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Latent sub‑structural resilience 
mechanisms in temporal human 
mobility networks during urban 
flooding
Akhil Anil Rajput  & Ali Mostafavi *

In studying resilience in temporal human networks, relying solely on global network measures 
would be inadequate; latent sub-structural network mechanisms need to be examined to determine 
the extent of impact and recovery of these networks during perturbations, such as urban flooding. 
In this study, we utilize high-resolution aggregated location-based data to construct temporal 
human mobility networks in Houston in the context of the 2017 Hurricane Harvey. We examine 
motif distribution, motif persistence, temporal stability, and motif attributes to reveal latent sub-
structural mechanisms related to the resilience of human mobility networks during disaster-induced 
perturbations. The results show that urban flood impacts persist in human mobility networks at the 
sub-structure level for several weeks. The impact extent and recovery duration are heterogeneous 
across different network types. Also, while perturbation impacts persist at the sub-structure level, 
global topological network properties indicate that the network has recovered. The findings highlight 
the importance of examining the microstructures and their dynamic processes and attributes in 
understanding the resilience of temporal human mobility networks (and other temporal networks). 
The findings can also provide disaster managers, public officials, and transportation planners with 
insights to better evaluate impacts and monitor recovery in affected communities.

Characterizing network resilience has received attention in natural1, social2,3, physical4,5, and engineered systems6. 
In particular, to reduce the impacts of disasters, a growing body of literature has examined the resilience of vari-
ous socio-spatial and physical networks during disasters. Over the past few years, human mobility networks have 
been studied in the context of crises, such as floods and pandemic, to advance the understanding of impacts and 
recovery of communities7–12. There have been multiple recent research streams examining mobility networks 
that focus on examining evacuation patterns, movement fluctuations, resilience of communities to disasters13, 
and equitable resilience of disasters in communities14 in the context of hurricanes and flood events. A common 
idea across all these studies is that analyzing changes in the structural attributes of human mobility networks 
can reveal insights on mechanisms of failure and recovery to allow stakeholders and researchers tools to better 
evaluate and quantify the impacts and recovery duration, and to draw insights to improve resilience for future 
events. Despite the growing number of studies on human mobility networks and their resilience characteristics 
during crises, the majority of the existing work focuses on topological measures at the network level; limited 
attention has been paid to resilience characteristics at the sub-structure/subgraph level.

Subgraphs and their characteristics play an important role in topological and dynamical properties of net-
works, in particular, temporal networks. However, the current state of the art is rather limited in terms of char-
acterization of perturbation impacts and recovery of network motifs. Hence, examining network motifs (over 
represented subgraphs) and their characteristics could move us closer to a more complete characterization and 
understanding of network resilience and recovery in many real-world networks, such as spatial-temporal urban 
networks.

A motif, defined as subgraph, consists of a few nodes that are embedded in a larger graph15. Motif substruc-
tures are deemed as the building blocks of most networks16. However, a majority of the existing literature related 
to network resilience and recovery focuses on non-temporal networks in which the effects of perturbations are 
examined based on fluctuations in the global network properties (such as giant component size), and network 
recovery is quantified based on the time it takes for global network properties to be restored to their steady 
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state level. This approach to characterization of network resilience and recovery is particularly problematic in 
temporal networks where local topological and dynamical properties that vary with time may not assessed with 
traditional measures. This limitation has led to an incomplete understanding and characterization of network 
resilience and recovery.

Recently, limited studies related to characterizing urban mobility networks based on their motifs have primar-
ily focused on understanding structurally and spatially heterogeneous patterns of urban mobility networks17, 
finding differences between telecommuters and commuters18, modeling of human activity and mobility7,19, and 
urban traffic speed prediction20. A number of other studies have examined motifs in transportation networks 
(such as road networks and airline networks). Iovanovici et al.21 used motifs on transportation networks to better 
understand their topology. Jin et al.22, in calculating motifs for airline networks found that adjusting the number 
of proper network motifs is useful to optimize the overall structure of airline networks for profitable air transport.

Motifs and their characteristics play an important role in topological and dynamical properties of networks 
(and temporal networks in particular). The current state of the art, however, is rather limited in terms of charac-
terization of perturbation impacts and recovery of network motifs. Hence, examining network motifs and their 
characteristics could move us closer to a more complete characterization and understanding of network resilience 
and recovery in many real world networks, such as spatial-temporal urban networks; however, very limited stud-
ies have attempted to characterize network resilience in disasters based on the dynamic properties of motifs. 
Dey et al.23 studied network resilience and reliability under various types of intentional attacks using motifs on 
electricity transmission networks of four European countries. The findings of the study highlight the importance 
of characterizing the dynamic properties of motifs in assessing network resilience. In particular, we hypothesize 
that, in temporal networks, characterization of network resilience based on motif properties may reveal extents 
and patterns of impacts and recovery at the substructure level different from the patterns observable at the 
network level. For example, In studying brain networks, Duclos et al.24 found that motifs show re-organization 
during loss and recovery of consciousness but global network properties are not able to consistently distinguish 
between responsive and unresponsive states. A similar phenomenon might also exist in human mobility networks 
during flood-induced perturbations. To test this hypothesis, we utilized high-resolution location-based data to 
construct and analyze human mobility networks in Harris County, Texas in the context of the 2017 Hurricane 
Harvey and its flooding to uncover dynamic properties of motifs during perturbation and early recovery and 
draw insights regarding differences in resilience patterns at a subgraph level versus a global-network level.

