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Abstract— Future conceptions of agile, just-in-time fabrica-
tion, lean and “smart” manufacturing, and a host of allied
processes that exploit advanced automation, depend in part
on realizing improvements in logistics planning. The present
paper hypothesizes that the key to improving flexibility will be
the inclusion of sophisticated, time-correlated stochastic models
of demand—whether that be demand by end-user consumers
directly, or by other down-stream processes. Such dynamic
models of demand, unfortunately, can greatly increase the space
in which planning occurs when treated, as is common for
planning under uncertainty, via the Markov Decision Processes
formulation. To tackle this challenge, we identify three aspects
that we postulate appear as commonalities in many logistics
settings. They lead to an approach for approximate reduction
of the planning problem via causal decoupling, which gives
a spectrum of solutions where weakening time correlations
affords faster optimization. Empirical results on small case
studies —in lean manufacturing and commodity routing— show
that retaining some limited (but non-zero) amount of temporal
structure can provide a useful compromise between quality of
the solution obtained and computation required.

I. INTRODUCTION

Events of the past few years —the global pandemic, the

2021 Suez Canal obstruction— have disclosed the inter-

reliance of many elements within large-scale networks that

compose modern society. Indeed, supply-chain difficulties,

problems with commodity fulfillment, and inventory back-

logs are all concrete instances of the brittleness of these

systems in the face of the unexpected. To improve future

robustness, lean and “smart” manufacturing techniques are

being studied to improve process flexibility, smoothen con-

tingency handling, and make logistics more agile. Part of

the work also includes designing logistic systems that better

meet dynamic demand, when who (i.e., how many and where)

wish to consume what changes over time.

Aspects such as dynamic-but-unknown future demand

require models with some degree of sophistication. Basic

models of stochastic demand fall short, being too sim-

plistic: for instance, the addition of i.i.d. noise fails to

capture correlations across time, so cannot model seasonal

events, nor purchasing fads and fashions. This paper explores

dynamic demands via stateful models, as these can help

express some valuable time-extended and structural aspects

of the process involved. However, the fundamental issue with

stateful models is that they increase the size of the planning

problem multiplicatively, increasing the computational com-
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plexity quickly. Furthermore, logistic problems get still more

involved when there are multiple goods.

In this paper, we exploit three postulates to subdue the

growth in complexity via what we call ‘decoupling.’ The

first involves causality: state transitions within the demand

model reflect aspects of the stochastic process which describe

uncertainty. Oftentimes, these are driven entirely by external

factors with dynamics being uninfluenced or only weakly

affected by happenings within the network. Secondly, when

there are multiple sites and different influences on demand at

these sites, they can be factored by splitting into separate site-

specific models. Thirdly, though one may not know future

demand, one can usually determine current demand through

suitable instrumentation (say, via market analysis). That is,

we assume the current state(s) of the demand model(s) can

be ascertained. The observation process is, thus, decoupled

and distinct from the other aspects involved.

In many systems, one acts now to meet demand in the

future (e.g., producing and transporting items to fill caches

and inventories). This involves planning. The preceding

postulates imply that the observable state of the system and

the state of the demand models may be factored. This allows

separate analysis and compression of the demand models,

giving a reduced planning problem that is easier to solve.

The compression is ‘lossy’, so the modification is only an

approximation of the original instance, but can produce high

quality plans in far less time than the full solution. Moreover,

in this paper, the degree of compression is adjustable, so

one can trade-off greater fidelity in expression of temporal

correlations versus time to plan. The empirical results we

report show that elimination of time-extended structure gives

poor performance, but preserving even a little temporal

information improves quality greatly.

The problem of meeting some stochastic demand fits with

logistic, transport, and manufacturing problems at different

scales, ranging from sparse but geographically extended

markets, to internal activities within a single manufacturing

facility. Because this paper’s contribution and focus is on

the underlying problem of planning, and the postulates we

have identified accommodate many settings, the gains in

performance have potential to apply broadly.

