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Abstract Considering an environment containing polyg-

onal obstacles, we address the problem of planning mo-

tions for a pair of planar robots connected to one an-

other via a cable of limited length. Much like prior prob-

lems with a single robot connected via a cable to a fixed

base, straight line-of-sight visibility plays an important

role. The present paper shows how the reduced visibil-

ity graph provides a natural discretization and captures

the essential topological considerations very effectively

for the two robot case as well. Unlike the single robot

case, however, the bounded cable length introduces con-

siderations around coordination (or equivalently, when

viewed from the point of view of a centralized planner,

relative timing) that complicates the matter. Indeed,

the paper has to introduce a rather more involved for-

malization than prior single-robot work in order to es-
tablish the core theoretical result—a theorem permit-
ting the problem to be cast as one of finding paths
rather than trajectories. Once affirmed, the planning

problem reduces to a straightforward graph search with
an elegant representation of the connecting cable, de-
manding only a few extra ancillary checks that ensure

sufficiency of cable to guarantee feasibility of the solu-

tion. We describe our implementation of A⋆ search, and

report some limited experimental results.
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Fig. 1: Rope team at a ridge nearing a summit. (source:

Wikimedia Commons)

1 Introduction

In recent years, a variety of techniques have been devel-
oped to plan motions for a tethered mobile robot (???).

A tether can be useful as a conduit for power or com-

munication but the main motivating application for

robotic tethers is in navigation of rovers in extreme

terrain, where the tether can help provide physical se-

curity. Examples of robotic rovers equipped in this way

include TRESSA (?), Axel and DuAxel (?), vScout (?),
and TReX (?), among others. Humans deal with ex-

treme terrain too. A common practice among moun-

taineers, as a measure of protection against falling, is to

form a group that can move together while the members

are roped to one another. This forms what is referred

to as a rope team (?) (Fig. 1). From the perspective
of motion planning, one might interpret a rope team
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as a practical scenario in which a tethered robot’s base

is itself subject to motion. A prominent robotic exam-

ple of comparable operation is DuAxel, where two Axel

rovers are connected to a central module. DuAxel is de-

signed to work as a mother-daughter ship, having one

Axel remain stationary with the central module while
the other explores the terrain. Indeed, enabling both

rovers to be deployed simultaneously may benefit both
agents and improve the versatility of the design.

One key to efficient solution of planning problems
in finding a suitable representation, ideally one that ex-
presses constraints and is amenable to adaptation and

generalization to various requirements. Much like our

earlier work (?), we take advantage of the properties

of reduced visibility graph (?). Namely, we show cer-

tain characteristics of straight line motions enable us

to find solutions to tethered pair problem with mini-

mal book keeping. Unlike that work, however, we will

not be examining the structure of configuration space

(c-space). We will show in Section 3 that the c-space of

this problem is indeed 4 dimensional and rather compli-

cated. The theoretical foundation provided in this work,

shows that we shall not be concerned with the interme-
diate state of the cable: as long as we can achieve a
goal configuration that is permitted by the length of
the available cable, one can provide a planner to exe-

cute the motions that will transform the initial cable

configuration to its final configuration. On this basis,

we introduce a tree data structure that represent differ-

ent cable configurations up to homotopy. Each branch
in the tree down to a certain node is a representation
of the shortest path required for the tethered pair to

arrive at that node’s cable configuration. We have im-

plemented A⋆ search to expand the search tree and find

an optimal solution while keeping track of the cable’s

configuration up to homotopy. Lastly, we suggest an op-

timal controller for the motions produced by the plan-
ner that can minimize the execution time for the given
path pair.

2 Related Work

We are interested in what is perhaps the most natural
motion planning question for a tethered pair of robots,

namely finding paths to take a pair of tethered robots
from some initial configuration to a goal one, never vi-
olating a bound on the tether’s length throughout the

motion. Although motion planning for a single teth-

ered robot has been extensively studied (??????), the

literature reports comparatively little work on motion

planning problems involving pairs of robots tethered to

one another.