Hence, the main idea motivating this study is that the impacts of perturbations on the characteristics of 
network subgraphs (motifs) and their characteristics could vary from what could be observable using the global 
network properties; hence, by examining perturbation impacts and recovery at the subgraph level, provides a 
more complete understanding of network resilience and recovery in temporal networks. To this end, we evaluate 
the effect of disasters on network sub-structures (motifs) in the mobility networks using census tract-level mobil-
ity data for Harris County at the time of Hurricane Harvey. We start by creating a spatio-temporal representation 
of human mobility using network graphs. We then investigate characteristics exhibited by sub-structures in the 
network. In particular, we compute motif concentration; motif persistence, i.e., analogous to persistence homol-
ogy; and motif conversion trends to assess pathways to recovery. We also calculate motif attributes such as travel 
volume and travel distance attributed by different motif types. We compare the results obtained from analyzing 
network sub-structures with temporal fluctuations in global network properties, such as network diameter 
and modularity, to address of the primary question of whether global networks can adequately capture hidden 
mechanisms of insatiability in mobility networks. Accordingly, we address the following research questions: 

1.	 To what extent the distribution, stability, and attributes of different motifs vary during steady state?
2.	 What is the extent of flood-induced perturbations on motif characteristics, such as distribution, stability, 

attributes and their recovery?
3.	 What differences exist among patterns of network recovery at global-network scale versus at the motif-

distribution and attribute level?

The results and findings move us closer to a more complete understanding of resilience characteristics in human 
mobility networks during disasters. The results also provide useful insights for transportation planners, disaster 
managers, and public officials to better evaluate and monitor impacts and recovery in human mobility networks 
during crises. Also, The outcomes from this study could provide new and valuable insights for understanding 
resilience in other networks, such as transport, ecological, and biological networks based on detecting sub-
structure instability before they are manifested in global network properties.

Results
Motif distribution.  Figure 1 shows the motif distribution for August 19, 2017 (steady state) and August 
26, 2017 (perturbed state), for the same day of the week. Evidently, for both stable and perturbed period, motifs 
demonstrate the following order of occurrence - M5 > M4 > M6 > M2 > M3 > M1 . Motifs 5 and 4 show the highest 
abundance and motifs 1 and 3 show the lowest frequency of occurrence. It is interesting to note that motifs 3 
and 4, which have the same number of edges but differ in their structural orientation, show drastic differences in 
motif abundance. The same pattern is observed for motifs 5 and 6.

We also computed the motif distribution change for each day as described in the methods and plot the time 
series obtained. Figure 2 shows the motif distribution change of each of the motifs for weekdays, weekends, and 
7-day moving average for all days. The changes in motif distribution indicate a change from the steady-state 
dynamics at the subgraph scale. The results suggest that motif distribution stays mostly stable during the steady 
state. This result suggests that motif distributions are stable in the absence of disturbances in human mobility 
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networks. The changes in motif substructures in the network happened only on the day of the landfall of Harvey 
in Houston, August 25. The frequency of motifs 1–4 had a 50% reduction in motif distribution for some of the 
days during the Harvey period. While most of the motifs showed a decrease in distribution, the frequency of 
motif 5 increased by 30% some days (20% of average increase), and motif 6 remained fairly unaffected. For most 
of the motifs, maximum disruption occurred on August 26 and August 27. The observed changes happened 
on the first day of impact (hurricane landfall when people stayed sheltered in place or had already evacuated).

a b

Figure 1.   Distribution of different motifs in terms of relative occurrence. Relative occurrence indicates the 
composition of the mobility network in terms of the six motif types. (a) For August 19, 2017 and (b) for August 
26, 2017. During impact days (August 26), although proportion of individual motifs vary, they show similar 
patterns of relative occurrence, indicating stability of order of relative occurrence even during disruptions.

Figure 2.   Motif distribution change with respect to baseline for different motif types. (a–f) The change in motif 
distribution for motifs 1 through 6, respectively. Percent change reflects the change with respect to baseline for 
the same day of the week during first 2 weeks of August. Before Harvey and 2 weeks after Harvey, the change 
in motif distribution in close to zero indicating stability in non impact or stable days. The densest motif, motif 
1, shows the highest decrease during Harvey, while motif 6 remains unaffected. Motif 6 is the only motif that 
shows increase and may correspond to evacuation related travel as this motif structurally represents chain type 
of structure.



4

Vol:.(1234567890)

Scientific Reports |        (2023) 13:10953  | https://doi.org/10.1038/s41598-023-37965-6

www.nature.com/scientificreports/

We observed that motifs 1 and 2, the most densely connected motifs) experienced the maximum impact show-
ing a decrease of about 40% and 30%, respectively. Motif type 6, which models hub and spoke kind of movement 
showed close to no impact. This result suggests that travel patterns that involved census tracts as hubs (due to 
the presence of major points of interests) showed the highest robustness to flood-induced perturbations. Motif 5, 
which forms a chain, exhibits increased occurrence on the disaster days. This may correspond to the relocation of 
residents to other areas or the relief and rescue efforts. This however can only be confirmed with the availability 
of more granular data such as user waypoints data.