II. RELATED WORKS

At recent ICRAs, rapid developments with automated

vehicles have spurred work on the routing of such vehicles

in transportation networks [1], [2], [3]. When one thinks of

these vehicles as enablers, they then form part of logistic

networks within which the automated routing of goods and





begins with a quantity of each commodity within each vertex,

and the objective is to route the commodities until all the

commodities are consumed. Therefore, an important variable

that provides a snapshot of the network is the quantity

of each commodity available in each vertex at any given

time, we define S to be a n × m storage matrix, where

sij is the quantity of commodity j at the i th vertex. Let

the set of possible storage matrices be SL = {S|sij ≥
0 and

∑

j∈C sij ≤ S(i)}, for the logistic network L. By

θ ∈ SL denote the zero storage matrix.

B. The Consumer: Demand Model

The dynamics of the consumption/utilization of commodi-

ties within each vertex of the logistic network is modeled in

this paper via a stateful, discrete-time stochastic process we

call the demand model. Formally, the demand model is:

Definition 2 (Demand Model): A demand model is a 5-

tuple M = (W,C,w0, τ, δ), where: (1) W is the non-empty

finite state space; (2) C is the set of commodities; (3) w0 ∈
W , the initial state; (4) τ : W ×W → [0, 1], the transition

probability function, such that
∑

w′∈W τ(w,w′) = 1, for

any w; (5) δ : W × C → [0, 1] is a demand function where

δ(w, c) is the probability of demand for 1 unit of c in w.

The demand model starts from the state w0 and progresses

from one state to the other according to the probability

τ(wt, wt+1). When the system enters state wt, demand for

a unit of commodity c ∈ C occurs with probability δ(wt, c).
Note that at any time step, it is possible that there might

be a demand for more than a single type of commodity;

however, each commodity will have demand for 1 unit only.

When demand for a unit of some commodity arises within

a vertex, if one or more units of commodity are present at

that vertex, 1 unit is consumed; otherwise, the opportunity

is lost and commodity is not consumed. For the wholesale

company logistics example, the associated demand models

are shown in Figure 1b.

Let the set of all demand models be denoted by M. Define

the special, trivial demand model where there are never

demands for any commodity to be M0 = (W 0, C, w0
0,

τ0, δ0) ∈ M, with (a) W 0 = {w0
0}; (b) τ0(w0

0, w
0
0) = 1;

and (c) δ0(w0
0, c) = 0. The association between the logistic

network’s vertices and demand models is via a vertex-

demand mapping function F : V → M. The consumer model

for storage vertices can be represented by M0.

C. Routing Policies and Problem Statement

To define the problem, we first need to understand what

problem parameters are observable to the operational agent.

The quantity of each commodity in each vertex in the logistic

network is observable to the agent. For the demand model,

the exact demand (realization of the δ function) cannot be

observed by the agent; however, the demand model states

are observable. This is reasonable when suitable instrumen-

tation (e.g., marketplace analytics, consumer surveys, etc.) is

employed. Based on the current observable demand model

states, the agent needs to anticipate where commodities

might be utilized next and has to take preemptive routing

actions for the commodities. Therefore, for a given vertex-

demand mapping function F , the states of each demand

model corresponding to each vertex of the logistic network

is a variable that the agent must keep track of. Let WF =
{w|w ∈ W 1 × · · · ×W n,W i = F(i)(1)} be the set of all

possible demand state configurations for the function F .

At any time t, the agent’s choice is governed by a policy

π(·, ·) based on the states of the demand models correspond-

ing to each vertex of the logistic network (wt ∈ W
F ) and

the quantity of each commodity available for each vertex

(St ∈ SL). The agent’s policy governs the quantity of each

commodity that is routed through each edge of the network.

The action space for the agent is denoted in this paper as A,

where each action, a ∈ A, is a function, a : E × C → Z,

such that for 〈vs, vd〉 ∈ E and c ∈ C, a(〈vs, vd〉, c) = q

moves quantity q of commodity c from vs to vd if q ≥ 0;

otherwise, if q < 0 quantity q of commodity c is moved

from vd to vs. An action, a, is said to satisfy the edge

bandwidth if for all 〈vs, vd〉 ∈ E, the quantity of all the

commodities being routed through this edge is less than or

equal to the edge bandwidth function value of that edge, that

is,
∑

c∈C |a(〈vs, vd〉, c)| ≤ U(〈vs, vd〉).

