
A general class of combinatorial filters that can be minimized efficiently

Yulin Zhang and Dylan A. Shell

Abstract— State minimization of combinatorial filters is a
fundamental problem that arises, for example, in building
cheap, resource-efficient robots. But exact minimization is
known to be NP-hard. This paper conducts a more nuanced
analysis of this hardness than up till now, and uncovers two
factors which contribute to this complexity. We show each factor
is a distinct source of the problem’s hardness and are able,
thereby, to shed some light on the role played by (1) structure
of the graph that encodes compatibility relationships, and
(2) determinism-enforcing constraints. Just as a line of prior
work has sought to introduce additional assumptions and
identify sub-classes that lead to practical state reduction, we
next use this new, sharper understanding to explore special
cases for which exact minimization is efficient. We introduce a
new algorithm for constraint repair that applies to a large sub-
class of filters, subsuming three distinct special cases for which
the possibility of optimal minimization in polynomial time was
known earlier. While the efficiency in each of these three
cases previously appeared to stem from seemingly dissimilar
properties, when seen through the lens of the present work,
their commonality now becomes clear. We also provide entirely
new families of filters that are efficiently reducible.

I. INTRODUCTION

Combinatorial filters are discrete transition systems that

process streams of observations to produce outputs sequen-

tially. They have found practical application as estimators

in multi-agent tracking problems (e.g., [18]) and as repre-

sentations of feedback plans/policies for robots (e.g., [11],

[22]). Unlike traditional recursive Bayesian filters (the class

of estimator most familiar to roboticists, see [17]), combina-

torial filters allow one to ask questions regarding minimality.

By reducing their size, one can design resource-efficient

robots—a consideration of practical importance. More funda-

mentally, through filter minimization, one may discover what

information is necessary to compute a particular estimate,

or what needs to be tracked in order to have sufficient

knowledge for a given task. Determining a task’s information

requirements and limits is a basic problem with a long history

in robotics [2], [9], and has begun gaining interest again

(e.g., [10]). Unfortunately, given some combinatorial filter,

computing the smallest equivalent filter—its minimizer—is

an NP-hard problem.

This paper uncovers and examines two different factors

which contribute to this complexity: the first has to do

with the structure of the compatibility graph induced by the

filter; the second involves auxiliary (or zipper) constraints

added during minimization to ensure the result will be

deterministic. As we show, both are distinct dimensions and

Y. Zhang is with Amazon Robotics, North Reading, MA, USA.
zhangyl@amazon.com. The work was done prior to joining Amazon.
D. A. Shell is with Dept. of Computer Science & Engineering, Texas A&M
University, College Station, TX, USA. dshell@tamu.edu. This work
was supported by the NSF through awards IIS-1849249 and IIS-2034097.

form independent sources of the problem’s hardness. This is

the first contribution of the paper (and constitutes the subject

of Section III).

Like most hard problems of practical significance, a line

of research has sought specially structured sub-classes of

filters that allow efficiency to be salvaged [14]. Another line

has examined relaxed [16] or other restricted forms of reduc-

tion [15], [12]. In the prior work, three particular sub-classes

of filter have been identified for which optimal filter mini-

mization is known to be possible in polynomial time: (i) no-

missing-edge filters [14], (ii) once-appearing-observation fil-

ters [14], and (iii) unitary filters [22].

The second portion of the paper, building upon the first,

establishes a new sub-class of filters for which exact min-

imization is achievable in polynomial time. This sub-class

strictly subsumes those of (i), (ii), and (iii), and also provides

some understanding of why both factors —the compatibility

graph and auxiliary/zipper constraints— are tame for these

filters. Part of the answer is that it is possible to ignore

the constraints because they can be repaired afterwards:

Section IV introduces an algorithm for constraint repair that

applies broadly, including for the new sub-class we study

and, hence, the three prior ones as well. Another part of the

answer, the requirement to quickly generate minimal clique

covers, is feasible for the three prior sub-classes, (i)–(iii),

because their compatibility graphs all turn out to be chordal.

