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Abstract Considering an environment containing polyg-

onal obstacles, we address the problem of planning mo-
tions for a pair of planar robots connected to one an-
other via a cable of limited length. Much like prior prob-
lems with a single robot connected via a cable to a fixed
base, straight line-of-sight visibility plays an important
role. The present paper shows how the reduced visibil-
ity graph provides a natural discretization and captures
the essential topological considerations very effectively
for the two robot case as well. Unlike the single robot
case, however, the bounded cable length introduces con-
siderations around coordination (or equivalently, when
viewed from the point of view of a centralized planner,
relative timing) that complicates the matter. Indeed,
the paper has to introduce a rather more involved for-
malization than prior single-robot work in order to es-
tablish the core theoretical result—a theorem permit-
ting the problem to be cast as one of finding paths
rather than trajectories. Once affirmed, the planning
problem reduces to a straightforward graph search with
an elegant representation of the connecting cable, de-
manding only a few extra ancillary checks that ensure
sufficiency of cable to guarantee feasibility of the solu-
tion. We describe our implementation of A* search, and
report some limited experimental results.
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Fig. 1: Rope team at a ridge nearing a summit. (source:
Wikimedia Commons)

1 Introduction

In recent years, a variety of techniques have been devel-
oped to plan motions for a tethered mobile robot (??77).
A tether can be useful as a conduit for power or com-
munication but the main motivating application for
robotic tethers is in navigation of rovers in extreme
terrain, where the tether can help provide physical se-
curity. Examples of robotic rovers equipped in this way
include TRESSA (?), Axel and DuAxel (?), vScout (?),
and TReX (?), among others. Humans deal with ex-
treme terrain too. A common practice among moun-
taineers, as a measure of protection against falling, is to
form a group that can move together while the members
are roped to one another. This forms what is referred
to as a rope team (?) (Fig. 1). From the perspective
of motion planning, one might interpret a rope team
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as a practical scenario in which a tethered robot’s base
is itself subject to motion. A prominent robotic exam-
ple of comparable operation is DuAxel, where two Axel
rovers are connected to a central module. DuAxel is de-
signed to work as a mother-daughter ship, having one
Axel remain stationary with the central module while
the other explores the terrain. Indeed, enabling both
rovers to be deployed simultaneously may benefit both
agents and improve the versatility of the design.

One key to efficient solution of planning problems
in finding a suitable representation, ideally one that ex-
presses constraints and is amenable to adaptation and
generalization to various requirements. Much like our
earlier work (?), we take advantage of the properties
of reduced visibility graph (?). Namely, we show cer-
tain characteristics of straight line motions enable us
to find solutions to tethered pair problem with mini-
mal book keeping. Unlike that work, however, we will
not be examining the structure of configuration space
(c-space). We will show in Section 3 that the c-space of
this problem is indeed 4 dimensional and rather compli-
cated. The theoretical foundation provided in this work,
shows that we shall not be concerned with the interme-
diate state of the cable: as long as we can achieve a
goal configuration that is permitted by the length of
the available cable, one can provide a planner to exe-
cute the motions that will transform the initial cable
configuration to its final configuration. On this basis,
we introduce a tree data structure that represent differ-
ent cable configurations up to homotopy. Each branch
in the tree down to a certain node is a representation
of the shortest path required for the tethered pair to
arrive at that node’s cable configuration. We have im-
plemented A* search to expand the search tree and find
an optimal solution while keeping track of the cable’s
configuration up to homotopy. Lastly, we suggest an op-
timal controller for the motions produced by the plan-
ner that can minimize the execution time for the given
path pair.

2 Related Work

We are interested in what is perhaps the most natural
motion planning question for a tethered pair of robots,
namely finding paths to take a pair of tethered robots
from some initial configuration to a goal one, never vi-
olating a bound on the tether’s length throughout the
motion. Although motion planning for a single teth-

literature reports comparatively little work on motion
planning problems involving pairs of robots tethered to
one another.

