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Abstract—A useful capability is that of classifying some agent’s
behavior using data from a sequence, or trace, of sensor
measurements. The sensor selection problem involves choosing
a subset of available sensors to ensure that, when generated,
observation traces will contain enough information to determine
whether the agent’s activities match some pattern. In generalizing
prior work, this paper studies a formulation in which multiple
behavioral itineraries may be supplied, with sensors selected to
distingnish between behaviors. This allows one to pose fine-
grained questions, e.g., to position the agent’s activity on a
spectrum. In addition, with multiple itineraries, one can also ask
about choices of sensors where some behavior is always plausibly
concealed by (or mistaken for) another. Using sensor ambiguity
to limit the acquisition of knowledge is a strong privacy guar-
antee, a form of guarantee which some earlier work examined
under formulations distinct from our inter-itinerary conflation
approach. By concretely formulating privacy requirements for
sensor selection, this paper connects both lines of work in a
novel fashion: privacy—where there is a bound from above, and
behavior verification—where sensors choices are bounded from
below. We examine the worst-case computational complexity that
results from both types of bounds, proving that upper bounds
are more challenging under standard computational complexity
assumptions. The problem is intractable in general, but we
introduce an approach to solving this problem that can exploit
interrelationships between constraints, and identify opportunities
for optimizations. Case studies are presented to demonstrate the
usefulness and scalability of our proposed solution, and to assess
the impact of the optimizations.

1. INTRODUCTION

The problems of activity recognition [25], surveillance [15],
[20], [24], suspicious and/or anomalous behavior detec-
tion [16], fault diagnosis [2], [18], and task monitoring [21] —
despite applying to distinct scenarios—all involve the chal-
lenge of analyzing behavior on the basis of streams of obser-
vations from sensors. Sensor selection and activation problems
(as studied by [2], [14], [22], [23]) are concerned with select-
ing a set of sensors to provide sufficient information to reach
conclusions that are both unequivocal and correct. Yet, too
much information may be detrimental — for instance, in elder
care and independent living applications (cf. [20]), capturing or
divulging sensitive/inappropriate information could calamitous
enough to be considered a showstopper.

As a concrete motivating example, consider the house
shown in Figure 1. Suppose that it is to be turned, via automa-
tion, into a ‘smart home’ to serve as an assisted living space
for an elderly person named Myra. Assume that occupancy
sensors triggered by physical presence can be placed in each
labelled, contiguous area. We might program a system that
uses such sensors to track important properties related to

Both authors are affiliated with Dept. of Computer Science & Engineering, Texas A&M
University, College Station, TX, USA. {rishiphatak | dshell}@tamu.edu.

Dylan A. Shell

Fig. 1. Myra’s assistive

living space wherein occu-

pancy detectors can be em-
FRONT YARD DPloyed within contiguous ar-
TELEVISION eas, corresponding here to
eight regions: the rooL, sTUDY,
BEDROOM, BATHROOM, KITGHEN,
LOUNGE/DINING, BAGKYARD, and
FRONT YARD. Different subsets
of detectors result in quite
distinct sensing granularities:
inadequate sensors will mean
that the system is incapable of
obtaining information needed
about the state of the environ-
ment, too many sensors are in-
vasive and cause privacy con-
cerns.

LOUNGE / | DINING

BACKYARD
KITCHEN

BATH

STUDY
POOL

WARDROBE

BEDROOM

DESK

Myra’s wellness and health goals so that a carer can be notified
if something is amiss. For instance, suppose that to help fend
off dementia, Myra does a post-lunch crossword in her study.
To determine that Myra has moved through the house and
ended up in the study doing her crossword, a single occupancy
sensor, sTupy, suffices. Unfortunately, when the pool has just
been cleaned, the chlorine negatively affects Myra’s sinuses.
To ensure that she ends up in the study and never visits the
swimming pool, we need 2 sensors (sTuby, PooL). The increase
makes intuitive sense: we are, after all, now asking for more
information about the activity than before. Notice the 3 kinds
of behavior that we can now discriminate between: ones that
are both safe and desirable (never visiting the pool and ending
in the study), ones that are safe but undesirable (never visiting
the pool, but also not ending in the study), and ones that are
not safe (visiting the chlorinated pool).

Dinner time is next. We wish to have enough sensing power
to tell that Myra has ended up the lounge/dining area, having
spent some time in the kitchen. A pair of sensors (KITCHEN,
LouNGeE/DINING) will do; and to include the study and pool,
these are in addition to the previous 2, giving 4 in total. But
alas, now Myra is annoyed: very occasionally, she enjoys a
perfectly innocent midnight snack and she feels that any sensor
that discloses when she has raided the fridge (and even the
frequency of such forays!) is too invasive.! She requires that
we guarantee that those evenings in which her bedroom is
occupied continuously shall appear identical to those in which
one (or more) incursions have been made into the kitchen.