Thus, their apparent distinctiveness happens to be superficial

and, in reality, their efficiency stems from some common

underlying properties.

A. Context, general related work, and roadmap of the paper

As the contributions of this work are of a theoretical na-

ture, we leave the customary motivating settings and example

application domains to the work we cite next; each and every

one of the following include specific problem instances, so

we trust the reader will glance at those papers to allay

any doubts as to practical utility. The term combinatorial

filter was coined by Tovar et al. [18], and the minimization

problem was formulated and its hardness established in [11].

The current state-of-the-art algorithm for combinatorial filter

minimization was presented at ICRA’21 in [19]. The starting

point for our current treatment is the authors’ paper [20],

which showed that filter minimization is equivalent to the

classic graph problem of determining the minimal clique

cover, when augmented with auxiliary constraints.

The next section will provide necessary definitions and

theoretical background. Section III first delineates important

sub-families of graphs and uses them to establish our key

hardness results. Section IV turns to constraints and pro-

vides an algorithm to repair constraint-violating solutions

when specific conditions are met. Thereafter, the results are

consolidated into a new, efficiently minimizable sub-class of

filters and this is connected with prior special sub-classes

in Section V. The final section presents the conclusion.

Space considerations have meant that most proofs had to

be omitted; the full proofs all appear in [21].

II. PRELIMINARIES

A. Basic definitions

Definition 1 ([13]). A deterministic filter, or just filter, is

a 6-tuple F = (V,v0,Y,τ,C,c), with V a non-empty finite

set of states, v0 an initial state, Y the set of observations,

τ : V ×Y →֒ V the partial function describing transitions, C

the set of outputs, and c : V →C being the output function.

Filters process finite sequences of elements from Y in

order to produce a corresponding sequence of outputs (el-

ements of C). Any filter does this by tracing from v0 along

edges (defined by the transition function) and producing

outputs (via the c function) as it visits states. States vi and vk

are understood to be connected by a directed edge bearing

label y, if and only if τ(vi,y) = vk. We will assume Y to be

non-empty, and that no state is unreachable from v0.

This paper’s central concern is the following problem:

Problem: Filter Minimization (FM(F))

Input: A deterministic filter F.
Output: A deterministic filter F⋆ with fewest states, such that:

1. any sequence which can be traced on F can also
be traced on F

⋆;
2. the outputs they produce on any of those sequences

are identical.

Solving this problem requires some minimally-sized fil-

ter F⋆ that is functionally equivalent to F, where the notion

of equivalence —called output simulation— needs only cri-

teria 1. and 2. to be met. For a formal definition of output

simulation, see [20, Definition 5, pg. 93].1

Lemma 2 ([11]). The problem FM is NP-hard.

B. Constrained clique covers on a graph

In giving a minimization algorithm, FM was recently

connected to an equivalent graph covering problem [20]. To

start, we consider this problem abstractly in isolation:

Problem: Minimum Zipped Clique Cover (MZCC(G,Z))

Input: A graph G = (V,E) and collection of zipper con-
straints Z = {(U1,V1), . . . ,(Um,Vm)}, with Ui,Vi ⊆V .

Output: Minimum cardinality clique cover K such that:

1.
⋃

Ki∈K
Ki =V, with each Ki forming a clique on G;

2. ∀Ki ∈K, if there is some ℓ such that Uℓ ⊆ Ki, then
some K j ∈K must have K j ⊇Vℓ.

The constraints in Z are still rather arcane, hence the

next section, in making a connection to FM, provides an

explanation of how Z is used, what it is for, and why it

bears the moniker zipper.

1After examining filters like those here, the later sections of that paper go
further by studying a generalization in which function c may be a relation.
Complications arising from that generalization will not be discussed herein.