For most of the motif types, near complete recovery of distributions to the steady state patterns can be 
observed in the week following September 4, but the abundance of motif 1 modes still remained 10–15% lower 
than the steady-state baseline for two more weeks, suggesting that dense movements had not fully recovered. A 
similar pattern can be weakly observed for motif 3 as well. Motifs 1 and 3 that are the least abundant (and most 
stable) during the steady state appear to be impacted for a longer duration compared to relatively more abundant 
(and less stable) motif types.

Motif persistence.  We identified that motif 1 experienced the highest impact due to Harvey flooding, and 
motif 6 remained fairly unaffected from the previous set of results. By observing the persistent diagrams for 
motifs, we analyzed whether these patterns also translate to temporal stability of motifs. Figure 3 shows the motif 
persistent diagrams for all motif types. Each marker in the figure represents a particular birth, death event for 
a set of node pairs. The colors represent the motif type that the four-node pairs convert to at the death event. If 
they become disconnected and do not fall in any of the motif types, they are represented by gray-colored marker. 
The size of the markers represent the number of four-node pairs showing same patterns for a birth, death event 
pair. For instance, if four-node pairs corresponded to Motif 1 on August 14 and converted to Motif 2 on Septem-
ber 10, they will be represented by orange marker of the smallest size in Fig. 3 at point August 14 on Birth axis 
and September 10 on Death axis. Markers closer to the diagonal imply that the time span between the birth and 
death of motif is short, or in other words, they exhibit a short life. Similarly, markers further from the diagonal 
mean longer life span. We interpret the results by considering both the frequency of conversions and the node 
color. For example, if for motif 5 we see that the node size is large for a particular (birth, death) event and the 
node color is grey (representing a disconnected structure) then most of the motifs become disconnected instead 
of converting to other motif types, making it unstable.

Considering this idea, it is clear from Fig. 3 that, at the death event of motif 1, most of the conversions hap-
pen to motif 2. Also, the markers are denser towards the diagonal line, which indicates that motifs in general are 
not very stable, and they have higher tendency to convert to other motif types, even in the steady-state period. 
Compared to other motif types, motif 1 appears to be temporally more stable as the markers also populate the 
areas away from the diagonal. A sparsely populated rectangular region in Fig. 3 for motif 1 shows that most of 
the motifs of this type that originated on or before August 27 covert to other motif types or become disconnected 
on August 28. This pattern is also weakly evident in motif 2 as well. Based on the spread of markers in the motif 
persistence plots, motif type 1 is the most stable type, followed by motif types 2 and 4, then motif types 5 and 6, 
and lastly motif type 3. It is also noteworthy that motifs that have one or more three-node cycles tend to have 
conversions to other motif types instead of being completely disconnected. For example, we find that (1) motif 
type 1 has higher tendency to convert to motif type 2, (2) motif type 2 has higher tendency to convert to motif 
type 1 or 4, and (3) motif type 4 converts equally to motif type 2 and being disconnected. Other motif types do 
not exhibit this behavior and have higher tendency to become disconnected and not fall in any of the six motif 
categories. This result suggests that motifs have an inherent tendency to preserve cycles. It is interesting to find 
that motif type 1, which shows the most decline in motif distribution, is the most stable motif during the steady-
state period. Motif distribution of motif 6 is stable under perturbations but it is one of the least temporally stable 
motifs during the steady state.

Motif conversion.  From the motif persistence diagram, we can determine the temporal stability of motifs. 
To evaluate if the motifs are stable and to look for hidden mechanisms of motif conversions that help us examine 
network recovery, we analyzed motif conversion trends for each day. For example, if we look at conversion trends 
for motif type 1 for August 1, we calculate the percentage of node pairs that convert to different motif types or 
remain the same on August 2. We observe that these conversion patterns are similar for same days of the week 
(results can be found in the Suppl. Appendix). Due to this similarity in motif conversion patterns for different 
days of the week, we plot conversion trends for all motif types including symbolic motif type 0 for different days 
of the week, separately.

Figure A1 of Suppl. Appendix shows the results for motif conversions for all motif types for different days 
of the week. The days before and up to 3 weeks after the landfall of Harvey are marked separately in the figures 
to identify outlier days. Every motif, irrespective of the day of the week, shows a particular conversion pattern. 
For example, motif type 1 converts to same motif type for roughly 50% of the time followed by motif type 2 and 
type 4, and it is less likely to convert to motif types 0, 3, 5 and 6. Although the percentages differ for different 
days of the week, the proportion of conversions and their patterns stay the same for all motif types. Motif types 1 
and 2 are the most stable ones as they are more likely to retain their motif type with less conversion across days. 
Motif type 4 shows a similar conversion percentage to type 4, 5 and 0. Other motif types have higher tendency to 
convert to motif 0 or become disconnected. Motif type 3 is the least stable as it is less likely to retain its structure 
and mostly converts to motifs 1, 2, 4, 5 and 0, which is also evident from the motif persistence results. Although 
we see that these motifs show high temporal instability in terms of frequent conversions to other motifs types, 
their conversions follow distinct patterns. This indicates that even though the motifs appear to be temporally 
unstable, their conversion patterns are stable during nonimpact days.
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Figure 3.   Motif persistence diagrams. (a–f) The birth and death of re-sampled four-node pairs in the network 
for motifs 1 through 6, respectively. Birth represents occurrence of a motif structure in a four-node sampled 
node pair. Death represents structural change in terms of links for the same four-node sampled node pair to 
either a different motif type or disintegration (four-nodes become disconnected). The markers on the plots 
represent specific conversions (birth, death event) based on two attributes: color represents to motif type that the 
sampled node pair gets converted to and marker size shows the number of four-node pairs undergoing the same 
type of conversion. Markers very close to the diagonal line imply that the motifs die as soon as they are born 
indicating that they are very short-lived and temporally unstable.
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Days corresponding to Harvey impact and flooding days (August 25 to August 29, 2017) and one day before 
the landfall (August 24) show different motif conversion trends than is evident in the rest of the data. The days 
up to one week after Harvey also show different conversion patterns. All motifs show higher conversions to motif 
type 0 on August 25, 26, and 28, which is also evident from the motif persistence plots. The days following landfall 
on August 25 till September 4, 2017 show higher conversions of other motif types to motif 1 and 2, indicating 
the tendency of sub-structures to recover through conversions to denser motif types that are also temporally 
more stable. After September 4, conversion patterns follow the usual trends indicating full or significant recovery 
after September 5, 2017. This result shows that network recovery related to motif conversions happens within a 
week after the hurricane left Harris County. The network recovery date is based on motifs conversion patterns is 
similar to the one obtained from the global network measures (as discussed in future sections).

