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1 Introduction

The dynamics of entanglement generation and the growth of local Heisenberg operators in
chaotic quantum systems have been subjects of intense investigation in recent years, bringing
together the interests of condensed matter, quantum gravity, and quantum information
theory communities [1–30]. Generation of entanglement is one of the primary features
characterizing the thermalization process for out-of-equilibrium states in a wide variety of
chaotic systems. Operator spreading, as defined through various operator entanglement
measures and through out-of-time-order correlators (OTOCs), has likewise been used to
diagnose chaos in an equally diverse set of systems. In this work we focus on the related
notion of information spreading, which is linked to both phenomena.

In any local chaotic quantum system, information that is initially localized will spread,
such that its full recovery requires knowledge of an increasing number of degrees of freedom
around the location of origin. Suppose we wish to track the spread of information that is
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initially localized on some test subsystem T . The smallest region/subsystem at any time
which can be used to fully reconstruct the initial state of T constitutes the “information
cone” of T . At late times in homogeneous systems, the boundary of this cone grows linearly at a
rate dubbed the information velocity, vI [31]. It was argued in [31] that this velocity is
limited both by the rate of entanglement generation and by the speed of local operator
spreading. These disparate phenomena are therefore both brought to bear on a single
physical question of how rapidly information delocalizes. This question is itself rather
fundamental, inducing a form of causal structure for thermal-scale operators on the theory
which may be more stringent than the ultimate relativistic bounds, and which is present
even in nonrelativistic quantum systems.

The effect of nonlocality on entanglement growth and on various diagnostics of chaos has
been previously explored in holographic theories [32]. Interestingly, introducing nonlocality
into the system was found to enhance scrambling as well as the entanglement generation,
eluding previous bounds proposed in the context of local quantum field theory. Further
studies support this idea, including tantalizing results on the speed up of thermalization,
dissipation and complexification rates [33–35] due to nonlocal effects. In this work, we
extend these studies to ask more in detail how the presence of nonlocality affects the rate
of information spreading. The forms of nonlocality we will consider are “mild,” in the
sense that there is always a finite length scale associated with nonlocal interactions, and
we consider regions larger than this length scale. Thus, upon coarse-graining over short
distances we can always recover standard local physics. This mild nonlocality is in contrast,
for example, to matrix models, or to lattice system with all-to-all couplings which, in the
extreme, could render any notion of local subsystems and neighborhoods to be irrelevant.

In this paper we will consider 1-dimensional spin chain systems as well as holographic
gauge theories with various forms of mild nonlocality. Even though the presence of all-to-all
interactions seems ubiquitous and necessary for fast scrambling [36], there are examples

of systems that exhibit this phenomenon regardless of the absence of the former [37].
These are spin chains with a specified combination of some sectors, including a subset of
next-to-nearest neighbor interactions. This form of mild nonlocality can in fact be realized
experimentally. Known examples include materials with high polarizability which, in the
presence of a strong electromagnetic field, mimic the presence of such couplings due to
the alignment of their molecular dipoles. We believe that the results of this study could
thence be important for emerging quantum technologies such as quantum computation and
quantum communications.

We begin the work with a review of related concepts and techniques in section 2. We
pay particular attention to describe the effective description for information spreading that
arises from coarse-graining over short distances, a.k.a. the membrane or hydrodynamic
theory, developed in [38] and adapted to holographic settings in [39]. Section 3 asks how
nonlocality affects information spreading in chaotic, 1-dimensional spin chain systems, and
discusses our numerical results for spin chains with next-nearest neighbor interaction and
generalizations. Section 4 then poses the same questions in holographic systems inspired
by the nonlocal spin chains considered previously. These include non-commutative S Y M
theory (NCSYM) and dipole-deformed S Y M  theory (DDSYM),  both of which include
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fundamental dipole-type interactions. Even though, NCSYM was already studied in [32],
the methods employed there (shock waves) are technically different to those used in this
paper (membrane theory). As expected, the results agree with each other. This provides
evidence that the hydrodynamic description is valid for systems with mild nonlocality as
the ones considered in this paper. We conclude in section 5 with a comparative discussion
of our results and future directions.

2 Review of concepts and methods

Before turning to consider the effects of nonlocality, we here summarize the various terms,
concepts, and techniques employed in the investigation. We begin by reviewing two other
characteristic quantities, the entanglement velocity v E  and the butterfly velocity vB , and
their relationship to the information velocity vI . We describe our method of numerically
tracking the information cone and computing vI in chaotic 1-D spin chains. We then provide a
review of the membrane theory of entanglement dynamics [38, 39], and introduce the mem-
brane tension function ε(v), which encodes information about the aforementioned quantities.
We review its origin, use, and calculation, both in spin chains and in holographic contexts.

2.1 Three characteristic speeds: vI ,  vE ,  and v B

In addition to our primary quantity of interest, the information velocity vI , we will
frequently refer to two other velocities characteristic of local quantum chaotic systems: the
entanglement velocity v E  and the butterfly velocity vB . We review these here for future
reference. The former, vE , is not a velocity in the strict sense, but a quantity that controls the
rate of entanglement growth in thermalizing states [40–42]. For large regions and early times
(but much larger than local thermal scales) after a homogeneous quench, the entropy of a
region A  grows linearly according to

S  [A(t)] =  sth vE  |∂A |t +  . . . , (2.1)

where sth is the thermal entropy density, and |∂A |  denotes the area of the boundary of A.
This linear growth is explained heuristically in terms of an emergent “entanglement
tsunami”, which is valid in the hydrodynamic regime.1 For strip-like regions, this linear
growth regime persists until saturation. The ellipses include an initial entropy density, as
well as sub-extensive contributions which we ignore as subleading. Some dependencies are
suppressed in this expression: both v E  and sth may depend on the energy and charge density (or
equivalently, the inverse temperature and chemical potential) of the state. Additionally,
while v E  is usually defined in the context of entropy growth from an unentangled state (or a
vacuum state, with S  [A(t)] taken to be the vacuum-subtracted entropy), it can more
generally depend on details of the initial state. For instance, in this work we will consider
initial states with a uniform entropy density greater than zero, but less than the thermal
value, referring to f  º  sinitial/sthermal as the initial entanglement fraction of the state. In
this case, v E  depends on f  as well.

1 This picture breaks down for small systems [43, 44], however, here we will focus on regions much larger
than both the thermal length and the scale introduced by nonlocality.
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The second velocity, vB  [1, 2], is associated with the spread of local perturbations,
as diagnosed through the growth of local Heisenberg operators. The thermal expectation
value of the squared commutator of one simple local operator and another, displaced in
space and time, e.g.     [O1(x), U †(t)O2(y)U (t)]2 , vanishes as |x  � y | ® ¥ ,  but becomes

non-negligible over a displacement range that grows with time. The region over which the
expectation value of the square of this commutator is O(1) serves to define the butterfly
cone. After initial transient behavior, the boundaries of such a cone expand linearly at a
rate vB . Such cones map the regions of influence of perturbations by local operators.2

In [31] it was argued that the information velocity vI can be understood through an
argument that relates it to both v E  and vB . The argument follows a variation of the Hayden
and Preskill protocol of information recovery [45], and states that the information cone of a
test site T can be identified, at any given time, by finding the largest region centered on
the test site which satisfies two conditions. First, it must have reached entanglement
saturation, and second, it must be within the butterfly cone of the test site T . The former
condition indicates that the active degrees of freedom in the region are maximally entangled
with degrees of freedom in the complement system. The latter serves as an indicator
that the region is sufficiently scrambled.3 When both criteria are met by a region R ,  a
Hayden-Preskill style protocol for information recovery implies that the complement region
R ,  and not R ,  can recover the initial data of T .4 Considering larger and larger regions
centered on T at a fixed time until one of the two criteria fails identifies the smallest region R I

that can be used to reconstruct the initial data of T . This discussion assumes a sharp
transition between regions of recovery, R  and R .  In reality, the “edge” of the information
cone may be smoothed, however we assume this does not affect the asymptotic scaling of
the growth of R I ,  and therefore vI .

The above discussion alone indicates that either the scrambling condition or the
entanglement condition could act as a bottleneck to the spread of information. However,
in all systems considered, the condition of entanglement saturation always sets the more
stringent constraint, at least in the large-region, late-time limit.5 Therefore we henceforth
take for granted that vI  can be identified by finding the growth of the largest region
that has just reached entanglement saturation. For an arbitrary region A,  the time to

2 Aside from choosing operators that do not represent locally conserved charge, the cone is largely
insensitive to the choice of local operators.

