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Abstract
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The objective of this study is to predict road flooding risks based on topographic, hydrologic, and temporal precipita-
tion features using machine learning models. Existing road inundation studies either lack empirical data for model
validations or focus mainly on road inundation exposure assessment based on flood maps. This study addresses this
limitation by using crowdsourced and fine-grained traffic data as an indicator of road inundation, and topographic,
hydrologic, and temporal precipitation features as predictor variables. Two tree-based machine learning models
(random forest and AdaBoost) were then tested and trained for predicting road inundations in the contexts of 2017
Hurricane Harvey and 2019 Tropical Storm Imelda in Harris County, Texas. The findings from Hurricane Harvey indi-
cate that precipitation is the most important feature for predicting road inundation susceptibility, and that topo-
graphic features are more critical than hydrologic features for predicting road inundations in both storm cases. The
random forest and AdaBoost models had relatively high AUC scores (0.860 and 0.810 for Harvey respectively and
0.790 and 0.720 for Imelda respectively) with the random forest model performing better in both cases. The random
forest model showed stable performance for Harvey, while varying significantly for Imelda. This study advances the
emerging field of smart flood resilience in terms of predictive flood risk mapping at the road level. In particular, such
models could help impacted communities and emergency management agencies develop better preparedness and
response strategies with improved situational awareness of road inundation likelihood as an extreme weather event
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1 Introduction

Road networks play a critical role in the transportation
of goods, access to food and healthcare, and economic
activities (Pregnolato et al. 2017). Road inundations dur-
ing major flood and storm events reduce the access of
impacted communities to essential facilities such as hos-
pitals (Dong et al, 2020a) and grocery stores (Podesta
et al,, 2021), and present challenges for emergency man-
agement agencies to prepare, design and implement
response strategies (Yuan et al., 2021a). In addition, driv-
ers may attempt to navigate flooded urban roads, result-
ing in a loss of life when rescue efforts fail (Drobot et al.,
2007). Therefore, the ability to predict road inundations is
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significant in enhancing emergency managers’ situational
awareness regarding the likelihood of flood-disrupted
access to critical facilities (e.g., hospitals). The objective
of this study is to create and test machine learning mod-
els for road inundation probabilities prediction based
on topographic, hydrologic, and temporal precipitation
features by using crowdsourced Waze reports and fine-
grained traffic data as indications of road inundations.
The rest of this section will review the relevant literature
and discuss their limitations in predicting road inunda-
tion probabilities to establish the impetus for this study.

1.1 Hydraulic and hydrologic models for urban flood
inundations

Various studies have focused on urban flood inunda-
tion with hydraulic and hydrologic (H&H) models (Chen
et al., 2018; Jamali et al.,, 2018), such as 1-D modeling
with HEC-RAS (Chaudhry et al,, 2018), and 2-D mod-
eling with an urban inundation model (Chen et al., 2007)
and LISFLOOD-FP (Bates & de Roo, 2000). However,
H&H models, such as an urban inundation model and
LISFLOOD-FP need to solve the full shallow water equa-
tions (SWEs) and further require a considerable amount
of computation resources (Jamali et al., 2019). Given the
complexity and high computational demands of these
models, recent studies have attempted to build models
that do not resolve SWEs. Jamali et al., (2019) catego-
rized these latter H&H models into two categories based
on their complexity: models based on cellular automata
(CA) and models based on topographic depressions. CA-
based models divide flood domains into a set of regular
grid cells and require small time steps for flood inunda-
tion simulations but are also computationally intensive
(Liu et al., 2015). Models based on topographic depres-
sions are referred to as rapid flood models in Jamali et al.,
(2019), and depend mainly on topographic features and
the continuity equation for urban flood inundation sim-
ulation but lack temporal features such as precipitation
(Nguyen & Bae, 2020). Studies integrating H&H models
with machine learning approaches (Hou et al., 2021) use
the flood depth outputs from hydrodynamic models as
training datasets and rainfall data as the primary predic-
tor (Hou et al., 2021), however limited observed urban
flood inundation data makes validation difficult (Smith
et al., 2012). For instance, Lyu et al., (2019) used limited
public reports of flood incidents from websites such as
Google and Baidu and from literature (Huang et al., 2017;
Yin et al., 2016b) to validate their simulated urban flood
inundations in Shanghai. Another limitation for H&H
models is that outputs refer mainly to the general pattern
of flood inundations over large metropolitan areas (Lyu
et al, 2019; Yu et al., 2016), while struggling to accurately
predict small-scale flooding such as road inundations.
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Despite these limitations, H&H models have been
extensively used to estimate road inundations (e.g., Vers-
ini, 2012). For example, Coles et al., (2017) employed
the hydrodynamic flood inundation model (FloodMap)
to simulate two pluvial flood events in York, UK and
then, identified the regions with restricted accessibility
of emergency responders. Using a road network analy-
sis, their study evaluated emergency service accessibility.
Yin et al,, (2016a) extended this approach by integrating
a hydrodynamic model (FloodMap HydroInundation 2D)
and flood depth-dependent measures to assess the road
inundations in a pluvial flash flood event in Shanghai,
China. Their hydrodynamic model was based on rain-
fall scenarios from the intensity—duration—frequency
relationships of a Shanghai rainstorm and the Chicago
Design Storm. But again, their simulated flood inunda-
tions cannot be validated with observed flood inunda-
tion data. A prior study by Versini (2012) attempted to
overcome this limitation by using historical road inun-
dation data to define four road inundation risk levels
(high, medium, low, and safe). These risk levels were then
evaluated against simulated discharges from a hydro-
logical model and used to establish a real-time flood
warning system. However, the models in these stud-
ies provide insight only into road inundation exposure
based on historical road inundations; they do not deter-
mine a continuous road-level inundation probability.
This limitation is due partly to the dearth of road-level
inundation data to verify the road exposure insights
obtained from H&H models (e.g., Hou et al,, 2021; Lyu
et al., 2019; Smith 2012). Ground-based observations
of road-level inundations are essential to validate H&H
models and further evaluate their performances. On the
other hand, there is a lack of integration between topo-
graphic features of roads (e.g., elevation), water depth,
and velocity estimates from H&H models (Versini, 2012).
Topographic features such as elevation can influence the
flow directions of flood water and water depth, which
determines whether vehicles and people can be stuck in
the flood. Velocity factors such as the roughness of the
road surface can impact the accumulation of flood water
on the road segments. Accordingly, models integrating
these variables are particularly needed for predicting
road-level inundation probabilities. This limitation could
be potentially addressed with the use of crowdsourced
and fine-grained traffic data that provide reliable indi-
cations regarding the inundation status of road sections
during storm events and with the development of topo-
graphic characterization of roads.

