


an important idea — it is not enough to reduce the number

of sensors to increase privacy, but that sometimes it may

be necessary to activate a different and higher cardinality

combination of sensors to protect sensitive information.

The present paper re-visits the sensor selection model intro-

duced in the IROS’21 paper of Rahmani et al. [14], advancing

and elaborating upon it in order to treat the sort of problem

just described. In that paper, the authors consider the setting

where a claimant asserts that (future) movements within an

environment will adhere to a given itinerary. Then the objective

is to select, from some set of sensors at specific locations, a

small subset that will detect any deviations from this claim.

One of present paper’s key advances is the ability to constrain

the information obtained from sensors, in order to meet

privacy and non-disclosure requirements. Further, the present

paper generalizes the problem so that multiple itineraries are

considered and, consequently, the objective becomes rather

more subtle. In the prior work, the problem is to select sensors

that single out the claimed itinerary from all other activity;

now, when closely-related itineraries are provided, the sensors

selected must have adequate resolving power distinguish fine-

grain differentiations (recall the 3 kinds of behavior above).

This paper establishes the computational hardness of sen-

sor selection and optimization under this richer setting (see

Section V) giving a nuanced description of its relation to the

constraints introduced to modulate the collected information.

Then, although the problem is worst-case intractable in gen-

eral, we introduce an exact method in Section VI which treats

the sensor selection problem using automata theoretic tools

(an approach quite distinct from the ILP of [14]). Multiple

itineraries are provided as input and their interrelationships

express constraints — we examine opportunities to exploit

aspects of this structure, which leads us to propose some

optimizations. The empirical results we present in Section VII

show that the improvements obtained from the optimizations

are significant, and demonstrate how they help improve the

scalability of our proposed solution.

Some detail has necessarily been omitted, the reader is

encouraged to refer to [12] for the full authoritative version

of the paper.

II. RELATED WORKS

So far, no single model for robotic privacy has yet emerged.

A useful taxonomy dealing with privacy for robots (and

associated intelligent systems) appears in [17]. Perhaps most

visible candidate is that of differential privacy, used by such

works as [4], [13]. There, the underlying formulation builds

upon a notion of nearness (originally with a static database of

multiple records), and is a less natural fit to treat the problem

of altering the processes by which data are acquired. The

present work tackles how privacy (of even a single entity)

may be preserved without any need for addition of noise if

they can exert some degree of control on the tools used to

collected that data.

The idea of obscuring or concealing information is another

candidate and is prevalent in the control community’s notion

of opacity: an excellent overview for Discrete Event Systems

(DES) is by Jacob, Lesage, and Faure [6]. A DES is said to

be opaque if a secret has some level of indistinguishability, a

concept very close to the conflation constraints we define in

Section III. For further reading in the role of opacity in DES,

the reader is referred to [8], [26] and [7].

Previous work by Masopust and Yin affirms that the prop-

erties of detectability and opacity are worst case intractable in

general [9]. In particular, Cassez et. al. [1] showed that deter-

mining the opacity of static and dynamic masks was PSPACE-

Complete via formulation of so-called ‘state-based’ and ‘trace-

based’ opacities. In our work, importantly, simply obfuscating

states is not enough, as how that particular state was reached

also plays a role. A second factor which differentiates our

work is that we allow specifications of constraints between

two specified behaviors, instead of making them binary, one-

versus-all decisions. An important subtlety, moreover, is that

the conflation constraints are directed (cf., also [11]), implying

that a more fine grained designation of obfuscation is allowed

without necessarily running in both directions. Thus, we find

it more suitable to reduce directly from the inclusion problem

than universality.