Let the storage matrix at time t be denoted as St. At

time t, action a ∈ A is said to be valid for S if, for

all 〈u, v〉 ∈ E and c ∈ C, we have: (a) the action

satisfies the edge bandwidth; (b) the action does not move

quantities of commodities more than available from vertex

u, that is, ∀c ∈ C, stu,c − a(〈u, v〉, c) ≥ 0 (c) the action

satisfies the vertex storage capacity of the vertex u, that is,
∑

c∈C s
t
u,c − a(〈u, v〉, c) ≤ S(u) (d) the action does not

move quantities of commodities more than available from

vertex v, that is, ∀c ∈ C, stv,c + a(〈u, v〉, c) ≥ 0 (e) the

action satisfies the vertex storage capacity of the vertex v,
∑

c∈C s
t
v,c + a(〈u, v〉, c) ≤ S(v).

Let 1a(·) be an indicator function, such that, for a ∈ A

and S ∈ S, 1a(S) = 1 if action a is valid for S; otherwise, 0.

The goal is to have all the commodities consumed as

quickly as possible. We state the problem formally:

Optimization Problem: Logistics with Demand (LWD)

Given: Commodity set C, a logistic network L =
(V,E, S, U), set of demand models M, a vertex-

demand mapping function F , and an initial

storage matrix S0 ∈ SL.

Output: A policy π∗ : W
F × SL → A of valid

actions that minimizes the expected time for all

commodities to be consumed.

IV. FORMULATION OF LWD AS AN MDP

To solve the optimization problem, we construct a specific

Markov Decision Problem, called the LWD MDP.

However, before we formally define the LWD MDP, we

need to define some preliminary functions. We start by define

the vertex-demand transition function, TF : WF × W
F →

[0, 1], such that, for w = (w1, . . . , wn), y = (y1, . . . , yn) ∈
W

F , we have TF (w,y) =
∏

v∈V τ
v(wv, yv), where τv =



F(v)(4), specifying the transition probability from one se-

quence of demand states in the logistic network to another

sequence. Next we define the transport partial function

ξ : SL × A →֒ SL, such that, for S,S− ∈ SL and

a ∈ A, if a is valid: ξ(S,a) = S− if ∀sv,c ∈ S and

∀s′v,c ∈ S−, we have s′v,c = sv,c −
∑

v′∈V a(〈v, v′〉, c).
That is, this function returns the storage matrix that results

from the routing actions. Lastly, we define the consumption

function, ∆F : SL × W
F × SL → [0, 1], to be a function

of S−,S+ ∈ SL and w = (w1, . . . , wn) ∈ W
F , such

that ∆F (S−,w,S+) =
∏

(v,c)∈V×C ϕ(s
−
v,c, w

v, s+v,c) where

ϕ(s−v,c, w
v, s+v,c) = δ(wv, c) if s+v,c−s

−
v,c = 1; 1−δ(wv, c), if

s+v,c−s
−
v,c = 0; and 0 otherwise. That is, this function deter-

mines the probability that some commodities are consumed

from one storage matrix and result in the other.

With the requisite functions given, we are now ready:

Definition 3 (LWD MDP): Given an initial storage S0 ∈
SL, the logistic network L = (V,E, S, U), a vertex-demand

mapping function FD, the set of demand models M =
{M |M ∈ M and ∃v ∈ V,FD(v) = M}, the LWD MDP

is constructed as XS0,FD,L = (X,x0,A, P,XG, J), where

(1) X ⊆ W
FD × SL, the set of states; (2) x0 = (w0,S

0),
such that w0 = (w1

0, w
2
0, . . . , w

n

0), where wi
0 ∈ FD(i), the

initial state; (3) A, the action space; (4) P : X × A ×
X → [0, 1], the transition probability function, such that, for

(w,S), (w′,S ′) ∈ X and a ∈ A, P ((w,S),a, (w′,S ′)) =
1a(S)T

FD (w,w′)∆FD (ξ(S,a),w′,S ′); (5) XG = W
F ×

{θ} ⊆ X is the set of goal states; (6) J : X ×A → R≥0 is

the cost function, so, for x ∈ X and a ∈ A, J(x,a) = 1 if

x 6∈ XG; otherwise 0.

An optimal policy for product MDP, π∗ : X → A provides

the routing policy. The full product would directly construct

LWD MDP XS0,FD,L. Then, the policy can be obtained by

using standard solution techniques (e.g. value iteration [18]).

