Limitations

The MI-VAE framework provides a technique to map esophageal disorders onto a

parameter space called the VDL based on their mechanical characteristics estimating the

mechanical ‘health’ of the esophagus thereby aiding in diagnosis and directing treatment.

However, the VDL also has limitations. First, the raw data output from the FLIP study cannot be

used directly by this framework. The MI-VAE requires the manual identification of the time

instants between which readings are to be considered. This manual intervention might introduce

differences in prediction based on which time instants are chosen. Second, the FLIP device has

some technical limitations. It has an upper measurement limit for diameter which corresponds to
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the maximum distension of the FLIP bag. Strong contractions might sometimes lead to the bag

distending greater that this upper limit and cause incorrect readings. It also has a lower limit for

its measurements owing to the catheter diameter onto which the bag is mounted. Again, strong

contractions might cause full collapse of the FLIP bag on the catheter leading to incorrect

readings. Additionally, it is sometimes observed that the bag volume calculated using the

diameter readings might not be equal to the actual recorded bag volume. These factors might

cause errors in the prediction of MI-VAE. Third, all esophageal disorders are not well

represented in the dataset and there is a wide range of sample sizes. The characteristics of the

disorders represented by a smaller dataset (like scleroderma) might not be learned properly by

the MI-VAE. Therefore, the predictions of the Random Forest classifier and the relative

placement of the points on the VDL through LDA might not be as accurate as the disorders

represented by a larger dataset. Fourth, reduction of the VDL dimensions using LDA and PCA

for visualization might lead to loss to important features that define the state and functioning of

the esophagus. Fifth, as described earlier, the labels used for dimension reduction using LDA as

well as training the random forest classifier is patient-specific, and not specific to the mechanics-

based parameters. For instance, some ᵰ� variations of normal subjects might not exhibit

peristaltic behavior. This might introduce some errors in the prediction of MI-VAE. Finally, the

applicability of MI-VAE for predicting future disease progression is not possible because, as

described in section 3.4, there is a lack of relevant chronological data which remains a limitation

of this work.

4. CONCLUSION

In this work, we presented a framework called mechanics-informed variational

autoencoder (MI-VAE) that quantitatively identified and distinguished among esophageal

disorders based on their physical characteristics through a parameter space called the virtual
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disease landscape (VDL). The physical characteristics were estimated through a set of physical

parameters such as esophageal wall stiffness, contraction pattern, active relaxation of the

esophageal wall muscles, and work metrics estimating EGJ behavior. These parameters were

solved in a patient-specific manner from FLIP data using a one-dimensional mechanics-based

inverse model. The VDL identified similarities and dissimilarities among the esophageal

disorders as well as classified them based on their contractile characteristics. Additionally,

Random Forest classifiers trained on the data represented in the VDL add a predictive capability

to this framework to identify esophageal disorders and their contractile characteristics. We also

described how the generative property of the MI-VAE gives it the capability to predict disease

progression in time. Furthermore, we demonstrated through clinical applications that the MI-

VAE can estimate the effectiveness and stability of a treatment over time. Finally, since the MI-

VAE framework uses mechanics-based predictions of physiomarkers to develop a VDL, it can

be extended to be used with other diagnostic technologies (and organs) as long as mechanics-

based physiomarkers can be derived with them. For instance, a similar MI-VAE can be

developed using high resolution impedance manometry (HRIM) data using the same governing

equations with pressure and cross-sectional area measured from the HRIM catheter.

Additionally, mechanics-based analysis has been shown to be applied to fluoroscopy [26] to

predict physiomarkers which can also be used as described in this paper. There has also been

active cardiovascular [66] and respiratory [67] research to develop physiomarkers for quantifying

the course of diseases such as aortic aneurysms through wall shear stress, or the effectiveness

of drug delivery in the lungs [68]. These mechanics-based physiomarkers could be used to

develop a VDL for these organs following a similar approach as described in this paper.
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APPENDIX

1. Derivation of loss function

The VAE representing network 1 learns to model an input dataset as a distribution, ᵅ�(ᵰ�) such

that the input variable ᵰ� is generated from a likelihood distribution ᵅ�(ᵰ�|ᵆ�), where ᵆ� is the latent

variable. This distribution ᵅ�(ᵰ�) is parameterized by the weights of the neural network. The

decoder yields the likelihood distribution ᵅ�(ᵰ�, ᵆ�), i.e., it takes ᵆ� as input and outputs ᵰ�. The

encoder should ideally yield the posterior distribution ᵅ�(ᵆ�|ᵰ�). Unfortunately, ᵅ�(ᵆ�|ᵰ�) is

computationally intractable in general. So, in practice, the encoder yields a conditional

distribution ᵅ�(ᵆ�|ᵰ�) which approximates ᵅ�(ᵆ�|ᵰ�). The Kullback-Leibler divergence (KLD) provides

a measure of the difference between the two distributions ᵅ�(ᵆ�|ᵰ�) and ᵅ�(ᵆ�|ᵰ�), and leads to the

following relation:

ᵃ�+$[ᵅ�(ᵆ�|ᵰ�)||ᵅ�(ᵆ�|ᵰ�)] = − ] ᵅ�(ᵆ�|ᵰ�)[log ᵅ�(ᵰ�|ᵆ�) + logᵅ�(ᵆ�) − logᵅ�(ᵆ�|ᵰ�)]ᵅ�ᵆ� + logᵅ�(ᵰ�) . (A1)