A notable exception is that pairs of conjoined robots
have been studied for purposes of object manipulation.
? studied object separation using a pair of robots con-
nected by a cable. Though superficially similar to our
problem, as it involves the motion of a mutually con-
nected pair of robots, the separation problem imposes
quite a different set of constraints to a shortest path
planning problem. For object separation the solution
is only required to satisfy a homotopy requirement,
allowing the robots to choose any arbitrary goal in
the workspace that can satisfy such constraint. Con-
sequently, in that work, the two robots move to the
boundaries of the workspace. (This assumption also

helps distinguish between separating versus non-separating

configurations elegantly and concisely.) As ? are ad-
dressing a problem where the goal is specified topolog-
ically and they are not concerned with a cable of finite
length, several of the complications we tackle do not
arise in their setting.

More recently, 7 demonstrated a physical multi-robot
system in which robots can dynamically make or break
tether connections; a planner exploits this capability to
find ways in which a robot team can manipulate objects
efficiently, either with single robots operating concur-
rently, or as coupled pairs, as called for by the partic-
ular problem instance. A part of that problem is com-
binatorial and the work uses a sampling-based method,
the present work being distinguished from that work on
both fronts.

Our own prior work on finding short paths for a pair
of tethered robots (?), attempted to use the solution
to a single robot problem as an algorithmic building
block. That approach was devised primarily as a means
to build intuition for the topology of the 4D configura-
tion space; the algorithm is inadequate, being neither a
solution to the complete problem nor one that always
yields optimal paths.

RETURN TO ME Reviewing the prior work, we
have identified the following two core traditions in ap-
proaching the tethered robot motion planning prob-
lems.

— Sampling-based vs. visibility-based planning:
to represent the c-space of a given problem one has
to create a graph that is complete, i.e., it must rep-
resent all possible configurations. Historically, effi-
cient sampling-based planning algorithms such as
PRM (?) and RRT (?) have proven to be beneficial
in high dimensional c-spaces. However, in visibility-
based techniques (?) reduce the dimensions of the
problem by using minimal representations which only
keep critical information about the c-space. That is,
rather than creating many nodes that comparatively
do not add significant value during the search, they
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represent, the c-space with as few nodes as possible
that compared to one another have large entropy in
the information gained. It is important to note that
the two techniques are not meant as substitutes for
one another: it would be wasteful to use sampling
based techniques in low dimensional spaces, whereas
producing the visibility graph for high dimensional
spaces is computationally impractical.

— word construction vs. event tracking: tethered
robots require a technique that can distinguish be-
tween the different cable configurations to be topo-
logically sound. One way to maintain the cable’s
configuration is by constructing a word using sensor
beams that uniquely represents its homotopy class
(?). That is, after execution of each portion of a
given path for a robot, one has to update the word
according to the visited node in the search graph.
Another way to maintain the cable’s configuration is
to keep track of critical events that signify changes
in its configuration (?). One can then uniquely iden-
tify the cable’s configuration up to homotopy by
presenting the shortest representative of its homo-
topy class.

While each tradition provides its own value in an ap-
propriate setting when solving motion planning related
problems for tethered robots, we strongly believe that
decomposition-based planning and visibility go hand-
in-hand. It is infeasible/impractical to use visibility to
retain cable configurations in a sampling-based method.
Additionally, using h-signatures with decomposition-
based planning would not fully take advantage of the
decomposed c-space and would lead to redundancy in
the information.

3 Why is the tethered robot pair problem
difficult?

Our earlier work (?) defined and examined a useful way
of decomposing the c-space of a single tethered robot.
Namely, into a tree structure that relates to an atlas
representation of the manifold!, the associated charts
of which are the largest satisfying the following two
main properties:

1. planning a motion between the tether’s base and
any configuration inside the same chart is a constant
time problem, and

2. if a path between two configurations is contained
within a given chart, it is guaranteed that the ho-

1 Technically one must consider a manifold with a bound-
ary, and the notion of ‘chart’ here may be closed set; for
simplicity throughout we will ignore these nuances.

Fig. 2: Some of the charts of the atlas representing the
c-space of a tethered robot. A, B, C, and D are four
charts in the atlas. Red dashed line illustrates boundary
of charts.

Fig. 3: Moving the base of the tether leads to a changes
in the boundaries of the charts. A’, B, C’ are the new
charts. The charts prior to moving the base are illus-
trated in light blue for comparison.

motopy class of the cable’s trajectory remains un-
changed after the execution of the path.