V. SOLUTIONS VIA APPROXIMATION

As just formulated, the planning problem comprises of

individual modular components, consisting of demand mod-

els (non-causal) and a logistic network (causal). The number

of states in each demand model increases the size of the

planning problem multiplicatively via the product in Defini-

tion 3. Rather than use the vertex-demand mapping function

FD directly, as the full solution does, the non-causality

provides an opportunity to analyze and simplify the demand

models independently. As the demand is not contingent on

the actions, the dynamics of the demand do not influence the

iterative policy update and thus can be analyzed beforehand.

Two such approaches follow next.

A. Fundamental Matrix Analysis

Our second approach to the problem, which we call the

FMA approach, takes inspiration from [15], and uses matrix

analysis on each demand model to collapse all the states into

a single state. This collapse of states destroys the temporal

structure of the original demand models and reduces the

dynamics of the consumer demand for every commodity into

a Bernoulli random variable.

To solve the problem using this approach we need to

first define two matrices. First, for demand model M =
(W,C,w0, τ, δ) ∈ M, and commodity c ∈ C, we solve for

the |W |×1 matrix, ψ(M,c), where ψ
(M,c)
i , the i th element, is

the expected number of steps before demand for commodity

c will occur in the demand model if starting at the i th state

of the demand model. We can calculate the matrix ψ(M,c),

by following the procedure described next.

Given a commodity c ∈ C and a demand model M =
(W,C,w0, τ, δ), we construct a new absorbing Markov chain

(W ′, τ ′, w0). To form this, first, we define a new set of

states W ′ = W ∪ {wc
ABS}. For all w,w′ ∈ W , such that,

τ(w,w′) > 0 if δ(w′, c) > 0, we add the transitions

τ ′(w,w′) = τ(w,w′)(1 − δ(w′, c)) and τ ′(w,wc
ABS) =

τ(w,w′)δ(w′, c) to the new absorbing Markov chain and if

δ(w′, c) = 0, we add the transition τ ′(w,w′) = τ(w,w′).
Performing fundamental matrix analysis [19] on the newly

generated absorbing Markov chain yields matrix ψ(M,c).

The second matrix needed for this approach, φM , a |W |×1
matrix, is the stationary distribution. For a demand model

M = (W,C,w0, τ, δ), if the Markov chain (W,w0, τ)
is non-absorbing the stationary distribution matrix can be

calculated by solving the equation φM = φMτ . Otherwise,

if (W,w0, τ) is absorbing the stationary distribution matrix

φM = [q, q, . . . , q]T , where q = (|W |)−1.

The FMA approach replaces the original demand model

with one having only a single state. Thus, define new set

M1 =
{

M1 = (W 1, C, w1
0, τ

1, δ1) ∈ M |W 1 = {w1
0} and

τ0(w1
0, w

1
0) = 1

}

. Notice, M0 ∈ M1.

By FM : M → M1 denote the fundamental matrix

reduction function, where, for M = (W,C,w0, τ, δ) ∈
M, F1(M) = (W 1, C, w1

0, τ
1, δ1), and for all c ∈ C,

δ1(w1
0, c) =

(
∑

w∈W φMw ψ
M,c
w

)−1
Note, F1(M

0) =M0.

The solution to LWD using this approach can be generated

by constructing the LWD MDP XS0,FM◦D,L, where for v ∈
V , FM◦D = FM (FD(v)). And then solving that reduced

MDP using some standard technique.

B. Model Reduction by Collapsing State Pairs

The two approaches just seen can be considered as two

extremes: the first without any reductions, while the second

reducing the whole demand model to a single state. In this

section, we will devise a reduction function that gives a

spectrum of approximations in-between, as it can be applied

to the original demand functions iteratively to reduce the

number of states one at a time.

For a given demand model M = (W,C,w0, τ, δ) ∈ M,

an intuitive approach to reduce the number of states is to

merge the two states within W that are most similar to

each other. Each state w of the demand model is associated

with two distributions: (a) distribution over the states of

the demand model, given by the transition function τ(w, ·),
and (b) joint probability distribution over every commodity

derived from the demand function δ(w, ·). Therefore to

quantify the similarity between two states, we would need

to quantify the similarity between their distributions for

both (a) and (b). We introduce a modified formulation of
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