C. Filter minimization as constrained clique covering

In bridging filters and clique covers, the key idea is that

certain sets of states in a filter can be identified as candidates

to merge together, and such ‘mergability’ can be expressed

as a graph. The process of forming covers of this graph

identifies states to consolidate and, accordingly, minimal

covers yield small filters. The first technical detail concerns

this graph and states that are candidates to be merged:

Definition 3 (extensions and compatibility). For a state v of

filter F, we will use LF(v) to denote the set of observation

sequences, or extensions, that can be traced starting from v.

Two states v and w are compatible with each other if their

outputs agree on LF(v)∩LF(w), their common extensions.

In such cases, we will write v ∼ w. The compatibility graph

GF possesses edges between states iff they are compatible.

However, simply building a minimal cover on GF is not

enough because covers may merge some elements which,

when transformed into a filter, produce nondeterminism. The

core obstruction is when a fork is created, as when two

compatible states are merged, both of which have outgoing

edges bearing identical labels, but whose destinations dif-

fer. To enforce determinism, we introduce constraints that

forbid forking and require mergers to flow downwards. The

following specifies such a constraint:

Definition 4 (determinism-enforcing zipper constraint).

Given a set of mutually compatible states U in F and the set

of all its y-children V = {v | u ∈U,τ(u,y) = v}, then the pair

(U,V) is a determinism-enforcing zipper constraint of F.

A zipper constraint is satisfied by a clique if U is not

covered in a clique, or both U and V are covered in cliques.

(This is criterion 2. for MZCC.) For filters, in other words, if

the states in U are to be consolidated then the downstream

states, in V , must be as well.

The collection of all determinism-enforcing zipper con-

straints for a filter F is denoted ZF. Both GF and ZF are

clearly polynomial in the size of F. Then, a minimizer of F

can be obtained from the solution to the minimum zipped

vertex cover problem, MZCC(GF,ZF):

Lemma 5 ([20]). Any FM(F) can be converted into an

MZCC(GF,ZF) in polynomial time; hence MZCC is NP-hard.

Though we skip the details, the proof in [20] of the pre-

ceding also gives an efficient way to construct a deterministic

filter from the minimum cardinality clique cover.

III. HARDNESS: REEXAMINED AND REFINED

The recasting of FM(F) as MZCC(GF,ZF) leads one

naturally to wonder: what precise role do the compatibility

graph and zipper constraints play with regards to hardness?

A. Revisiting the original result

Firstly, examining the proof of Lemma 2, the argument in

[11] proceeds by reducing the graph 3-coloring problem to

filter minimization. Looking at that construction carefully,

one observes that the FM instance that results from any

3-coloring problem does not have any zipper constraints.

Hence, by writing MZCC with compatibility graph of F and

no zipper constraints as MZCC(GF,∅), we get the following:

Lemma 6. MZCC(GF,∅) is NP-hard.

A superficial glance might cause one to think of MZCC

with an empty collection of zipper constraints as the standard

minimum clique cover problem, viz., № 13 of Karp’s original

21 NP-complete problems [8]. Actually, Lemma 6 states that

the clique cover instances arising in minimization of filters

are NP-hard; note that this is neither a direct restatement of

Karp’s original fact nor merely entailed by it. (But see, also,

Theorem 17 below.)

B. Special graphs: efficiently coverable cases

To begin to investigate problems with special structure,

our starting point is to recognize that several specific sub-

families of undirected graphs (some widely known, others

more obscure) allow a minimal clique cover to be obtained

efficiently. We formalize such cases with the following.

Definition 7. A sub-family of graphs G is efficiently cover-

able if some algorithm AG exists so that, ∀G ∈ G, AG(G)
produces a minimal clique cover of G in polynomial time.

In filters with efficiently coverable compatibility graphs,

when also ZF =∅, then criterion 2. of MZCC holds vacuously

and FM(F) will be efficient. The contrast of this statement

with Lemma 6, shows that the efficiently coverable sub-

families carve out subsets of easy problems.