III. PROBLEM STATEMENT AND DEFINITIONS

The environment in which some agent of interest moves is

modelled as a discrete structure called the world graph:

Definition 1 (World Graph [14]). A world

graph is an edge-labelled, directed multigraph

G = (V,E, src, tgt, v0, S,Y, λ):V is a non-empty vertex

set; E is a set of edges; src : E → V and tgt : E → V

are source and target functions, respectively, identifying

a source vertex and target vertex for each edge; v0 ∈ V

is an initial vertex; S = {s1, s2, . . . , sk} is a nonempty

finite set of sensors; Y = {Ys1 , Ys2 , . . . , Ysk} is a collection

of mutually disjoint event sets associated to each sensor;

λ : E → ℘(Ys1 ∪ Ys2 ∪ · · · ∪ Ysk) is a labelling function,

which assigns to each edge, a world-observation a set of

events. (Here powerset ℘(X) denotes all the subsets of X .)

The usefulness of the world graph is that it governs two

major aspects of the agent’s locomotion: how it may move, and

what would happen if it moved in a certain way. The agent is

known to start its movements at v0 and take connected edges.

However, the agent cannot make any transitions that are not

permitted by the world graph. Myra, for example, cannot jump

from the BEDROOM to the LOUNGE/DINING without first going

through the KITCHEN. Thus, the collection of all paths that can

physically be taken by the agent is defined as follows:

Definition 2 (Walks [14]). A string e1e2 . . . en ∈ E∗ is a

walk on the world graph if and only if src(e1) = v0 and for

all i ∈ {1, . . . , n− 1} we have that tgt(ei) = src(ei+1). The

set of all walks over G is denoted Walks(G)

Next, we seek to understand what role the sensors play

when an agent interacts with the world. Whenever an edge is

crossed, it causes a ‘sensor response’ described by the label on



that edge: those sensors which are associated with the sensor

values in the label (and are turned on/selected) will emit those

values. Returning to the home in Figure 1, assume there are

sensors in the BEDROOM and STUDY which measure occupancy.

Then, when Myra starts in the bedroom and moves to the

study, we would obtain the event {BEDROOM
−, STUDY

+} for

the transition, with the plus superscript representing an event

triggered by detection, and minus the inverse. The model also

allows sensors other than those which detect occupancy (e.g.,

non-directed traversals via break beams), see [14] too.

To understand the sensor values generated when crossing a

single edge where sensors may be turned off, we use a sensor

labelling function:

Definition 3 (Sensor labelling function). Let G =
(V,E, src, tgt, v0, S,Y, λ) be a world graph, and M ⊆ S

a sensor selection from it. For selection M , the set of all

events that could be produced by those sensors will be denoted

Y(M) =
⋃

s∈M Ys. Then the sensor labelling function is for

all e ∈ E:

λM (e) =

{

λ(e) ∩Y(M) if λ(e) ∩Y(M) 6= ∅,

ǫ otherwise.

(Note that ǫ here is the standard empty symbol.) Later in

the paper, Figure 2 forms an example of an environment with

a world graph whose edges bear appropriate sensor labels.

Now, we may formally define the signature function for a

walk and a given sensor set as follows:

Definition 4 (Signature of a walk [14]). For a world graph

G = (V,E, src, tgt, v0, S,Y, λ) we define function βG :
Walks(G) ×℘(S) → (℘(Y(S)) \ {∅})∗ such that for each

r = e1e2 . . . en ∈ Walks(G) and M ⊆ S, βG(r,M) =
z1z2 . . . zn in which for each i ∈ {1, . . . , n}, we have that

zi = λM (ei).

The behavior of the agent will be specified with respect

to a given world graph and these specifications will describe

sequences of edges the agent may decide to take in the

world graph. Following the convention of [14], each is called

an itinerary. Subsequent definitions will involve the use of

multiple itineraries in order to constrain what information

about the agent’s behavior the sensors are allowed to obtain.

Definition 5 (Itinerary DFA [14]). An itinerary DFA over a

world graph G = (V,E, src, tgt, v0, S,Y, λ) is a DFA I =
(Q,E, δ, q0, F ) in which Q is a finite set of states; E is the

alphabet; δ : Q× E → Q is the transition function; q0 is the

initial state; and F is the set of accepting (final) states.