Given the inputs to the single robot problem, one
visualizes its c-space most easily by sketching the charts
and showing where they touch (see Fig. 2). For the sin-
gle tethered robot, this is a 2 dimensional object, and
consequently easy to see. This structure allows for the
convenient and simultaneous representation of two dif-
ferent pieces of data: the motion of the robot through
space, and the homotopy class of the cable.

The single tethered robot problem is a special case
of tethered pairs where one robot remains stationary:
requiring only 2 degrees of freedom. For a general teth-
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Cable-obstacle contact

S

Robot a Robot b

(a) The configuration of the robots and their cable.

(c) The visibility charts for
robot b.

(b) The visibility charts
for robot a.

Fig. 4: A snapshot of the conjoined atlases for a tethered
robot pair after the first contact is made between the
cable and an obstacle.

ered pair, a comparable figure would require four di-
mensions, which impedes easy visualization.

In Fig. 3 we have moved the base of the tether
slightly to the right to show the changes in the charts.
The boundaries of these charts are 2D surfaces in a 4D
space. However, once the first contact is made between
the cable and an obstacle, it is again possible to vi-
sualize snapshots of the boundaries of the charts (see
Fig. 4).

We believe exploiting the two above mentioned prop-
erties is the key to understanding the structure of the
complex c-space of this problem.

(note to self) Although compatibility does not show
the charts exactly, it is revealing some structured-ness
in this problem. Although we will not be breaking the c-
space into charts, we divide the problem based on prop-
erties of reduced visibility graph such that low level de-
tails are abstracted away from the planning. We believe
the decomposition technique introduced in this body of
work is strongly related to the four-dimensional charts
in the c-space.

4 Problem statement

Let O = {01,09,...,0,} be a (possibly empty) set of

pairwise disjoint polygonal obstacles with vertices verts(O)

in R?, with boundary curves éo1, 802, ..., d0,, respec-
tively. Let the free space # = (R?\ !, 0;)U(U;—, d0;).
Further, let robots a and b be two unoriented points in
W that are connected to one another via a cable of
finite length. Let I = [0, 1] be the unit interval.

Definition 1 (TrRPMPP) The tethered robot pair mo-

tion planning problem (TRPMPP) is a tuple,
(#,0,ra,rh,da,dp, £, cp), wherein:

— W is the free space,

— O is the set of obstacles,

— r, € W is the initial position of a,

— rp € # is the initial position of b,

— da € # is the goal or destination of a,

— dy, € # is the goal or destination of b,

— £ € RT is the length of the tether,

— ¢o : I — W is the initial arrangement of the cable
in ¥, where c(0) = ra, and co(1) = rp, and?

Lleo(s)] == /co(s) ds < ¢.
I
A solution to TRPMPP (#,0,r,,Th,da,dp, 4, ) is a
pair of paths (7, 7) in which:

— 7o : 1= # where 7,(0) =ra and 74(1) = da, and

— 7p : I = # where 7,(0) = rp and 7,(1) = dp, and

— for 7, and 73, there exists a # -feasible motion for
an (-length cable, as formalized next.

Definition 2 (%/-feasible motion for an (-length
cable) In the closed subset of the plane # C R2, for
two paths 74,7, : I — # and length ¢ € R™, a function
c:IxIT — W is called a # -feasible motion for an £-
length cable if and only if the following three conditions
hold:

cl. (The cable connects the robots)
Vs €l:e(s,0) = 714(s) and ¢(s,1) = 7(s),
¢2. (Cable has bounded length)
Vs € 1: Les(x)] < ¢, where cg(x) := c(s, x),

¢3. (Continuity) ¢ is continuous with respect to the in-
duced topologies.

Definition 3 (Distance optimality) A solution (7}, 7¢)

for TRPMPP (#,0,ra,1b,da, db, £, ¢p) is called distance
optimal if all other solutions (p, q) have

max (£[r;], £[r]]) < max (£[p], £[q]) -

We have chosen this particular optimality metric in
order to ensure minimum energy consumption between
the two robots. We present a method that finds a dis-
tance optimal solution to TRPMPP. In Section 77 we
take advantage of this metric to define an optimal con-
troller given a distance optimal solution.
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d, , dy

I, Iy

Fig. 5: The green line segment is the initial cable con-
figuration and the green dashed line segment is the final
cable configuration. The arrows show the distance op-
timal path for each robot.

