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Abstract— We consider a robot that answers questions about
its environment by traveling to appropriate places and then
sensing. Questions are posed as structured queries and may
involve conditional or contingent relationships between observ-
able properties. After formulating this problem, and empha-
sizing the advantages of exploiting deducible information, we
describe how non-trivial knowledge of the world and queries
can be given a convenient, concise, unified representation via
reduced ordered binary decision diagrams (BDDs). To use
these data structures directly for inference and planning, we
introduce a new product operation, and generalize the classic
dynamic variable reordering techniques to solve planning
problems. Also, finally, we evaluate optimizations that exploit
locality.

I. INTRODUCTION

This paper explores the implications of asking robots

questions, rather than telling them what to do. This model

of interaction is appropriate when robots are being used to

retrieve information about their world. Existing techniques

for planning in robot data acquisition settings, such as

informative path planning [22] and information gathering

[9], are effective at collecting large quantities of desired

data. But, while the datasets they produce tend to be useful

for aggregated statistical analysis, when one is concerned

with finer concepts involving richer semantic relationships —

particularly when efficient execution is a concern— such

methods may be too indiscriminate for those needs.

We formulate a class of useful and interesting problems

based on directly posing specific queries to the robot: the

intention is that with an exact statement of what is desired,

this can be turned into opportunities for efficiency. There is

the potential for the robot to exploit structure in the world

to draw inferences that can save work. We show how such

inference is possible (and useful for question-answering),

by combining knowledge of regularity in the world with

structured queries, both expressed in declarative form.

To that end, this paper formulates a new kind of planning

problem in which the goal is to make a set of measurements

that suffice to answer a specific YES/NO query. The paper

also describes our initial experimentation with a new declar-

ative language called Structured Robot Query Language

(SRQL, meant to be pronounced like ‘circle’) that is rich

enough to express both the regularity that structures the

robot’s world and the non-trivial queries that robots can be

tasked to resolve within that world. Throughout the paper,

fragments of SRQL code appear in green.
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We also describe a method that forms plans for robots to

answer SRQL queries. The method works by representing

both the query and the world knowledge as binary decision

diagrams, performing a novel conditioning operation on

these diagrams, and finally optimizing the resulting plan

via a generalization of Rudell’s dynamic variable ordering

algorithm. In particular, we introduce a block-oriented sifting

optimization to Rudell’s algorithm that exploits the specific

local structure in these problems. Our results show that this

optimization reduces the computational cost by two orders

of magnitude.

The setting we consider, in which the robot has only partial

information about the status of the world, is a variation

upon a common refrain in robotics research [10], [13]. The

important feature here is that, though the system’s state is

only partially observable, that partial observability takes a

particular projective form, with certain elements fully known,

and other elements that are observable only within certain

locations. In that sense, the present setting dovetails closely

with the recently-proposed locally-observable Markov deci-

sion process (LOMDP) model, in which uncertainty arises

from limits on sensor range [11].

Finally, at the heart of our problem is the notion that

a robot must choose where, and in what sequence, obser-

vations should be made to capture data satisfying certain

specifications. Thus, strong parallels exist between our work

and existing methods for active sensing [14], [18], [19],

sensor selection [8], [15], [20], [21], [23], [26], and triage

of captured data [7]. In that vein, a family of close cousins

to the present work consider embodied question answering

(EQA) [3], [25], including in manipulation contexts [5].

Our approach complements that line of work —which is

strongly focused on perceptual challenges— by consider-

ing how knowledge about the structure of the world can

contribute to efficient query-resolving plans. Although our

syntax will resemble first-order logic [17], the focus is on

generating branching trees of observations. This is distinct,

also, from trees used predominantly for action, e.g., [12].

II. BACKGROUND: BINARY DECISION DIAGRAMS

A Binary Decision Diagram (BDD) is a directed acyclic

graph (DAG) data structure that encodes a boolean function

on a collection of boolean variables [1], [2]. Variables are

represented in the graph as vertices, with a pair of edges

departing every non-leaf vertex, each edge being associated

with a truth value for the vertex’s variable. There are two leaf

vertices, labeled TRUE and FALSE, and all paths traced via

edges reach one of these leaves. An encoding of a function

has a root vertex and, for any particular assignment of truth





sufficiently capacious room. Suitable rooms are locations 6,

7, 8, and 15, expressed as:

marilyn-diptych(loc06) OR marilyn-diptych(loc07) OR

marilyn-diptych(loc08) OR marilyn-diptych(loc15).