Lemmas 9, 11 and 13, and Theorem 14, which will follow,

review some instances of efficiently coverable graphs:

Definition 8 ([5]). A graph is chordal if all cycles of four

or more vertices have a chord, which is an edge not part of

the cycle but which connects two vertices in the cycle.

Lemma 9 ([4]). Chordal graphs are efficiently coverable.

A strictly larger class of graphs are those that are perfect.

Definition 10 ([5]). A perfect graph is a graph where the

chromatic number of every induced subgraph equals the

order of the largest clique of that subgraph.

Lemma 11 ([6]). Perfect graphs are efficiently coverable.

As all chordal graphs are also perfect, Lemma 9 fol-

lows from Lemma 11, and the reader may wonder why

then chordal graphs are worth mentioning explicitly. Three

reasons: (1) the requirements of Definition 8 tend to be

less demanding to check than those in Definition 10, which

involve some indirectness; (2) the polynomial-time algorithm

of [6] (referenced in proof of Lemma 11) is not a direct

combinatorial method and, in fact, researchers continue to

contribute practical methods tailored to specific sub-classes

of perfect graphs (e.g., [1]); (3) chordal graphs will show up

in the proofs, including in the next section.

But there are graphs, beyond only those which are perfect,

that still give efficiently coverable problems:

Definition 12 ([5]). A triangle-free graph is a graph where

no three vertices have incident edges forming a triangle.

A specific triangle-free graph that is not perfect is the

Grötzsch graph.

Lemma 13 ([3]). The triangle-free graphs are efficiently

coverable.

Finally, composition allows treatment of graphs with

mixed properties, e.g., we might have filters with compati-

bility graphs where some components are perfect, and others

are triangle-free. The following fact is useful in such cases.

Theorem 14 (mix-and-match). Suppose a graph G = (V,E),
where E ⊆V ×V , is made up of components G1,G2, . . . ,Gm,

every Gi = (Vi,Ei), where V is partitioned into mutually

disjoint set of vertices V1,V2, . . . ,Vm, and E1,E2, . . . ,Em with

every Ei ⊆Vi×Vi. If each of the Gi’s is efficiently coverable,

then G is efficiently coverable.

Filters naturally yield graphs comprising separate com-

ponents as the output values directly partition the vertices.

That is, compatibility graphs never possess edges between

any vertices v and w where c(v) 6= c(w).

C. Special compatibility graphs and non-empty zippers

In light of Lemma 6 showing that zippers are not needed to

have hard problems, and the fact that there are sub-families of

graphs for which minimal covers may be obtained efficiently,

we next ask: do the zipper constraints themselves contribute

enough complexity so that even with an efficiently coverable

instance, we can get a hard problem?

The answer is in the affirmative and we use the sub-family

of chordal graphs to establish this. We begin with a trian-

gulation procedure that, given a general graph, constructs

one which is chordal. The approach to the proof is to think

about solving MZCC on the chordal version and then relate

the solution back to the original problem.

A graph is non-chordal if and only if there is an m-cycle,

with m ≥ 4 and there is no edge cutting across the cycle. We

can break such a cycle into smaller ones by adding edges

as shortcuts. Repeating this process will triangulate such

cycles and the procedure must eventually terminate as the

complete graph is chordal. We call these newly introduced

edges dashed as this is how we shall depict them visually.