Since KLD is always positive, the right-hand side of the above expression can be written as

follows:

ᵅ�(ᵰ�) ≥ ] ᵅ�(ᵆ�|ᵰ�)[log ᵅ�(ᵰ�|ᵆ�) + logᵅ�(ᵆ�) − logᵅ�(ᵆ�|ᵰ�)]ᵅ�ᵆ�. (A2)

The above equation can be re-written in terms of a new KLD form as follows:

ᵅ�(ᵰ�) ≥ −ᵃ�+$[ᵅ�(ᵆ�|ᵰ�)||ᵅ�(ᵆ�)] + ᵓ�L~ENᵆ�Oᵰ�P[logᵅ�(ᵰ�|ᵆ�)], (A3)

where ᵓ�L~ENᵆ�Oᵰ�P[logᵅ�(ᵰ�|ᵆ�)] is the joint log-likelihood of the input ᵰ� and the latent variable ᵆ�.

The right-hand side is called the Evidence Lower bound (ELBO) and is named so since it

estimates the lower bound of the likelihood of the data. Thus, maximizing ELBO maximizes the

likelihood of the data. The KLD term works like a regularizer and forces the approximate

posterior ᵅ�(ᵆ�|ᵰ�) to be as close to the prior ᵅ�(ᵆ�) as possible. This term causes the posterior
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ᵅ�(ᵆ�|ᵰ�) to enforce a high probability to ᵆ� values that can generate the point ᵰ� without collapsing

to a single point like an autoencoder. This gives a continuous behavior to the latent space so

that meaningful generations are possible from points in the latent space which are not related to

any input in the training dataset. The second term of equation A3 is the reconstruction error

between in the input and the generated output of the entire network. It is possible to derive a

closed form solution for the KLD term if we choose the approximate posterior ᵅ�(ᵆ�|ᵰ�) to have a

Gaussian distribution and choose the prior ᵅ�(ᵆ�) to have a standard normal distribution as shown

below:

−ᵃ�+$[ᵅ�(ᵆ�|ᵰ�)||ᵅ�(ᵆ�)] = 
2

h1 + logᵰ�E − ᵰ�E − ᵰ�Em. (A4)

The encoder, as shown in Figure 6, outputs ᵰ�E and logᵰ�E . Although we have an analytical form

for the KLD term of equation A4, the reconstruction error requires to be estimated by sampling.

Sampling ᵆ� from ᵅ�(ᵆ�|ᵰ�) directly leads to a problem in implementing backpropagation since the

network would have a random node at the input of decoder. This problem can be tackled by a

reparameterization trick where ᵆ� is sampled from the mean and log variance parameters of

ᵅ�(ᵆ�|ᵰ�) as estimated by the encoder shown as follows:

ᵆ� = ᵰ�E + ᵰ� ∙ exp 8
2

logᵰ�E :  , (A5)

wherein ᵰ� is a random number generated from a standard normal distribution. This step makes

it possible to backpropagate in a deterministic manner by considering ᵰ� as an extra input. Since

ᵰ� is sampled from a different distribution which is not a function of any variables with respect to

which derivatives might be required, stochasticity is introduced in the network without affecting

backpropagation.
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2. Training details of MI-VAE

Figure I: Training details of MI_VAE. a) Learning curve for network 1, b) Learning curve for

network 2.

The learning curves of network 1 and 2 are shown in Figure I (a) and (b), respectively. Because

of the scaling parameter ᵯ� as described in equation 14, the KL divergence and the

reconstruction loss have similar magnitude. If there was a significant difference between their

magnitudes, the total loss would be represented mainly by the larger of the two and proper

minimization of both the loss would not happen. The final magnitudes of reconstruction loss, KL

divergence, and the total loss after 250 epochs were 1.36 × 106A, 1.54, and 2.9, respectively.

The training and validation losses for network 2 show steps due to the change in learning rates

at those points. These learning rates were 10-3, 10-4 and 10-5. The final magnitudes of the

losses converge to 9 × 106J .
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3. Training details of the Random Forest classifiers

Figure II: Confusion matrices for Random Forest classifiers. a) Confusion matrix for the 12

groups, b) Confusion matrix for contractile behavior.

The confusion matrices corresponding to the two random forest classifiers are shown in Figure

II. The numbers in the matrices are represented in terms of percentages. The classifier for the

different disease groups (as shown in Figure II(a)) shows reasonable accuracy for most groups.

As already discussed, some groups exhibit very similar behavior on FLIP although they were

classified as different groups in through HRM. Additionally, a subject might have a variety of

contraction patterns. This reduces the overall accuracy of the Random Forest classifier to some

extent. The final Subset accuracy observed on the test set was 0.74. The Random Forest

classifier to identify contractile behavior performs better as shown by the confusion matrix in

Figure II(b). This is because the labels for peristaltic behavior were specified for each data point

(corresponding to each ᵰ� variation) and labeled just by subject diagnosis. Also, there is less

overlap in the VDL between the two groups, i.e., normal antegrade contraction and abnormal

contraction. The Jaccard accuracy observed on the test set was 0.94.