Then, we express that this piece is a painting via the

statement ∀∀∀ x::: marilyn-diptych(x) ⇒⇒⇒painting(x). Finally, we point

out that the piece is unique in the following:

∀∀∀u,v, u 6 6 6===v::: marilyn-diptych(u) ⇒⇒⇒¬¬¬marilyn-diptych(v). The set of

situations that satisfy these statements taken in conjunction

forms the world model W.

The robot, operating in a specific static but unknown

situation s ∈ W, seeks to answer a boolean query, seen

as Q ⊆ S, about the situation. That is, the robot seeks to

determine, based on some combination of the world model

W and its own observations of the world, whether or not

s ∈ Q.

Example 3. With the facts about the world in place (recall

Example 2), it is possible to begin to ask questions about

the world that the robot inhabits. Our first question is ‘Are

there any paintings to see?’ It can be expressed directly in

SRQL code, thus:

Query: ∃∃∃ x::: painting(x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (0)

Example 4. Or suppose we wish to see the Marilyn. We

might ask whether it is in location 15, as follows:

Query: marilyn-diptych(loc15). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1)

Example 5. A more interesting query might ask whether

the Marilyn is in an L-shaped room. This query is easy to

pose.

Query: ∀∀∀ x::: marilyn-diptych(x) ⇒⇒⇒¬¬¬ell-shaped(x) . . . . . . . . . . . . . . . (2)

To accomplish the goal of answering the given query, we

assume that the robot is equipped with suitable sensors to

observe which properties are extant at its current location.

However, the robot must intentionally observe a location,

incurring an observation cost cobs(l) to do so. Note that ob-

servation costs may differ according to the robot’s location.

Example 6. For our robot in the Tate Modern, the obser-

vation cost is a function of the room’s lighting level (which

influences duration that the robot must wait for an in-focus

image, operate its shutter, and post-process raw camera

images).

Taken together, we refer to the structure of locations,

transitions, travel cost function, and observation cost function

as the location graph, denoted G.

At each time step, the robot, from its current location l,

may choose either (i) to travel along some outgoing edge

l → m, deterministically reaching location m whilst incurring

cost ctrav(l,m), or (ii) to observe location l at cost cobs(l),
thereby obtaining the set {p : P | s(l, p) = YES}, a complete

and accurate reporting of the properties present at l in the

prevailing situation s.

C. Plans

In this setting, a plan may be expressed as a BDD, in

which each internal vertex asks about one specific location l

and specific property p, leading to two children correspond-

ing to s(l, p) = YES and s(l, p) = NO answers to that single-

property question. Each leaf is labeled with an answer to the

overall query, either YES or NO.

An essential question is whether a plan of this type will

guide the robot to a correct decision about its query Q ∈ Q.

The next definitions formulate this concept precisely.

Definition 1. The outcome of a plan π in situation s is the

label —either YES or NO— of the leaf reached by tracing

from the root of p along the edges in accordance with the

properties present in s.

Definition 2. A plan π correctly resolves a query Q in a

world W if, for every situation s ∈ W∩Q, the outcome of

p in s is YES, and for every situation s ∈ W∩ (S \Q), the

outcome of p in s is NO.

Notice that Definition 2 is silent about how the plan should

behave in situations that are outside of the world model W.

Beyond mere correctness, the robot should endeavor to

find plans that resolve their queries in a cost-efficient way.

For a given plan π , executing within a given location

graph G, consider a simple path from the root to some

leaf. Such a path can be segmented into blocks of one or

more consecutive question nodes all at the same location,

punctuated by travel from one location to the next. The cost

of executing such a path is the sum of the observation costs

cobs(l) for each block (determined by the location l shared

by the nodes in that block), plus the sum of optimal travel

costs c∗trav(l, l
′) from the initial state to the location of the

first block, and between successive blocks. Intuitively, this

represents the combined travel and execution costs for a robot

carrying out the instructions encoded in the plan. Based on

this concept of the cost of an execution, the extension to the

cost of an entire plan is straightforward.