Having introduced extra edges, the idea is to discourage

clique covers from ever choosing to cover any of these new

dashed edges via penalization. A penalty is incurred by being

compelled to choose additional cliques—zipper constraints

are rich enough to force such choices. This requires the

introduction of a gadget we term a ‘necklace’. Suppose the

original non-chordal graph G had n vertices, ms edges, and

that an additional md dashed edges were used to triangulate

the graph. Then, as illustrated in Figure 1, we first make

ℓ= ms +md +1 copies of 2-vertex connected graphs, which

we dub ‘pendants’. These are laid in a line, and between any

pair of pendants, we place a single black vertex that we call

a ‘bead’. The ℓ pendants and ℓ−1 beads are strung together

via edges, each bead being connected to the two adjacent

pendants. We’ll call these connecting edges ‘strings’. To each

dashed edge we add 2ℓ−2 = 2(ms +md) zipper constraints,

connecting the dashed edge to the length of strings. This

construction means that when a dashed edge is covered,

its zipper constraints become active and then each bead

Fig. 1: A clique cover problem on a general graph is reduced
to a clique cover problem on a chordal graph with extra zipper
constraints. Two dashed edges are added to the pentagon in order
to triangulate it, resulting in a 7-edge chordal graph. Dashed edges
are made undesirable through the addition of zipper constraints
that trigger the necklace string (at top). Zipper constraints are
represented as arrows, shown in red and blue to associate them
visually with their dashed edge. (Note: parts of some blue arrows
have been elided to reduce visual clutter).

will have to appear in two separate covers, one for each

neighboring pendant.

Given graph and zipper constraints (G,Z), we will denote

the result of the construction just described with (G△△△

,Z
△△△), the

first element being the chordal graph along with the necklace,

and the second element being the additional constraints.

Then: (1) G
△△△

is chordal (dashed edges made G chordal, the

necklace itself is chordal), (2) G⊆G
△△△

, as vertices/edges were

added, never removed, (3) Z ⊆ Z
△△△

, as constraints were added,

not removed. Further, notice that G
△△△

and Z
△△△

are no larger than

some polynomial factor of n. This construction takes O(n4).
The purpose of this construction is the following:

Lemma 15. Given any non-empty graph G and zipper

constraints Z, a solution to MZCC(G,Z) can be obtained from

any solution S
△△△

to MZCC(G△△△

,Z
△△△), by restricting S

△△△

to only

those covers on the vertices of G.

This is one of the paper’s main results: the proof calculates

the penalty incurred by covering any dashed edge (i.e., the

additional covers for part of the necklace) and shows it to be

so large that even covering non-dashed edges in pairs would

be preferable. Any optimal cover would do no worse than

this and, thus, a zipper constraint can never be triggered.

Theorem 16. MZCC(Gec,Z), where Gec is efficiently cover-

able and Z 6=∅ is NP-hard.

The proof uses Lemma 6, for a known NP-hard problem,

in order to obtain a reduction via Lemma 15.

The preceding leads to the following interpretation. If a

filter F induces an efficiently coverable GF then:

• when ZF = ∅, since criterion 2. of MZCC holds vacu-

ously, FM(F) is in P;

• when ZF 6= ∅, despite GF being efficiently coverable,

FM(F) should be suspected as intractable because it is

NP-hard in the worst case.

Additional support for this link between the filter structure,

FM, MZCC, and worst-case intractability is the following:

Theorem 17. A graph G can be realized as the compatibility

graph of some filter if and only if G either: (1) has at least

two connected components, or (2) is a complete graph.

The construction hinges on assigning unique outputs to

each connected component. Thereafter, incompatibilities are

easily manufactured in a filter by simply introducing new

observation symbols that go to states with different outputs.

Corollary 18. Chordal graphs with zippered necklace struc-

tures, G
△△△

, as in the construction involved in Lemma 15, are

realizable from filters.

IV. REPAIRABLE ZIPPER CONSTRAINTS

If general zipper constraints introduce enough complexity

that the problem is hard even when the graph is efficiently

coverable, and yet absence of zipper constraints gives an easy

problem, how do we obtain a more discriminating conception

of zipper constraints and their structure? And, specifically,

are there special cases of filters which give ‘nice’ zipper

constraints? In this section, we first formalize sufficient

conditions in order to ignore zipper constraints; in these cases

once a clique cover has been obtained, we can modify it to

make the zipper constraints hold. This modification step can

repair, in polynomial time, any zipper-constraint-violating

clique cover for which the sufficient conditions are met and,

crucially, can do this without causing any increase in size.