1.2 Point of departure
The motivations of this study are due to the necessity of
road inundation prediction and the limitation of existing
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H&H methods. In particular, the limitations of the exist-
ing H&H methods include: (i) requiring high computa-
tional capacity due to their calculation complexity, (ii)
insufficient road-level flood inundations reports and
records to validate the developed models, and (iii) lack
of integration features other than topographic features.
To address these limitations, similar to the methods
used by Mobley et al., (2021) and Lee et al.,, (2017), we
employ three categories of input features for random for-
est and AdaBoost models: (i) topographic features (e.g.,
proximity to streams and coastlines); (ii) hydrologic fea-
tures (e.g., land surface roughness); and (iii) temporal
precipitation features. Referring to Lyu et al., (2019) and
Yu et al,, (2016), we use crowdsourced and traffic sen-
sor data to detect road inundation status as a depend-
ent variable for these machine learning models. That is,
this study aims to predict road inundation probabilities
based on topographic, hydrologic, and temporal precipi-
tation features by using crowdsourced Waze reports and
fine-grained traffic data as indications of road inunda-
tions. Using 2017 Hurricane Harvey and 2019 Tropical
Storm Imelda in Harris County, Texas, as case studies,
we train and test these two models for predicting road
inundations.

2 Methods and materials

Ten input variables within three feature categories—
topographic, hydrologic, and precipitation features—
were created using secondary data sources, and the
output variable, road inundation status, was developed
using Waze reports and INRIX traffic data. Waze soft-
ware works similarly to Google Maps and provides sat-
ellite navigations. Users can report incidents and traffic
conditions on the roads through Waze. Compared with
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‘WAZE reports or IRINX data

Fig. 1 Road flood risk prediction framework of machine learning models
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the literature (Lyu et al.,, 2019; Yu et al,, 2016) that uti-
lized limited public reports of flood incidents to identify
inundation status, the crowdsourced data obtained from
Waze in this study has significantly more records, which
can be helpful for model training. In addition, Waze data
provides inundation information reported by road users
that are directly related to the objective of this study.
INRIX is a private company that collects location-based
traffic speed data from both sensors and vehicles. INRIX
traffic data includes road names, segment ID, directions,
geographic locations defined by its head and end coor-
dinates, intersection or not, length and average traffic
speed at a five-minute interval. Due to limited data avail-
ability including the high costs of INRIX traffic data and
no Waze data for Hurricane Harvey in 2017 (Waze data
become available since 2018), we used INRIX traffic data
for the Harvey and Waze reports for Imelda. In particu-
lar, we compared the model prediction stability for each
case. Two commonly used tree-based methods, random
forest and AdaBoost models, were employed for the pre-
diction of road inundation. The framework is illustrated
in Fig. 1.