Definition 3. The execution cost of a plan π is the maximum

(i.e. worst case) across the path execution costs for each

simple path from root to leaf within π .

The main problem addressed in the remainder of this paper

is as follows:

Given: A location graph G, a world model W, and a

query Q.

Compute: A plan π that correctly resolves Q in W, with

minimal execution cost in G.

Example 7. Figure 2 illustrates the idea of BDD-based

plans by showing a pair of plans, each of which happens

to be produced by algorithm introduced below in Section V.

Both of these plans correctly resolve Query 1. Figure 2a

shows a plan that differs from the obvious plan of going to

location 15 and observing. Instead, this plan, when started

from the Atrium as the initial location, has cost 13.7 % less

than driving to location 15.



Plan

Visit: loc06
 Observe: marilyn-diptych

Visit: loc08
 Observe: marilyn-diptych

 No 

Visit: loc07
 Observe: marilyn-diptych

Yes 

(a) A plan to answer Query 1.

Plan

Visit: loc15
 Observe: marilyn-diptych

Yes  No 

(b) Another plan to answer the same
query, but optimized for when the
robot starts at location 11 instead.

Fig. 2: Two plans generated in response to SRQL query
marilyn-diptych(loc15); that have differing execution costs. Solid and
dashed edges represent YES and NO respectively. When the robot
starts in the Atrium, plan (a) has execution cost 208.25 units, and
plan (b) cost 241.44 units. When it starts at location 11 (a) costs
277.74 units, and (b) 62.33 units.

We can also ask the same question, but now with the robot

positioned initially at location 11. (For future reference, we

shall refer to this as Query 1b). In this case, the simpler

plan shown in Figure 2b is now optimal, owing to the lower

travel distance to location 15.

Example 8. What about Query 0? In that case, the execution

cost of the optimal plan is 0, requiring no travel and no

observations! Why? Notice that the knowledge about the

world encoded in W tells us there is a painting, specifically

Warhol’s Marilyn. Thus, when asked if there are any paint-

ings to be seen, the robot doesn’t have to move anywhere to

answer in the affirmative. The robot does not know at which

location the painting might be, but that wasn’t specifically

what was asked. This example demonstrates, in an extreme

case, the value of the world model W: structure in the world

can be exploited to avoid needless effort by the robot. The

algorithm proposed below is designed to automatically detect

and utilize this structure, even in milder forms.

IV. PLANNING VIA THE CONDITIONED PRODUCT BDD

This section outlines an algorithm to solve the planning

problem introduced in Section III. The key idea is to describe

the world model W and query Q both as boolean functions,

and to represent these as ordered reduced BDDs with vari-

ables for each location-property pair. The world BDD traces

to TRUE for precisely the situations that are possible. The

query BDD arriving at TRUE implies the answer to the query

is in the affirmative; FALSE means the answer is negative.

Observe that though both W and Q can be expressed in

the same data structure, their interpretations differ. In W we

know that, to describe a situation, the tracing will arrive at

TRUE. In other words, we use the BDD to characterize the

set of inputs that make the overall boolean formula true. In

contrast, for Q, one expects that in most interesting cases

both answers would possible. We need to combine the two

BDDs, but condition on the truth of one of them.

As a result, the broad idea of the algorithm is to compute

this combined BDD through a sort of product graph oper-

ation, and then condition the combined graph upon the W

part tracing to TRUE. In detail, consider that we have a BDD

and, like the world W, we know that tracing must arrive at

TRUE. Suppose we are tracing within it and we arrive at a

vertex for variable v (for property pv at location lv). If one of

the vertex’s edges, say the YES edge, arrives at the FALSE

leaf then, as we require W to be true, we deduce that v must

be false (i.e., property pv cannot hold at lv). This conclusion

does not require any measurement:— v’s value can be known

for free at this point in the BDD or, because the variables

that precede it in the DAG have already discerned sufficient

information to determine v, we say it can be ‘inferred via

conditioning.’ Symmetrically, if it were the NO edge arriving

at FALSE, we could conclude that property pv does hold.