A notable exception is that pairs of conjoined robots

have been studied for purposes of object manipulation.
? studied object separation using a pair of robots con-

nected by a cable. Though superficially similar to our

problem, as it involves the motion of a mutually con-

nected pair of robots, the separation problem imposes

quite a different set of constraints to a shortest path

planning problem. For object separation the solution

is only required to satisfy a homotopy requirement,

allowing the robots to choose any arbitrary goal in

the workspace that can satisfy such constraint. Con-

sequently, in that work, the two robots move to the

boundaries of the workspace. (This assumption also

helps distinguish between separating versus non-separating

configurations elegantly and concisely.) As ? are ad-

dressing a problem where the goal is specified topolog-

ically and they are not concerned with a cable of finite

length, several of the complications we tackle do not

arise in their setting.

More recently, ? demonstrated a physical multi-robot
system in which robots can dynamically make or break

tether connections; a planner exploits this capability to

find ways in which a robot team can manipulate objects

efficiently, either with single robots operating concur-

rently, or as coupled pairs, as called for by the partic-

ular problem instance. A part of that problem is com-
binatorial and the work uses a sampling-based method,
the present work being distinguished from that work on

both fronts.

Our own prior work on finding short paths for a pair

of tethered robots (?), attempted to use the solution
to a single robot problem as an algorithmic building

block. That approach was devised primarily as a means
to build intuition for the topology of the 4D configura-
tion space; the algorithm is inadequate, being neither a

solution to the complete problem nor one that always

yields optimal paths.

RETURN TO ME Reviewing the prior work, we

have identified the following two core traditions in ap-
proaching the tethered robot motion planning prob-
lems.

– Sampling-based vs. visibility-based planning:

to represent the c-space of a given problem one has

to create a graph that is complete, i.e., it must rep-
resent all possible configurations. Historically, effi-

cient sampling-based planning algorithms such as

PRM (?) and RRT (?) have proven to be beneficial

in high dimensional c-spaces. However, in visibility-

based techniques (?) reduce the dimensions of the

problem by using minimal representations which only

keep critical information about the c-space. That is,
rather than creating many nodes that comparatively

do not add significant value during the search, they
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Cable-obstacle contact

Robot a Robot b

(a) The configuration of the robots and their cable.

A

B

(b) The visibility charts
for robot a.

A'

B'

(c) The visibility charts for
robot b.

Fig. 4: A snapshot of the conjoined atlases for a tethered

robot pair after the first contact is made between the

cable and an obstacle.

ered pair, a comparable figure would require four di-
mensions, which impedes easy visualization.

In Fig. 3 we have moved the base of the tether

slightly to the right to show the changes in the charts.

The boundaries of these charts are 2D surfaces in a 4D

space. However, once the first contact is made between

the cable and an obstacle, it is again possible to vi-
sualize snapshots of the boundaries of the charts (see
Fig. 4).

We believe exploiting the two above mentioned prop-

erties is the key to understanding the structure of the

complex c-space of this problem.

(note to self) Although compatibility does not show

the charts exactly, it is revealing some structured-ness

in this problem. Although we will not be breaking the c-

space into charts, we divide the problem based on prop-

erties of reduced visibility graph such that low level de-

tails are abstracted away from the planning. We believe

the decomposition technique introduced in this body of

work is strongly related to the four-dimensional charts

in the c-space.

4 Problem statement

Let O = {o1, o2, . . . , on} be a (possibly empty) set of

pairwise disjoint polygonal obstacles with vertices verts(O)

in R
2, with boundary curves δo1, δo2, . . . , δon, respec-

tively. Let the free space W = (R2\
⋃n

i=1 oi)∪(
⋃n

i=1 δoi).

Further, let robots a and b be two unoriented points in

W that are connected to one another via a cable of

finite length. Let I = [0, 1] be the unit interval.