3 The precise requirement for “scrambling” is not rigorously identified. In the quantum information
argument by Hayden and Preskill, the scrambling operation corresponds to a Haar-averaging over unitaries,
though this is presumed excessive. In the variation of [31], it is assumed that degrees of freedom within the
butterfly cone are sufficiently scrambled (for purposes of the argument), because all local operators at T can be
replaced by truncated operators with support only within the (growing) butterfly cone, and within this region
the chaotic dynamics is presumed sufficiently close to a “random” unitary.

4 Actually, the argument implies that the complement region R ,  plus any small region from within R ,
Δ R ,  with Hilbert space dimension at least greater than that of T , can recover the information. In our large

region limit we assume | R |   |T |  and treat the difference between the size of R  and R  � Δ R  as negligible.
5 This statement is related to several known bounds in the literature. In [40, 46] it was proven that v E  £  c in

relativistic systems and then by a causality argument that tsat ³  r ins /c, where r i n s  is the radius of the largest
ball that fits in the region being considered. Then in [47, 48] it was shown that v E  £  v L C  and tsat ³  r i n s /v L C ,
where v L C  is an effective light cone speed, usually assumed equal to v B  (though not always, see [10]).
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entanglement saturation is not solely controlled by vE , but in cases where linear growth
persists until saturation, in the scaling limit it is simply given by tsat =  (1 � f )v �1 |A |/ |∂A |.
For strips of width R  this gives tsat =  R (1  � f )/v E ( f ) .  Together with the statement that
v E ( f )  � vB (1 � f )  +  . . . near f  =  1 [31, 38, 47], this entails that for strip-shaped regions,

vI interpolates between vE  at f  =  0 and vB  at f  =  1. Finding vI  for strips across all values of f
thereby also provides information about the rates controlling entanglement growth and
operator spreading in the system. Computing v I ( f )  for strip-like regions will therefore be
our primary focus, leaving extensions to other shapes and states to future work.

The fact that vI is simply related to the largest region to reach entanglement saturation
also allows us to relate vI directly to the membrane tension function, a quantity described
in the section 2.3. In spin chain systems, we can only roughly approximate the membrane
tension function due to computational limitations and finite size effects. Hence, we are better
served by computing vI directly through a method explained in section 2.2. Holographic
systems, on the other hand, are particularly amenable to the membrane method. In these
systems we compute vI by relating it to the membrane tension function, as explained in
section 2.3.2.

2.2 Tracking the information cone in 1-D spin chains

For the purpose of identifying the information cone in a local quantum chaotic system,6 we
imagine that the degrees of freedom on a local test site, T , are initially maximally entangled
with a reference system R  of equal or greater Hilbert space dimension. The reference
R  is thereafter completely decoupled from the system dynamics. Initially, R  has
maximal mutual information with the test degrees of freedom, but as the system evolves,
the mutual information between R  and T decreases as data from T scrambles into the
rest of the system. The information cone can be identified by tracking the smallest
region around T that retains maximal mutual information with the reference system. Any
other initial state at T (besides the maximally mixed state used in this procedure) could,
in principle, be inferred from data within this region [50].

For a 1-dimensional chaotic spin chain, we instantiate a version of this setup as follows
(this is a slight modification of a procedure employed in [31]): we consider L-qubit systems
with nearest-neighbor σzσz couplings, with longitudinal and transverse magnetic field terms
chosen to render the Hamiltonian chaotic:

L�1 L L

H L       = J z z σ ( i )σ ( i+1)  +  hx σ ( i )  +  hz σ ( i) (2.2)
i = 1                                           i = 1                           i = 1

where J z z  =  1, hx =  1.05, hz =  0.5. Variations of this Hamiltonian have been widely used in
the literature to study thermalization. The superscript on H L merely indicates that
this serves as our “base” Hamiltonian, to which we will later add various nonlocal couplings.
However, the nonlocal couplings are irrelevant for the demonstrations of this section. We

6Controlled information transport in non-chaotic spin chains is another interesting vein of research. See,
for example, [49] and references therein.
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f

also define the following set of states:

E L / 2 E
ψ L       = aσ,σ0 |σ i i σ i+L/2

i = 1

with the matrix a given by

1/2 a
=      

2
I  +  ξ σy             .

(2.3)

(2.4)

These states allow us to initialize a uniform “volume law” entanglement fraction f ,  such
that the entanglement entropy of a subsystem of Nsub <  L / 2  neighboring qubits is f  �Nsub.
The f  dependence is implicitly related through ξ satisfying �(1/2 + ξ ) log(1/2 +  ξ) �(1/2 �
ξ) log(1/2 � ξ) =  f  log(2). For all f ,  these states are at the center of the energy spectrum,
in that hψ |HL |ψi =  0. An additional Bell pair is then appended to the system. One member
of the pair is dynamically coupled to the system while the other remains decoupled. These
are the “test” and “reference” qubits respectively.

E
|ψL + 2 (t  =  0))i =  ( |0iR |0iT +  |1iR |1iT ) ψ L (2.5)

The system is then evolved with the L + 1  qubit Hamiltonian (2.2), treating the test qubit as
the first in an L  +  1 qubit spin chain. The reference and test qubits initially have maximal
mutual information, but as the information associated with the test qubit scrambles into
the rest of the system, an ever-growing number of nearby qubits are required to recover the
mutual information with the reference.7 The growth of the smallest subsystem necessary to
achieve this defines the growth of the information cone.

Our Hamiltonian and states have a quasi-translation invariance, voided by the existence
of the boundaries, or by the fact that we are computationally restricted to finite L .  We
therefore track the cone across just under half the system size, extracting vI as a linear
fit on the cone in this region. Most of our results are for systems with total L  =  26. In
fitting vI , we exclude the initial and final three subsystems of the half-system to minimize
finite-time and edge effects. We implement time evolution with a Krylov subspace method
to exponentiate the Hamiltonian. This code was written in C,  and based on the well known
Fortran package, Expokit [51], where modifications were made to improve efficiency and
parallelize the computation. Each time evolution and entropy computation for a particular
Hamiltonian was run on a single node across 44 cores on TAC C ’ s  Stampede2 computer.
The results were verified for smaller L  using the Dynamite [52] and Qutip [53, 54] python
packages as well as a Mathematica [55] implementation. Figure 1 shows examples of
information cones from states initialized with varying degrees of uniform entanglement, f .
The information velocity is plotted as a function of initial entanglement fraction. As f  ®
1,

7 In practice, we use a cutoff value of one bit of mutual information. The subsystems under consideration,
which all include the test qubit and a variable number of its neighbors, evolve from maximal mutual
information to near zero mutual information (with the reference) at late times as long as the number of
qubits is under half the system size. A  mutual information of 1 captures the center of this falloff, and we use it
to define the information “wavefront”.
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(0)

v I

Figure 1. Left: a sample of information cones in the H L = 2 6  system for various values of initial
entanglement fraction f .  Right: information velocity as a function of f ,  extracted from the curves
in the left panel. The dotted lines represent the butterfly velocity vB , as obtained through an
independent OTOC computation, and the entanglement velocity vE ,  computed as the linear growth
rate of entanglement on half the system.

vI is expected to approach vB . As a consistency check, we computed vB  independently by
tracking the growth of squared commutators of simple operators, finding values in
approximate agreement, considering finite size effects in both computations.

2.3 Membrane theory of entanglement dynamics

An interesting quantity which can serve to simultaneously characterize aspects of entan-
glement growth, operator dynamics, and information spreading in local quantum chaotic
systems is the membrane tension function, E (v) [38]. The membrane model of entanglement
dynamics emerges in a course-grained, hydrodynamic type approximation of such systems.
It computes the entanglement entropy of a state via an integrated energy density along
a timelike membrane stretching through an auxiliary Minkowski spacetime, analogous to
a minimal cut through a tensor network or quantum circuit representing unitary time
evolution. The membrane method has been applied with great success to holographic sys-
tems [39, 56, 57], where the membrane is merely a projection of bulk extremal surfaces, with
the bulk dimension integrated out. In this section, we review the origin of the membrane
method in a thermodynamic limit of chaotic quantum systems. We review a method of
approximating E (v) in 1-D spin chain systems which we will later employ in section 3.3. We
then discuss its derivation and use in the context of the AdS/ C F T  correspondence as well
as its extension to more general gauge/gravity dualities. This section is largely a review
of work appearing in [38] and [39], though, we generalize the techniques to theories with
inherent nonlocality.