Her request, along with the previous requirements, can
be met with 5 sensors (LOUNGE/DINING, STUDY, BACKYARD,
FRONT YARD, PooL). Though simplistic, this example illustrates

'Her concern is not misplaced, given the increasing number of attacks on
cloud services in recent years [3] from which stored data may be leaked.



an important idea—it is not enough to reduce the number
of sensors to increase privacy, but that sometimes it may
be necessary to activate a different and higher cardinality
combination of sensors to protect sensitive information.

The present paper re-visits the sensor selection model intro-
duced in the IROS’21 paper of Rahmani et al. [14], advancing
and elaborating upon it in order to treat the sort of problem
just described. In that paper, the authors consider the setting
where a claimant asserts that (future) movements within an
environment will adhere to a given itinerary. Then the objective
is to select, from some set of sensors at specific locations, a
small subset that will detect any deviations from this claim.
One of present paper’s key advances is the ability to constrain
the information obtained from sensors, in order to meet
privacy and non-disclosure requirements. Further, the present
paper generalizes the problem so that multiple itineraries are
considered and, consequently, the objective becomes rather
more subtle. In the prior work, the problem is to select sensors
that single out the claimed itinerary from all other activity;
now, when closely-related itineraries are provided, the sensors
selected must have adequate resolving power distinguish fine-
grain differentiations (recall the 3 kinds of behavior above).

This paper establishes the computational hardness of sen-
sor selection and optimization under this richer setting (see
Section V) giving a nuanced description of its relation to the
constraints introduced to modulate the collected information.
Then, although the problem is worst-case intractable in gen-
eral, we introduce an exact method in Section VI which treats
the sensor selection problem using automata theoretic tools
(an approach quite distinct from the ILP of [14]). Multiple
itineraries are provided as input and their interrelationships
express constraints—we examine opportunities to exploit
aspects of this structure, which leads us to propose some
optimizations. The empirical results we present in Section VII
show that the improvements obtained from the optimizations
are significant, and demonstrate how they help improve the
scalability of our proposed solution.

Some detail has necessarily been omitted, the reader is
encouraged to refer to [12] for the full authoritative version
of the paper.

II. RELATED WORKS

So far, no single model for robotic privacy has yet emerged.
A useful taxonomy dealing with privacy for robots (and
associated intelligent systems) appears in [17]. Perhaps most
visible candidate is that of differential privacy, used by such
works as [4], [13]. There, the underlying formulation builds
upon a notion of nearness (originally with a static database of
multiple records), and is a less natural fit to treat the problem
of altering the processes by which data are acquired. The
present work tackles how privacy (of even a single entity)
may be preserved without any need for addition of noise if
they can exert some degree of control on the tools used to
collected that data.

The idea of obscuring or concealing information is another
candidate and is prevalent in the control community’s notion

of opacity: an excellent overview for Discrete Event Systems
(DES) is by Jacob, Lesage, and Faure [6]. A DES is said to
be opaque if a secret has some level of indistinguishability, a
concept very close to the conflation constraints we define in
Section III. For further reading in the role of opacity in DES,
the reader is referred to [8], [26] and [7].

Previous work by Masopust and Yin affirms that the prop-
erties of detectability and opacity are worst case intractable in
general [9]. In particular, Cassez et. al. [1] showed that deter-
mining the opacity of static and dynamic masks was PSPACE-
Complete via formulation of so-called ‘state-based’ and ‘trace-
based’ opacities. In our work, importantly, simply obfuscating
states is not enough, as how that particular state was reached
also plays a role. A second factor which differentiates our
work is that we allow specifications of constraints between
two specified behaviors, instead of making them binary, one-
versus-all decisions. An important subtlety, moreover, is that
the conflation constraints are directed (cf., also [11]), implying
that a more fine grained designation of obfuscation is allowed
without necessarily running in both directions. Thus, we find
it more suitable to reduce directly from the inclusion problem
than universality.

III. PROBLEM STATEMENT AND DEFINITIONS

The environment in which some agent of interest moves is
modelled as a discrete structure called the world graph:

Definition 1 (World  Graph  [14]). A  world
graph is an  edge-labelled, directed  multigraph
G = (V,E,src,tgt,vp,S,Y,\):V is a non-empty vertex
set; F is a set of edges; src : ' — V and tgt : £ — V
are source and target functions, respectively, identifying
a source vertex and target vertex for each edge; vo € V
is an initial vertex; S = {si1,82,...,Sk} is a nonempty
finite set of sensors; Y = {Y5,,Ys,,..., Y5, } is a collection
of mutually disjoint event sets associated to each sensor;
A E = P(Y,,UY,,U---UYj,) is a labelling function,
which assigns to each edge, a world-observation a set of
events. (Here powerset §2(X) denotes all the subsets of X.)