Definition 1 (trpmpp) The tethered robot pair mo-

tion planning problem (trpmpp) is a tuple,
(W , O, ra, rb,da,db, ℓ, c0), wherein:

– W is the free space,

– O is the set of obstacles,

– ra ∈ W is the initial position of a,

– rb ∈ W is the initial position of b,
– da ∈ W is the goal or destination of a,

– db ∈ W is the goal or destination of b,
– ℓ ∈ R

+ is the length of the tether,

– c0 : I → W is the initial arrangement of the cable

in W , where c0(0) = ra, and c0(1) = rb, and
2

L [c0(s)] :=

∫

I

c0(s) ds ≤ ℓ.

A solution to trpmpp (W , O, ra, rb,da,db, ℓ, c0) is a

pair of paths (τa, τb) in which:

– τa : I → W where τa(0) = ra and τa(1) = da, and

– τb : I → W where τb(0) = rb and τb(1) = db, and

– for τa and τb, there exists a W -feasible motion for

an ℓ-length cable, as formalized next.

Definition 2 (W -feasible motion for an ℓ-length

cable) In the closed subset of the plane W ⊆ R
2, for

two paths τa, τb : I → W and length ℓ ∈ R
+, a function

c : I × I → W is called a W -feasible motion for an ℓ-

length cable if and only if the following three conditions

hold:

c1. (The cable connects the robots)

∀s ∈ I : c(s, 0) = τa(s) and c(s, 1) = τb(s),

c2. (Cable has bounded length)

∀s ∈ I : L [cs(x)] ≤ ℓ, where cs(x) := c(s, x),

c3. (Continuity) c is continuous with respect to the in-
duced topologies.

Definition 3 (Distance optimality) A solution (τ⋆a , τ
⋆
b )

for trpmpp (W , O, ra, rb,da,db, ℓ, c0) is called distance

optimal if all other solutions (p, q) have

max (L [τ⋆a ] ,L [τ⋆b ]) ≤ max (L [p] ,L [q]) .

We have chosen this particular optimality metric in

order to ensure minimum energy consumption between

the two robots. We present a method that finds a dis-

tance optimal solution to trpmpp. In Section ?? we

take advantage of this metric to define an optimal con-

troller given a distance optimal solution.
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Fig. 5: The green line segment is the initial cable con-

figuration and the green dashed line segment is the final

cable configuration. The arrows show the distance op-

timal path for each robot.

5 The solution concept

In this section we prove that it suffices to have robots a

and b equipped with a motion primitive that moves the

robot on a straight line from one vertex to another in

the reduced visibility graph (RVG). The following the-

orem and corollary show that, for a single robot, the

shortest path between two points in W is a concatena-

tion of line segments that are edges of the RVG.

Theorem 1 There exists a semi-free path between any

two given points p and q if and only if there exists a
simple polygonal line T lying in W whose endpoints are

p and q, and such that T ’s vertices are in verts(O).

(??)

More useful for us the statement below which, though

only stated informally by ?, follows directly the previ-

ous result.

Corollary 1 The shortest path for a robot from one

point to another in a subset of R
2 can be found by

searching the shortest path roadmap or reduced visibility

graph.

The list of RVG vertices πa = (v0a, v
1
a, . . . , v

n−1
a , vna )

connecting initial and destination positions, i.e., with
ra = v0a and da = vna , is easily turned into a curve,

τa(s), by joining line segments connecting vi−1
a to via

sequentially, head to tail, and parameterizing appropri-

ately via I. Hence, a pair of sequences of RVG vertices

for the two robots, (πa, πb), suffices to give a pair of

paths (τa, τb).

2 We find it convenient to use L [f ] to denote arc length of
functions f : I → W throughout this work.

Although the preceding classical results hold for in-

dividual robots, when two robots are constrained such
that the action of one limits the actions of the other
(as in the case of a tether of finite length), then it is

less clear that the discrete structure of the RVG en-

codes an optimal solution. One might conceive, in the

two robot setting, one robot deviating from visibility

edges in order to enable the other to move. One of the
main results of paper, and the basis for the algorithm
we present, is Theorem 2 establishing that no such de-

viations are necessary and, indeed, the RVG will still

suffice to find optimal solutions. The theorem’s proof

comes after several definitions a useful lemma.