With the basic elements given, the next four definitions

formalize the different classes of constraints we desire a set

of sensors to satisfy. Conflation constraints allow one type of

behavior to ‘appear’ similar to another, while discrimination

constraints specify that two behaviors must be distinguishable.

Definition 6 (Conflation constraint). A conflation constraint

on a world graph G is an ordered pair of itineraries (Ia, Ib)⊟ .

Definition 7 (Discrimination constraint). A discrimination

constraint on a world graph G is an unordered pair of

itineraries [I1, I2]⊠ .

Both types will combined within a graph:

Definition 8 (Discernment designation). A discernment des-

ignation is a mixed graph D = (I, ID, IC), with vertices I

being a collection of itineraries, along with undirected edges

ID which are a set of discrimination constraints, and arcs

(directed edges) IC which are a set of conflation constraints.

And, finally, we can state what a satisfying selection entails:

Definition 9 (Satisfying sensor selection). Given some dis-

cernment designation D, a sensor set M ⊆ S is a satisfying

sensor selection for D = (I, ID, IC) if and only if both of the

following conditions hold:

• For each [I1, I2]⊠ ∈ ID we have that there exist no

w1 ∈ Walks(G) ∩ L(I1) and w2 ∈ Walks(G) ∩ L(I2)
where βG(w1,M) = βG(w2,M).

• For each (Ia, Ib)⊟ ∈ IC we have that for every w ∈
Walks(G) ∩ L(Ia), there exists cw ∈ Walks(G) ∩ L(Ib)
where βG(w,M) = βG(cw,M).

In the above definition, the ‘⊠’ constraints correspond to

discrimination requirements, while ‘⊟’ require conflation. The

importance of the set intersections is that the only things that

can really happen are walks on the world graph. When there

is a discrimination constraint, there are no walks from the

one itinerary that can be confused with one from the other

itinerary. When there is a conflation constraint, any walk from

the first itinerary has at least one from the second that appears

identical. Conflation models privacy in the following sense:

any putative claim that the agent followed one itinerary can

be countered by arguing, just as plausibility on the basis of the

sensor readings, that it followed the other itinerary. While the

discrimination constraint is symmetric, the second need not be.

(Imagine: {βG(w,M)|w ∈ Walks(G) ∩ L(I1)} = {a, b, c, d}
while {βG(w

′,M)|w′ ∈ Walks(G) ∩ L(I2)} = {a, b, c, d, e}.

Then (I1, I2)⊟ is possible, while (I2, I1)⊟ is not.)

Now, we are ready to give the central problem of the paper:

Decision Problem: Minimal sensor selection to accommo-

date a discernment designation in itineraries (MSSADDI)

Input: A world graph G, a discernment designation D, and

a natural number k ∈ N.

Output: A satisfying sensor selection M ⊆ S for D on G
with |M | ≤ k, or ‘INFEASIBLE’ if none exist.

IV. SIGNATURE AUTOMATA

To understand how we may begin solving MSSADDI and

what its theoretical complexity is, we introduce the concept of

a signature automaton. Signature automata are produced from

the product automata of an itinerary with the world graph:

Definition 10 (Product automaton [14]). Let G =
(V,E, src, tgt, v0, S,Y, λ) be a world graph and I =



(Q,E, δ, q0, F ) be an intinerary DFA. The product PG,I is a

partial DFA PG,I = (QP , E, δP , q
P
0 , FP) with QP = Q×V ;

δP : QP × E → QP ∪ {⊥} is a function such that for each

(q, v) ∈ QP and e ∈ E; δP((q, v), e) is defined to be ⊥
if src(e) 6= v, otherwise, δP((q, v), e) = (δ(q, e), tgt(e));
qP0 = (q0, v0), and FP = F × V .

The language of this product automaton, as a DFA, is the

collection of (finite-length) sequences from E that can be

traced starting at qP0 , never producing a ⊥, and which arrive

at some element in FP . The language recognized is the set

of walks that are within the itinerary I, i.e., L(PG,I) =
Walks(G) ∩ L(I).