The general rule to condition on the truth of a BDD is

as follows: when a variable’s edge leads to a sub-DAG and

all tracings forward, passing only through variables whose

values can be inferred, always arrive at the FALSE leaf, then

that variable’s value can be inferred. And specifically, if the

edge was a YES edge, the variable is false; a NO edge means

the variable is true. One identifies this property computation-

ally via a recursive procedure that checks the property on

the two children. The previous paragraph expressed the base

case, viz. an edge leading to FALSE. Note that some variable

might have, from both of its edges, a sub-DAG that arrives

at TRUE after passing through downstream variables whose

values can be inferred. Such a variable fails to meet the

criterion to be inferred itself: that variable’s value —though

irrelevant for evaluating the boolean function expressed in

the sub-DAG— is unknown. This reasoning motivates the

following construction.

Construction. The output-conditioned product of two or-

dered BDDs with compatible variable orderings is the or-

dered BDD constructed as follows:

1) First ‘complete’ each BDD, using the levels from the

union of their variables: for any edge vp −−−→ vs, which

skips levels, say vq and vr, ordered vp ≺ vq ≺ vr ≺ vs, re-

introduce those variables by joining vp −−−→ vq, and both

vq vr and vq −−−→ vr, and both vr vs and vr −−−→ vs.

(And similarly for vp vs.)

2) Form a graph product of the two completed BDDs

in which each vertex corresponds to an ordered pair of

vertices from the original BDDs, starting from a pair with

both roots (vroot,v
′
root), and then tracing edges forward,

making pairs for the children so obtained. The result is

no longer a binary DAG as, in general, there will be

four out-edges from each internal node bearing the labels

(YES,YES), (YES,NO), (NO,YES), and (NO,NO). As the

variable ordering is compatible (and the prior step ensured

both BBDs have all variables), the product retains its binary

form without any restoration needed.

3) The resulting product is then conditioned using the

method described in Section IV. Since it consists of

vertices made up of variable pairs, we ask if the sub-BDD

arrives, not at the FALSE leaf, but at some (FALSE, · ) node.

All nodes with values that can be inferred are pruned. If



inference indicates that the value must be x, then bypass

the node by rewiring the incoming edge(s) directly to the

child reached by the x-labeled edge.

4) At this point we have obtained an ordered BDD, but some

structure may be repeated and it can contain superfluous

queries. To remove this redundancy, the final step is to

form a reduced ordered BDD from the result.

If the inputs are ordered BDDs encoding W and Q, the

preceding construction yields a reduced ordered BDD where

the leaves (TRUE,TRUE) and (TRUE,FALSE) correspond, to

the answers of YES and NO to the query, respectively. The

product’s construction omits nodes for variables with values

that can be inferred on the basis of W, but retains nodes for

factors which affect the query’s answer.

The construction’s correctness can be established via an

argument that takes any situation s ∈ W, and traces, in

conjunction, the world and query BDDs on one hand, and

the output-conditioned product on the other. The resulting

structure constitutes a plan π that correctly resolves Q in W.

One final note: our implementation does not carry out

the four steps stage-wise, directly one after the other, as

described here. Instead, repeated traversals can be avoided

by performing the steps simultaneously. Our implementation

uses bookkeeping to be equivalent to step 1 without intro-

ducing nodes or actually modifying edges in the pruning

of step 3, while incrementally doing a depth-first walk of

both BDDs in concert, to build the reduced ordered BDD in

postorder fashion. Our code is based on version 0.5.7 of the

open-source dd package [4].

V. FINDING BETTER PLANS BY SIFTING

Recall that the algorithm introduced in the previous section

begins from ordered reduced BDDs for W and Q, and that the

size of a reduced ordered BDD is determined by the ordering

of the variables. Even more relevant here is the fact that this

ordering also has a strong impact on the execution cost of the

resulting plan. As a result, we apply sifting methods, inspired

by Rudell’s algorithm, before the conditioned product step,

in an effort to generate more efficient plans. In our case, we

are primarily interested in plan execution cost; plan size is a

(distant) secondary consideration.1

Specifically, we consider five different sifting algorithms.

In each, for a certain order of variables, a plan’s cost is

evaluated by forming the output-conditioned product and

computing the execution cost of Definition 3 on the result.

Two are fairly straightforward:

1. Rudell’s classic sifting algorithm [16], as a baseline. It

re-orders individual variables to reduce the size of the

BDD.