In what follows, we can think of an always taut

tether. This conception is without loss of generality be-

cause: (1) tightening a tether is a continuous operation,
so it preserves homotopy; (2) if the cable length con-
straint is satisfied for a taut tether, it must be for others

as well. The reader should bear in mind that the taut
tether is merely a special representative of the homo-
topy class of tethers. It is helpful to have an operator
to give this representative:

Definition 4 (Tightening Operator) Given a path

α : I → W , we define the operator ·̂ : (I → W ) →

(I → W ) such that α̂ is the (unique) shortest path in
the homotopy class of α.

Practically, the classical algorithm of ? is used to

obtain the shortest path homotopic to a given path.

Tautening will often (but not always) be used to com-

pute the form the taut cable will take, so the following

is needed.

Definition 5 (Cable concatenation) Given two paths
τ1 : I → W and τ2 : I → W , and a cable configuration

c : I → W , let the function that gives a concatenation
of τ1, τ2, and c be

cat(s; t, τ1, τ2, c) :=





τ1(t− 3st) 0 ≤ s ≤ 1
3

c(3(s− 1
3 ))

1
3 < s < 2

3

τ2(3(s−
2
3 )t)

2
3 ≤ s

.

Definition 1, describing the planning problem, re-
quires paths for which a feasible trajectory exists. The

connection between paths and trajectories is, of course,

a timing. Thus we need the following concept:

Definition 6 (Re-parameterization) A re-parameterization

is a monotonically increasing, continuous function r :

I → I with r(0) = 0 and r(1) = 1. A pair (r1, r2) is

a re-parameterization pair if both functions, r1 and r2,

are re-parameterizations.
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With the preceding scaffolding, we can next give

a definition that is valuable in helping to identify the
existence of a feasible trajectory given paths.

Definition 7 Given two paths τ1 : I → W and τ2 :

I → W , and a cable configuration c : I → W , let

C
⋆(τ1, τ2, c) :=

min
(r1,r2) over all

re-parameterization pairs

(
max
t∈I

L

[
ĉat(·; t, τ1 ◦ r1, τ2 ◦ r2, c)

])
.

Informally, C⋆ gives the shortest cable that permits

one to execute τ1 and τ2. The intuition which connects

us to main result is that any solution (τa, τb) to a given

trpmppmust have a C⋆(τa, τb, c0) ≤ ℓ. We would like to
establish that any optimal solution to a given trpmpp

can be related to some solution on the RVG (i.e, in

Πa×Πb) that, while being distance optimal, also abides

by the conditions imposed by cable. Corollary 2 states
this formally. The proof of the theorem makes use of

the following lemmas and theorem.

Lemma 1 Path pair (τa, τb) is a solution to a given
trpmpp, iff C

⋆(τa, τb, c0) ≤ ℓ.

Proof. For a contradiction assume C
⋆(τa, τb, c0) > ℓ

and reach a contradiction with c2 in Definition 2.

Lemma 2 Let τ̂a and τ̂b, being the shortest paths in
their respective homotopy classes, be the prescribed paths

for robots a and b. Then the length of the consumed ca-

ble is a convex function, if τ̂a and τ̂b use the same curve

parameter.

Proof. Because both τ̂a and τ̂b are the shortest paths
in their respective homotopy classes, we can assert that

they comprise sequences of pairwise connected straight

line motions which lie on the RVG edges (following

Corollary 1). Moreover, each straight line motion is of

one of the following type:

F: the motion is on the same edge as the cable and is

[F]ollowing the cable, or
L: the motion is on the same edge as the cable and is

[L]eading the cable, or

O: is any [O]ther straight line motion.