Definition 11 (Signature automaton). Let G =
(V,E, src, tgt, v0, S,Y, λ) be a world graph, let M ⊆ S be

a sensor selection on it, I = (Q,E, δ, q0, F ) be an itinerary

DFA, and PG,I be their product. A signature automaton

SG,I,M = (QP ,Σ, δS , q
P
0 , FP) is a nondeterministic finite

automaton with ǫ-moves (NFA-ǫ) with

• Σ = {λM (e) | e ∈ E, λM (e) 6= ǫ}
• δS : QP × Σ ∪ {ǫ} → ℘(QP) is a function defined for

each (q, v) ∈ QP and σ ∈ Σ ∪ {ǫ} such that

δS
(

(q, v), σ
)

=
{

δP
(

(q, v), e
)

∣

∣

∣
e ∈ E,

δP
(

(q, v), e
)

6=⊥, λM (e) = σ
}

.

The signature automaton produces all the signatures that

could result from following a path in the world graph conform-

ing to the given itinerary. Formally, we have the following:

Lemma 1. For world graph G = (V,E, src, tgt, v0, S,Y, λ),
sensor selection M ⊆ S, and itinerary I = (Q,E, δ, q0, F ),
if their signature automaton is SG,I,M , then:

L(SG,I,M ) = {βG(w,M) | w ∈ Walks(G) ∩ L(I)} .

Proof. For all w ∈ Walks(G) ∩ L(I) there is a unique

sequence of states qP0 , . . . , q
P
n in PG,I such that qPn ∈ FP . Fol-

lowing that sequence through the signature automaton returns

signature βG(w,M). Similarly, any string that is accepted by

SG,I,M has a sequence of states qP0 , . . . , q
P
n in SG,I,M such

that qPn ∈ FP . Following those states through PG,I returns the

walk conforming to the itinerary which produced it.

Note that signature automaton simply replaces the alphabet

E of the product automaton with the alphabet Σ. This intro-

duces nondeterminism in the automaton because two outgoing

edges from a vertex in the world graph may produce the same

(non-empty) sensor values. Moreover, certain transitions may

be made on the empty symbol if no sensor values are produced

upon taking an edge in the world graph too.

The preceding is useful owing to the next pair of lemmas.

Lemma 2. Given world graph G = (V,E, src, tgt, v0, S,Y, λ)
and itinerary DFAs: I1 = (Q1, E, δ1, q10 , F

1) and I2 =
(Q2, E, δ2, q20 , F

2), a subset of sensors M ⊆ S is a satisfying

sensor selection for constraint discrimination of itineraries I1

and I2 if and only if L(SG,I1,M ) ∩ L(SG,I2,M ) = ∅.

Proof. Assume that M satisfies the constraint [I1, I2]⊠ . This

implies that there exist no w1 and w2, with w1 ∈ Walks(G)∩
L(I1) and w2 ∈ Walks(G) ∩ L(I2), where βG(w1,M) =
βG(w2,M). The previous fact along with Lemma 1 implies

L(SG,I1,M )∩L(SG,I2,M ) = ∅. The other way: if such w1 and

w2 can be found, then letting c = βG(w1,M) = βG(w2,M),
we have that {c} ⊆ L(SG,I1,M ) ∩ L(SG,I2,M ).

Notice that if L(I1) ∩ L(I2) 6= ∅ then any walks w1 =
w2 taken from this intersection must have βG(w1,M) =
βG(w2,M). Any two itineraries with overlapping languages,

and whose overlap falls (partly) within the set of walks, will

yield a sensor selection problem that must be infeasible when

these itineraries are given as a discrimination constraints.

A similar lemma follows for the conflation constraints.

Lemma 3. Given world graph G = (V,E, src, tgt, v0, S,Y, λ)
and itinerary DFAs: I1 = (Q1, E, δ1, q10 , F

1) and I2 =
(Q2, E, δ2, q20 , F

2), a subset of sensors M ⊆ S is a satisfying

sensor selection for constraint conflation of itineraries I1 and

I2 if and only if L(SG,I1,M ) ⊆ L(SG,I2,M ).