2.3.1 Membrane theory for spin chains

To  motivate the membrane method, we restrict ourselves to states in local chaotic quantum
systems exhibiting a “volume law” entanglement pattern, such that the entanglement
entropy of subregion is simply proportional to the volume of the subregion (plus subleading
corrections). For simplicity we also first consider 1-dimensional systems, though the
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∂S ∂S

∂ S

∂ S

y

x  � y

Figure 2. Minimization over membranes brings the curve on the left where a membrane stretches
from y to x  with a velocity v(t) assigned as the angle from the vertical at each point in time to a
straight line.

generalization to higher dimensions is immediate. In a system of total length L ,  pure states
partitioned by a cut at position x, at equilibrium exhibit a bipartite entanglement entropy of

Seq (x, t) =  seq min (x, L � x ) (2.6)

where seq is the equilibrium entanglement density. The leading, course-grained dynamics
of out-of-equilibrium states can be captured in a hydrodynamic description, governed by

∂t 
=  seqΓ ∂x

. (2.7)

Here Γ  ∂ x      =  Γ(s )  is the entropy production rate. In general this function could depend
explicitly on position or on any locally conserved charge densities, though we consider
the simplest, spatially uniform case. Physical considerations immediately put some con-
straints on Γ(s).  At saturation, entanglement growth vanishes ∂t     =  0, implying that
Γ(seq) =  Γ(�seq) =  0. Considering the growth of entanglement from a completely unentan-
gled state leads to Γ(0) =  vE . The entropy production rate is only defined over seq £  s £  seq,
and we assume a smooth, symmetric function with Γ00(v) <  0 over this domain.

Next suppose that there is an equivalent representation of the entropy dynamics, staged
on an auxiliary Minkowski spacetime associated with the time evolution operator, where
the entanglement entropy is computed by minimizing the integrated local “energy” along a
timelike membrane stretching from the initial to final time and obeying certain boundary
conditions. The tension function E (v) specifies the energy density along this membrane as
a function of its orientation in the spacetime (its local “velocity”). For the one-dimensional
translation invariant system described above, the entropy at position S (x, t)  would be
obtained by the following minimization (see figure 2):

S (x, t) =  min t seq E
t

+  S (y, 0) (2.8)

– 8 –
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eq 2 2

Differentiating with respect to time and comparing to equation (2.7) entails that E (v)
can be directly related to Γ(s )  (and vice versa) by Legendre transformation:

Γ(s )  =  min

E (v) =  max

E (v) � 
vs 

!

eq

Γ(s )  +  
vs
eq

(2.9)

From the properties of Γ(s),  we can infer related properties of ε(v). In particular,
considering Γ(seq ) =  0 leads to vmax =  seqΓ0(seq). In the tensor network or circuit picture,
the maximum velocity vmax serves as an effective lightcone velocity, which in known cases
is equal to the butterfly velocity vB . Results in the systems we consider are consistent with
this expectation, and we assume it throughout. In conjunction with the other characteristics
of Γ(s )  and properties of the Legendre transform, in the range �vB £  v £  vB  we have

E (0) =  vE ,

E0(0) =  0,

E (v) ³  |v |,

E (vB ) =  vB ,

E 0(vB ) =  1,

E00(v) ³  0. (2.10)

The definition of ε(v) can be extended outside this domain, but this is the region
of dynamical interest. It is evident that the membrane tension function encodes a lot of
information characterizing the system, including not only entanglement dynamics (vE ), but
also operator growth (vB )  and indirectly, information spreading (vI ). For this reason it will
be one of the primary quantities which we compute and compare for systems with variable
degrees of nonlocality.

In general it is not possible to compute E (v) analytically for a given Hamiltonian.
A  numerical approximation technique was introduced in [38], which we summarize here
and later employ. The membrane tension function at infinite temperature can be simply
related to the operator entanglement of the time evolution unitary. Operator entanglement is
computed by treating the operator as a state vector in a doubled Hilbert space. For
instance, from the time evolution operator U (t) we obtain:

hi| U (t) |ji |ii hj | �® Uij (t) |j i |ii

Here, the first and second Hilbert space factors can be thought of as representing the same
degrees of freedom at time 0 and time t, respectively. An ordinary entanglement entropy
can then be computed on various subsystems of this state. In a 1-D system, tracing out
degrees of freedom up to x  on the first factor and up to y on the second factor gives the
entanglement entropy SU (x, y, t), which in the membrane picture corresponds to a minimal
membrane stretching from x  to y through an auxiliary spacetime of height t. This leads to a
method of approximating the membrane tension function via operator entanglements of the
time evolution unitary:

Eeff (t, v) º  
s

1 
t

SU �
vt

, 
vt

, t

– 9 –
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1 1 d d

Here, for system of finite length L ,  the origin of the spatial arguments is placed at the center.
At any given t, evaluating the right hand side gives an approximation of the membrane
tension function at infinite temperature. This approximation is limited by both finite size
effects and finite time effects. In an infinite system, taking a large time limit would render
finite time effects negligible, and the approximation would converge to E (v) over the range
�vB <  v <  vB , and to |v | outside this range. But for a finite system as t increases, the
range of v over which the cut can be made without exceeding the boundaries (or more
stringently, before edge effects become substantial) becomes more limited. In our spin chain
system, we are computationally limited to 13 qubits. So in practice, we obtain a series of
curves for a set of t values (or rather, discreet data points such that |vt/2| correspond to
an integer number of spins traced out) and schematically piece these together to give a
qualitative picture of E (v) under different Hamiltonians. This method is employed in
section 3.3 as a qualitative check on our more direct methods of investigating the effect of
variable nonlocality in spin chain systems.

2.3.2 Membrane theory for holographic systems

The membrane theory of entanglement dynamics has been successfully generalized to
strongly-coupled large-N theories with holographic duals [39, 56]. This provides strong
evidence that this effective description can efficiently encapsulate the entanglement dynamics in
all chaotic systems. In [39] it was first realized that a membrane description naturally
emerges upon studying the late-time and large-distance regime of the RT  prescription, akin to
hydrodynamics. This study was later complemented in [56] showing that this theory is
robust under a large set of generalizations, including different quench protocols and finite
coupling corrections holographically dual to higher derivative gravity corrections. In this
section we will first review the results of [39], valid for asymptotically AdS spaces in Einstein
gravity. We will then generalize this framework to more general holographic scenarios,
including those described by non-AdS spaces with extra matter fields and fluxes, ubiquitous in
top-down constructions emerging from string or M theory.

The case of asymptotically Ad S  spaces. We start with a generic asymptotically
AdSd+1 black brane

ds2 =  
z2      �a(z)dv2 � 

b(z) 
dvdz +  d~xd�1      , (2.11)

where v is an “infalling” time coordinate. For instance, for the standard Schwarzschild-
AdSd+1 we have

with

d
a(z) =  1 � , b(z) =  1 , (2.12)

h

T =  
β 

=  �
4π dz

a(z)
zh 

=  
4πzh 

. (2.13)

We follow [39] but keep working in cartesian coordinates. In this way, we can later generalize
the analysis to non-AdS settings in a more straightforward way. First, consider the scalings

v º  Λ τ , x i  º  Λ ξ i  , z º  ζ  . (2.14)
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τ
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v º , ζa (ζ )

 

4GN
~ Ö  

1 � v

L

h

~

h

0�a (ζ
2

h

2 ζ d ζ (d � 2) ζ

(d � 2)

vE d

Defining ξ º  ξ1, ξ^ º  {ξ2, . . . , ξd�1} and parameterizing the R T  surface with functions
ζ (τ , ξ^ ), ξ(τ , ξ^), one finds that in the limit β/Λ ® 0 the entanglement entropy functional
reduces to:

d�1     d�1 Z Ö  h i
S A  =

4GN
dτdξ^ ζd�1 , Q º  (∂τ  ξ) � a(ζ ) 1 +  (∂^ξ ) , (2.15)

where (∂^ξ )2 º  (∂ξ2 ξ )2 +   +  (∂ξd�1ξ)2. In this limit, the equation of motion for ζ  is
algebraic:

1 +  (∂ 
)
ξ)2 =  a(ζ ) � 

2(d � 1) 
. (2.16)

We now define:
2 (∂τ  ξ)2

1 +  (∂^ξ)2

0

c(ζ ) º  a(ζ ) � 
2(d � 1) 

, (2.17)

so that (2.16) becomes v2 =  c(ζ ). Plugging back into the action the solution to this equation,
ζ  =  c�1(v2), we can rewrite the entropy functional as a membrane functional:

S A  =  
Ld�1Λd�1 Z 

dτdξ^ 

q
1

 
+  (∂^ξ )2 E (v ) =  sthΛd�1 

Z 
darea

E
 
(v)