We will argue that the length of cable consumed as a

robot moves along such trajectories is a convex function
by showing that the gradient of the function is mono-
tonically increasing. A technical difficulty with cable

consumption is that it is a continuous but only piece-

wise differentiable function. In circumstances where the

derivative is undefined, we take the value of the deriva-

tive from the right. These circumstances arise when

contacts between the cable and obstacles are made or

broken. The cable consumption is a function of two

curve parameters: so by derivative we are referring to

the partials with respect to each parameter—one for

each robot.

When the robot is moving on an F (or L) segment

the derivative is −1 (or 1, respectively). For individual
O segments the function might have multiple pieces.

For each piece of each such segment, the pieces are re-

gions where the points that the cable contacts are un-

changed. Then, with a single robot moving, only the ca-

ble between the robot and the closest contact point con-

tributes to the change in cable consumption. Writing

the consumption as a function of the curve parameter

and simply taking its derivative results in a monoton-

ically increasing function whose value is in the (−1, 1)
interval. When unwinding around an object the deriva-

tive is negative but increasing; when breaking contact,

the radius to the closest object increases, but the deriva-

tive continues to increase. When making or maintaining

contact, the derivative is positive, but still increasing.

It is, thus, always increasing. (Fig. 6 illustrates this fact

using an example.)

Next, we argue that τ̂a and τ̂b have a specific struc-

ture: each trajectory is of the form F∗O∗L∗ (where

we have used regular expression notation with Kleene

stars). Showing the following suffices:

(a) no O segment is followed by an F segment, and

(b) no L segment is followed by an O segment, and

(c) no L segment is followed by an F segment.

All three cases are established via proofs that are

similar: assume the contrary, then reach a contradic-

tion owing to a taut cable and shortest motions fail-

ing to agree. Taken together, this proves that τ̂a and
τ̂b are of the form F∗O∗L∗. Hence, global monotonic-

ity of the partial derivative of the cable consumption

function holds if we can show that monotonicity is pre-

served between two consecutive O segments. To show
no violation occurs at the transition between segments,

monotonicity in a small open interval around the tran-
sition is sufficient. If the two O-segments, g1 and g2,

are collinear, then they could be treated as a single
segment and the prior argument for a single O-segment

holds. Hence, there must be a ‘turn’ from segment g1 to

g2. Both segments are on the RVG so that turn occurs
at a vertex vo of some obstacle. Presume that we ex-

tend and continue along g1 an extra ǫ > 0; then the
derivative of the cable consumption continues to in-
crease (as the single segment argument holds). Since

g2 is not along this little extension, it falls to one side.

If that side is away from the cable-obstacle contact,

then the additional motion away consumes extra cable,

so the derivative only increases faster. Otherwise, when

turning towards the contact, monotonicity may indeed
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v1 v2

v3

v0

(a) The scenario for which the ca-
ble consumption function is derived.
Originally the cable is in contact with
v0 and v1. As the robot travels to-
wards its destination (to the right),
it will release contact with v1. It will
then make contact with v2 and v3, re-
spectively. The dotted lines represent
places in which cable events occur.

Curve parameter

Length of consumed cable

(b) Length of consumed cabled as a
function of distance traveled.

Curve parameter

Derivative of length of consumed cable

(c) Derivative of length of consumed
cabled per change in distance traveled.

Fig. 6: A scenario where a robot executes a motion on a straight line. As the robot makes its way towards the

destination, the cable will make or release contact with verts(O). These events change the the derivative of the

consumed cable. The motion is color coded throughout all the above figures to differentiate each time a cable

event occurs. Fig. 6a shows the scenario for which the function is derived. Fig. 6b and 6c show the function and
its derivative respectively.

fail. However, such a turn leads to a contradiction; two

cases are possible: the obstacle to which vo belongs is

on the inside of the turn, or it is on the outside. If it is
on the inside, then the cable itself wraps around vo, in

which case g2 is not an O segment (but an L one). If
the obstacle is on the outside, then simply shaving off a
small corner at the turn is feasible. But that is shorter,
contradicting the supposition that g1 and g2 result from

shortest motions in their homotopy class.