In any graph G = (V,E), we refer to the neighbors of a

vertex v∈V by set NG (v) := {w∈V | (w,v)∈E}∪{v}. Note

that we explicitly include v in its own neighborhood.

Through neighborhoods, the following condition now de-

scribes a type of harmony between zipper constraints and the

compatibility relation.

Definition 19 (comparable zip candidates). Given a graph

G = (V,E), it has the comparable zip candidates property

with respect to an associated collection of zipper constraints

Z = {(U1,W1),(U2,W2), . . . ,(Um,Wm)}, where Uk,Wk ⊆V , if

and only if every pair of vertices
{

w 0
i ,w

1
i

}
= Wi satisfies

either NG

(
w 0

i

)
⊆ NG

(
w 1

i

)
or NG

(
w 0

i

)
⊇ NG

(
w 1

i

)
.

The preceding definition is a sufficient condition to yield

MZCC problems whose zipper constraints may be repaired.

Lemma 20. Let filter F’s compatibility graph GF =
(VF,EF) possess the comparable zip candidates property

with respect to ZF. Suppose cover K of GF violates ZF.

Then one may obtain, in polynomial time, a cover M that

will satisfy ZF and has |M| ≤ |K|.

Repair algorithm and proof. Given cover K = {K1,K2, . . . ,

Kk}, the proof constructs M= {M1,M2, . . . ,Mm} such that all

zipper constraints will be satisfied through M, with m ≤ k.

For i ∈ {1, . . . ,k}, form the sets Mi:

Mi := Ki ∪

{
w n̂

a

∣∣∣∣
(

Ua,
{

w 0
a ,w

1
a

})
∈ ZF,n ∈ {0,1}, (1)

w n
a ∈ Ki,NGF

(
w n

a

)
⊆ NGF

(
w n̂

a

)}
,

where n̂ := 1−n. Essentially, to each Ki we are adding some

extra elements. When Ki contains an element w n
a that is

paired with w n̂
a , another vertex in the zipper constraints,

then we include w n̂
a if it possesses a neighborhood that is

no smaller than w n
a ’s. After doing this for all K1, . . . ,Kk,

we obtain the collection M= {M1, . . . ,Mm} with m ≤ k (and

m < k only if some sets grew to become identical).

All vertices previously covered are still covered. Moreover,

each Mi is a clique because Ki is a clique, and one can argue

inductively as if the extra elements were added sequentially:

As each element w n̂
a is added, it is compatible with element

w n
a already in the clique (owing to the pair being a zipper

constraint target). Element w n̂
a has a compatibility neighbor-

hood at least as large as that of w n
a ’s, so is compatible with

the clique, and the composite thus forms a clique itself.

It only remains to show that all ZF is now satisfied. Con-

sider any constraint (Ui,Wi), with Wi =
{

w 0
i ,w

1
i

}
, then we

show that both w 0
i and w 1

i appear together in some element

in M. The comparable zip candidates property means there

is an n ∈ {0,1} such that NGF

(
w n

i

)
⊆ NGF

(
w n̂

i

)
. Since

K is a cover, at least one K j exists such that w n
i ∈ K j. But

then, via (1), M j must include both w n
i and w n̂

i .

Notice that the scope of Definition 19 includes graphs and

zipper constraints generally, while Lemma 20 concerns com-

patibility graphs and zipper constraints obtained specifically

from filters, and the additional structure inherited from the

filter shows up in the proof itself.

V. SPECIAL CASES: EFFICIENTLY REDUCIBLE FILTERS

Up to this point, sufficient conditions have been presented

for favorable MZCC problem instances. Each condition con-

cerns a separate factor: the first, in Section III, deals with

structural properties of graphs; while in Section IV, the

second involves the zipper constraints being accordant with

neighborhoods of potentially zipped vertices. The two reflect

different dimensions and, as argued above, form distinct

sources of the problem’s hardness. To consolidate—

A sub-class of filters that can be minimized efficiently:

Any filter with efficiently coverable compatibility graph and
comparable zip candidates can be minimized efficiently.