 
2 

, (2.18)

where
d�1

sth =  
4GN ζ d�1 , (2.19)

is the thermal entropy density of the black brane. In the above we have identified the
standard “area” element in Minkowski space

q
darea =  dτdξ^ 1 +  (∂^ξ)2 � (∂τ  ξ)2 (2.20)

and defined the membrane tension E (v) to be
s

E (v) º  ζd�1
2(d � 1)ζ

)
d�3 

ζ =c�1 (v 2 )  

. (2.21)

Notice that the factor ζd�1 is included in (2.21) to make E (v) dimensionless. For example,
for Schwarzschild-AdSd+1 (2.12) we find that the equation (2.16) becomes

d d d
v =  1 � 

ζh
+  

2(d � 1) ζh
=  1 � 

2(d � 1) ζh
, (2.22)

which can be inverted as follows:

ζ  =  c�1(v2) =  ζh 
2(d � 1)

(1 � v2)
1/d 

. (2.23)

Plugging this back into (2.21) we find that

d�2 (d�2)/(2d)

E (v) =  
(1 � v2)(d�2)/(2d) , v E  =  

2(d�1) (d�1)/d . (2.24)

d
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B

X
i p

2

˜

˜

~
~ ~

A
˜

4G
~̂

2 d�1 1 X (∂ξ j ξ)

It can be checked that this function has all the desired properties [39, 56] (in the dynamically
relevant regime, i.e., 0 £  v £  vB ):

E (0) =  v E  , E0(0) =  0 , E (vB ) =  vB  , E 0(vB ) =  1 , E0(v) ³  0 , E00(v) ³  0 , (2.25)

with s

v
B

 =
2(d � 1) 

. (2.26)

One final remark is in order. In general, solving for vB  from (2.25) may be very difficult.
However, it is useful to notice that

vB  =  c(ζh ) , (2.27)

so c�1(v2 )  =  ζh must yield the horizon. On the other hand,

0 =  c(ζHM) , (2.28)

and c�1(0) =  ζHM yields the Hartman-Maldacena surface [40].

General theory for non-AdS spaces. The gravity duals of the theories we want to
study are non-asymptotically AdS and possibly anisotropic. In particular, their metrics are
not of the form (2.11). This means we need to generalize the membrane theory starting from a
more general ansatz. For concreteness, we will take the metric to be of the following form:

d�1

ds2 =  �gvv (z)dv2 � 2gvz (z) dvdz + gii (z )dx2 +  dΩ2 , (2.29)
i = 1

where d is the number of spacetime dimensions in the boundary and dΩp is the metric on a
p-dimensional compact space Mp .  Importantly, we will assume that this compact space may
have a non-trivial dependence with respect to the radial coordinate z, such that its
volume factorizes as Z

dpΩp =  VΩ(z) ´  Vol(Mp ) , (2.30)

for a suitable “normalized” Mp .
Following the derivation of the previous section, we first consider the scalings

v º  Λ τ , x i  º  Λ ξ i  , z º  ζ  , (2.31)

while keeping the coordinates of the compact space untouched. Defining ξ º  ξi, ξ^ º  ξ j  ( j
=  i )  and parameterizing the R T  surface with functions ζ (τ , ξ^ ), ξ(τ , ξ^) (assuming no
dependence with respect to the coordinates of the compact space), one finds that in the limit
β /Λ  ® 0 the entanglement entropy functional reduces to:

S  =  
Λd�1 Vol(Mp ) Z 

dτdξ 
Ö

P
p

Q , (2.32)
N

with

P  º  VΩ (ζ )Π i=1 gii (ζ ) ,

� �
2

Q º  (∂τ  ξ)2 � gvv (ζ ) �
gii (ζ ) 

+  
j = i  

g j j (ζ )  
� . (2.33)
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2 d�1 vvg (ζ )

vvg (ζ ) P (ζ ) 0 0

vvg (ζ ) P (ζ ) 0 0

L
L L L

 

A ~̂ ˜
4G 4G

˜ ˜ ˜
Ö  

1 � v 2

~

˜
i i

0 0

                
P (ζ 2

˜

2 d�1
˜ ˜

4G 4GN N

Ö  
1 � v

P (ζ )2
0 0

In this limit the equation of motion for ζ  is algebraic; however, it generally cannot be
written in the form

v2 =  c(ζ ) . (2.34)

This is due to the anisotropy in the metric (2.29). To  move forward we specialize to the
case of infinite strips, so that the embedding functions are independent of the transverse
coordinates, i.e., ζ (τ ), ξ(τ ) and hence ∂ξ j  ξ =  0. In this case we recover (2.32) but now with

P  º  VΩ (ζ )Π i=1 gii (ζ ) , Q º  (∂τ  ξ)2 � 
gii (ζ ) 

. (2.35)

The equation of motion for ζ  is now:

(∂τ  ξ)2 =  
gii (ζ ) 

� 
P 0 (ζ )gii (ζ )2 gvv (ζ )gii (ζ ) � gii (ζ )gvv (ζ )

 
, (2.36)

which is of the form (2.34) with

v2 º  (∂τ ξ)2 , c(ζ ) º  
gii (ζ ) 

� 
P 0 (ζ )gii (ζ )2 gvv (ζ )gii (ζ ) � gii (ζ )gvv (ζ )

 
. (2.37)

As a consistency check, we note that for asymptotically AdS, isotropic black branes we have

2(d�1)
P (ζ )  =  

ζ2(d�1) ,
2

gvv (ζ ) =  
ζ2 a(ζ ) ,

2
gii (ζ ) =  

ζ2 ,
2

gj j (ζ )  =  
ζ 2 (2.38)

and we recover (2.17) from (2.37). Plugging back into the action the solution to this
equation, ζ  =  c�1(v2), we can rewrite the entropy functional as a membrane functional:

S  =  
Λd�1 Vol(M) Z 

d
τ

dξ E (v ) =  
Λd�1 Vol(M) Z 

darea
E (v)  , (2.39)

N N

where q
darea =  dτdξ^ 1 � (∂τ ξ)2 (2.40)

and

E (v) º  

s

�
P 0 (ζ )g

 

)(ζ )2

 

[gvv (ζ )gii (ζ )

 

�

 

gii (ζ )gvv (ζ )]
ζ =c�1 (v 2 ) 

. (2.41)

We note that E (v ) still needs to be normalized. In order to do so, we identify the entropy
density as:              

sth =  
Vol(M ) q

VΩ (ζh )Π i = 1  gii (ζh ) =  
Vo l ( M ) q

P
 
(ζh ) .                       (2.42)

Hence, we find that

S A  =  sthΛd�1 
Z 

darea
E (v) 

2 
, (2.43)

with
s

E (v) º �
P (ζh )P 0 (ζ )gii (ζ )2 [gvv (ζ )gii (ζ ) � gii (ζ )gvv (ζ )]

ζ =c�1 (v 2 ) 

. (2.44)
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Information velocity from the membrane theory. We can include the effects of the
entanglement fraction f  [31] in the membrane theory in a manner developed by Mark
Mezei, who obtained the results of this section in unpublished work [58]. The inclusion of f
amounts to the introduction of a penalty factor for the lower end of the membrane:

S A (A (τ ) )  =  sth 

Z 
darea

E (v ) 
2 

+  f vol(A0 (0))
 
. (2.45)

Thus, the membrane is anchored on ∂A(τ ) and ∂A0(0) on the upper and lower boundaries
respectively. Since the latter is just a boundary term, it does not affect the equations of
motion. For the case of strips of width 2R one gets membranes with constant v, and (2.45)
becomes

S A (A (τ ) )  =  stharea(∂A)(E (v)τ +  f ( R  � vτ )) (2.46)

whose minimum in v is at
f  =  E0(v) , (2.47)

independently of τ . The entropy saturates when SA (A(τsat )) =  stharea(∂A)R, which gives

R E (v) � E0(v)v Γ ( f )  I τsat
1 � f E 0 (v )= f           1 � f (2.48)

where Γ ( f )  is defined as the Legendre transform of E (v). It can be checked that v I ( f  =
0) =  v E  and v I ( f  =  1) =  vB .