The usefulness of the world graph is that it governs two
major aspects of the agent’s locomotion: how it may move, and
what would happen if it moved in a certain way. The agent is
known to start its movements at vy and take connected edges.

However, the agent cannot make any transitions that are not
permitted by the world graph. Myra, for example, cannot jump
from the BEDROOM to the LOUNGE/DINING without first going
through the kiTcHEN. Thus, the collection of all paths that can
physically be taken by the agent is defined as follows:

Definition 2 (Walks [14]). A string ejes...e, € E* is a
walk on the world graph if and only if src(e;) = vo and for
all i € {1,...,n — 1} we have that tgt(e;) = src(e;+1). The
set of all walks over G is denoted Walks(G)

Next, we seek to understand what role the sensors play
when an agent interacts with the world. Whenever an edge is
crossed, it causes a ‘sensor response’ described by the label on



that edge: those sensors which are associated with the sensor
values in the label (and are turned on/selected) will emit those
values. Returning to the home in Figure 1, assume there are
sensors in the BeEbroom and sTupy which measure occupancy.
Then, when Myra starts in the bedroom and moves to the
study, we would obtain the event {Bebroom™,stupy*t} for
the transition, with the plus superscript representing an event
triggered by detection, and minus the inverse. The model also
allows sensors other than those which detect occupancy (e.g.,
non-directed traversals via break beams), see [14] too.

To understand the sensor values generated when crossing a
single edge where sensors may be turned off, we use a sensor
labelling function:

Definition 3 (Sensor labelling function). Let G =
(V, E,src, tgt,v9,5,Y,\) be a world graph, and M C S
a sensor selection from it. For selection M, the set of all
events that could be produced by those sensors will be denoted
Y (M) = U,cp Ys- Then the sensor labelling function is for
all e € E:

Ae)NY (M) if AMe)nY (M) # o,

/\M (6) = { .
€ otherwise.

(Note that € here is the standard empty symbol.) Later in
the paper, Figure 2 forms an example of an environment with
a world graph whose edges bear appropriate sensor labels.

Now, we may formally define the signature function for a
walk and a given sensor set as follows:

Definition 4 (Signature of a walk [14]). For a world graph
G = (V,E,src,tgt, v, 5,Y,\) we define function Sg
Walks(G) x §2(S) — (8(Y(S)) \ {@})* such that for each

r = ejes...e, € Walks(G) and M C S, fg(r,M) =
2122 ...2, in which for each ¢ € {1,...,n}, we have that
Z; = )\M(ei).

The behavior of the agent will be specified with respect
to a given world graph and these specifications will describe
sequences of edges the agent may decide to take in the
world graph. Following the convention of [14], each is called
an itinerary. Subsequent definitions will involve the use of
multiple itineraries in order to constrain what information
about the agent’s behavior the sensors are allowed to obtain.

Definition 5 (Itinerary DFA [14]). An itinerary DFA over a
world graph G = (V, E, src, tgt, vg, S, Y, \) is a DFA T =
(Q,E,d,qo, F) in which Q is a finite set of states; F is the
alphabet; § : Q x E — (@ is the transition function; qq is the
initial state; and F' is the set of accepting (final) states.

With the basic elements given, the next four definitions
formalize the different classes of constraints we desire a set
of sensors to satisfy. Conflation constraints allow one type of
behavior to ‘appear’ similar to another, while discrimination
constraints specify that two behaviors must be distinguishable.

Definition 6 (Conflation constraint). A conflation constraint
on a world graph G is an ordered pair of itineraries (Z,, 7).

Definition 7 (Discrimination constraint). A discrimination
constraint on a world graph G is an unordered pair of
itineraries [Il,Ig]g.

Both types will combined within a graph:

Definition 8 (Discernment designation). A discernment des-
ignation is a mixed graph D = (I,Ip,Ic), with vertices [
being a collection of itineraries, along with undirected edges
Ip which are a set of discrimination constraints, and arcs
(directed edges) I which are a set of conflation constraints.

And, finally, we can state what a satisfying selection entails:

Definition 9 (Satisfying sensor selection). Given some dis-
cernment designation D, a sensor set M C S is a satisfying
sensor selection for D = (I, Ip, I¢) if and only if both of the
following conditions hold:

e For each [Z;,Z,]® € Ip we have that there exist no
wy € Walks(G) N L(Z;) and wy € Walks(G) N L(Z2)
where (g (wy, M) = fg (s, M).

e For each (Ia,Ib)E € Ic we have that for every w €
Walks(G) N L(Z,), there exists ¢, € Walks(G) N L(Zy)
where Sg(w, M) = Bg(cw, M).