Motif characteristics.  So far we have focused on finding motif sub-structural changes in motifs. In the next 
step, we evaluate how motif properties, such as average travel volume and average distance, change with time. 
Figures 4 and 6 show the absolute values of median of the average motif distance and travel volume, respectively. 
Figures 5 and 7 show the percent change with respect to baseline of median of the average motif distance and 
travel volume respectively. From Fig. 4 it is clear that motif 6 connects the places that are far, followed by motifs 
4 and 5. Motif 1 connects the nearest places, followed by motif type 2. During weekends, the distance reduces 
for all motif types, indicating closer trips, while the motif distribution remain the same. Moreover, based on 
the results from the previous section, we can say that temporally stable motifs are formed by trips with shorter 
distances, and least-affected motif based on concentration change connects far apart places. The results of the 
percent change in the motif distance metric indicates that all motif types got affected very similarly as the curves 
are plotted very close to each other. There is a 40% decrease in distance for all of the motifs during the perturbed 
period. This disruption happens immediately after landfall of Harvey and recovers within a week. There appears 
to be no permanent impact in the motif distance characteristic beyond one week from the landfall.

Travel volume shows contrasting but intuitive trends as compared to motif distance metric. Motif 1 cor-
responds to the highest travel volume, and motifs 6, 5, and 3 have the lowest. The percent change in the travel 
volume with respect to the baseline shows an increase in travel volume a day before the landfall of Harvey and 
on the last day of impact period, August 29, 2017. An increase in movement before to landfall suggests pre-
disaster preparedness efforts and the increase on the last day of the perturbed period suggests response efforts 
after Harvey reduced in intensity. It is interesting to note that motif structures did not exhibit any structural 
changes before landfall, but travel volume motif characteristic is able to capture these movements. While most 
of the structural changes in the motifs recover within a week of landfall, motif travel volume seems to show a 
short-term impact with around 10% less travel volume sustained until the end of September.

Global network properties.  The previous results focused on the sub-structure characteristics and the 
impact of perturbations and recovery at the motif level. In this section, we present results related to the global 
network properties, such as average network diameter, modularity, density, average degree, diameter, and giant 
component size to evaluate impact of Harvey on at global network scale for comparison with the impact extent 
and recovery at motif level.

While giant component size is one of the metrics researchers have used to evaluate network resilience, in our 
case, the network is more densely connected, so the giant component size remains the same as the total number 
of nodes (500) throughout the analysis period. In the case of human mobility network, giant component size 

Figure 4.   Absolute values of median of the average motif distance. The figure represents the median average 
distance that the each of the motifs connect spatially. Cyclic patterns of motif distance indicate shorter trips 
for each motif type on weekends. Denser motifs that have one or more three node cycles (motifs 1–3) tend to 
connect nearby places whereas less dense motifs connect longer distances on an average. During impact, all 
motifs show reduced distance indicating more localized travel.
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is not able to reflect changes due to impact of Harvey, indicating one of its drawbacks for dense networks for 
characterizing resiliency.

The network diameter which increased by 60% during the Harvey period and returned to the pre-disaster 
value on August 31 (Fig. 8. This change indicates earlier indication of recovery at this global network property. 
Network modularity that evaluates the level of clustering in the network shows similar trends to that observed 
for micro-structures, that is, motifs. We observed increased modularity and decreased average node degree 
and density in the network during the Harvey period. The recovery takes place within one week after Harvey 
dissipated (the same recovery duration that we observed in motif conversion and attribute analysis). This result 
indicates that properties such as modularity, average node degree, and network density are better able to reflect 
micro-structure dynamics for network resilience characterization. However, these global network measures could 
capture only some aspects of network sub-structure impacts and recovery dominated by the characteristics of 
abundant (and less stable) motifs. As shown earlier, the impact of flooding on the frequency of less frequent (but 
more stable) motifs is more extensive, and its recovery takes longer than what global network properties indicate.

Figure 5.   Percentage change of median of the average motif distance compared to baseline. Extension to Fig. 4, 
this shows percent change in the distance that the motifs connect. The change in distance for all motifs seems to 
be similar, indicating that all motifs showed equal impact for this motif attribute. Changes up to 40% is realized 
during Harvey as trips get restricted to nearby locations, but recover gradually to baseline levels in the first week 
of September. Temporary mobility changes are seen on September 4 and September 18/19 correspond to Labor 
day holiday and game days respectively, and not related to Harvey.