Hence monotonicity of the partial derivative of the

cable consumption holds across the entire I. Now con-
sider the concurrent motion of both robots: we feed
them the same curve parameter and the derivative of
the cable consumption simply becomes the total deriva-

tive. Being the sum of two partials, each of which is

monotone, gives a monotone function. Thus, the total

cable consumption is a convex upward function of the

curve parameter.

The preceding is enough to do the heavy lifting
needed for proof of our theorem.

Theorem 2 If (τa, τb) is a solution for a given trpmpp,

then ∃(τV G
a , τV G

b ) ∈ Πa ×Πb : C
⋆(τV G

a , τV G
b , c0) ≤ ℓ.

Proof. Let τ̂a and τ̂b be the shortest paths homotopic

to τa and τb, respectively. Hence, (τ̂a, τ̂b) ∈ Πa × Πb

from Corollary 1. Then to prove this theorem it suffices

to show that the following inequality holds:

C
⋆(τ̂a, τ̂b, c0) ≤ ℓ.

Since ·̂ is homotopy preserving, the following con-

ditions hold:

L

[
ĉat(·; 0, τ̂a, τ̂b, c0)

]
= L

[
ĉat(·; 0, τa, τb, c0)

]
= L [ĉ0] ,

L

[
ĉat(·; 1, τ̂a, τ̂b, c0)

]
= L

[
ĉat(·; 1, τa, τb, c0)

]
.

Moreover, because (τa, τb) is a solution we have

L

[
ĉat(·; 0, τ̂a, τ̂b, c0)

]
≤ ℓ, and

L

[
ĉat(·; 1, τ̂a, τ̂b, c0)

]
≤ ℓ.

Following Lemma 2, feeding the same curve param-

eter to both τ̂a and τ̂b, gives a convex upward cable

consumption. Therefore,

max
t∈I

L

[
ĉat(·; t, τ̂a, τ̂b, c)

]
= max

t∈{0,1}
L

[
ĉat(·; t, τ̂a, τ̂b, c)

]
≤ ℓ.

Because the above holds for the trivial identity re-

parameterization, the minimum over the set of all re-

parameterization pairs must be less than or equal to the

above. This fact combined with Lemma 1 completes the

proof.

Corollary 2 (Distance Optimality) Let (τ⋆a , τ
⋆
b ) be

a distance optimal solution to a given trpmpp. Then

the RVG also contains a distance optimal solution, (τ⋆V G
a , τ⋆V G

b ).
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Proof. A pair (τ⋆V G
a , τ⋆V G

b ) ∈ Πa × Πb is constructed

from (τ⋆a , τ
⋆
b ). Simply take (τ⋆V G

a , τ⋆V G
b ) = (τ̂⋆a , τ̂

⋆
b ) and

observe the three following facts:

– τ̂⋆a and τ̂⋆b is on the RVG,

– the traveled, thus, distance along the two path for

each robot is no worse following Corollary 1,

– C
⋆(τ̂⋆a , τ̂

⋆
b , c0) ≤ ℓ following Theorem 2.

6 The Efficient Planning Algorithm

In this section we present an A⋆ (?) implementation to

construct and explore the search tree for the solution

to this problem. Let

(W , O, ra, rb,da,db, ℓ, c0) be a trpmpp. The search
tree’s nodes represent cable configurations. An edge be-

tween two nodes represents a motion for each robot

along an RVG edge that abides by the cable require-

ments. To do so, we define a data-structure with the

following fields:

– taut cable: a list of RVG vertices each of which is vis-

ible from the previous ones describing a valid cable

configuration,

– cost : a pair of costs indicating the distance traveled

by each robot to arrive at this cable configuration

from their initial poses,

– a reference to a parent node.