Proof. Assume that M satisfies the constraint (I1, I2)⊟ . This

implies that every w ∈ Walks(G) ∩ L(I1) has a cw ∈
Walks(G)∩L(I2) with βG(w,M) = βG(cw,M). The previous

fact along with Lemma 1 implies L(SG,I1,M ) ⊆ L(SG,I2,M ).
In the opposite direction, if there exists a w for which no cw
can be found, we know that L(SG,I1,M ) 6⊆ L(SG,I2,M ) since

βG(w,M) ∈ L(SG,I1,M ) but βG(w,M) 6∈ L(SG,I2,M ).

V. COMPLEXITY OF MSSADDI

A. Background and preliminaries

Before we prove the hardness of MSSADDI, we state some

known facts from automata and complexity theory.

Lemma 4 (Savitch’s Theorem [19]). In the context of com-

plexity classes, we have that PSPACE = NPSPACE.

Lemma 5 (NFA intersection [5]). Given two non-deterministic

finite automata (NFAs) A and B, it can be determined in

polynomial time if L(A) ∩ L(B) = ∅.

Lemma 6 (NFA inclusion [10]). Given two non-deterministic

finite automata (NFAs) A and B, it is PSPACE-Complete to

determine if L(A) ⊆ L(B).

B. Hardness of MSSADDI

Next, we investigate the hardness of the problem formulated

above. Since the original original MSSVI problem [14] is

NP-Complete (it essentially involves a single itinerary and its

complement, one discrimination constraint, and zero conflation

constraints), we naturally expect the problem to be NP-

Hard. And this is indeed true (though the direct proof is

straightforward and, hence, omitted). For the full problem,

the question is whether the conflation constraints contribute

additional extra complexity. The answer is in the affirmative,

under standard computational complexity assumptions:

Lemma 7. MSSADDI is in PSPACE.



Proof. The full detailed proof appears in [12].

Next, for showing hardness, we reduce from the NFA

inclusion problem. One can think of this intuitively as showing

that conflation constraints, in solving the inclusion problem on

signature automata, cover worst-case instances.

Lemma 8. MSSADDI is PSPACE-Hard

Proof. We reduce from NFA Inclusion, known to be PSPACE-

Complete (Lemma 6). Given an NFA Inclusion Prob-

lem instance x = 〈A = (QA,Σ, δA, q
A
0 , FA),B =

(QB ,Σ, δB , q
B
0 , FB)〉 we form an instance of MSSADDI

f(x) = 〈G = (V,E, src, tgt, v0, S,Y, λ),D = (I, ID, IC), k〉.
Every state of A and B will be assumed to reachable

from their respective start states (unreachable states do not

contribute to the NFA’s language, and are easily trimmed).

We construct G as follows:—

1) Let the vertex set be V = {v0} ∪QA ∪QB where v0 is

a new vertex not in either QA or QB .

2) Let the edge set be E = {eA, eB} ∪ {e1, e2, . . . , en,
en+1, en+2, . . . , en+m}. Here eA is an edge that con-

nects v0 to qA0 and eB is an edge connecting v0 to

qB0 . Assuming there are n transitions in A of the form

qAj ∈ δA(q
A
i , σ), we produce an edge ek for some

1 ≤ k ≤ n which connects qAi to qAj for every such

σ. Similarly, if there are m transitions in B of the form

qBj ∈ δB(q
B
i , σ), we would have an edge en+k for some

1 ≤ k ≤ m connecting qBi to qBj for each σ. The src
and tgt functions are defined appropriately for all edges.

3) Let sensor set S = {s1, . . . , s|Σ|} where each sensor

produces exactly one event so that if Σ = {σ1, . . . , σ|Σ|}
then Ysi = {σi} and Y = {Ys1 , . . . , Ys|Σ|

}.