5 The solution concept

In this section we prove that it suffices to have robots a
and b equipped with a motion primitive that moves the
robot on a straight line from one vertex to another in
the reduced visibility graph (RVG). The following the-
orem and corollary show that, for a single robot, the
shortest path between two points in % is a concatena-
tion of line segments that are edges of the RVG.

Theorem 1 There exists a semi-free path between any
two given points p and q if and only if there ezists a
simple polygonal line T' lying in # whose endpoints are
p and q, and such that T’s vertices are in verts(O).

(*?)

More useful for us the statement below which, though
only stated informally by 7, follows directly the previ-
ous result.

Corollary 1 The shortest path for a robot from one
point to another in a subset of R% can be found by
searching the shortest path roadmap or reduced visibility
graph.

The list of RVG vertices m, = (v0,v}, ..., 0" v7)
connecting initial and destination positions, 4.e., with
ra = v) and dy = o7 , is easily turned into a curve,
7.(8), by joining line segments connecting v:i=! to v
sequentially, head to tail, and parameterizing appropri-
ately via I. Hence, a pair of sequences of RVG vertices
for the two robots, (m,, ), suffices to give a pair of
paths (74, 7p)-

2 We find it convenient to use £ [f] to denote arc length of
functions f : I — # throughout this work.

Although the preceding classical results hold for in-
dividual robots, when two robots are constrained such
that the action of one limits the actions of the other
(as in the case of a tether of finite length), then it is
less clear that the discrete structure of the RVG en-
codes an optimal solution. One might conceive, in the
two robot setting, one robot deviating from visibility
edges in order to enable the other to move. One of the
main results of paper, and the basis for the algorithm
we present, is Theorem 2 establishing that no such de-
viations are necessary and, indeed, the RVG will still
suffice to find optimal solutions. The theorem’s proof
comes after several definitions a useful lemma.

In what follows, we can think of an always taut
tether. This conception is without loss of generality be-
cause: (1) tightening a tether is a continuous operation,
so it preserves homotopy; (2) if the cable length con-
straint is satisfied for a taut tether, it must be for others
as well. The reader should bear in mind that the taut
tether is merely a special representative of the homo-
topy class of tethers. It is helpful to have an operator
to give this representative:

Definition 4 (Tightening Operator) Given a path
a: 1T — W, we define the operator * : (I — #) —
(I — #') such that & is the (unique) shortest path in
the homotopy class of «.

Practically, the classical algorithm of ? is used to
obtain the shortest path homotopic to a given path.
Tautening will often (but not always) be used to com-
pute the form the taut cable will take, so the following
is needed.

Definition 5 (Cable concatenation) Given two paths
T : 01— # and 75 : I = #, and a cable configuration
c: 1 — W, let the function that gives a concatenation
of 7, T2, and ¢ be

1 (t — 3st) 0<s<4%
cat(s;t, 1,72, ¢) 1= { c(3(s — 3)) $<s<2.
T2(3(s — %)t) % <s

Definition 1, describing the planning problem, re-
quires paths for which a feasible trajectory exists. The
connection between paths and trajectories is, of course,
a timing. Thus we need the following concept:

Definition 6 (Re-parameterization) A re-parameterization

is a monotonically increasing, continuous function r :
I — T with »(0) = 0 and r(1) = 1. A pair (ry,r2) is
a re-parameterization pair if both functions, r1 and ro,
are re-parameterizations.
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With the preceding scaffolding, we can next give
a definition that is valuable in helping to identify the
existence of a feasible trajectory given paths.

Definition 7 Given two paths 71 : I — # and = :
I — %, and a cable configuration ¢: I — #/, let

(C*(T177-2,C) =

min
(r1,r2) over all tel
re-parameterization pairs
Informally, C* gives the shortest cable that permits
one to execute 71 and 7. The intuition which connects
us to main result is that any solution (7., 73) to a given
TRPMPP must have a C* (7, 7, ¢g) < £. We would like to
establish that any optimal solution to a given TRPMPP
can be related to some solution on the RVG (i.e, in
I, x II},) that, while being distance optimal, also abides
by the conditions imposed by cable. Corollary 2 states
this formally. The proof of the theorem makes use of
the following lemmas and theorem.