Figure 6.   Absolute values of median of the average motif travel volume. The figure represents the median of 
average travel volume that the each of the motifs represent. Denser motifs that have one or more three node 
cycles (motifs 1–3) tend to have higher travel volumes, whereas less dense motifs have very similar and low 
travel volume on an average.
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Discussion
The primary takeaway from our study is that an examination of resilience in temporal human networks can’t 
rely exclusively on global network measures; latent sub-structural network mechanisms must be investigated to 
gauge the extent of impact and recovery during perturbations, like urban flooding. This realization guided our 
research, as we utilized high-resolution aggregated location-based data to model the temporal human mobility 
networks in Harris County, Texas (Houston metropolitan area) during the 2017 Hurricane Harvey. The models 
enabled us to probe various characteristics like motif distribution, motif persistence and temporal stability, and 
motif attributes, thereby shedding light on the latent sub-structural mechanisms related to the resilience of 
human mobility networks in times of disaster-induced perturbations.

The analysis of network micro-structures suggests that motifs in mobility networks, even during steady states, 
do not exhibit high temporal stability. In general, frequently occurring motifs (e.g., motif 5) are temporally one 
of the least stable motifs, and structurally dense motifs (e.g., motif 1) are more stable temporally in a sense that 
they do not disintegrate into a disconnected component, but they are not abundant in the network. The reason 
for this dichotomy of abundance and temporal stability in motifs of human mobility networks is that motifs 
connecting shorter distances have high movement volume, and those connecting farther places have lower travel 
volume (consistent with the main idea of gravity model but at the motif level25). Hence, low volume links are 
more prone to falling below the significant number of trips threshold (and thus, become temporally unstable). 
This dichotomy of abundance and temporal stability in motifs of human mobility networks influences the way 
perturbation impacts and recovery are manifested in the global network measures. The abundant (and less tem-
porally stable motifs) experience relatively lower motif frequency change due to flood perturbations and faster 

Figure 7.   Percentage change of median of the average motif travel volume compared to baseline. Extension 
to Fig. 6 shown here is percent change in the travel volume that the motifs correspond to. There is a spike in 
travel volume for most of the motifs before and immediately after the impact duration which may correspond 
to evacuation based travel. The average travel volume decreases during impact for all of the motifs. Motif 6, 
corresponding to hub-spoke connection, shows the largest decrease. The average travel volume remains roughly 
10% lower than the baseline for the rest of the month for all motifs.

Figure 8.   Global network measures. Impact of Harvey on global network measures, such as giant component 
size, modularity, network density, average node degree, and diameter is shown. Plot of network density is 
not visible as it exactly overlaps with average degree since there are 500 nodes in each time step in the giant 
component.



9

Vol.:(0123456789)

Scientific Reports |        (2023) 13:10953  | https://doi.org/10.1038/s41598-023-37965-6

www.nature.com/scientificreports/

recovery. The indication of network impact and recovery measure by global network metrics is similar to the 
impact extent and recovery duration of abundant motifs. Global network measures might indicate a network has 
recovered, while less abundant motif types are still recovering in terms of their frequency in the overall network.

During perturbation impacts, we observe that motifs exhibit significant changes in their structure and 
attributes. In the perturbed state, motifs have different distributions; most show a decrease in motif count. The 
hub-and-spoke type of motif (motif 6) remains unchanged; a chain type of motif (motif 5) shows an increase. 
Distribution of motif 1 and average travel volume of motifs show extended impact during flooding, implying 
sustained perturbation in these motifs while other global network measure show full network recovery. The 
average distance that the motifs connect decreases by up to 40% during flooding indicating that motifs corre-
sponding to more short distance travel took longer to recover. This result implies that densely connected motifs 
corresponding to short-distance trips experience a greater sustained trip volume reduction, and thus take longer 
to recover from urban flooding.

In the analysis of change in motif concentration as shown in Fig. 2, we see that motif 1 shows the highest 
overall change in concentration but observe structural stability temporally as compared to motif 5. When we say 
that motif 1 is more stable than motif 5, we are not referring to the volume of the motif, but rather its propensity 
to maintain its structure over time (including conversion to similar dense motifs (1 to 2). Motif 1, despite seeing 
a sharp drop in its count during the perturbation as shown in Fig. 2, tends to retain its structure or convert to 
motif type 2 as depicted in our motif persistence and conversion analysis (Fig.  3 and Motif Conversion section). 
On the other hand, motif 5, despite showing a non-decreasing trend in its volume during the perturbation, tends 
to become disconnected instead of converting to any other motif type or a structurally similar motif, thus mak-
ing it less stable in our context. The analysis of change in motif travel volume also indicates up to 15% increase 
in movement volume for some of the motifs a day before and up to 20% on the last day of impact duration, 
suggesting preparedness of the residents for Hurricane Harvey. This pattern of preparedness behavior could not 
be captured through global network properties and structural attributes of motifs in human mobility networks. 
Motifs also exhibit different conversion patterns during flood-induced perturbations compared with the steady 
state conversion patterns. On the day of the landfall, most of the motifs break down into disconnected struc-
tures, but immediately after impact, motifs show high conversions to denser motifs (motif 1 and 2), indicating 
tendency of motifs to convert to temporally stable motifs as they recover from perturbations. As motifs recover, 
the conversion patterns return to the steady-state conversion patterns.