In the above definition, the ‘®’ constraints correspond to
discrimination requirements, while ‘8’ require conflation. The
importance of the set intersections is that the only things that
can really happen are walks on the world graph. When there
is a discrimination constraint, there are no walks from the
one itinerary that can be confused with one from the other
itinerary. When there is a conflation constraint, any walk from
the first itinerary has at least one from the second that appears
identical. Conflation models privacy in the following sense:
any putative claim that the agent followed one itinerary can
be countered by arguing, just as plausibility on the basis of the
sensor readings, that it followed the other itinerary. While the
discrimination constraint is symmetric, the second need not be.
(Imagine: {8g(w, M)|w € Walks(G) N L(Z1)} = {a,b,c,d}
while {8g(w’, M)|w" € Walks(G) N L(Z2)} = {a,b,c,d,e}.
Then (Z,Z)P is possible, while (Z5,7;)" is not.)

Now, we are ready to give the central problem of the paper:

Decision Problem: Minimal sensor selection to accommo-
date a discernment designation in itineraries (MSSADDI)

Input: A world graph G, a discernment designation D, and
a natural number k € N.
Output: A satisfying sensor selection M C S for D on G
with |M| < k, or ‘INFEASIBLE’ if none exist.

IV. SIGNATURE AUTOMATA

To understand how we may begin solving MSSADDI and
what its theoretical complexity is, we introduce the concept of
a signature automaton. Signature automata are produced from
the product automata of an itinerary with the world graph:

Definition 10 (Product automaton [14]). Let G =
(V, E,src,tgt, v9,5,Y,\) be a world graph and 7 =



(Q, E,0d,qo, F') be an intinerary DFA. The product Pg 7 is a
partial DFA ,Pg,z = (Q”p,E, (Sp, qg),Ffp) with Q'p = Q xV;
dp : Qp x E — Qp U {L} is a function such that for each
(¢g,v) € Qp and e € E; 6p((q,v),e) is defined to be L
if src(e) # v, otherwise, dp((g,v),e) = (d(g,e),tgt(e));
qg)j = (qO,Uo), and Fp =F x V.

The language of this product automaton, as a DFA, is the
collection of (finite-length) sequences from E that can be
traced starting at ¢}, never producing a |, and which arrive
at some element in Fp. The language recognized is the set
of walks that are within the itinerary Z, ie., L(Pgz) =
Walks(G) N L(Z).

Definition 11 (Signature automaton). Let § =
(V, E, sre, tgt, v9,5, Y, \) be a world graph, let M C S be
a sensor selection on it, Z = (Q, E, J, qo, F') be an itinerary
DFA, and Pgz be their product. A signature automaton
Sozm = (Qp,%,8s,q},Fp) is a nondeterministic finite
automaton with e-moves (NFA-€) with

e X={Ap(e) | e€ E,Ayle) # e}

e Js:Qp x X U{e} — £(Qp) is a function defined for

each (¢,v) € @p and o € ¥ U {e} such that

bs((q,v),0) = {5p((q,v),e) ‘e €F,
57:((q,v),e) #1, Ay(e) = a}.

The signature automaton produces all the signatures that
could result from following a path in the world graph conform-
ing to the given itinerary. Formally, we have the following:

Lemma 1. For world graph G = (V, E, src, tgt, vg, S, Y, A),
sensor selection M C S, and itinerary T = (Q, E, ¢, qo, F),
if their signature automaton is Sg 1 nr, then:

L(Sg.z.m) ={Bg(w,M) | we Walks(G) N L(Z)}.

Proof. For all w € Walks(G) N L(Z) there is a unique
sequence of states ¢}, ..., q" in Pg 7 such that ¢} € Fp. Fol-
lowing that sequence through the signature automaton returns
signature Bg(w, M). Similarly, any string that is accepted by
Sg.z.m has a sequence of states ¢}, ...,q} in Sgz v such
that ¢/ € Fp. Following those states through Pg 7 returns the
walk conforming to the itinerary which produced it. O

Note that signature automaton simply replaces the alphabet
E of the product automaton with the alphabet Y. This intro-
duces nondeterminism in the automaton because two outgoing
edges from a vertex in the world graph may produce the same
(non-empty) sensor values. Moreover, certain transitions may
be made on the empty symbol if no sensor values are produced
upon taking an edge in the world graph too.

The preceding is useful owing to the next pair of lemmas.

Lemma 2. Given world graph G = (V, E, src, tgt, vo, S, Y, \)
and itinerary DFAs: T' = (Q',E,8', ¢}, F') and I? =
(Q?, E,6%,q3, F?), a subset of sensors M C S is a satisfying
sensor selection for constraint discrimination of itineraries T*
and I? if and only if L(Sg.11 ar) N L(Sg.r2.0m) = .