Fig. ?? and Fig. ?? visualize the structure of the

search tree for an example scenario. Using A⋆ search,

Algorithm ?? explores the search tree—which gives a

structured representation to the set Πa ×Πb—for the
optimal solution to a given trpmpp. A⋆ uses an esti-

mated cost function which is a sum of a cost function

and a heuristic function. For the heuristic, we use the

Euclidean distance between the vertex and the given

robot’s destination, which can be computed in constant

time. The cost is calculated cumulatively with a con-
stant time operation when creating/updating a node.
Since the heuristic function is admissible, we can safely

terminate the search in a branch whose estimated cost

is higher than the best solution found (?).

Given any node in the tree, we can obtain a pair
of paths — one for each robot — that continuously

transforms the original cable configuration to the con-
figuration stored in the node. To do so, we can traverse
the tree from the root down to the node. Let πa and πb

be to empty sequences. While traversing the tree down
to the node, for each node we take the first and last
element of the taut tether and append it to the end of

πa and πb, respectively. Notice that the sequences πa

and πb will have equal cardinality.

Algorithm 1: The A* Search Algorithm

1: Search(W , O, ra, rb,da,db, ℓ, c0)
2: Build RVG, g, with vertices {verts(O), ra, rb,da,db}
3: root = Node(ĉ0, ∅)
4: priorityQ = { root }
5: while priorityQ is not empty do

6: n = priorityQ.dequeue()
7: if n.cable.first = da n.cable.last = db then

8: if L [node.cable] ≤ ℓ then

9: return constructed path by following parent
references from n up to the root

10: else

11: continue

12: end if

13: end if

14: Va = g.visibleVerts(n.cable.first)
15: Vb = g.visibleVerts(n.cable.last)
16: for all (va, vb) ∈ Va × Vb do

17: c1 = [va]+ n.cable +[vb]
18: child = Node(ĉ1, n)
19: priorityQ.enqueue(child)
20: end for

21: end while

Theorem 3 (Soundness) A pair of paths, (τa, τb),

generated by traversing the above mentioned search tree

from the root to a leaf is a solution to the corresponding

trpmpp, if the leaf contains a taut tether configuration
whose end points are da and db.

Proof. The root contains the taut tether ĉ0, which by

definition has end points ra and rb. Because the algo-

rithm checks whether a leaf contains a taut tether con-

figuration whose end points are da and db on line ??,

the requirements τa(0) = ra, τa(1) = da, τa(0) = ra,

and τa(1) = da is satisfied. Using the result of Theo-

rem 2, the check on line ?? ensures (τa, τb) satisfies the

final requirement for a solution.

Theorem 4 Algorithm ?? is complete.

Proof. Completeness is shown by considering complete-

ness of A⋆ search and Corollary 2.

7 The Optimal Controller

In Section 4 we only provided a definition for a dis-

tance optimal solution. As the last piece in the body

of work, we would like to provide an optimal controller
for distance optimal solutions. Informally, a controller

for a tethered pair of robots is a function that maps a

trpmpp solution (i.e., a pair of paths) to a pair of tra-

jectories (as defined by ?), one for each robot. In what

follows we assume robots a and b are homogeneous and

have a maximum speed of mv. To make the discussion

easier, we assume that the robots can achieve maximum
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(a) The original configuration of the cable.

v3
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(b) The optimal solution to the given trpmpp which is found
by searching the search tree.

Fig. 7: An example scenario for which we illustrate part of the search tree in Fig. ??

...

...

(a) A visual representation of the search tree depicting the
relationship between the cable configurations shown on the
right.

(b) Two of the configurations that are compatible with the
configuration stored in the root node.

(c) Both cable configurations shown here are compatible
with the cyan cable from the previous snapshot. However,
the orange cable configuration should is preferred as it re-
duces the distance traveled by robot a.

(d) The final configuration to arrive at the destination node.

Fig. 8: A small portion of the search tree for the trpmpp in Fig. ??. The optimal solution to the given trpmpp

in this figure can be obtained by traversing the node containing the brown cable configuration up to the root.

speed instantaneously and that turning does not take

time3.