One first constructs the compatibility graph, finds any

minimum clique cover, and then repairs it using Lemma 20.

Notice that to verify membership of this sub-class involves

requirements pertaining to products derived from filters; we

will now give closer scrutiny to filters themselves.

A. Handy properties that yield efficiently reducible filters

We seek properties that are recognizable and verifiable on

filters directly. To start with, here is a sufficient condition:

Definition 21. A filter F is globally language comparable if,

for every pair of compatible states v ∼ w, either extensions

LF(v)⊆ LF(w) or extensions LF(v)⊇ LF(w).

Filters that are globally language comparable have com-

patibility graphs that are efficiently coverable.

Lemma 22. If F is any globally language comparable filter,

then its compatibility graph GF is chordal.

In fact, globally language comparable filters also have

benign zipper constraints.

Lemma 23. If F is a globally language comparable filter,

then compatibility graph GF possesses the comparable zip

candidates property with respect to zipper constraints ZF.

Theorem 24. Globally language comparable filters can be

minimized efficiently.

Here, the proof just puts Lemmas 22 and 23 together.

A different but also potentially useful way to identify

special cases is to use the compatibility relation: for a

particular problem instance, one might determine whether

specific algebraic properties hold. To get there, first we start

with a characteristic involving neighborhoods.

Definition 25. A filter F is neighborhood comparable iff ev-

ery pair of vertices v,w in GF with NGF
(v)∩NGF

(w) 6=∅,

satisfies either NGF
(v)⊆ NGF

(w) or NGF
(v)⊇ NGF

(w).

Next, we connect it with an algebraic property.

Property 26. A filter F is neighborhood comparable iff it

induces a compatibility relation ∼ on states such that ∼ is

an equivalence relation.

Further, the neighborhood comparable property induces an

efficiently coverable compatibility graph:

Lemma 27. Any neighborhood comparable filter has a

compatibility graph that is chordal.

Also we can show that a neighborhood comparable filter

has zipper constraints that are repairable.

Lemma 28. Any neighborhood comparable filter F has

compatibility graph GF that possesses the comparable zip

candidates property with respect to zipper constraints ZF.

Theorem 29. Neighborhood comparable filters can be min-

imized efficiently.

The properties described in the section —one on the ex-

tensions and another on neighborhoods— are useful because

they are not difficult requirements to verify and they imply

facts about both the compatibility graph and zipper con-

straints. Still, they are fairly abstract. One might wonder,

for instance, whether Definitions 21 and 25 really differ

essentially. (They are distinct, as we will see shortly.)

B. Prior cases in the literature

We now use the conditions just introduced to re-examine

three sub-classes of filter for which polynomial-time mini-

mization has been reported in the literature. This treatment

provides a new understanding of the relationships between

these special cases. To start, each sub-class must be defined.

When discussing the fact that FM is NP-hard, the authors

in [11] point out that this may, at first, seem unexpected

since minimization of deterministic finite automata (DFA)

is efficient (e.g., via the theorem of Myhill–Nerode [7]).

As an intuition for this difference, they offer the following

perspective: when a sequence crashes on a DFA, that string

is outside of the automaton’s language—whereas, when a

sequence crashes on a filter, FM allows the minimizer to

REFERENCES

[1] Flavia Bonomo, Gianpaolo Oriolo, Claudia Snels, and Gautier Stauffer.
Minimum Clique Cover in Claw-Free Perfect Graphs and the Weak
Edmonds–Johnson Property. In International Conference on Integer

Programming and Combinatorial Optimization (IPCO), pages 86–97,
2013.

[2] Bruce R. Donald. The Compass That Steered Robotics, pages 50–
65. Springer Berlin Heidelberg, 2012. Logic and Program Semantics:
Essays Dedicated to Dexter Kozen on the Occasion of His 60th
Birthday.