2. Rudell’s classic sifting but with plan costs. This method

operates on individual variables but constructs the product

1A graph with fewer nodes means fewer observations, which does suggest
so smaller size might correlate with lower execution cost: the discussion of
empirical results in Section VI examines data regarding this question.

to evaluate whether a sifting move has improved worst-

case cost of execution of the plan.

The remaining three variations exploit the specific struc-

ture of the execution cost that we seek to optimize.

Notice that two BDD variables that refer to properties at

the same location incur no traversal cost to measure one after

the other. Thus, one expects variables associated with the

same location to appear in blocks in cost-minimal plans. This

motivates the concept of sifting-by-block. The idea is treat

variables in per-location blocks, and to sift whole blocks at a

time. This still uses the same underlying variable swapping

primitive, but only the pays the computational price of

forming an output-conditioned product after complete block

movements. We consider three approaches based on this idea.

3. Sifting-by-block, which moves whole blocks of variables

(those tied to a single location) together before construct-

ing the product to evaluate plan execution cost.

4. A version of sifting-by-block that, once plan execution

costs have been reduced, then sifts variables (restricted

to only within blocks) in order to reduce BDD size.

5. A version like the previous, but which first optimizes size

(with sifting within blocks) and only then uses sifting-

by-block to optimize plan execution cost.

Section VI presents a quantitative evaluation and analysis of

these five variations.

VI. CASE STUDY: REVISITING THE TATE

Examples 1–4 introduced a problem domain in which the

algorithms of Sections IV and V can be exercised.

First, some illustrative examples based on variant 3 of

the sifting algorithm. One illustration has appeared already:

Figure 2 shows two plans generated by it for Query 1.

For Query 2, the planner tends to produce one of three

plans, either visiting location 6 followed by location 15 (with

a cost of 244.44) or location 8 followed by 7 (with a cost

205.25 units) or, the majority of the time (59 %, being 2.7×
more likely to be generated than the next most frequently

returned plan), location 7 followed by 8 (costing 170.02

units). Now, suppose the two central L-shaped rooms have

particularly high foot traffic. This might cause the robot to

spent a great deal of time avoiding visitors, incurring greater

costs for observations in those places. This is easily captured

by modifying their respective observation costs. Doing so

and then asking the same question (dubbed Query 2b) causes

the 6→15 route, with unchanged cost 244.44, to be the

preferred choice, being found 65 % of the time (being 1.9×
more likely than the next most frequently generated plan).

Perhaps, as you glance at the current exhibits at the

Tate, you recall that two of your favorite living artists,

Marwan Rechmaoui and Yinka Shonibare, may have art on

display in the gallery. Rechmaoui’s pieces (including Beirut

Caoutchouc) as well as Shonibare’s art (e.g., Grain Weevil)

have been part of the collection in the past. Suppose you

know that, if they are still available for viewing, that the

former’s sculpture would be at location 13, while latter’s

at location 12. You have conflicting reports that each is

currently the artist-in-residence, meaning that if their art is
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hideen, and Demosthenis Teneketzis. Diagnosability of discrete-event
systems. IEEE Transactions on Automatic Control, 40(9):1555–1575,
1995.

[21] David Sears and Karen Rudie. Minimal sensor activation and minimal
communication in discrete-event systems. Discrete Event Dynamic

Systems, 26(2):295–349, June 2016.

[22] Amarjeet Singh, Andreas Krause, and William J Kaiser. Nonmyopic
adaptive informative path planning for multiple robots. In Proceedings

of International Joint Conference on Artificial Intelligence (IJCAI),
pages 1843–1850, 2009.

[24] S. Thrun, M. Bennewitz, W. Burgard, A.B. Cremers, F. Dellaert,
D. Fox, D. Hahnel, C. Rosenberg, N. Roy, J. Schulte, and D. Schulz.
MINERVA: A Second-Generation Museum Tour-Guide Robot. In
ICRA, volume 3, pages 1999–2005, 1999.

[25] Erik Wijmans, Samyak Datta, Oleksandr Maksymets, Abhishek Das,
Georgia Gkioxari, Stefan Lee, Irfan Essa, Devi Parikh, and Dhruv
Batra. Embodied question answering in photorealistic environments
with point cloud perception. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, 2019.
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