2.1 Case study region

Harris County, home to Houston, is among the most
flood-prone counties in the United States due to its
coastal location, burgeoning urban development, and
the lack of flood control infrastructure development in
parallel with the development and population growth
(Dong et al., 2020b; Qian, 2010). Hurricane Harvey in
2017 was one of the most devastating floods experi-
enced by Harris County and led to extensive economic
and social consequences (NOAA, 2017). Figure 2
illustrates the flooded areas in Harris County during
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Hurricane Harvey. The flood inundation data comes
from the Federal Emergency Management Agency
(FEMA 2018). Similarly, Tropical Storm Imelda caused
one of the most devastating floods in decades experi-
enced in Southeast Texas. After its landfall on Septem-
ber 19, 2019, widespread flooding occurred in Harris
County, with over 40 inches of rainfall recorded, and
many of the local rivers and bayous overflowed and
inundated a vast area in the county. Therefore, Harris
County is an ideal testbed for this study.

2.2 Data and feature descriptions

2.2.1 Input features

Figure 1 shows the three categories of features used for
predicting road flood risk: (1) topographic, i.e., eleva-
tion, coastal and stream proximity, and height above
nearest drainage, (2) hydrologic, i.e., roughness, imper-
viousness of surface, and the saturated hydraulic con-
ductivity, and (3) precipitation features, i.e., total rainfall
in 1 h, 2 h, and 24 h. The length of the road segments in
our study areas ranges from 800 to 1,600 m; therefore,
the features of each road segments are computed based
on their average values. Table 1 introduces how these
features were collected and computed, their scales, and
main references.

2.2.2 Road flood status

2.2.2.1 Waze reports data on tropical storm
imelda Tropical Storm Imelda, the fifth-wettest tropi-
cal cyclone on record in the United States, made landfall
in Harris County on September 19, 2019. Waze, a mobile
navigation application, collected time-stamped and loca-
tion-specific flood incident reports (i.e., road closures
due to flooding) during Tropical Storm Imelda. We used
Waze flood report data for the assessment of proposed
predictive road flooding during Imelda. A total of 41,501
weather hazard or road closure related reports were reg-
istered in Harris County during Imelda (5-day), encapsu-
lating flooding alerts in 4,980 road segments (red points
in Fig. 3a). For the training dataset, we used the random
sample method for the random selection of equivalent-
size non-flooded roads from county road data.

2.2.2.2 INRIX traffic data on hurricane harvey We
acquired traffic data from August 20 to September 11,
2017 for 19,712 road segments in Harris County from
INRIX. The INRIX traffic data includes the average traf-
fic speed on individual road segments at 5-min intervals
and the segments’ corresponding historical average traf-
fic speed. Road segments with null value as average traffic
speed were assumed to be flooded in Hurricane Harvey
(Fan et al,, 2020; Yuan et al., 2021b, 2021c). Accordingly,
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Table 1 Summary of input features
Features Description Resolution Data source References
Elevation Elevation of road segments 10m United States Geological Survey  Tehrany et al,, (2019); Dodangeh
3D Elevation et al, (2020); Darabi et al., (2019)
Coastal and stream proximity Euclidean distances to the coast 10 m National Hydrography Dataset ~ Brody et al., (2015)
and stream
Height above nearest drainage  The height of a location above ~ 10m University of Texas'National Garousi-Nejad et al., (2019); Liu
(HAND) the nearest stream Flood Interoperability Experi- etal, (2016)
ment continental flood inunda-
tion mapping system
Roughness Manning's roughness coefficient 30 m 2016 National Land Cover Data-  Kalyanapu et al,, (2009); Anderson
of road surface base (NLCD) land cover et al, (2006); Thomas and Nisbet,
(2007); Acrement and Schneider,
(1984)
Imperviousness Percent impervious of road 30m 2016 NLCD land cover Gori et al, (2019); Sebastian et al,,
surface (2019); Lee and Gharaibeh, (2020)
Saturated hydraulic conductivity = Soil water transmission capabil- 30 m Natural Resources Conservation Janizadeh et al., (2019); Bui et al.,
ity Service's Soil Service Geographic  (2019); Hosseini et al., (2020);
Database Rawls et al. (1983)
Precipitationin 1 h,2h,24 h Total rainfall at one-hour 30m National Weather Service Gauge National Oceanic and Atmos-

intervals for periods of 1 h, 2 h,
and 24 h prior to detection of a
flooded road

Corrected Quantitative Precipi-  pheric Administration
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Fig. 3 Geographic distributions of flooded and non-flooded roads from Waze reports for Tropical Storm Imelda (3a) and from INRIX for Hurricane

Harvey (3b). Each point represents the location of a road segment

we recorded a road as flooded when it had a null value for
average traffic speed. We collected data on 1,063 flooded
roads during Hurricane Harvey. The remaining 18,649,
roads were presumed to be non-flooded roads. Identify-
ing flooded and non-flooded roads is based on the aver-
age traffic speed; therefore, a non-flooded road that is
elevated and not affected by flooding may appear in the
flooding areas shown in Fig. 2. The distribution of flooded
and non-flooded roads is illustrated in Fig. 3b. To create
a balanced dataset for implementing the random forest

model, we utilized the random sample function to select
the equivalent-size dataset of non-flooded roads.