Proof. Assume that M satisfies the constraint [Z;,Z,]%. This
implies that there exist no w; and ws, with w; € Walks(G) N
L(Zy) and wy € Walks(G) N L(Zz), where Bg(wi, M) =
Bg(wa, M). The previous fact along with Lemma 1 implies
L(Sg 11 m)NL(Sg 72, 1) = @. The other way: if such w; and
wy can be found, then letting ¢ = fg (w1, M) = Bg(w2, M),
we have that {c¢} C L(Sg 171 pm) N L(Sg 12.0m1)- O

Notice that if £(Z1) N L(Z2) # @ then any walks w;
wo taken from this intersection must have Sg(wi, M) =
Bg(wa, M). Any two itineraries with overlapping languages,
and whose overlap falls (partly) within the set of walks, will
yield a sensor selection problem that must be infeasible when
these itineraries are given as a discrimination constraints.

A similar lemma follows for the conflation constraints.

Lemma 3. Given world graph G = (V, E, src, tgt, vo, S, Y, \)
and itinerary DFAs: ' = (Q',E,8',¢}, F') and I? =
(Q? E,8%,q3, F?), a subset of sensors M C S is a satisfying
sensor selection for constraint conflation of itineraries T' and
7% if and only if L(Sg 11 m) C L(Sg.12.0m1)-

Proof. Assume that M satisfies the constraint (Z;,Z,)=. This
implies that every w € Walks(G) N £(Z;) has a ¢, €
Walks(G)NL(Zz) with Sg(w, M) = Bg(cy, M). The previous
fact along with Lemma 1 implies £(Sg 71 a1) € £(Sg 72,m)-
In the opposite direction, if there exists a w for which no ¢,
can be found, we know that £(Sg 71 nr) € L£(Sg z2,) since
Bg(w, M) € L(Sg 11 ) but Bg(w, M) & L(Sg 12 ). O

V. COMPLEXITY OF MSSADDI

A. Background and preliminaries

Before we prove the hardness of MSSADDI, we state some
known facts from automata and complexity theory.

Lemma 4 (Savitch’s Theorem [19]). In the context of com-
plexity classes, we have that PSPACE = NPSPACE.

Lemma 5 (NFA intersection [5]). Given two non-deterministic
finite automata (NFAs) A and B, it can be determined in
polynomial time if L(A)NL(B) = @.

Lemma 6 (NFA inclusion [10]). Given two non-deterministic
finite automata (NFAs) A and B, it is PSPACE-Complete to
determine if L(A) C L(B).

B. Hardness of MSSADDI

Next, we investigate the hardness of the problem formulated
above. Since the original original MSSVI problem [14] is
NP-Complete (it essentially involves a single itinerary and its
complement, one discrimination constraint, and zero conflation
constraints), we naturally expect the problem to be NP-
Hard. And this is indeed true (though the direct proof is
straightforward and, hence, omitted). For the full problem,
the question is whether the conflation constraints contribute
additional extra complexity. The answer is in the affirmative,
under standard computational complexity assumptions:

Lemma 7. MSSADDI is in PSPACE.



Proof. The full detailed proof appears in [12]. O

Next, for showing hardness, we reduce from the NFA
inclusion problem. One can think of this intuitively as showing
that conflation constraints, in solving the inclusion problem on
signature automata, cover worst-case instances.

Lemma 8. MSSADDI is PSPACE-Hard

Proof. We reduce from NFA Inclusion, known to be PSPACE-
Complete (Lemma 6). Given an NFA Inclusion Prob-
lem instance * = (A = (Qa,%,04,¢),Fa),B =
(QB,%,085,q5,Fp)) we form an instance of MSSADDI
flx) =(G = (V, E,src,tgt,v9,5,Y,\),D = (I,Ip, Ic), k).

Every state of A and B will be assumed to reachable
from their respective start states (unreachable states do not
contribute to the NFA’s language, and are easily trimmed).
We construct G as follows:—

1) Let the vertex set be V = {vo} UQ4 UQp where vy is
a new vertex not in either Q4 or @ g.

2) Let the edge set be E = {ea,ep} U {e1,e2,...,6n,
€ntls€nt2s---sCnim}. Here ey is an edge that con-
nects vy to q64 and ep is an edge connecting vy to

J. Assuming there are n transitions in A of the form
qA € 6a(qi, o), we produce an edge e, for some
1 < k < n which connects qA to q for every such
o. Similarly, if there are m transitions in 53 of the form
qf € 6p(qf,0), we would have an edge e, 14 for some
1 < k < m connecting qlB to qf for each 0. The src
and tgt functions are defined appropriately for all edges.

3) Let sensor set S = {s1,...,s|x|} where each sensor
produces exactly one event so that if ¥ = {o1,..., 05}
then Yy, = {0;} and Y = {Y;,,..., Y, }.