3 Information propagation in spin chains with variable nonlocality

We now turn to the question of how the rate of information spreading in chaotic quantum
systems is affected by the presence of nonlocality in various forms. We begin with the
base Hamiltonian H ( 0 )  of equation (2.2). By adding next-nearest-neighbor terms (or next-
next-nearest-neighbor terms, etc. . . ) with variable couplings, we introduce a form of mild
nonlocality into the Hamiltonian and investigate the affect of these terms on information
spreading.8 More precisely, our total Hamiltonian will be

H L  =  H ( 0 )  +  H (nonlocal) (3.1)

where

H (nonlocal) =  J z o z  

L�2 

σ ( i )σ ( i+2)  +  Jz ooz  

L�3 

σ ( i )σ ( i+3)  +  . . .
i = 1 i = 1

L�2 L�3

J x o x σ ( i )σ ( i+2)  +  Jx o o x σ ( i )σ ( i+3)  +  . . . .
i = 1                                                  i = 1

(3.2)

8 Spin chains with next-nearest neighbor interactions or related couplings have been studied in many
other contexts, see for example [59–63]. Entanglement growth in integral models with a form of nonlocality
induced by a Lifschitz scaling has been studied in [64, 65].
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Figure 3. Left: information velocity as a function of initial entanglement fraction f  in L  =  26
systems with different values of J x o x  nonlocal coupling (all other nonlocal couplings set to zero).
Right: information velocity as a function of initial entanglement fraction f  in L  =  26 systems with
different values of J z o z  (all other nonlocal couplings set to zero). In both panels, the x’s along the f  =
1 line correspond to independent computations of vB , and the o’s along f  =  0 correspond to
independent v E  computations. See discussion in the main text.

Al l  the individual terms in H (nonlocal) are quadratic, in the sense that they contain two
active sites (i.e. only two Pauli operators per summed term). The labelling scheme for
nonlocal coefficients should be clear: the number of o’s in Jxo...ox (for example) indicates
the number of spaces between active σx sites. In most cases, we will set only a subset of the
couplings Jx o x , Jz o z , Jx oox , Jz oo z  . . . to nonzero values simultaneously, however we do allow
them to be on the same order as the J z z  =  1 coupling in H L  , so they do not generally
constitute small perturbations to H (0) . In fact, in our scans below we choose to consider
nonlocal couplings up to precisely Jnonlo cal =  1 because in some cases going far beyond
this causes the Hamiltonian eigenstate level-spacing to deviate from the Wigner-Dyson
distribution indicative of a chaotic regime [66], where we wish to remain.

Equation (3.2) obviously does not represent the unique set of nonlocal terms which could
be considered. We choose to work with σzσz terms and σxσx terms, because unlike σyσy,
such terms leave the states (2.3) at the center of the energy spectrum, regardless of the values
of nonlocal coupling coefficients. These two types of terms also provide clean examples of
nonlocal additions which are, respectively, commuting and non-commuting with the nearest
neighbor piece of H (0) , which we speculate may lead to qualitatively different behavior.

In the following sections we display some results obtained using the methods outlined
in section 2.2, to show the effects of nonlocal terms on the rate of information spreading.

3.1 Next-nearest neighbor interactions: J x o x  and J z o z

First we consider the case where only one of the nonlocal terms in (3.2) is turned on.
Figure 3 shows vI over f  for the different values of either J x o x  (left panel) or J z o z  (right
panel). All other nonlocal couplings are set to zero for these scans. In the case of Jx o x ,  the
most apparent qualitative behavior is perhaps unsurprising: as the amount of nonlocality is
increased, the information velocity increases as well, at all values of f .  For small J x o x  .  0.2,
however, this effect is suppressed or even reversed, as vI is either unchanged or even slightly
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Figure 4. Left: information velocity as a function of nonlocal coupling ( J x o x  or J z o z )  at fixed f  =  0.
The dashed lines in this panel are an independent computation of v E  values in the presence of the
same nonlocal couplings. Right: information velocity as a function of nonlocal coupling ( J x o x  or
J z o z )  at fixed f  =  1. The dashed lines in this panel are an independent computation of v B  values in
the presence of the same nonlocal couplings.

decreased for small f .  This behavior is far more pronounced in the case of Jz oz ,  which
shows a clear nonmonotonicity in the behavior of vI as a function of Jz oz , at all values of f .
This behavior is displayed more clearly in figure 4, and we will discuss it further below.

As a confirmation that the information velocity vI ( f )  interpolates between v E  at f  =  0
and vB  at f  =  1, we have computed both of these velocities independently for the same set
of system parameters, using basic methods. Results are shown as the dashed lines in
figure 4. To  compute vE , we tracked the rate of growth entanglement entropy on half of
the system, evolving the state ψ f = 0  until saturation (see equation (2.3)) and performing a
linear fit on the early linear growth portion of this curve. The vB  computations consisted of
taking the trace of the squared commutator of local Heisenberg operators over a grid of
space and time displacements, and finding the rate of growth of the region over which the
result is O(1). In the case of the vE  computation, the values obtained are particular to the
state (2.3) with f  =  0, though they should not substantially differ from those obtained by
averaging over random unentangled states. On the other hand the vB  computation is a
state-independent estimation of the butterfly velocity at infinite temperature, as is
appropriate for comparisons with states of energy hHi =  0. The approximate match of
these curves with the behavior of vI , shown in figure 4, is good support for the analysis of
[31] and a good overall consistency check. It is also a confirmation of the non-monotonic
behavior seen in the vI curves, which we now discuss.

The nonmonotonicity evident in figure 4 is somewhat counter-intuitive, as it indicates
that in some cases the inclusion of nonlocal terms in the Hamiltonian can suppress the
rate of information propagation. Such behavior is not observed in any of the holographic
systems investigated in section 4. For the case of J x o x  couplings, the suppressive effect is
almost small enough to be dismissed as an artifact of finite size effects or procedural
uncertainties, with vI never falling below about 6 percent less than its value at J x o x  =  0
(though even “flatness” of the vI ( J x o x )  curve for small J x o x  would be noteworthy). The
case of J z o z  shows a much larger suppressive effect, peaking around J z o z  � 0.4, where vI is
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Figure 5. Left: ratio of the minimum information velocity to the information velocity at zero
nonlocal coupling ( J x o x  =  J z o z  =  0), denoted vI  , as a function of entanglement fraction f .  Right:
ratio of the butterfly velocity to the entanglement velocity as a function of the nonlocal coupling
( J x o x  or Jz o z ) .

nearly 35 percent lower than its value with no nonlocal coupling. We focus on this effect in
the left panel of figure 5, plotting the ratio of the minimum vI (with respect to Jnonlocal )
and vI when Jnonlocal =  0. The effect is most stark at f  =  0.

In the right hand side of figure 5, we have plotted the ratio vB /vE ,  as inferred from
v I ( f  =  0)/vI (f  =  1), at various values of nonlocal coupling. The precise form of the curves
emerging from this data are surely dependent on our specific choices of Hamiltonian and
couplings, but we include this plot for comparison with holographic results (see figures 8
and 11, left panels), where the analogous ratios are monotonically increasing and relatively
featureless.

3.2 More nonlocality: fixed width scans

We now move beyond the case of next-nearest neighbor interactions, and consider adding
a higher degree of nonlocality. We fix all Jxox , Jxoox , . . . , Jxo...ox couplings, up to a fixed
“width”, to the same Jnonlo cal value and turn them on simultaneously. Results for vI as a
function of Jnonlo cal are displayed in 6. In this case, the affect of additional nonlocal terms is
simply to raise the vI (Jnonlocal ) curves, moreso with the inclusion of each additional “width”
of nonlocal terms. This also has the affect of washing out the nonmonotonic behavior
observed in section 3.1 and approaching behavior more similar to the holographic cases
we consider in section 4. It is interesting that the growth of vI begins to level off near
Jnonlo cal =  1. In principle these coupling parameters could be made arbitrarily large, but we
have chosen to limit Jnonlocal £  1 in order to leave a comfortable margin before the Hamilto-
nian level-spacing departs from the Wigner-Dyson distribution expected of chaotic systems.

3.3 Membrane tension function and nonlocality

We now approximate the membrane tension function for the systems of section 3.1 with
variable next-nearest neighbor couplings, using the method outlined in section 2.3.1 with L
=  13. Results are displayed in figure 7. Finite size affects are substantial, so these curves can
only be considered schematic representations of the effect of the nonlocal coupling on
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Figure 6. Left: information velocity as a function of nonlocal σx  couplings, at f  =  0. Nonlocal
terms are turned on up to fixed “width”. Right: information velocity as a function of nonlocal σz

couplings, at f  =  0. Nonlocal terms are turned on up to fixed “width”.

E (v) E (v)

Figure 7. Numerical estimation of the membrane tension function E (v) for various the spin chain
with a single nonlocal coupling turned on. Left: the overall affect of increasing the J x o x  coupling is to
raise the membrane tension function. Right: increasing the J z o z  coupling initially has a small suppres-
sive effect on the membrane tension function, but beyond J z o z  '  0.5 it surpasses the J z o z  =  0 values.