4) The edge labelling function is defined as follows. First,

let λ(eA) = λ(eB) = ∅. Then, for each transition in A
of the form qAj ∈ δA(q

A
i , σ), if σ = ǫ, label that edge

with ∅, otherwise label it with the singleton set {σ}
for all such σ. Follow the same procedure again for B.

Note that, by construction, a single sensor may cover an

edge from both A and B. This is natural as the given

NFAs share the alphabet Σ. Importantly: this does not

violate the assumption that sensors have pairwise distinct

readings. Turning some sensor on, means we receive its

readings from both regions—that constructed from A
and B—or, when turned off, from neither.

The following define D, the discernment designation:—

1) In the world graph G constructed in the previous step, let

there be p ≤ n+m edges collected as {ei1 , ei2 , . . . , eip}
where we have that each of them has a non-empty label,

i.e., eik ∈ E, and λ(eik) 6= ∅ for every 1 ≤ k ≤ p.

Then let the set of itineraries I be {Iei1 , Iei2 , . . . , Ieip }∪
{Ie+

i1

, Ie+
i2

, . . . , Ie+
ip

}∪{IA, IB}, where we will give the

language accepted by each DFA. The first 2p elements

have a language with a single string: for 1 ≤ k ≤ p,

to determine the languages L(Ieik ) and L(Ie+
ik

), run a

breadth first search (BFS) from v0 on G. This co-routine

will return the shortest path (consisting of specific edges)

from v0 to src(eik). This path is the only string accepted

by Ieik , and the same path but with eik appended is the

only string accepted by Ie+
ik

.

Next, itinerary DFA IA is to be defined so it accepts a

string ei1ei2 . . . eir where eik ∈ E for all 1 ≤ k ≤ r if

and only if tgt(eir ) ∈ FA. Similarly, define DFA IB so

that it accepts a string e′i1e
′
i2
. . . e′iq where e′ik ∈ E for all

1 ≤ k ≤ q if and only if tgt(e′iq ) ∈ FB . Note that we are

not asking for the given NFAs A and B to be converted

to DFAs — instead, we are simply constructing a DFA

which recognizes that some path of an accepting string

arrives at an accepting state in the NFA. The construction

of such a DFA is simple: For IA, define two states q0
and q1, with only q1 accepting. Then, define transitions

from q0 to q1 and q1 to q1 for all e ∈ E such that tgt(e)
is a final state in A. Similarly, define transitions from

q0 to q0 and q1 to q0 for all e ∈ E such that tgt(e) is

not a final state in A. Doing the same for B gives IB .

2) Define ID =
{

[Iei1 , Ie+i1
]⊠ , . . . , [Ieip , Ie+ip

]⊠
}

.

3) Finally, define IC =
{

(IA, IB)⊟
}

.

Lastly, let k = |Σ|.
This three-piece mapping is accomplished in polynomial

time since the size of the world graph is O(1+ |A|+ |B|) and

the size of D (i.e., the number of constraints) is O(|A|+ |B|).2

Since BFS runs in polynomial time on G, all the discrimination

requirements need polynomial time to construct and each

is of polynomial size. For the itineraries in the conflation

constraints, the DFAs have 2 states and |E| transitions.

Finally, to prove correctness: there must be a satisfying

sensor selection of size at most k if and only if L(A) ⊆ L(B).
( =⇒ ) Assume that L(A) ⊆ L(B). Then the sensor selec-

tion M = S is a satisfying sensor selection because, firstly,

|M | = |Σ| = k. Secondly, note that all the discrimination

constraints are satisfied because all the sensors are turned on.

Lastly, the conflation constraint is also satisfied by reasoning as

follows: any walk beginning at v0 first going to qA0 and ending

at some v ∈ FA has a signature {σ1}{σ2} . . . {σm} for which

σ1σ2 . . . σm ∈ L(A) which implies σ1σ2 . . . σm ∈ L(B). But,

by construction, one can take a path in the world graph, taking

a first step from v0 to qB0 without producing any sensor value,

and then follow exactly the same path that is accepting in B
through the world graph, and this path will produce signature

{σ1}{σ2} . . . {σm}.