Lemma 1 Path pair (1,,7) is a solution to a given
TRPMPP, iff C*(74, 7, c0) < L.

Proof. For a contradiction assume C*(7,,7,c9) > £
and reach a contradiction with €2 in Definition 2. O

Lemma 2 Let 7, and 7, being the shortest paths in
their respective homotopy classes, be the prescribed paths
for robots a and b. Then the length of the consumed ca-
ble is a conver function, if T, and T, use the same curve
parameter.

Proof. Because both 7, and 7, are the shortest paths
in their respective homotopy classes, we can assert that
they comprise sequences of pairwise connected straight
line motions which lie on the RVG edges (following
Corollary 1). Moreover, each straight line motion is of
one of the following type:

F: the motion is on the same edge as the cable and is
[Flollowing the cable, or

L: the motion is on the same edge as the cable and is
[L]eading the cable, or

O: is any [Olther straight line motion.

We will argue that the length of cable consumed as a
robot moves along such trajectories is a convex function
by showing that the gradient of the function is mono-
tonically increasing. A technical difficulty with cable
consumption is that it is a continuous but only piece-
wise differentiable function. In circumstances where the
derivative is undefined, we take the value of the deriva-
tive from the right. These circumstances arise when
contacts between the cable and obstacles are made or

max £ [c/a\t(-;t,ﬁ 0T1,T2 0 7“270)]>

broken. The cable consumption is a function of two
curve parameters: so by derivative we are referring to
the partials with respect to each parameter—one for
each robot.

When the robot is moving on an F (or L) segment
the derivative is —1 (or 1, respectively). For individual
O segments the function might have multiple pieces.
For each piece of each such segment, the pieces are re-

.gions where the points that the cable contacts are un-

changed. Then, with a single robot moving, only the ca-
ble between the robot and the closest contact point con-
tributes to the change in cable consumption. Writing
the consumption as a function of the curve parameter
and simply taking its derivative results in a monoton-
ically increasing function whose value is in the (—1,1)
interval. When unwinding around an object the deriva-
tive is negative but increasing; when breaking contact,
the radius to the closest object increases, but the deriva-
tive continues to increase. When making or maintaining
contact, the derivative is positive, but still increasing.
It is, thus, always increasing. (Fig. 6 illustrates this fact
using an example.)

Next, we argue that 7, and 7, have a specific struc-
ture: each trajectory is of the form F*O*L* (where
we have used regular expression notation with Kleene
stars). Showing the following suffices:

(a) no O segment is followed by an F segment, and
(b) no L segment is followed by an O segment, and
(c) no L segment is followed by an F segment.

All three cases are established via proofs that are
similar: assume the contrary, then reach a contradic-
tion owing to a taut cable and shortest motions fail-
ing to agree. Taken together, this proves that 7, and
7, are of the form F*O*L". Hence, global monotonic-
ity of the partial derivative of the cable consumption
function holds if we can show that monotonicity is pre-
served between two consecutive O segments. To show
no violation occurs at the transition between segments,
monotonicity in a small open interval around the tran-
sition is sufficient. If the two O-segments, ¢g; and g¢o,
are collinear, then they could be treated as a single
segment and the prior argument for a single O-segment
holds. Hence, there must be a ‘turn’ from segment g; to
go2. Both segments are on the RVG so that turn occurs
at a vertex v, of some obstacle. Presume that we ex-
tend and continue along g; an extra ¢ > 0; then the
derivative of the cable consumption continues to in-
crease (as the single segment argument holds). Since
g2 is not along this little extension, it falls to one side.
If that side is away from the cable-obstacle contact,
then the additional motion away consumes extra cable,
so the derivative only increases faster. Otherwise, when
turning towards the contact, monotonicity may indeed
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Length of consumed cable

Derivative of length of consumed cable

Curve parameter

Curve parameter

(a) The scenario for which the ca-
ble consumption function is derived.
Originally the cable is in contact with
v0 and vi. As the robot travels to-
wards its destination (to the right),
it will release contact with v1. It will
then make contact with v2 and vz, re-
spectively. The dotted lines represent
places in which cable events occur.