E (v) (i.e. they do not give precise values of v E  =  E (0) or vB  =  E (vB )). They are obtained by
computing Eeff(t, v) over a series of t values up to the vB  crossing time for each Hamiltonian
and fitting the boundary of the resulting data set with an even polynomial of degree 12.
The central portion (toward v =  0) of the curves, which in an infinite system would converge
through late time values of Eeff(t, v), tend to be overestimated. This effect is larger for
higher (true) values of vE , vB , because finite size effects prohibit a good estimate from
Eeff(t, v) at much lower values of t. All these caveats aside, in qualitative terms we find good
agreement with the results of the previous section: the effect of adding J x o x  is initially fairly
flat, but past J x o x  � 0.25 dramatically raises E (v) upward at all v (entailing an increase of
vB , vE , and vI ). Increasing J z o z  from zero initially has a small suppressive effect, but by
J z o z  � 0.5 the curve raises to match original values ( J z o z  =  0 values) and continues to
increase uniformly.
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4 Information propagation in nonlocal holographic systems

Inspired by the lattice results of the previous section, we now turn our attention to large-N
gauge theories with holographic duals. We will consider two prototypical theories with
different types of nonlocality: non-commutative SYM (NCSYM) theory and dipole-deformed
SYM (DDSYM) theory. The former is an example of a nonlocal theory with UV/IR  mixing.
A  simple model that realizes non-commutativity consists of a set of oppositely charged
particles (dipoles) moving in a strong magnetic field [67]. The UV/ IR  mixing then implies
that the transverse size of the dipoles grows with their longitudinal momentum, which may in
turn posit obstructions for renormalizability [68, 69]. Even though this theory is ultimately
finite, noncommutativity is arguably not the simplest way to introduce nonlocality. We thus
consider a second theory, inspired by [70], which introduces a set of fundamental dipoles of
constant length L ,  hence, resembling more closely the lattice systems studied in section
3. As a result, one obtains a nonlocal theory without the issue of UV / I R  mixing.

In the following, we will review the basic features of the holographic duals of NCSYM and
DDSYM, realized as top-down constructions in string theory. We will also comment on their
finite temperature black brane solutions, which are needed to tackle the questions pertaining to
thermalization and information spreading.9     Finally, we will use the tools developed in
2.3.2 to write down membrane tension functions for both systems and analyze the results.

4.1 Theories of interest

4.1.1 Grav i ty  dual of N C S Y M

The gravity dual of maximally supersymmetric non-commutative SYM (NCSYM) is given
by type I IB  supergravity with non-zero NS-NS B-field. Here and below we assume that the
non-commutative parameter is non-vanishing only in the (x2, x3)-plane, i.e., [x2, x3] � iθ.
This amounts to replace all multiplication in the Lagrangian of the N =  4 S Y M  theory
with a noncommutative star product

(f ? g )(x2 , x3 ) = e 2  θ (∂ξ2 ∂ζ3 �∂ξ3 ∂ζ2 ) f (x2 + ξ2 , x3 + ξ3 )g (x2 + ζ2 , x3 + ζ3 ) | ξ2 =ξ3 = ζ2 = ζ3 =0  . (4.1)

The gravity background dual to this theory, in the string frame is [71, 72]:

ds2 =  R 2  

"

r 2  �f (r)dt2 +  dx2 +  h(r) dx2 +  dx2
 
+  

r 2 f (r )  
+  dΩ2

# 

, e2Φ =

ĝ2h(r) ,

B23 =  R2 a2 r4h(r) , (4.2)

C01 =  
R

ĝ  

2 
r4 ,

F0123r =  
4

ĝ

4 
r3h(r) ,

9 To our understanding, this is the first time that a black brane solution is derived for the gravity dual of
D D S Y M  theory.
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with
4

f ( r )  =  1 �
r

, rh =  πT , (4.3)

and
h(r ) =  

1 +  a4r4 , a =  λ1/4      θ . (4.4)

In the above dΩ2 denotes the metric on a unit S 5, R 4  =  4πĝNα02, ĝ denotes the string
coupling and α0 is the string tension, which is related to the ’t Hooft coupling through the
standard relation λ  =  R2/α0.

To  use the results for the membrane theory we first express the metric in Einstein
frame,10

ds2 =  
g
ˆ

1/2h(r)1/4 

"

r 2  �f (r)dt2 +  dx2 +  h(r) dx2 +  dx2
 
+  

r 2 f (r )  
+  dΩ2

# 

, (4.5)

and go to a radial coordinate z =  1/r , so that:

ds2 =  
g
ˆ

1/2h(z)1/4z2 

"

�f (z )dt2 +  dx2 +  h(z) dx2 +  dx3

 
+  

f (z )  
+  z2dΩ2

# 

, (4.6)

where
4

f (z )  =  1 � 
zh

, zh =  
πT 

, (4.7)

and
h(z) =  

1
 
+ 4 , a =  λ1/4      θ . (4.8)

We further define the infalling time coordinate v such that

dt =  dv +  
f (z )  

, (4.9)

hence the metric becomes:

ds2 =  
g
ˆ

1/2h(z)1/4z2 

h
�f (z)dv2 � 2dvdz +  dx2 +  h(z) dx2 +  dx2

 
+  z2dΩ2

i 
. (4.10)

This metric is of the form (2.29), with the following identifications:

R2 f (z )
vv ĝ1/2h(z)1/4z2

2

gvz =  g11 =  
ĝ1/2h(z)1/4z2 , g22 =  g33 =  

R2h(z )3/4 
. (4.11)

Furthermore, the metric of the compact space is
2

dΩ5 =  
ĝ1/2h(z)1/4 dΩ5 , (4.12)

so we obtain that
5

VΩ(z) =  
g
ˆ

5/4h(z)5/8 ,
Vol(Ω5) =  π3 . (4.13)

With the above identifications, we are now ready to apply our general results of section 2.3.2
specializing to this system.

1 0 The metrics in the Einstein and string frames are related via the standard relation: ds2 =  e�Φ/2 ds2 .
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4.1.2 Grav i ty  dual of D D S Y M

The gravity dual of the dipole deformed maximally supersymmetric S Y M  ( D D S Y M )  is
given by type I IB  supergravity with non-zero NS-NS B-field and a deformed compact space.
Here and below we assume that the dipoles have fixed length L  and are all oriented along
the x3-direction. This amounts to replace all multiplication in the Lagrangian of the N =  4
SYM theory with the star product

     
( f  ? g )(x3 ) =  f x3 � 

2
g x3 +  

2
. (4.14)

The gravity background dual to this theory, in the string frame is [73]:11

ds2 =  R 2  

"

r 2  �f (r)dt2 +  dx2 +  dx2 +  h(r)dx2
 
+  

r 2 f (r )  
+  dΩ2

# 

, e2Φ

=  ĝ2h(r) ,

B3ψ  =  R2 b r2h(r) , (4.15)

F0123r =  4R4 r3 ,

with
4

f ( r )  =  1 �
r

, rh =  πT , (4.16)

and
1/2

h(r ) =  
1 +  b2r2 , b =

2π
. (4.17)

In the above dΩ2 denotes the metric on a deformed unit S 5. This compact space has the
structure of an S 1 (Hopf) fibration over a base CP2. The global angular 1-form of the Hopf fi-
bration is denoted as ψ. This fiber acquires an r-dependent radius h(r)1/2. The volume of the
CP2 is constant and given by π2/2, so the total volume of the compact manifold is π3h(r)1/2.

To  use the results for the membrane theory we first express the metric in the Einstein
frame

ds2 =  
g
ˆ

1/2h(r)1/4 

"

r 2  �f (r)dt2 +  dx2 +  dx2 +  h(r)dx2
 
+  

r 2 f (r )  
+  dΩ2

# 

, (4.18)

and go to a radial coordinate z =  1/r :
" #

ds2 =  
g
ˆ

1/2h(z)1/4z2      �f (z)dt2 +  dx2 +  dx2 +  h(z)dx2 +  
f (z )  

+  z2dΩ2      , (4.19)

where
4

f (z )  =  1 �              ,
h

zh =  
πT 

, (4.20)

1 1 The metric presented in [73] is the zero temperature version of (4.15), where f ( r )  =  1. To  our
understanding, this is the first time that a black brane solution was derived for the gravity dual of the
dipole theory.
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¯
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g = ,
R
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¯
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c

and

h(z) =     , 1 +  z

1/2

b =
2π

. (4.21)

We further define the infalling time coordinate v such that

dt =  dv +  
f (z )  

, (4.22)

hence the metric becomes:

ds2 =  
g
ˆ

1/2h(z)1/4z2 

h
�f (z)dv2 � 2dvdz +  dx2 +  dx2 +  h(z)dx2 +  z2dΩ2

i 
. (4.23)

This metric is of the form (2.29), with the following identifications:

R2 f (z )
vv ĝ1/2h(z)1/4z2

2

gvz =  g11 =  g22 =  
g
ˆ

1/2h(z)1/4z2 ,
R2h(z)3/4

33 ĝ1/2z2 (4.24)

Furthermore, the metric of the compact space is

2
dΩ5 =  

ĝ1/2h(z)1/4 dΩ5 .