( ⇐= ) Assume there exists some satisfying sensor selection

of size less than or equal to k = |Σ|. Firstly, no sensor may be

turned off since doing so would violate the discrimination con-

straint between the singleton itineraries involving the edge(s)

labelled with the disabled sensor’s value. Thus, the sensor

selection has size exactly k. Secondly, the conflation constraint

is also met implying that, for all signatures {σ1}{σ2} . . . {σm}
produced by taking v0 to qA0 and ending at some vi ∈ FA, there

exists a path from v0 to qB0 ending at vj ∈ FB such that its

2Here, | · | gives the number of transitions or states, whichever is greater.



signature is also {σ1}{σ2} . . . {σm}. Since no sensor is turned

off, the paths that obtain the signatures in the world graph can

be taken in A and B as well, so σ1σ2 . . . σm ∈ L(A) implies

σ1σ2 . . . σm ∈ L(B), thus L(A) ⊆ L(B).

Theorem 1. MSSADDI is PSPACE-Complete.

Proof. Follows from Lemmas 7 and 8.

VI. ALGORITHM DESCRIPTION

Having proved the theoretical complexity class of

MSSADDI, we now turn to a description of the algorithm

we used to solve it. Although the algorithm is not polynomial

time (as, assuming P 6= PSPACE, it couldn’t be) we introduce

several optimizations to help ameliorate its running time.

A. Baseline Algorithm

The approach we chose for solving MSSADDI was a

complete enumeration of subsets, with some shortcutting. The

pseudo-code, based directly on the automata theoretic connec-

tions identified in the preceding, appears in Algorithm 1.

It is a top down search over all subsets of S where we

attempt to check each constraint by constructing its signature

automaton and verifying the intersection and subset properties,

lines 7 and 12, respectively, as in the previous sections.

Discrimination constraints are checked first (lines 4–8) be-

cause we expect them to be easier to check than conflation

constraints (Lemmas 5 and 6).

We take advantage of one more property of sensor sets in

relation to discrimination constraints to define our baseline

algorithm. Since we stipulate that different sensors produce

different sensor outputs, it follows that if M ⊆ S does not

satisfy a discrimination constraint, then neither can any subset

of M . Therefore, when no combination of sensors of size k

satisfies all the discrimination constraints, the search is ended,

and the current best satisfying sensor set returned (line 18).

Next, we propose two optimizations over the baseline al-

gorithm just described. While each does involve a different

trade-off, neither sacrifices the correctness guarantee.

B. The Caching Optimization

Notice how the signature automaton is constructed each

time an itinerary is encountered in a constraint (lines 5–6 and

10–11). This seems to be wasteful if an itinerary appears in

multiple constraints (as it can be with several). The signature

automaton can be cached after it is constructed should the

same itinerary appear in another constraint, allowing it to be

retrieved without the need for additional computation.

Note, however, the trade-off being made here: while the

running time reduced, the space requirements increased. Typ-

ical library implementations allow for language intersection

and subset properties to be checked only on DFA’s which,

when converted, can result in an exponential increase in space

requirements.

Algorithm 1 Complete Enumeration for MSSADDI

Inputs: A world graph G = (V,E, src, tgt, v0, S,Y, λ) and a
discernment designation D = (I, ID, IC)
Output: The minimum satisfying sensor selection, if it exists,
otherwise null

1: M∗ ← null ⊲ The current best sensor set

2: for k = |S| down to 0 do
3: for M in COMBINATIONS(S, k) do

4: for [I1, I2]⊠ ∈ ID do
5: SG,I1,M ← SIGNATUREAUTOMATON(G, I1,M)
6: SG,I2,M ← SIGNATUREAUTOMATON(G, I2,M)
7: if L(SG,I1,M ) ∩ L(SG,I2,M ) 6= ∅ then
8: Continue to next M ⊲Check next combination