Definition 8 (Controller) Let (τa, τb) be a plan (i.e.

solution) for a given trpmpp. A controller is a function

3 In practice, one can easily adjust the definitions/theorem
in this section to include a more accurate model of the robots
by considering other physical characteristics such as acceler-
ation rate, maximum angular speed, etc.

M such that M(τa, τb) = (ta, tb) where

ta : [0, t1] → W ; t1 ∈ R
+ and 0 < t1 and t1 ≥

L [τa]

mv
, and

tb : [0, t2] → W ; t2 ∈ R
+ and 0 < t2 and t2 ≥

L [τb]

mv
, and

the trajectories respect the cable constraints4.

4 The reader can easily adjust Definition 2 to use the inter-
vals mentioned here.
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Next, we provide a metric to compare controllers.

Definition 9 (Execution Time of Controller) Let

M be a controller. We define the execution time of the

plan (τa, τb) for M to be

T [M(τa, τb)] = max {t1, t2} .

We can now define optimality over the set of all

controllers. Informally, an optimal controller is one that

reduces the overall execution time for a plan.

Definition 10 (Optimal Controller) given an opti-
mal plan (τa, τb), a controller M⋆ is optimal if for all

other controllers M

T [M⋆(τa, τb)] ≤ T [M(τa, τb)] .

Theorem 5 Given a distance optimal solution (τa, τb)
returned by Algorithm ??, a controller M⋆ is optimal if

M⋆(τa, τb) = (ta, tb) such that ta : [0, t1] → W and tb :

[0, t1] → W provided that t1 = max
{

L[τa]
mv

,
L[τb]
mv

}
.

Proof. Algorithm ?? produces solutions such that (τa, τb) =

(τ̂a, τ̂b). Then Lemma 2 provides that the trajectories

(ta, tb) abide by the cable constraints. Because our op-

timality metric searches for minimum of the maximum

distance traveled by either robots, and because the t1 =

max
{

L[τa]
mv

,
L[τb]
mv

}
, M⋆ satisfies Definition ??.

8 Discussion of the Method

To demonstrate this algorithm we implemented it in
Python (v3). Our implementation makes heavy use of ?

for computational geometry algorithms, namely convex

hull and triangulation algorithms. Fig. ?? shows some

screenshots of the user interface.

8.1 Limited Cable Length

As mentioned in Section 3, the existence a cable of lim-

ited length changes the nature of planning motions for
the tethered pair. Although having a bounded cable
length reduces the size of the search space, it induces its

own complexity on the problem. Consider the Fig. ??

where for both cable of length 200 and 300 units the

optimal solution is the same. The algorithm visits the

same number of nodes for ℓ = 300 and ℓ = 200. The

reason for this is that the algorithm will enumerate all
solutions from most cable consumed to the least cable
consumed. Interestingly, as the search reaches solutions

that require a shorter cable, the average branching fac-

tor in the search tree becomes smaller. This apparent

by looking at Fig. ??. This implies that the complexity

of the search space is affected by a combination of the

cable length and the topology of the environment.

8.2 Effect of Informed Search

As we discussed in the previous section, the topology
and cable length can increase both the number of vis-
ited and expanded nodes in the search space. One way

to manage this is to use an informed search algorithm.

As mentioned in Section ??, we have implemented A⋆

search for the optimal solution with a simple Euclidean

distance heuristic. Even though this heuristic is a very
simple metric, it improves the efficiency of the search
substantially. For comparison, we implemented Dijk-

stra’s algorithm which performs a greedy search. Fig. ??

shows the significant impact of an informed versus greedy

search. Indeed, a more intelligent heuristic, rather than

a simple Euclidean distance, can reduce the search time

even more.

9 Conclusion

This work presents an algorithm for planning distance

optimal motions f
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(b) The ratio of expanded to the visited nodes gives us some
insight about the branching factor in the search tree.

Fig. 11: Some data about the structure of the search

tree for the scenarios in Fig. ??
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Fig. 12: The impact of informed search on the number

of nodes visited and expanded.