4) The edge labelling function is defined as follows. First,
let A(ea) = A(ep) = @. Then, for each transition in .4
of the form qj‘ € §a(qt,0), if 0 = ¢, label that edge
with &, otherwise label it with the singleton set {o}
for all such o. Follow the same procedure again for 5.
Note that, by construction, a single sensor may cover an
edge from both 4 and 5. This is natural as the given
NFAs share the alphabet ¥. Importantly: this does not
violate the assumption that sensors have pairwise distinct
readings. Turning some sensor on, means we receive its
readings from both regions—that constructed from A
and B—or, when turned off, from neither.

The following define D, the discernment designation:—

1) In the world graph G constructed in the previous step, let
there be p < n+m edges collected as {e;,, €;,,...,¢€i,}
where we have that each of them has a non-empty label,
ie., e;, € E, and \e;,) # @ for every 1<k<np.
Then let the set of itineraries I be {I, , Ic,, ..., e, }U
{1, + A, r Yu{la,Ig}, where we w111 give - the

language accepted by each DFA. The first 2p elements
have a language with a single string: for 1 < k& < p,
to determine the languages L£(Ie; ) and L(I, ) run a

breadth first search (BFS) from vy on G. ThlS co -routine

will return the shortest path (consisting of specific edges)
from vy to src(e;, ). This path is the only string accepted
by I, , and the same path but with e;, appended is the
only string accepted by I _+ .

Next, itinerary DFA 14 is to be defined so it accepts a
string e;,e;, ...e;, where e;, € E'forall 1 <k <rif
and only if tgt(e;,.) € Fa. Similarly, define DFA I so
that it accepts a string €; €}, ... e; where e € E forall
1 <k < g if and only if tgt(e q) 6 Fp. Note that we are
not asking for the given NFAs A and B to be converted
to DFAs —instead, we are simply constructing a DFA
which recognizes that some path of an accepting string
arrives at an accepting state in the NFA. The construction
of such a DFA is simple: For 1,4, define two states qg
and ¢;, with only ¢; accepting. Then, define transitions
from g to ¢; and ¢ to g; for all e € E such that tgt(e)
is a final state in A. Similarly, define transitions from
do to go and q; to qo for all e € F such that tgt(e) is
not a final state in .A. Doing the same for B gives Ip.

2) Define Ip = {[Le,, [+ 1%, ey, s 2}

eipr tel Cip? tef

3) Finally, define Ic = {(14,15)%}.

Lastly, let &k = |X|.

This three-piece mapping is accomplished in polynomial
time since the size of the world graph is O(1+|.A|+|B|) and
the size of D (i.e., the number of constraints) is O(|.A| +|B|).?
Since BFS runs in polynomial time on G, all the discrimination
requirements need polynomial time to construct and each
is of polynomial size. For the itineraries in the conflation
constraints, the DFAs have 2 states and | F| transitions.

Finally, to prove correctness: there must be a satisfying
sensor selection of size at most & if and only if £L(A) C L(B).

(=) Assume that £(A) C £(B). Then the sensor selec-
tion M = S is a satisfying sensor selection because, firstly,
|M| = |X| = k. Secondly, note that all the discrimination
constraints are satisfied because all the sensors are turned on.
Lastly, the conflation constraint is also satisfied by reasoning as
follows: any walk beginning at v first going to q()4 and ending
at some v € F4 has a signature {01 }{o2} ... {0} for which
0109 ...0m € L(A) which implies o109 ...0,, € L(B). But,
by construction, one can take a path in the world graph, taking
a first step from vy to ¢ without producing any sensor value,
and then follow exactly the same path that is accepting in B
through the world graph, and this path will produce signature
{o1}{o2}... {om}-

( <= ) Assume there exists some satisfying sensor selection
of size less than or equal to k& = |X|. Firstly, no sensor may be
turned off since doing so would violate the discrimination con-
straint between the singleton itineraries involving the edge(s)
labelled with the disabled sensor’s value. Thus, the sensor
selection has size exactly k. Secondly, the conflation constraint
is also met implying that, for all signatures {o }{o2} ... {om}
produced by taking vg to qg‘ and ending at some v; € F4, there
exists a path from vy to qég ending at v; € Fg such that its

’Here, | - | gives the number of transitions or states, whichever is greater.



signature is also {o }{o2} ... {0, }. Since no sensor is turned
off, the paths that obtain the signatures in the world graph can
be taken in A and B as well, so o103 ...0.,, € L(A) implies
0102 ...0m € L(B), thus L(A) C L(B). O

Theorem 1. MSSADDI is PSPACE-Complete.

Proof. Follows from Lemmas 7 and 8. [

VI. ALGORITHM DESCRIPTION

Having proved the theoretical complexity class of
MSSADDI, we now turn to a description of the algorithm
we used to solve it. Although the algorithm is not polynomial
time (as, assuming P # PSPACE, it couldn’t be) we introduce
several optimizations to help ameliorate its running time.

A. Baseline Algorithm

The approach we chose for solving MSSADDI was a
complete enumeration of subsets, with some shortcutting. The
pseudo-code, based directly on the automata theoretic connec-
tions identified in the preceding, appears in Algorithm 1.