(b) Length of consumed cabled as a
function of distance traveled.

(c¢) Derivative of length of consumed
cabled per change in distance traveled.

Fig. 6: A scenario where a robot executes a motion on a straight line. As the robot makes its way towards the
destination, the cable will make or release contact with verts(O). These events change the the derivative of the
consumed cable. The motion is color coded throughout all the above figures to differentiate each time a cable
event occurs. Fig. 6a shows the scenario for which the function is derived. Fig. 6b and 6¢ show the function and

its derivative respectively.

fail. However, such a turn leads to a contradiction; two
cases are possible: the obstacle to which v, belongs is
on the inside of the turn, or it is on the outside. If it is
on the inside, then the cable itself wraps around v,, in
which case g2 is not an O segment (but an L one). If
the obstacle is on the outside, then simply shaving off a
small corner at the turn is feasible. But that is shorter,
contradicting the supposition that g; and g result from
shortest motions in their homotopy class.

Hence monotonicity of the partial derivative of the
cable consumption holds across the entire 1. Now con-
sider the concurrent motion of both robots: we feed
them the same curve parameter and the derivative of
the cable consumption simply becomes the total deriva-
tive. Being the sum of two partials, each of which is
monotone, gives a monotone function. Thus, the total
cable consumption is a convex upward function of the
curve parameter. O

The preceding is enough to do the heavy lifting
needed for proof of our theorem.

Theorem 2 If (7,,7p) is a solution for a given TRPMPP,
then (Y4 7V C) € II, x Iy : C* (1Y ¢, 7Y% ¢co) < L.

Proof. Let 7, and 7, be the shortest paths homotopic
to 7, and Ty, respectively. Hence, (75, 7) € I, X I
from Corollary 1. Then to prove this theorem it suffices

to show that the following inequality holds:
C*(Ta, T, co) < L.

Since * is homotopy preserving, the following con-
ditions hold:

2 (3/553(';0,’7/';77/';,760) |:C/8Tt(‘;0,7'a,7-b,0())] = 'S[C/\O]v

£
iy {(:Et(; l,Ta,Tb,Co)] .

(;E;t(, la)f;nﬁv CO)

oreover, because (74, 7p) is a solution we have
</, and

&\“(7 Oaﬂ\mﬁa CO)

2 bz B

<.

“Following Lemma, 2, feeding the same curve param-
eter to both 7, and 73, gives a convex upward cable
consumption. Therefore,

(;a\t<7 1a71(\177/-;)a CO)

max £ [C/f;c(-;t,ﬁl,ﬁ,,c)} = mmax € [at(.;t,a,ﬁ,,c)] <.

Because the above holds for the trivial identity re-
parameterization, the minimum over the set of all re-
parameterization pairs must be less than or equal to the
above. This fact combined with Lemma 1 completes the
proof. O

Corollary 2 (Distance Optimality) Let (177, 7]) be
a distance optimal solution to a given TRPMPP. Then
the RVG also contains a distance optimal solution, (T;VG,
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Proof. A pair (1YY, 7VY) € 11, x II, is constructed

from (77, 77). Simply take (7}VE, 7VE) = (7, ;b:) and

observe the three following facts:

— 77 and ;b: is on the RVG,

— the traveled, thus, distance along the two path for
each robot is no worse following Corollary 1,

— C*(77, ;b:, ¢p) < ¢ following Theorem 2.

6 The Efficient Planning Algorithm

In this section we present an A* (?) implementation to
construct and explore the search tree for the solution
to this problem. Let

(#,0,ra,1p,da,dp,{,co) be a TRPMPP. The search
tree’s nodes represent cable configurations. An edge be-
tween two nodes represents a motion for each robot
along an RVG edge that abides by the cable require-
ments. To do so, we define a data-structure with the
following fields:

— taut cable: alist of RVG vertices each of which is vis-
ible from the previous ones describing a valid cable
configuration,

— cost: a pair of costs indicating the distance traveled
by each robot to arrive at this cable configuration
from their initial poses,

— a reference to a parent node.