2.3 Machine learning models

Based on the concept of ensemble learning, two common
techniques—bagging and boosting—were proposed for
the tree-based models (Sutton, 2005). The bagging tech-
nique divides the initial training dataset into several sub-
sets and choses them randomly with replacements to train
their corresponding decision trees. As a result, the bagging
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technique produces an ensemble of different tree models.
The random forest introduces the random selection of
features within the training dataset (Prasad et al., 2006).
We implemented the random forest model to predict the
road flooding risk. In contrast to the subset replacement
method of the random forest model, boosting uses the
same dataset to build decision trees for all iterations and
revises the weights of inputs in each iteration. The boost-
ing technique analyzes the data of a simple decision tree
for errors. Consecutive trees increase the weight of an
input misclassified by the previous tree and are more likely
to classify it correctly. As a result, the boosting technique
output is an ensemble of different tree models. As the
first successful implementation of boosting technique for
binary classification, AdaBoost (Schapire, 2013), the most
popular forest-based boosting method, has demonstrated
strong predictive power for flood risk (Coltin et al., 2016;
Liu et al,, 2017). We compared the performances of Ada-
Boost with that of the random forest model for predicting
road flood risks with our defined features.

In particular, to properly use the random forest, we
tuned two critical parameters to reduce error rates, the

Truepositive + Truenegative
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model training and validation and 20% for model test-
ing in both cases. To maintain the high-level random-
ness for each fold split of training and test datasets, we
employed the train_test_split function from the scikit-
learn library. To evaluate the performances of random
forest and AdaBoost models, we used average accuracy,
and average area under the curve (AUC) of the receiver
operating characteristic (ROC) in the 10-iteration five-
fold cross-validation process. We used the flooded roads
as a positive class for the probability predictions. Accu-
racy reflects the percentage of correctly predicted roads
with flood risks and those with non-flood risks (Eq. (1)).
Precision indicates the percentage of correctly predicted
roads with flood risks over roads predicted with flood
risks (Eq. (2)). Sensitivity, as known as Recall, denotes the
percentage of correctly predicted roads with flood risks
over roads indeed with flood risks (Eq. (3)). The AUC of
the ROC reveals the estimates of the probability that the
models will correctly predict flooded roads as roads with
flood risks. With the prediction results, the ROC curve
could be defined by the relationship between true posi-
tive and false positive rates (Eq. (3) through (5)).

Accuracy = — ; — ; @
Truepositive + Truenegative + Falsepositive + Falsenegative
number of trees and tree depth. The number of trees o Truepositive
defines forest size. Increasing forest size can reduce errors Precision = Truepositive + Falsepositive 2)
and involve more features for decisions (Liaw & Wiener,
Truepositive
Sensitivity(Recall) = Truepositiverate = — P . (3)
Truepositive + Falsenegative

2002); however, such an increase requires a greater com- o Truenegative
putational demand. Tree depth refers to the longest path Specificity = Truenegative + Falsepositive (4)

between the root node and the leaf node. The greater the
tree depth, the more splits are expected, which captures
more information from the feature data; however, a very
deep tree could result in overfitting. Referring to Mobley
et al. (2021), we initially set the number of trees to 200
and the tree depth to 90 in our model.

To enable variable selection for enhancing the gener-
alizability of models for predicting road inundation, we
used the aggregated decrease in Gini impurity to evaluate
feature importance. A greater aggregated decrease in the
Gini impurity signifies a more important role of the fea-
ture (prediction variables).

This research implemented the 10-iteration fivefold
cross-validation process to evaluate the performances
of random forest and AdaBoost models for predicting
road flooding risk in both Hurricane Harvey and Tropi-
cal Storm Imelda. We used 80% of our initial datasets for

. . Falsepositive
Falsepositiverate = 1 — Specificity =

Truenegative + Falsepositive

(5)
where true positive denotes the situation where models
correctly predicted the road flooding risk, while true neg-
ative is for the result of correct prediction of non-flood
risks of roads; false positive refers to the outcome where
models incorrectly predicted the road flooding risk, while
false negative is for the result that models incorrectly pre-
dicted the non-flooded status of roads.