[3] Jack Edmonds. Paths, trees, and flowers. Canadian Journal of

Mathematics, 17:449–467, 1965.
[4] Fănică Gavril. Algorithms for Minimum Coloring, Maximum Clique,

Minimum Covering by Cliques, and Maximum Independent Set of a
Chordal Graph. SIAM Journal on Computing, 1(2):180–187, 1972.

[5] Jonathan L. Gross, Jay Yellen, and Ping Zhang, editors. Handbook of

Graph Theory. Taylor & Francis Group, second edition, 2013.
[6] Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric

Algorithms and Combinatorial Optimization. Springer, Berlin, 1988.
[7] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory,

Languages, and Computation. Addison-Wesley, Reading, MA, second
edition, 1979.

[8] Richard M Karp. Reducibility among combinatorial problems. In
Complexity of computer computations, pages 85–103. Springer, 1972.

[9] Steven M. LaValle. Sensing and filtering: A fresh perspective based
on preimages and information spaces. Foundations and Trends in

Robotics, 1(4):253–372, 2010.
[10] Anirudha Majumdar and Vincent Pacelli. Fundamental Performance

Limits for Sensor-Based Robot Control and Policy Learning. In
Robotics: Science and Systems, New York City, NY, USA, June 2022.

[11] Jason M. O’Kane and Dylan A. Shell. Concise planning and filtering:
Hardness and algorithms. IEEE Transactions on Automation Science

and Engineering, 14(4):1666–1681, 2017.
[12] Hazhar Rahmani and Jason M. O’Kane. Equivalence notions for state-

space minimization of combinatorial filters. IEEE Transactions on

Robotics, 37(6):2117–2136, 2021.
[13] Fatemeh Zahra Saberifar, Shervin Ghasemlou, Jason M O’Kane, and

Dylan A Shell. Set-labelled filters and sensor transformations. In
Robotics: Science and Systems, Ann Arbor, Michigan, 2016.

[14] Fatemeh Zahra Saberifar, Ali Mohades, Mohammadreza Razzazi, and
Jason M. O’Kane. Combinatorial Filter Reduction: Special Cases, Ap-
proximation, and Fixed-Parameter Tractability. Journal of Computer

and System Sciences, 85:74–92, May 2017.
[15] Fatemeh Zahra Saberifar, Ali Mohades, Mohammadreza Razzazi, and

Jason M. O’Kane. Improper Filter Reduction. Journal of Algorithms

and Computation, 50(1):69–99, June 2018.
[16] Fatemeh Zahra Saberifar, Jason M. O’Kane, and Dylan Shell. In-

consequential Improprieties: Filter Reduction in Probabilistic Worlds.
In Proceedings of IEEE/RSJ International Conference on Intelligent

Robots and System, 2017.
[17] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic

Robotics. MIT Press, Cambridge, MA, U.S.A., 2005.
[18] Benjamin Tovar, Fred Cohen, Leonardo Bobadilla, Justin Czarnowski,

and Steven M Lavalle. Combinatorial filters: Sensor beams, obstacles,
and possible paths. ACM Transactions on Sensor Networks, 10(3):1–
32, 2014.

[19] Yulin Zhang, Hazhar Rahmani, Dylan A Shell, and Jason M O’Kane.
Accelerating combinatorial filter reduction through constraints. In
Proceedings of IEEE International Conference on Robotics and Au-

tomation, pages 9703–9709, 2021.
[20] Yulin Zhang and Dylan A. Shell. Cover combinatorial filters and their

minimization problem. In Algorithmic Foundations of Robotics XIV,
pages 90–106. Springer, 2021.

[21] Yulin Zhang and Dylan A. Shell. A general class of combi-
natorial filters that can be minimized efficiently. arXiv preprint

arXiv:2209.04567, 2022.
[22] Yulin Zhang and Dylan A. Shell. Nondeterminism subject to output

commitment in combinatorial filters. In Algorithmic Foundations of

Robotics XV. Springer, 2022.