It is a top down search over all subsets of S where we
attempt to check each constraint by constructing its signature
automaton and verifying the intersection and subset properties,
lines 7 and 12, respectively, as in the previous sections.
Discrimination constraints are checked first (lines 4-8) be-
cause we expect them to be easier to check than conflation
constraints (Lemmas 5 and 6).

We take advantage of one more property of sensor sets in
relation to discrimination constraints to define our baseline
algorithm. Since we stipulate that different sensors produce
different sensor outputs, it follows that if M C S does not
satisfy a discrimination constraint, then neither can any subset
of M. Therefore, when no combination of sensors of size k
satisfies all the discrimination constraints, the search is ended,
and the current best satisfying sensor set returned (line 18).

Next, we propose two optimizations over the baseline al-
gorithm just described. While each does involve a different
trade-off, neither sacrifices the correctness guarantee.

B. The Caching Optimization

Notice how the signature automaton is constructed each
time an itinerary is encountered in a constraint (lines 5-6 and
10-11). This seems to be wasteful if an itinerary appears in
multiple constraints (as it can be with several). The signature
automaton can be cached after it is constructed should the
same itinerary appear in another constraint, allowing it to be
retrieved without the need for additional computation.

Note, however, the trade-off being made here: while the
running time reduced, the space requirements increased. Typ-
ical library implementations allow for language intersection
and subset properties to be checked only on DFA’s which,
when converted, can result in an exponential increase in space
requirements.

Algorithm 1 Complete Enumeration for MSSADDI

Inputs: A world graph G = (V, E, src, tgt, vo, S, Y, \) and a
discernment designation D = (I, Ip, I¢)

Output: The minimum satisfying sensor selection, if it exists,
otherwise null

1: M <+ null

2: for k = |S| down to 0 do
3 for M in COMBINATIONS(S, k) do

4 for [2*,7%% € Ip do

5: Sg.11 M SIGNATUREAUTOMATON(G, "', M)
6

7

8

> The current best sensor set

Sg 72, + SIGNATUREAUTOMATON(G, 72, M)
if £(Sg 11.0r) NL(Sg z2,1) # @ then

Continue to next M > Check next combination

9: for (Z,,72)° € Ic do

10: Sg,11,0m — SIGNATUREAUTOMATON(G, Z", M)

11: Sg.z2.1 < SIGNATUREAUTOMATON(G, I%, M)

12: if L(Sg,ll,M) g ﬁ(Sg,Iz,M) then

13: Continue to next M > Check next combination
14: if All Ip and I¢ satisfied then

15: M* «— M

16: Continue to next k > Now try sets of size k — 1

17: if No M where |M| = k satisfies all Ip then
18: return M ™ > Prior solution was smallest feasible one

19: return M* > Final exit

C. The Adaptive Weights Optimization

The second optimization we introduce is a dynamic re-
ordering of constraints. Inspired by classical methods in Al
for constraint satisfaction problems (CSP’s) which seek to
make the current assignment fail fast, we devised an adaptive
weighting mechanism for the desired discernment graph.

Seeking to end the search as fast as possible, discrimination
constraints are checked first in the hopes that if none of
the sensor sets of cardinality k satisfies the discrimination
constraints, then the search can be declared hopeless and ended
immediately. Once a satisfying sensor set is found for the
discrimination constraints, though, the following strategy is
used. Whenever a particular constraint fails to be satisfied,
that sensor set ‘votes’ the erring constraint up so that future
sets know which constraint is likely to fail. Thus, after a few
iterations, enough data is collected so that a sensor set checks
that constraint first which most of the sets before it failed on.
The idea is the more demanding (or stringent) constraints are
learned and propagated upward for prioritization.

VII. EXPERIMENTAL RESULTS

The following experiments were all performed on a com-
puter running Windows 11 with an Intel i7 CPU having 16
GB RAM using Python 3.

As a basic sanity check, we ran the baseline algorithm on
the problems presented in Section I. For these problems, the
algorithm correctly provided the optimal solutions in less than
1s. Next, to test the scalability of the proposed approach and to
assess the impact of the optimizations, we ran the experiments
that follow.
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Fig. 2. An example world for testing the
coo coL o2 algorithm’s scaling. This is the 3 X 3 case,
with blueprint of the map at left, and labelled
clo i1 1z world graph shown above. There are 3 row
and 3 column sensors available which detect
c20 21 c22 the agent’s presence. The problem is choose

a subset of these.