9: for (I1, I2)
⊟ ∈ IC do

10: SG,I1,M ← SIGNATUREAUTOMATON(G, I1,M)
11: SG,I2,M ← SIGNATUREAUTOMATON(G, I2,M)
12: if L(SG,I1,M ) 6⊆ L(SG,I2,M ) then
13: Continue to next M ⊲Check next combination

14: if All ID and IC satisfied then
15: M∗ ←M
16: Continue to next k ⊲Now try sets of size k − 1

17: if No M where |M | = k satisfies all ID then
18: return M∗

⊲Prior solution was smallest feasible one

19: return M∗
⊲Final exit

C. The Adaptive Weights Optimization

The second optimization we introduce is a dynamic re-

ordering of constraints. Inspired by classical methods in AI

for constraint satisfaction problems (CSP’s) which seek to

make the current assignment fail fast, we devised an adaptive

weighting mechanism for the desired discernment graph.

Seeking to end the search as fast as possible, discrimination

constraints are checked first in the hopes that if none of

the sensor sets of cardinality k satisfies the discrimination

constraints, then the search can be declared hopeless and ended

immediately. Once a satisfying sensor set is found for the

discrimination constraints, though, the following strategy is

used. Whenever a particular constraint fails to be satisfied,

that sensor set ‘votes’ the erring constraint up so that future

sets know which constraint is likely to fail. Thus, after a few

iterations, enough data is collected so that a sensor set checks

that constraint first which most of the sets before it failed on.

The idea is the more demanding (or stringent) constraints are

learned and propagated upward for prioritization.

VII. EXPERIMENTAL RESULTS

The following experiments were all performed on a com-

puter running Windows 11 with an Intel i7 CPU having 16
GB RAM using Python 3.

As a basic sanity check, we ran the baseline algorithm on

the problems presented in Section I. For these problems, the

algorithm correctly provided the optimal solutions in less than

1 s. Next, to test the scalability of the proposed approach and to

assess the impact of the optimizations, we ran the experiments

that follow.





the code for the 6 × 5 world graph grid. We measured the

wall clock every time the algorithm started checking subsets

of size k (see line 2 in Algorithm 1). Furthermore, we also

kept count of the number of discrimination and conflation

constraints checked for each sensor set aggregated over size

k before it failed. The results, including a visualization of the

constraint type, appear in the stepping chart in Figure 4.

Notice, first, how the optimization leads to a greater pro-

portion of conflation constraints being checked. For our case,

conflation constraints tend to fail more often when the sensor

set is of high cardinality since they are likely to include row

sensors. Thus, a greater proportion (or sometimes even abso-

lutely more) of them are checked, as compared to baseline. We

see that the decision, on the basis of Lemmas 5 and 6, to place

lines 4–8 before lines 9–13 may be mistaken, on average.

Secondly, observe how the algorithm is able to terminate

after concluding that no set of size k = 2 will satisfy all the

discrimination constraints. The minimum satisfying sensor set

in this case turned out to be 3 column sensors.

VIII. CONCLUSION AND FUTURE WORKS

This paper tackled the sensor selection problem for multiple

itineraries while also allowing for considerations of privacy.

We also provided strong reasoning for why merely minimizing

selected sensors does not lead to satisfaction of specific

privacy requirements. We formulated this problem and proved

that it was worst-case intractable. Further, we provided an

algorithm (based on automata-theoretic operations) to solve

the problem and considered a few optimizations over the naı̈ve

implementation. In the process, we realized that the gains from

those optimizations were significant owing to an inclination for

wanting incorrect solutions to fail fast.

In the future, research might seek a direct reduction from

the problem we proposed to canonical PSPACE-Complete

problems such as QSAT. Other approaches common to solving

computationally hard problems such as random algorithms,

and improved heuristics may also be fruitful.
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[7] Stéphane Lafortune, Feng Lin, and Christoforos N Hadjicostis. On the
history of diagnosability and opacity in discrete event systems. Annual

Reviews in Control, 45:257–266, 2018.
[8] Feng Lin. Opacity of discrete event systems and its applications.

Automatica, 47(3):496–503, 2011.
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