3 Results

3.1 Model performances of random forest and AdaBoost
With the 10-iteration fivefold cross-validations, we com-
puted the average of accuracy and AUC for the model
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Table 2 Results of evaluation matrix for the model performances
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Evaluation matrix Random forest

AdaBoost

Tropical Storm Imelda

Hurricane Harvey

Tropical Storm Imelda Hurricane Harvey

Accuracy 0.764 0.900 0.689 0.857
Accuracy (range) 0.755£0.015 0.895+0.015 0.690£0.020 0.85540.025
AUC 0.790 0.860 0.720 0.810
AUC (range) 0.790+£0.040 0.86040.100 0.72040.060 0.81040.140

performance (Table 2). We also recorded the variations
of each evaluation matrix (accuracy and AUC ranges in
Table 2). The random forest model showed better perfor-
mance for predicting road flooding risks for both storm
events than the AdaBoost model in terms of accuracy.
The random forest model demonstrated higher accuracy
(0.900 versus 0.764) for predicting road inundation in
Hurricane Harvey than that for Tropical Storm Imelda,
which is the same as observed in the AdaBoost model. In
terms of AUCs, both random forest and AdaBoost mod-
els also performed better for predicting road inundation
for Hurricane Harvey than for Tropical Storm Imelda.
This can be explained by the differences between Waze
reports and INRIX traffic data. Waze reports were col-
lected from Waze users, while INRIX traffic data was
collected mainly by sensors. Humans are more sensitive
to floods than are sensors, and as such, they may report
flood risks on Waze when shallow water was found on
the roads. Using roads with null values for average traffic
speed to denote roads with flood risks in Hurricane Har-
vey is a more stringent standard (as most traffic data was
collected by sensors) than the voluntary and subjective
Waze reports, because roads identified with flood risks
derived from Waze reports during Tropical Storm Imelda
might still be available for traffic use.

Using the average of the calculated results of true posi-
tive and false positive rates from the 10-iteration fivefold
cross-validation process, we created ROC curves from ran-
dom forest and AdaBoost models for both events (Fig. 4).
The random forest and AdaBoost average AUC were 0.
790+0.040 and 0.720£0.060 respectively for Tropical
Storm Imelda, and 0.86040.100 and 0.81040.140 respec-
tively for Hurricane Harvey (Table 2). In other words, the
chance of the random forest model correctly predicting a
road with a high probability of being inundated in Hurri-
cane Harvey is 86.0%, while that of the AdaBoost model is
81.0%. Meanwhile, the random forest model had a prob-
ability of 79.0% to accurately predict road flooding risk
in Tropical Storm Imelda; the AdaBoost model had only
72.0%.

Furthermore, our results demonstrate better perfor-
mance than existing studies, which shows the capabil-
ity of our models to predict road flooding risk. Lee et al,

(2017) used both random forest and boosted tree models
to predict the spatial distribution of flood risks in the Seoul
metropolitan area. They used the input features such as
distance from the river (m), slope length factor (SLF), topo-
graphic wetness index (TWI), stream power index, and
digital elevation model (DEM). Their regression computa-
tions of random forest and boosted tree models showed
AUCs of 0.7878 and 0.7755, respectively. Compared with
Lee et al,, (2017), our random forest models had higher
AUCs for both Hurricane Harvey (0.860) and Tropical
Storm Imelda (0.790). For comparison of boosted tree and
AdaBoost models, the AUC for Hurricane Harvey (0.810)
is greater, while that of Tropical Storm Imelda (0.720) is
less than that in Lee et al. (2017). The better performances
of the same (random forest) and similar (AdaBoost versus
boosting tree) models in this study may be owing to the
improved selection of input features such as the temporal
precipitation features.

3.2 Model stability of random forest

Given that the random forest model demonstrated better
performance than the AdaBoost model, we further tested
its stability with varying probability thresholds for detect-
ing road inundation. The default probability threshold
is 0.50: if the predicted flood probability of a road is less
than 0.50, the random forest model denotes this road
as the non-flooded class (i.e., negative class); otherwise,
that road is categorized as flooded (i.e., positive class).
False negative prediction refers to the result that roads
with flood risks are incorrectly predicted as non-flooded
roads, which could falsely inform residents to shelter in
place or travel through high-flood-risk roads. There-
fore, we tested the stability of the random forest model
by adjusting the probability thresholds from 0.40 to 0.60
with a step of 0.01 and observing the variations of false
negative percentages for both storm events. The false
negative percentage was computed using the Eq. (6). For
each probability threshold, the fivefold cross-validation
process was implemented and the average false negative
rate was calculated. With computed false negative rates,
we plot their curves for Tropical Storm Imelda (green
curve) and Hurricane Harvey (blue curve) in Fig. 5.
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b 5-fold cross-validation ROC of random forest (Harvey)
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Fig.4 Part 1: Receiver operating characteristic (ROC) curves for 10- iteration fivefold cross-validation with random forest model for Tropical Storm
Imelda (a) and Hurricane Harvey (b); Part 2: Receiver operating characteristic (ROC) curves for tenfold cross-validation with AdaBoost model for