One of the important and major findings of this study is that commonly used global network properties, 
such as network diameter and giant component size to evaluate resilience of a network, do not fully capture the 
underlying failure mechanisms in temporal networks. For example, in the case of our human mobility network 
recovery, network diameter indicated recovery within 2 days after the disaster, but the sub-structure motifs in 
general took one week to indicate recovery, and some characteristics, such as movement volume showed recovery 
was not achieved till the end of September 2017. Although other global network measures, such as modularity, 
average degree, and network density, show disruption duration up to one week after Harvey, they do not provide 
any insight regarding the slower recovery of less abundant motifs that sustained for a longer period. Also, we are 
able to capture pre-disaster preparedness behavior-based movements through motifs while these preparedness 
patterns are not apparent in the global network properties. The inadequacy of global network measures for resil-
ience characterization in temporal networks is due to the fact that we observe unified structural changes when 
we look at global properties, but the analysis of substructure level changes reveal how changes in motif distribu-
tions, their conversion pattern, and attribute variation all build up to global failure. Therefore, to understand 
the resilience of temporal human mobility networks (and other temporal networks), it is essential to examine 
the microstructures and their perturbation impacts and recovery. From a practical perspective, the results can 
provide disaster managers, public officials, and transportation planners with insights to better evaluate impacts 
and monitor recovery in affected communities based on the patterns of impact and recovery in human mobility 
networks at both substructure and global network levels.

Our study has certain limitations. To improve computational efficiency, we used four-node undirected motifs 
as building block for the network, but use of directed motifs to represent the network will better explain the 
flow of population. In addition, our study does not incorporate node attributes, such as presence of points of 
interest, spatial area characteristics (e.g., residential zone, business zone, and school), and population density. 
Adding these attributes along with road network layer informing connectivity patterns between census tracts 
will provide more information on what each motif represent in terms of travel characteristics. Moreover, our 
study did not incorporate specific demographic factors such as population size or age distribution into our 
analysis. Though our study offers an in-depth analysis of motif changes during perturbations, highlighting the 
resilience of temporal human networks, a critical avenue for future research is to delve into the spatial patterns 
of these motif changes. Such a focused exploration promises to reveal how specific geographic areas within 
our study region respond to perturbations and provide a more nuanced understanding of the spatial behavior 
and spread of motifs. Future research may also benefit from assessing the role of demographic characteristics 
to understand the interplay between demographic characteristics and motif changes in the context of network 
resilience. Studies generalizing motifs by considering directed motifs and incorporating node attributes may 
be able to provide additional insights into substructure behavior and may give some universal laws governing 
network microstructures associated with resilience.

Data and methods
Data description and network generation.  We used mobility data provided by StreetLight, a com-
mercial platform which aggregates and anonymizes movements between spatial areas using smartphones as 
sensors to measure vehicular, transit, bicycle, or foot traffic. StreetLight Data provides origin–destination (O–D) 
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analysis data. Our analysis aggregated anonymized data from cell phones and GPS devices to create travel met-
rics, such as duration and distance26. These data incorporate the trips using different modes of transportation, 
including personal cars and public transit. By analyzing more than 40 billion anonymized location records across 
the United States in a month and enriching the analysis with additional sources, such as digital road network 
and parcel data27, StreetLight Data achieves an approximate penetration rate of 23%28. This penetration rate is 
indicative of the data’s representation across distinct census divisions in North America’s road network. While 
we cannot specifically comment on the exact penetration rate for Harris County, this level of data representa-
tion provides a reasonable degree of confidence in the sample’s utility for examining human mobility network 
characteristics during Hurricane Harvey. Therefore, despite the potential variance in regional and scale-based 
penetration rates, we assert the validity of the data used in this study for its intended purpose. We used census 
tracts (CTs) as spatial areas for data aggregation and constructing the spatial human mobility network. Harris 
County has around 800 CTs but due to restrictions from the data provider on the number of spatial units across 
which aggregated mobility information can be gathered, we used modified census tract polygons for Harris 
County. StreetLight limited the number of polygons that can be provided to query the total number of trips 
between them. Due to this limitation, all the Harris County CTs could not be provided as is. Modified CTs were 
obtained by merging smaller CTs with their neighbors until we reached 500 CT polygons. Figure 9 shows the 
spatial distribution of the obtained modified CTs. We used these modified CT polygons to get information on 
the aggregated number of trips between them at an hourly resolution from August 1, 2017 to September 30, 
2017, that we later aggregated at daily period.

To construct the human mobility network, we consider a graph G = (V ,E,ω) , where V is the set of nodes, 
E ⊂ V × V is the set of edges, and ω : V × V �→ R≥50 is an edge weight function such that each edge euv ∈ E has 
a weight ωuv . The nodes represent the centroid of the modified CT polygons, the edges represent the presence of 
significant number of trips between the nodes, and ω is a mobility network weight function that represents the 
movement volume. The total number of nodes in G is n = |V | . We use G as an undirected network representa-
tion, i.e., for all euv ∈ E , euv ≡ evu . The adjacency matrix of the network is defined by Aij = ωij , if (i, j) ∈ E , 0, 
otherwise. If ωij = 1 , G is called unweighted network.