Fig. ?? and Fig. ?? visualize the structure of the
search tree for an example scenario. Using A* search,
Algorithm ?? explores the search tree—which gives a
structured representation to the set II, x II,— for the
optimal solution to a given TRPMPP. A* uses an esti-
mated cost function which is a sum of a cost function
and a heuristic function. For the heuristic, we use the
Euclidean distance between the vertex and the given
robot’s destination, which can be computed in constant
time. The cost is calculated cumulatively with a con-
stant time operation when creating/updating a node.
Since the heuristic function is admissible, we can safely
terminate the search in a branch whose estimated cost
is higher than the best solution found (7).

Given any node in the tree, we can obtain a pair
of paths — one for each robot — that continuously
transforms the original cable configuration to the con-
figuration stored in the node. To do so, we can traverse
the tree from the root down to the node. Let 7, and
be to empty sequences. While traversing the tree down
to the node, for each node we take the first and last
element of the taut tether and append it to the end of
m, and 7, respectively. Notice that the sequences 7,
and 7, will have equal cardinality.

Algorithm 1: The A* Search Algorithm

Search(#,0,ra,rb,da,db, ?, co)
Build RVG, g, with vertices {verts(O), ra,rp,da,dpb}
root = Node(¢ép, 2)
priorityQ = { root }
while priorityQ is not empty do
n = priorityQ.dequeue()
if n.cable.first = d, n.cable.last = dy, then
if £[node.cable] < £ then
return constructed path by following parent
references from n up to the root
10: else
11: continue
12: end if
13: end if
14:  V, = g.visibleVerts(n.cable.first)
15: V4 = g.visibleVerts(n.cable.last)
16: for all (vq,vp) € Vo X V3, do

17: ¢1 = [ve]+ n.cable +[vp]
18: child = Node(¢1, n)

19: priorityQ.enqueue(child)
20: end for

21: end while

Theorem 3 (Soundness) A pair of paths, (74,7),
generated by traversing the above mentioned search tree
from the root to a leaf is a solution to the corresponding
TRPMPP, if the leaf contains a taut tether configuration
whose end points are d, and dy,.

Proof. The root contains the taut tether ¢y, which by
definition has end points r, and rp. Because the algo-
rithm checks whether a leaf contains a taut tether con-
figuration whose end points are d, and dp, on line 77,
the requirements 7,(0) = ra, 74(1) = da, 74(0) = ra,
and 7,(1) = d, is satisfied. Using the result of Theo-
rem 2, the check on line ?7? ensures (7., 7) satisfies the
final requirement for a solution. O

Theorem 4 Algorithm 77 is complete.

Proof. Completeness is shown by considering complete-
ness of A* search and Corollary 2. O

7 The Optimal Controller

In Section 4 we only provided a definition for a dis-
tance optimal solution. As the last piece in the body
of work, we would like to provide an optimal controller
for distance optimal solutions. Informally, a controller
for a tethered pair of robots is a function that maps a
TRPMPP solution (i.e., a pair of paths) to a pair of tra-
jectories (as defined by ?), one for each robot. In what
follows we assume robots a and b are homogeneous and
have a maximum speed of mv. To make the discussion
easier, we assume that the robots can achieve maximum
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a .t

(a) The original configuration of the cable.

d,?

a \3

(b) The optimal solution to the given TRPMPP which is found
by searching the search tree.

Fig. 7: An example scenario for which we illustrate part of the search tree in Fig. 77

(a) A visual representation of the search tree depicting the
relationship between the cable configurations shown on the
right.

. V

(b) Two of the configurations that are compatible with the
configuration stored in the root node.

(c) Both cable configurations shown here are compatible
with the cyan cable from the previous snapshot. However,
the orange cable configuration should is preferred as it re-
duces the distance traveled by robot a.

(d) The final configuration to arrive at the destination node.

Fig. 8: A small portion of the search tree for the TRPMPP in Fig. ??. The optimal solution to the given TRPMPP
in this figure can be obtained by traversing the node containing the brown cable configuration up to the root.

speed instantaneously and that turning does not take

time3.

Definition 8 (Controller) Let (7,,7) be a plan (i.e.
solution) for a given TRPMPP. A controller is a function

3 In practice, one can easily adjust the definitions/theorem
in this section to include a more accurate model of the robots
by considering other physical characteristics such as acceler-
ation rate, maximum angular speed, etc.