Tropical Storm Imelda (c) and Hurricane Harvey (d)

falsenegative

Falsenegativepercentage =

(6)

truepositive + falsepositive + falsenegative + truenegative

Figure 5 reveals that the random forest model had a
stable performance for predicting road inundations
during Hurricane Harvey. With a probability thresh-
old ranging from 0.40 to 0.60, we observed the false

negative percentage changes from 0.16 to 0.19. For
Tropical Storm Imelda, we discerned a significant vari-
ation of false negative percentage (from 0.08 to 0.28)
when adjusting the probability threshold. When the
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Fig. 5 False negative percentages from fivefold cross-validation with random forest model by varying probability thresholds for Tropical Storm
Imelda (green curve) and Hurricane Harvey (blue curve). FN means false negative

probability threshold is 0.50, the false negative per-
centage is 0.16 which is the lower boundary of the false
negative percentage range of Hurricane Harvey. There-
fore, setting the probability threshold as 0.50 is reason-
able for the random forest model for Hurricane Harvey;,
while selecting the probability threshold from 0.40 to
0.50 would yield a lower false negative percentage for
Tropical Storm Imelda. In addition to the considera-
tion of false negative percentage, precision (Eq. (2)) and
recall (Eq. (4)) could also be considerations when select-
ing the probability threshold for Tropical Storm Imelda.
For example, a threshold leading to higher recall identi-
fies more roads with flood risks correctly without con-
sidering false-positive predictions; thus, it’s a relatively
conservative threshold.

3.3 Feature importance for random forest

This section illustrates the rank of feature importance by
random forest model for Tropical Storm Imelda (Fig. 6a)
and Hurricane Harvey (Fig. 6b). A significant difference
between these ranks is the rank of precipitation features.
The precipitation features are a stronger indicator of road
flooding risk during Hurricane Harvey than that in Trop-
ical Storm Imelda. National Hurricane Center reports
(Blake & Zelinsky, 2018; Latto & Berg, 2020) indicate
that the rainfall volume brought by Hurricane Harvey is
much larger than that of Tropical Storm Imelda (60.58
inches vs. 44.49 inches). Accordingly, rainfall could have
resulted in more severe flood risks in Hurricane Harvey.
Consequently, precipitation features have higher ranks
of importance during Hurricane Harvey than Tropical
Storm Imelda.

In addition to precipitation features, ranks of topo-
graphic and hydrologic features remain almost constant
for both storm cases, excluding the ranks of stream prox-
imity (i.e., Distance2Stream) and height above nearest
drainage (HAND). The general trend is that topographic
features are stronger predictors of road inundation than
hydrologic features for both events using the random
forest model. Specifically, factors influencing the infil-
tration of stormwater into the ground, such as saturated
hydraulic conductivity of soil (AverageKSAT), impervi-
ous surface (impervious), and roughness (AverageRough-
ness), were poor predictors of road inundation in both
storms, whereas factors influencing where water tends to
accumulate such as Elevation, HAND, Distance2Coast,
Distance2Stream, were all strong predictors of road inun-
dation. This finding is consistent with existing studies, as
elevation is one of the frequently used factors for flood
hazard simulations (Mobley et al., 2019), and proximity
to coast was found to be a strong indicator of flood dam-
age (Brody et al., 2015).

3.4 Prediction results

With 20% of the test dataset used for both cases, we pre-
dicted the flooding probabilities of these roads using the
random forest model (Fig. 7). Points with varying colors
from blue to red represent roads with low to high prob-
abilities of getting flooded. Figure 7a (Tropical Storm
Imelda) illustrates that roads at high risk of being flooded
are mainly in the center of Houston, while Fig. 7b (Hur-
ricane Harvey) shows those with high flood-risk levels
mainly surround the boundary of Harris County. As we
can see in Fig. 7, red-shaded roads present a very high risk
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a. Feature importance for Tropical Storm Imelda
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b. Feature importance for Hurricane Harvey
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Fig. 6 Feature importance results for Tropical Storm Imelda (a) and Hurricane Harvey (b) with random forest. A larger value of feature importance

indicates a more important role of that feature

of flooding, suggesting communities should avoid these
roads for traveling or evacuation, while the blue ones are
relatively safe as they are less likely to be flooded. Meyer-
land neighborhood (the green-shaded region in Fig. 7b)
is almost entirely located within the 100-year floodplain
and was inundated in Hurricane Harvey. From the pre-
dicted probability in Fig. 7b, we can see one road within
this region has a probability of 57.30% being inundated.