A. Test cases

The test cases we propose are designed such that they are
parameterized: we use an m x n grid-type world graph. An
example with m = n = 3 is shown in Figure 2, with the
scaled versions adding cells rightward and downward (without
any missing edges unlike the figure). There is a sensor in
each row that registers the fact that agent is present within the
associated row. Similarly, a column sensor detects when the
agent is within that column. Sensor set S consists of m +n
sensors, one for each row and each column. The figure shows
the labelled world graph, this small instance with 18 edges,
the arcs each bearing their A-based labelling. These follow a
simple pattern: for example, 7"2+ means that row 2’s sensor has
triggered, going from the unoccupied to occupied state; while
c; means that column 1’s sensor has gone from the occupied
to unoccupied.

Finally, we construct an itinerary for every state in the
world graph where the language accepted by the DFA for the
itinerary describes following any edge in the world graph any
number of times followed by an edge incoming to this state.
Essentially, the itinerary DFA for that state accepts a string of
edges if and only if the last edge that was taken in that walk
was an incoming edge to that state.

The number of constraints are proportional to the number
of states in the world graph. We add mn discrimination
constraints each by randomly selecting any 2 itineraries which
describe ending in two states which are in a different column
and in a different row. Similarly, we also add m conflation
constraints per column, each between 2 random itineraries
that describe ending in different rows in that column. Thus,
in expectation, each itinerary is in 2 discrimination constraints
and 2 conflation constraints.

B. Solutions

From the description of the problem above, it should be
clear that activating either only the row sensors or only the
column sensors should be a satisfying sensor selection for
the discrimination constraints alone. After all, ending in a
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Fig. 3. Effect of all the optimizations for various grid sizes.
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Fig. 4.  Effect of dynamically reordering constraints when checking each

sensor combination. The horizontal axis shows the progression of time and
the vertical axis the size of the sensor set being checked.

different row and column can be distinguished on the basis
of either information provided by a row sensor or a column
sensor. However, when considering both the discrimination
and conflation constraints, only one of these options becomes
feasible —namely, that involving only activating the column
occupancy sensors. Activating a row sensor could potentially
violate some conflation constraints which describe ending
in that row. Note that we see another detail of MSSADDI
reiterated here —that when n > m, it may be necessary to
activate more sensors (i.e., column sensors as opposed to
only the row sensors) to satisfy the both upper and lower
information bounds as opposed to the lower bounds alone.

C. Analysis

The basic scaling plot for various grid sizes is shown in
Figure 3. As can be seen in that plot, using the caching
optimization alone led on average to a 53.5 % reduction in
the running time. For our purposes, all the signature automata
were able to be cached, and memory did not seem to be an
issue (i.e., we never received an out-of-memory exception).
Thus, time, not space, seemed to be a dominating factor in
solving this problem with current resources.

The results are even more impressive for the adaptive
weights optimization. As compared to the baseline algo-
rithm, it led on average to a 87.6 % improvement in running
time. When both optimizations are applied together, however,
caching the signature automata seems to have little effect when
adaptive weights are already in use. This makes sense because
the adaptive weights allow a sensor set to be determined
as unsatisfiable fast, lowering the probability that the same
itinerary will be checked more than once.

Seeking to understand how the mix of constraints checked
changes when adaptive weights are used, we decided to
analyze the time spent by the algorithm in different parts of



the code for the 6 x 5 world graph grid. We measured the
wall clock every time the algorithm started checking subsets
of size k (see line 2 in Algorithm 1). Furthermore, we also
kept count of the number of discrimination and conflation
constraints checked for each sensor set aggregated over size
k before it failed. The results, including a visualization of the
constraint type, appear in the stepping chart in Figure 4.

Notice, first, how the optimization leads to a greater pro-
portion of conflation constraints being checked. For our case,
conflation constraints tend to fail more often when the sensor
set is of high cardinality since they are likely to include row
sensors. Thus, a greater proportion (or sometimes even abso-
lutely more) of them are checked, as compared to baseline. We
see that the decision, on the basis of Lemmas 5 and 6, to place
lines 4-8 before lines 9-13 may be mistaken, on average.

Secondly, observe how the algorithm is able to terminate
after concluding that no set of size k = 2 will satisfy all the
discrimination constraints. The minimum satisfying sensor set
in this case turned out to be 3 column sensors.

VIII. CONCLUSION AND FUTURE WORKS

This paper tackled the sensor selection problem for multiple
itineraries while also allowing for considerations of privacy.
We also provided strong reasoning for why merely minimizing
selected sensors does not lead to satisfaction of specific
privacy requirements. We formulated this problem and proved
that it was worst-case intractable. Further, we provided an
algorithm (based on automata-theoretic operations) to solve
the problem and considered a few optimizations over the naive
implementation. In the process, we realized that the gains from
those optimizations were significant owing to an inclination for
wanting incorrect solutions to fail fast.

In the future, research might seek a direct reduction from
the problem we proposed to canonical PSPACE-Complete
problems such as QSAT. Other approaches common to solving
computationally hard problems such as random algorithms,
and improved heuristics may also be fruitful.
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