From the discussion below (4.17) we know that Vol(Ω5) =  π3h(z)1/2.
z-dependent terms into VΩ(z), we obtain that

(4.25)

Extracting all

5
VΩ(z) =  

ĝ5/4h(z)1/8 , Vol(Ω5) =  π3 . (4.26)

Again, with these identifications, we can now apply our general results of section 2.3.2
specializing to this system.

4.2 Membrane theory and results for information spreading

4.2.1 Membrane theory for N C Y S M

We can analyze two cases, depending on the orientation of the strip. In both cases we find:

16
P (ζ )  =  

ĝ4ζ6 , (4.27)

however, the membrane tensions differ.

Commutative strip ( ξ  =  ξ1  and ξ ^  =  {ξ2 , ξ3}). First, note that (2.36) can be
written as:

v2 =  cc(ζ ) , cc(ζ ) =  f ( ζ )  � 
6
ζ f 0 (ζ ) =  1 � 

3ζh 
, (4.28)

and this equation can be inverted analytically to give:

ζc =  c�1(v2) =  ζh 

h
3(1 � v2 )

i1/4 
. (4.29)

– 22 –



J
H
E
P
1
2
(
2
0
2
1
)
0
1
9

3
56ζ 3 ζ

ζ ζ
�
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4 4c (ζ )  = � + =  1 � + � ,

E
2

B
2

~
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ζh �

ζ 4

vuu
! 2

ζ ζ4 4
�

3

 

    

5 2

vuu 4ζ 4
h

6ζ h(ζ ) 3 ζ
ζ ζ

�
4 4

2

ζ ζ ζ ζ4 4

� �

� �

Ö 2
4 4

ζ ζ ζ 4

0 0

We have added a subindices “c” to indicate that we are working out the commutative strip.
Finally, the membrane tension is

Ec (v ) =  ζh

s

�
f 0 (ζ )  

=  
r

2  ζh =  
33/4(1

Ö

2v2)1/4 . (4.30)
c                                         c

This is exactly the same result for a strip in Schwarzschild-AdS5. It satisfies all the desired
properties, including:

Ec(0) =  v E  , Ec(0) =  0 , Ec (vB ) =  vB  , Ec (vB ) =  1 , (4.31)

with Ö
v (c) =  

33/4 ,
r

v (c) =
3 

. (4.32)

Non-commutative strip ( ξ  =  ξ2  and ξ^  =  {ξ1 , ξ3}). In this case (2.36) can be
written as:

v2 =  cnc(ζ ) ,
f ( ζ ) ζ f 0 (ζ ) ζ f (ζ )h0 (ζ ) ζ4 5a4 a4

nc h(ζ )        6h(ζ )           6h(ζ )2                          3ζh 3ζ4 ζh
(4.33)

and can also be inverted analytically to yield:12

�

ζnc =  c�1(v2) =  
21/4 �3 1 � v2 � 

a4 
!  

+  t 9  h

�1/4

1 � v2 � 
a4

+  
20a4 

� . (4.34)
h                      h

We have added a subindices “nc” to indicate that we are working out the non-commutative
strip. Finally, the membrane tension is

Enc (v) =  ζh

s

�
f 0 (ζ )h (ζ )

 
� f (ζ )h0 (ζ )

=  t
2

1
 +  

a
ζ8

 !
ζ h

n c n c

� s  �2 1/2

23/4 �3 1 � v2 � a4         +      9 1 � v2 � a4             +  20a4 � +  4a4 
�

h h h h

=  � s  �5/4 . (4.35)

3�3 1 � v2 � a4         +      9 1 � v2 � a4             +  20a4 �
h h h

We can check that in the a ® 0 limit we recover (4.30). It also satisfies all the desired
properties:

Enc(0) =  v E  , Enc(0) =  0 , Enc(vB ) =  vB  , Enc(vB ) =  1 , (4.36)

12 There are 8 roots (4 imaginary and 4 real), but only one coincides with the commutative case in the
limit a ® 0.
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Figure 8. Left: ratio between the butterfly velocity and the entanglement velocity as a function of
the dimensionless combination ϑ =  λπ4T 4θ2. We also show the asymptotic value v B /v E  ®
(5/3)5/4 »  1.894, depicted in orange. Right: membrane tensions for ϑ Î {0, 1/2, 1, 2, 5, 10}, from
bottom to top, respectively. In each case, we indicate the point at which the curve touches the
straight line E (vB ) =  vB .

now with
�� s  �2

�1/2

23/4 �3 1 � a4         +      9 1 � a4             +  20a4 � +  4a4 
�

h h h h
(nc)
E 5/4

3�3 1 � a4         +      9 1 � a4             +  20a4 �
h h h

v(nc) =  t
2

1

 

+

 
a4 

!  

.
h

(4.37)
Note that in all the above formulas, the non-commutative parameter θ only appears through
the dimensionless combination:

ϑ º  
a4 

=  λπ4T 4θ2 . (4.38)
h

We can verify that v(nc) >  v (nc) for all ϑ [32]. Also, both v (nc) ® ¥  and v (nc) ® ¥  as
ϑ ® ¥ ,  but this is the expected behavior for an “infinitely” nonlocal theory. Even so,
they diverge with the same power of ϑ (v (nc) µ ϑ2, v (nc) µ ϑ2) so their ratio remains finite.
Expanding this ratio in the limits of strong and weak non-commutativity, we obtain:

�

(nc) �31/4     1 + +  O(ϑ2) (ϑ  1) ,
 

(nc) =   5/4 
(4.39)

� 
3            

1 � 
3ϑ 

+  O 
ϑ2                           (ϑ  1) .

These results are illustrated in figure 8. From the plots we can confirm the monotonicity of
v (nc)/v (nc) with the strength of the non-commutative parameter. More specifically, the ratio
interpolates between v (nc)/v (nc) ® 31/4 »  1.316 (for ϑ ® 0) to v (nc)/v (nc) ® (5/3)5/4 »
1.894 (for ϑ ® ¥ ) .
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Information velocity. Finally, we can obtain the information velocity vI  as a function of
the entanglement fraction f  for. In order to do so, invert equation (2.47) (to obtain vI ( f ) )
and then plug this into (2.48). Unfortunately, it is not possible to invert (2.47) analytically,
even for the commutative strip. So we proceed numerically. In figure 9 we show our findings for
this quantity. In general we obtain that the vI  increases monotonically both with f  and with
ϑ, as opposed to the 1-D spin chain systems we studied previously. We believe that, in fact,
large-N is responsible for washing out the initial suppression of vI  with respect to the nonlocal
scale.

4.2.2 Membrane theory for D D S Y M

We can analyze two cases, depending on the orientation of the strip. In both cases we find:
16

P (ζ )  =  
ĝ4ζ6 , (4.40)

however, the membrane tensions differ.

Standard strip ( ξ  =  ξ1  and ξ ^  =  {ξ2 , ξ3}). This is completely analogous to the
commutative strip. Here we repeat the analysis for completeness. First, note that (2.36)
can be written as:

v2 =  cs(ζ ) , cs (ζ ) =  f ( ζ )  � 
1
ζ f 0 (ζ ) =  1 � 

3ζh 
, (4.41)

and this equation can be inverted analytically to give:

ζs =  c�1(v2) =  ζh 

h
3(1 � v2 )

i1/4 
. (4.42)

We have added a subindices “s” to indicate that we are working out the standard strip.
Finally, the membrane tension is

Es (v) =  ζ h

s

�
f

 

(ζ
)

ζ s  

=  
r

2  ζh 

ζs  

=  
33/4(

1
Ö

2v2)1/4 . (4.43)
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This is also the exact same result for a strip in Schwarzschild-AdS5. It satisfies all the
desired properties, including:

Es(0) =  v E  ,

with

Es(0) =  0 ,

Ö
v (s) =  

33/4 ,

Es (vB ) =  vB  , Es (vB ) =  1 , (4.44)

r

v (s) =
3 

. (4.45)

Dipole oriented strip ( ξ  =  ξ3  and ξ^  =  {ξ1 , ξ2}). In this case (2.36) can be written as:

v2 = cd (ζ ) ,
f ( ζ ) ζ f 0 (ζ ) ζ f (ζ )h0 (ζ ) ζ4 4b2 2b2z2

d h(ζ )      6h(ζ )          6h(ζ )2                      3ζh 3ζ2          3ζh
(4.46)

This expression can also be inverted analytically.13 However, the final expression is lengthy
and not very illuminating so we will not transcribe it here. To  have a flavor of the effects due
to nonlocality, we expand the resulting functions in two limits. Defining a dimensionless
parameter,

δ º  
b2 

=  
λL

2 T 2 
,

h

we find that

ζ  =  c�1(v2) =  
�ζh 

h
3(1 � v2 )

i1/4     
1 � 

6 
(1

 
�

 
3v

 
)δ

 
/2 

+  O δ2

�ζh 21/4     1 +  
(1 � 3v )  

+  O
1

(4.47)

(δ  1) ,

(4.48)

(δ  1) .