According to the predicted probabilities (Fig. 7), we can
denote the predictive flooding status of roads with proper
probability thresholds. Referring to Fig. 5, we used prob-
ability thresholds of 0.45 and 0.50 to detect inundated
roads (i.e., positive class) during Tropical Storm Imelda
and Hurricane Harvey, respectively. Then, we showed
examples of the prediction results for both cases in Fig. 8,
where the green links represent roads with true positive
predictions, red for false negative predictions, brown
for false positive predictions, and blue for true negative
predictions.

4 Discussions

This study demonstrates that roads with high flood-risk
potential can be accurately predicted using topographic,
hydrologic, and temporal precipitation features in the
context of two storm cases in Harris County. For pre-
dicting road flooding probability, precipitation features
for extreme storm events (Hurricane Harvey) are more
important predictors than topographic and hydrologic
features. In addition, topographic features (elevation,
coastal and stream proximity and height above nearest
drainage) generally have greater influence than hydro-
logic features (roughness, imperviousness, and saturated
hydraulic conductivity) for predicting road inundations,
which is generally consistent with the results reported
by Mobley et al., (2021) and Lee et al., (2017). Compared
with existing studies using random forest and boosted
tree models for flood risk predictions (Lee et al., 2017),
our corresponding models demonstrate higher AUC
values. This difference is likely to be explained by the
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a. Predicted probability of roads getting flooded (Imelda)
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Fig. 7 Examples of predictions of probabilities for roads becoming flooded in Tropical Storm Imelda (a) and Hurricane Harvey (b)

addition of temporal precipitation features as inputs for
predicting flooded roads in our study, particularly for
storm events with extreme precipitation such as Hur-
ricane Harvey. In addition, this study contributes to
demonstrating that the two commonly used tree-based

models have solid predictive capabilities for detecting
roads at risk for flooding based on two novel and emerg-
ing datasets, road user-reported inundation information
and traffic speed data. The random forest model demon-
strates better performance than the AdaBoost model.



Yuan et al. Computational Urban Science (2023) 3:15

a. Prediction results (Imelda)
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Fig. 8 Examples of prediction results for roads with and without flood risks for Tropical Storm Imelda (a) and Hurricane Harvey (b) according to the
predicted probabilities in Figs. 7a and 7b, respectively. Each link represents the road with road point used for model test. For better presentations,

we show only the roads used in our test dataset

As we are concerned with reducing false negative pre-
dictions, we use the false negative percentage with vary-
ing probability thresholds to test model stability. The
results show that the random forest model has stable

performances for Hurricane Harvey with minor varia-
tions of false negative percentage when adjusting prob-
ability thresholds but present significant variations across
false negative percentage for Tropical Storm Imelda.
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This discrepancy could be attributed to the difference
between crowdsourced data (Waze report) and sensor
data (INRIX traffic). Since users of crowdsourced data
were more sensitive to road flooding than were traffic
sensors, roads that may not be severely inundated (still
passable) during Tropical Storm Imelda were more likely
to be labeled as flooded roads, which can further impact
the model’s stability.

There exist limitations in the proposed models. A
proper selection method for identifying non-flooded
roads plays a critical role in improving model perfor-
mances (Darabi et al.,, 2019). In this study, we randomly
selected equivalent-size of roads without flood warnings
for Imelda based on the Waze report and roads with traf-
fic speed values for Hurricane Harvey based on INRIX
traffic data as non-flooded roads. In addition, we used
two different datasets for two different storm cases due to
limited data availability. We cannot collect Waze data for
Hurricane Harvey in 2017 as Waze reports data became
available after 2018. INRIX traffic data for Tropical Storm
Imelda was not available to the research team due to its
high costs. Using different datasets could impact the
model performance due to their different natures as men-
tioned earlier in this section; however, our results dem-
onstrate that different datasets could be used for training
machine learning models for predicting road flooding
risk, and future users can choose their datasets and fea-
tures based on availability and characteristics of flood-
ing events and impact areas. Future work will focus on
investigating the impacts of methods for identifying non-
flooded roads and random selections on model perfor-
mance. Also, although the Waze report and fine-grained
traffic data can provide information to validate road
inundation models, the length of each road segments is
much longer than the resolution of input features, which
may bring in aggregation biases. The models may require
further validation when finer road inundation informa-
tion is available. Another limitation comes from our use
of points to represent locations of road segments as their
lengths vary and so do their topographic, hydrologic and
precipitation features, which may bring in uncertainties
in the predictions of their inundation probabilities. Our
future work will consider using integrated values of the
three categories of features as predictor variables for
these road segments.