Human mobility networks are temporal networks. The structure of a temporal network changes in time, 
which can be represented with a time-indexed graph Gt = (V(t),E(t),ω(t)) , where V(t) is the set of nodes in 
the network at time t, E(t) ⊂ V(t)× V(t) is a set of edges in the network at time t, and ω(t) is an edge weight 
function at time t. Here, t is either discrete or continuous. For this study, we constructed a mobility network 
( Gt ) for each day (t) between August 1, 2017 to September 30, 2017: G = {G1, . . . ,GT } , where T = 61 . This 
timeframe includes the major events during Harvey, i.e., (1) August 23, 2017: Declaration of state of disaster for 
30 Texas counties, (2) August 25, 2017: Harvey makes landfall in Harris County (Houston), and (3) August 29, 
2017: Further flooding in Houston due to release of water from the Addicks and Barker reservoirs. We therefore 
define the Harvey period as the duration from August 25 to August 29, 2017, the timeframe during which Harris 
County suffered direct damage from the hurricane.

Temporal mobility networks generated from the StreetLight dataset directly had 500 nodes and roughly 
30,000 edges in the nonperturbed state. Given that our algorithm’s run time depends on the network’s size and 
complexity, we introduced a threshold to focus on significant mobility patterns and maintain computational 
efficiency. This threshold was defined as aggregated movement of more than 50 in a direction. Consequently, 
we only incorporated edges into the network that exhibited a movement greater than this threshold in each 
direction. We found that this approach did not significantly alter the network’s structure, as trips less than 50 
constituted only about 3–5% of the edges during non-impact days. We understand, however, that this threshold 
choice may mask some of the more nuanced effects of the perturbation, especially when considering the possible 

Figure 9.   Spatial distribution of modified census tracts that are used as spatial units to aggregate data and 
construct the human mobility network for Harris County. Red nodes represent the centroid of each modified 
CT and hence, the nodes in the O–D network.
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disproportionate impact on farther CTs with a less number of trips. However, given the minor representation of 
these edges in the network, we believe the threshold of 50 trips allows us to maintain a realistic representation 
of the overall mobility patterns and the network’s response to perturbation. Future work will further investigate 
this aspect, considering methods that balance computational efficiency with a detailed understanding of network 
behavior under perturbation.

To generate the final network, we added the links having movement in both directions to get an undirected 
origin-destination mobility network. We followed the same approach for network generation for all the days in 
the study period.

The number of trips between each modified census tract or the weight of the edges are expected to drop 
during the hurricane and flood period as movement may be restricted and usual commute is greatly impacted 
by road inundations. This may cause many edges to go under the threshold of 50 trips and thus they would not 
be considered as a part of the network. The lost edges imply that the movement between the CTs connected by 
these edges are insignificant and hence in a perturbed or impacted state.

Network substructure, motifs.  After constructing the mobility networks for different days, we examine 
the motifs in the networks. A motif, G′ = (V ′,E′) , is defined as a recurrent multi-node induced subgraph pattern 
in G, i.e., V ′ ⊆ V  and E′ ∈ E , and E′ contains all edges euv ∈ E such that u, v ∈ V ′ . For our analysis, we consider 
four-node motif structures as shown in Fig. 10. Global network properties focus primarily on global connected-
ness at the macroscopic level. Network motif analysis, on the other hand, captures micro structures and repre-
sents the local interaction pattern of the network. Motif types 1 and 2 represent densely connected subgraphs 
where almost all nodes are connected to each other. Therefore, they represent movement between CTs that 
exhibit most interconnected movement patterns. Motif type 4 has a three-node cycle and an open edge. Motif 
type 3 and 5 may represent general commute patterns for work or other lifestyle patterns. Motif type 6 represents 
a hub and a spoke structure. This represents a hub CT that has overall inflow or outflow of general movement to 
other CTs. Motif type 0 is a symbolic motif type that we use to identify four-node pairs where at least one node 
is disconnected from its subgraph and does not fall into any of the six motif types.

Motif distribution.  From the daily temporal graphs related to human mobility, we calculated the motif 
count for each graph, Gt representing each day from August 1, 2017 to September 30, 2017. Since the graph is 
dense with 500 nodes and nearly 30,000 edges, it is computationally very difficult to count every motif present 
in the network. To overcome this limitation, we chose 100,000 four-node pairs at random from the network and 
identified the motif type that they correspond to. This was under the assumption that 100,000 four-node pairs 
provide a good representation of the network. The motif count distribution for the six motif types mentioned 
before do not change when we resample 10,000 or more four-node pairs. Therefore, we can be confident that this 
approach provides near-similar distribution of actual motifs present in the network. This approach took more 
than 72 h on a high-performance server for random sampling, unique sample identification, and motif count-
ing. The code was developed on a Python base using Networkx library and the core code was developed by the 
authors for motif identification.

In the first step of motif analysis, we examined how disasters or perturbation impact motif distribution in 
the network and determined the impact and recovery point in the network based on changes in motif distribu-
tions. We looked at the first 2 weeks of August as the baseline period and compared the motif distribution in 
terms of percentage of each type of motif in a day for the subsequent weeks. Baseline values were computed for 
each day of the week separately and were only compared to same days of the week. To account for differences 
in movement patterns over weekdays and weekends, we plotted results for weekdays and weekends separately.