M such that M (74, 7) = (ta,ty) where
£ [Ta]

to:[0,t1] = #;t1 € RT and 0 < t; and t; > =—%, an

muv

tp: [0,t2] = #;ta € RT and 0 < t5 and to > E[Tb]’ an
mu

the trajectories respect the cable constraints?.

d

d

4 The reader can easily adjust Definition 2 to use the inter-
vals mentioned here.
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Next, we provide a metric to compare controllers.

Definition 9 (Execution Time of Controller) Let
M be a controller. We define the execution time of the
plan (74, 7) for M to be

T M (714, 7)] = max {t1,t2} .

We can now define optimality over the set of all
controllers. Informally, an optimal controller is one that
reduces the overall execution time for a plan.

Definition 10 (Optimal Controller) given an opti-
mal plan (7,,7), a controller M* is optimal if for all
other controllers M

T [M*(1a,7)] < T [M(7a,m)] -

Theorem 5 Given a distance optimal solution (74, Tp)
returned by Algorithm 7?7, a controller M* is optimal if
M*(7a,7) = (ta,ts) such that ty : [0,t1] — # and ty :

[0,t1] = # provided that t; = max {%, ﬂ;f] }

Proof. Algorithm ?? produces solutions such that (7, 73)
(Tas 7). Then Lemma 2 provides that the trajectories
(ta,ty) abide by the cable constraints. Because our op-
timality metric searches for minimum of the maximum
distance traveled by either robots, and because the t; =

L£lra] Llro] }, M* satisfies Definition ?7. O

mv 7 muv

max {

8 Discussion of the Method

To demonstrate this algorithm we implemented it in
Python (v3). Our implementation makes heavy use of ?
for computational geometry algorithms, namely convex
hull and triangulation algorithms. Fig. ?? shows some
screenshots of the user interface.

8.1 Limited Cable Length

As mentioned in Section 3, the existence a cable of lim-
ited length changes the nature of planning motions for
the tethered pair. Although having a bounded cable
length reduces the size of the search space, it induces its
own complexity on the problem. Consider the Fig. 77
where for both cable of length 200 and 300 units the
optimal solution is the same. The algorithm visits the
same number of nodes for ¢ = 300 and ¢ = 200. The
reason for this is that the algorithm will enumerate all
solutions from most cable consumed to the least cable
consumed. Interestingly, as the search reaches solutions
that require a shorter cable, the average branching fac-
tor in the search tree becomes smaller. This apparent
by looking at Fig. ??. This implies that the complexity
of the search space is affected by a combination of the
cable length and the topology of the environment.

8.2 Effect of Informed Search

As we discussed in the previous section, the topology
and cable length can increase both the number of vis-
ited and expanded nodes in the search space. One way
to manage this is to use an informed search algorithm.
As mentioned in Section 77, we have implemented A*
search for the optimal solution with a simple Euclidean
distance heuristic. Even though this heuristic is a very
simple metric, it improves the efficiency of the search
substantially. For comparison, we implemented Dijk-
stra’s algorithm which performs a greedy search. Fig. 77
shows the significant impact of an informed versus greedy
search. Indeed, a more intelligent heuristic, rather than
a simple Euclidean distance, can reduce the search time
even more.

9 Conclusion

This work presents an algorithm for planning distance
optimal motions f
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I~ Print Mouse
[ Test Vis Graph
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[ Test Tighten Alg

I
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Load Preset
Select Map Json
aStarl.json —

[~ Print Mouse
[~ Test Vis Graph
[~ Test Triangulation
[~ Test Tighten Alg

Fig. 9: Screenshots of user interface of our implementation. The red and blue circle filled circles represent the
robots. Obstacles are in grey. The initial and final configuration of the cable are shown in green and dark red. The
prescribed path for each robot is shown with lines of the same color. The timing and RVG vertices where for each

robot is shown with small dots along the path.

(a) £ =200 and ¢ = 300 (b) £ =400

(c) € =500 (d) € =700

Fig. 10: Solving the same scenario with different cable length.
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(b) The ratio of expanded to the visited nodes gives us some
insight about the branching factor in the search tree.

Fig. 11: Some data about the structure of the search
tree for the scenarios in Fig. 77