In addition, the assignment of topographic and hydro-
logic features to roads can also affect the model perfor-
mance. We used roughness and imperviousness from
the 2016 National Land Cover Database for both flood-
ing cases. However, these variables can be impacted by
large-scale changes in urbanization over time. The conse-
quence is that the roughness and imperviousness are less
representative of actual hydrologic conditions in 2017
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and 2019, which may explain the low-level rank of their
importance for predicting roads with flood risks (Fig. 4).
Upon the availability of data for topographic and hydro-
logic features, future work could consider the impact of
urban development by including proper features which
are not available in the study periods.

5 Concluding Remarks

The study and findings contribute to the emerging field
of smart flood resilience focusing on harnessing com-
munity-scale big data and machine learning approach
to enhance disaster resilience capabilities, such as pre-
dictive flood risk mapping at the road level (Dong et al.,
2020c). This study addressed two limitations in the exist-
ing studies, lack of inundation data for validation and
data integration by implementing the crowdsourced and
traffic data as indications of road flooding status and by
incorporating topographic, hydrologic, and temporal
precipitation features for risk predictions. The main con-
tribution of this study is to demonstrate the capability of
the two commonly used machine learning methods to
predict road flooding risk based on emerging datasets
and various features. In addition, this study provides a
potential tool to detect roads with varying flood risk lev-
els using topographic, hydrologic, and precipitation fea-
tures (Fig. 7). This potential tool can be integrated with
a percolation analysis of the road network (Dong et al,
2020c, 2021) so that the removal of roads can refer to
the roads with a higher predicted probability of getting
flooded (Li et al., 2015), which is a more precise method
than relying on floodplain maps. We also show that the
random forest model (trained on Tropical Storm Imelda)
performs better prediction for flood events without
abrupt severe rainfalls and the model trained on Hur-
ricane Harvey is better for floods with slow-moving
extreme rainfalls. The AUCs of random forest models for
Imelda and Harvey are 0.790 and 0.860 respectively, and
rainfall volumes and periods caused by Harvey are more
severe than those due to Imelda (Blake & Zelinsky, 2018;
Latto & Berg, 2020).

Our findings can help potentially impacted communi-
ties identify roads that are more likely to be inundated by
floods. This foresight could be incorporated into naviga-
tion applications to help drivers avoid roads with high
flooding probability when accessing essential facilities (e.g.,
hospitals). Incidents from past events indicate that driving
through flooded roads is among the leading cause of deaths
during urban floods (Jonkman & Kelman, 2005); our model
could help affected residents avoid driving into flooded
roads. Through collaborations with local officials and disas-
ter managers, we can share our model and predicted results
with them. The officials can deliver our model prediction
results to the affected residents through their public social
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media account and weather report TV channels. This study
also provides a tool for emergency management agencies
(EMAs) to design response strategies. For instance, EMAs
could evacuate communities that are likely to lose access to
critical facilities due to inundated roads. Also, EMAs can
inform road infrastructure operators and maintainers to
take protective actions, such as putting sandbags, to ensure
the functionality of the critical roads that connect commu-
nities and resources. Furthermore, our model could help
EMAs update floodplain maps with more specific infra-
structure risk information, which could guide the urban
plan strategies for future flood hazard mitigation. Current
100- and 500-year floodplain maps of Harris County (Har-
ris County Flood Control District) indicate the regions
with potential flood risk. Through a comparison of flood-
plain maps with flood maps of Hurricane Harvey, we have
found many regions in the northwest of Harris County
were flooded in Harvey which are not in the 100- and 500-
year floodplain maps. Floodplain maps do not indicate the
flood risks (e.g., risk levels and probabilities to be flooded)
of infrastructures such as road segments, electricity, and
utility. Our models can be easily produced and maintained
with updated topographic, hydraulic and precipitation
features. As a result, infrastructure risk insights from our
models could better reflect the updated topographic and
hydraulic features and the changes to infrastructure risks
could be incorporated into floodplain maps.

In summary, this study provides models to predict road
flooding risk with topographic, hydrologic, and precipita-
tion features. This modeling cannot only be generalized to
other flood events and regions with proper topographic,
hydrologic, and precipitation features for predicting
flooded roads, but also be used as a tool to design road
failure scenarios (roads with a predictive probability of
getting flooded) for percolation analysis of road network.
Our model can also benefit potentially impacted com-
munities and emergency management agencies’ prepar-
edness and response actions to hurricanes and floods.
The model and results contribute to the emerging field of
smart flood resilience (Fan et al., 2021) aiming to harness
heterogeneous datasets to improve situational awareness
and predictive monitoring during disasters.
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