We evaluated the changes in motif distribution where the distribution ( Di ) of an n-node motif of type i can 
be defined as the ratio of its number of occurrences ( Ni ) to the total number of n-node motifs in the network, 

Figure 10.   Motif substructures used in this paper. (a–g) Represent the six motifs that are the only way a 
four-node pair can be connected to form a connected subgraph. (h) Symbolic motif type 0 that corresponds to 
disconnected four-node subgraphs.
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i.e., Di = Ni/
∑

i Ni , where 
∑

i Ni is the total number of n-node motifs. Also, to reduce the noise in the data, 
and remove the weekday-weekend effect, we looked at 7-day moving average for all days. We also looked at the 
absolute values for motif distribution for each of the days to evaluate the abundance of each motif type in the 
network to determine if the frequently occurring motifs exhibit higher temporal stability.

Motif persistence and evolution.  In the next step, we investigated the temporal stability of the motifs 
and introduced a new method of visualizing motif stability to identify stable motifs and their conversion trends. 
To evaluate the stability of motifs, we sampled around 900,000 unique four-node pairs from the graphs that con-
tributed to at least one of the motif types for any of the days and tracked the motif type exhibited for each day. For 
example, if nodes 1, 2, 3, and 5 are one of the sampled pairs, then we track what motif type it corresponds to for 
each of the days. If it does not fall in any of the six motif categories shown in Fig. 10, then we assign it a symbolic 
motif, motif type 0, which means that at least one of the nodes from the sampled pairs is isolated.

We then visualized persistent diagrams for these motifs, analogous to persistent homology diagram 
representation29 where the birth event signifies occurrence of a particular motif on that day and death event 
corresponds to conversion to a different motif type or getting disconnected by losing one or more nodes from the 
four-node subgraph. For example, if we are looking at the stability of motif type 1, then the birth event signifies 
occurrence of motif type 1, and death event corresponds to conversion of this motif to some other motif type or 
getting disconnected (conversion to motif type 0). These persistent motif figures represent the life of each of the 
motif types and what conversion patterns they exhibit. In contrast to barcode approach30, where there is a single 
birth and death event, motifs can show multiple birth-death patterns. This is because motifs can convert back 
to their original motif type. If a motif shows long life, then we can infer that particular motif type is persistent 
across all the days and thus more stable.

To better understand these conversion patterns and to identify the markers for recovery, we plotted the motif 
trends for each motif for all consecutive days. This is explained in more details in the result section.

Motif characteristics.  Along with structural characteristics of motifs in terms of structural changes, we 
also looked at how the intrinsic characteristics of these motifs change over time. To understand how motifs 
shape the characteristics of human mobility networks and the impact of disasters on these properties we looked 
at the change in average travel volume and the average distance metric for each motif type. Average travel volume 
for a motif is calculated by adding all the link weights for a motif subgraph. This metric represents the average 
travel volume that a motif is contributing to the entire network.

We first get a list of all four nodes sampled in our analysis to get motif distribution. We then split the four-
node pairs into six categories based on their corresponding motif. For node pairs in each of these categories 
(node pairs belonging to a particular motif type) we get the motif subgraph and calculate the average of the edge 
weights (travel volume). We reported the median of these average values in each category. Absolute values of 
computed measure and change with respect to baseline are plotted for all days. Average motif distance represents 
the distance range that a particular motif connects on average. To compute this metric, we first geocoded all the 
nodes in the network based on the location of the nodes that represent the centroids of CTs. Then, we calculated 
the distance represented by each of the links in the motif subgraph and calculated its average. For all the motifs 
of the same type, from the distribution of these average distance values, we reported the median value. Similar 
to average motif travel volume, we plotted the absolute and percent change for the median of the average motif 
distance value for all motif types for all days.

Global network properties.  Global network properties such as giant component, network diameter, and 
modularity are studied to understand the impact of perturbation on networks and are comparatively straightfor-
ward to compute. To understand if temporal changes in the substructures of a network shows similar changes at 
the global scale, we looked at network properties such as average network diameter, modularity, density, average 
degree, and giant component size. Network diameter is a measure of the shortest distance between the two most 
distant nodes in the network. Networks with smaller diameters are more resilient, and those with larger diam-
eter are sparse and have fewer redundant connections31. Modularity measures the degree to which a network’s 
densely connected nodes can be decoupled into separate communities or modules8. Increased modularity in a 
network safeguards the network against the spread of shocks, such as infectious diseases32. In the case of mobility 
networks, increased modularity would imply that the movements are more localized and happen mostly within 
different clusters which reflects that movements do not take place freely and thus increased modularity is not a 
desired trait. Network density is an indicator of density connections in a network. It is computed by calculating 
the ratio of number of edges present in the network with the possible number of edges33. Average degree of a net-
work gives an indicator of the average number of links present for each node in the network. Giant component 
size is an indicator of the number of nodes present in the largest connected component in a network. We calcu-
lated these global network measurements and their fluctuations during the study period to examine the extent 
of impacts and duration of recovery in human mobility networks for comparison with the patterns manifested 
at the sub-structure level.

Data availability
The data that support the findings of this study are available from Streetlight (https://​www.​stree​tligh​tdata.​com) 
but restrictions apply to the availability of these data, which were used under license for the current study, and so 
are not publicly available. Data are however available from the authors upon reasonable request and with permis-
sion of Streetlight. The source code can be obtained from the corresponding author upon reasonable request.

https://www.streetlightdata.com
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