We have added a subindices ‘d” to indicate that we are working out the dipole oriented
strip. In this case, the membrane tension is

Ed 

(
v) =  ζ 3

s

�
f 0 (ζ )h(ζ )

 
� f (ζ )h0 (ζ )

ζd  

=  

v
2

 "

1 +
 
ζ

 
(ζ

2ζ

 
ζ

 
)δ

#
ζh 

ζd  

,

�33/4(1 2v2)1/4      1 +  
4 

(2
 
�

 
3v

 
)
δ

 
/2 

+  O(δ2)                (δ  1) , �

2
δ 

"

1 +  
(1 

+
 
v

 
)  

+  O
 
1 

#                                                 

(δ  1) .
(4.49)

We can check that in the δ ® 0 limit we recover (4.43). At finite δ we can also verify
(numerically, or analytically in some limits) that is satisfies all the desired properties:

Enc(0) =  v E  , Enc(0) =  0 , Enc(vB ) =  vB  , Enc(vB ) =  1 , (4.50)

now with � Ö   

� 1 +   Ö   +  O(δ2) (δ  1) ,
(d)
E

� 
2

1 +  Ö
2δ  

+  O 
δ2 (δ  1) ,

(4.51)

13 There are 6 roots (4 complex and 2 real), but only one coincides with the standard case in the limit b ® 0.
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and �r      

� 1 + +  O(δ2) (δ  1) ,
(d)
B

�
3

1 +  
2δ 

+  O 
δ2 (δ  1) .

(4.52)

In fact, we can obtain a very compact expression for vB  by noticing that it can alternatively
be obtained from (2.27) and (4.46):

r

vB  =  c(ζh)1/2 =
3

(1 +  δ) . (4.53)

Unfortunately, if we try to use (2.28) to recover v E  we run into similar problems as
before, since the expression for the Hartman-Maldacena ζHM turns out to have a very
complicated dependence with respect to δ. We will therefore refrain from writing down a
closed expression for vE . Figure 10 illustrate our main findings. In general, we notice that
both (4.51) and (4.52) provide very good fits in their regime of applicability. We also observe
that both velocities undergo a transition from subluminal to superluminal in the
intermediate regime, where δ � O(1) and ultimately diverge in the limit of very strong
nonlocality δ ® ¥ .  This is in qualitative agreement with the results we obtained for the
NCSYM theory. Finally, we can also verify that v (d) >  v (d) for all δ. Since both quantities
diverge with the same power of δ (v (d) µ δ1

/
2, v (d) µ δ1/2) their ratio remains finite at large

δ. Expanding this ratio in the two limits we obtain:

(d)

�

31/4 
"

1 +  
(3 � 

Ö
3)δ  

+  O(δ2)
#

(δ  1) ,
 

(d) 
=  

�2
r

2  
"

1 � 
(
Ö

2  � 1) 
+  O

 
1

 

#

(δ  1) .

(4.54)
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These results are illustrated in figure 11. From the plots we can confirm the monotonicity of
v (d)/v (d) with the strength of nonlocality. More specifically, the ratio interpolates between
v (d)/v (d) ® 31/4 »  1.316 (for δ ® 0) to v (d)/v (d) ® 2     2/3 »  1.633 (for δ ® ¥ ) .  We
see here that the nonlocal effects in the NC case are a bit more severe (in that case
v (nc)/v (nc) ® (5/3)5/4 »  1.894 as ϑ ® ¥ ) ,  which presumably can be traced back to the
fact that in that case the nonlocality affects two of the spatial directions, while for the
dipole theory only one of the directions.

Information velocity. Finally, we can obtain the information velocity vI  as a function of
the entanglement fraction f  for the DDSYM theory. In order to do so, invert equation (2.47) (to
obtain v (f ))  and then plug this into (2.48). Again, we proceed numerically here because it is
not possible to invert (2.47) even for the standard strip. In figure 12 we show our findings
for this quantity. We obtain that the vI increases monotonically both with f  and with δ,
which was also found for the NCSYM system. This suggests that in large-N systems the
interference effects between the local and nonlocal couplings are effectively washed out.

5 Conclusions and future work

In this paper we have considered the possibility of speeding up the information transfer in
a variety of systems by turning on mild nonlocalities. Our studies include 1-dimensional
spin chains as well as strongly-coupled, large-N theories with classical holographic duals.
The nonlocal interactions that we consider only act below certain length scale and hence,
and can be integrated out by a coarse groaning procedure. Thus, in the large-distance,
late-time regime we do recover an effective notion of locality. Nevertheless, we find that
these nonlocal interactions induce an clear imprint in this regime, which in most cases
translates to an enhancement in the rates of information transfer. Known systems that
mimic this type of interactions include certain materials with high polarizability, which in
the presence of a strong electromagnetic field undergo an ordered phase with their molecular

– 28 –



I I

J
H
E
P
1
2
(
2
0
2
1
)
0
1
9

I E I B

1.0 v ( s )

0.8

0.6

0.4

0.2

0.0
0.0 0.2 0.4 0.6 0.8

v ( d )

2.5

2.0

1.5

1.0

0.5

f f
0.0

1.0 0.0 0.2 0.4 0.6 0.8 1.0
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{0, 1/2, 1, 2, 5, 10}, from bottom to top, respectively. This quantity behaves qualitatively the same
as for the non-commutative strip, provided we identify the values of δ « ϑ. However, there are very
minor numerical differences for f  <  1 which make the curves for the dipole case slightly more
concave. For f  =  1 they are exactly the same, because the functional dependence of v B  with respect
to δ or ϑ is the same for both theories.

dipoles aligned. We thus believe that our results could have practical applications in the
areas of quantum computation and quantum communications.

The first part of the paper focused on the study of 1-dimensional spin chain systems
with the addition of next-nearest neighbor and next-next-nearest neighbor interactions.
We have computed the information velocity for states of uniform entanglement fraction,
which confers not only the rate at which information propagates in these systems, but
also the entanglement velocity v E  and the butterfly velocity vB , characterizing the rates of
entanglement generation and operator growth, respectively. Our results provide further
support for the theory of information spreading of [31] and extend it to systems with mild
nonlocalities. We find that the addition of these extra couplings have a nontrivial effect on
the information velocity, either suppressive (for very weak nonlocality), or enhancing vI ,
though the generic behavior seems to be to raise vI (and vE , vB ). The second part of the
paper focused on holographic systems dual to strongly-coupled nonlocal gauge theories. In
this case, we found that the suppressive behavior is completely washed out, in agreement
with the earlier results in [32]. This behavior can possibly be explained as an effect of
the large-N limit. Indeed, preliminary results suggest that increasing the size of the local
Hilbert space in the spin chain systems (e.g. considering qudits instead of qubits) seems to
suppress the interference effects [74].

Some interesting directions for future work include:

1. Investigate the origin and nature of the interference effect found for some instances of
small nonlocal couplings (see section 3.1) and understand how to maximize the
information velocity vI  from first principles.

2. Explore the precise form of the information cone wavefront in the systems studied in
this paper, along the lines of the vB  wavefront analysis of [75].

– 29 –
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3. Test the effects of other forms of nonlocality chosen to match experimentally realizable
setups, and explore more in detail possible practical applications.

4. Investigate the effect of increasing the size of the local Hilbert space (e.g. qudits
instead of qubits) to see what aspects of the phenomenology are brought closer to the
large-N limit represented in holographic systems [74].

5. Study the universality of our holographic results (i.e. the suppression of the interference
effects) in other nonlocal models. As an example, one may consider the dual to the
near horizon limit of a stack of NS5-branes [76], also known as “little string theory.”

We hope to report back on some of these points in the near future.
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