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Abstract— The problem of combinatorial filter reduction
arises from resource optimization in robots; it is one specific
way in which automation can help to achieve minimalism, to
build better robots. This paper contributes a new definition of
filter minimization that is broader than its antecedents, allowing
filters (input, output, or both) to be nondeterministic. This
changes the problem considerably. Nondeterministic filters may
re-use states to obtain more ‘behavior’ per vertex. We show
that the gap in size can be significant (larger than polyno-
mial), suggesting such cases will generally be more challenging
than deterministic problems. Indeed, this is supported by the
core complexity result established in this paper: producing
nondeterministic minimizers is PSPACE-hard. The hardness
separation for minimization existing between deterministic filter
and automata, thus, fails to hold for the nondeterministic case.

I. INTRODUCTION

With increasingly complex robots, one naturally turns to

computational tools to help automate design processes. This

leads directly to the practical question of how to reduce a

robot’s resource footprint. Minimizing resources causes one

to reason about their necessity, which furnishes more fun-

damental insights about the underlying information require-

ments of particular robot tasks [1]. This paper focuses on

minimizing state in combinatorial filters [2], discrete variants

of the probabilistic estimators so widely used in robotics [3].

While their minimization problem is easy to formulate (to

wit: reduce the number of states while preserving input–

output behavior), it is computationally hard to solve.

Combinatorial filter reduction was first introduced as an

open question by Tovar et al. [4, pg. 12]. They introduced

the scenario in Fig. 1a to exemplify the problem: two

agents wander in a circular world, and three sensor beams

(producing symbols ‘a’, ‘b’, and ‘c’, resp.) partition the

environment into sector-shaped regions (labeled 0, 1, 2). The

beams detect if an agent crosses the dividing line but senses

neither the agent’s identity nor direction of motion. With

the agents starting in some known configuration, the task is,

given a sequence of sensor readings (i.e., a string of a’s, b’s,

c’s), to determine whether the pair are in the same sector

or not. This problem may be solved via a filter, a finite

transition system akin to a Moore machine transducer whose

vertices bear an output (or color). Starting at the initial state,

one traces the input string forward to produce a sequence

of colors that represent estimates. When every string gives a

solitary tracing, the filter is deterministic. One wonders: what

is the smallest filter for tracking the co-location of our two
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Fig. 1: Combinatorial filter minimization, as originally motivated
by [4]: (a) A pair of agents move in a circular environment with
three beam sensors, partitioned into regions, indexed by numbers 0,
1 and 2. Letters ‘a’, ‘b’, and ‘c’ denote observations from each of
the three beams. (b) A nondeterministic filter to estimate whether
these two agents are in the same region (red) or not (cyan). (c) The
deterministic version of the same. (d) A minimal deterministic filter.

agents? Only 4 states are required. See Fig. 1d; the minimal

filter is deterministic. Other than human nous (how Tovar

& friends did it), one may produce a minimal instance by

starting with the filter obtained by directly transcribing of

the problem, and applying a reduction algorithm.

Most prior work on combinatorial filters, including all

research on filter reduction until now [5]–[9], concerns deter-

ministic filters. The present paper, in its first part, presents a

compelling practical case for the utility of filter minimization

methods that accommodate nondeterminism. The second part

of this paper examines the hardness of the minimization

problem for filters with nondeterministic inputs, including

finding both deterministic and nondeterministic minimizers

for nondeterministic input filters. We show that, under com-

monly held computational complexity assumptions, these

problems are harder than the deterministic case. In what

follows, we leverage hardness results from automata theory

to establish these facts, which has the important added benefit

of leading to a broader and clearer understanding of the

relationship between filter and automata minimization.

II. THE VALUE OF NONDETERMINISM IN MINIMIZING

COMBINATORIAL FILTERS

Existing research on combinatorial filter reduction [5]–[9]

only deals with deterministic input filters and deterministic

output filters (or minimizers). To understand the implications

of this, let’s return to Fig. 1 in some detail. To arrive at the 4-

state minimizer, we begin with the diagram in Fig. 1a. Using



the assumption of continuous motion and beginning at a

state representing the initial agent configuration, we trace all

possible events forward, coloring the conditions encountered

appropriately (red for together; cyan otherwise). The result,

Fig. 1b, is not deterministic. To apply a minimization algo-

rithm, the filter must be converted to an equivalent one that is.

The process of determinizing produces a filter (Fig. 1c) that

can then be fed into a minimization method to yield Fig. 1d.

This procedure goes from 9 states, to 6, before reaching 4.

But now consider the nondeterministic 5-state filter in

Fig. 2a. To find a minimal filter, it can be determinized

(via a power set construction [10]) to track the 24 = 16
distinct information states shown in Fig. 2b. Once minimized,

it gives the deterministic filter in Fig. 2c. The growth in the

number of vertices, caused by the need to determinize for

the minimization algorithm, indicates trouble. Not only does

the set increase exponentially, but this much larger object

becomes the input for an exponential cost algorithm (as the

problem is NP-hard [5]). Double trouble.

To by-pass this expansion, one requires filter reduction

methods that are able to consume nondeterministic filters

directly as input. Looking again at Figs.. 2a and 2c, the dra-

matic compression that cancels the extreme expansion raises

some questions. Do large deterministic instances arising from

small nondeterministic ones really induce hard minimization

problems? Or are they instead structured in some special

(sparse or low-density) form, conserving underlying infor-

mation? Computational complexity provides clues: e.g., in

characterizing the space requirements of direct nondetermin-

istic filter to deterministic minimizer computation.

If nondeterminism can be of added value as input to

a minimization algorithm, what about as its output? In

finite automata minimization, the smallest nondeterministic

automata can be smaller than any deterministic one. Typical

examples exploit the fact that accepting a string in the

nondeterministic automaton requires that some tracing arrive

at an accepting state. For filters, analogous instances fail

owing to their differing semantics (stated formally in the

next section). The analogous fact, however, does hold. A

small example suffices to show this: the deterministic input

filter given in Fig. 3a has 19 states, but can be reduced

to a deterministic minimizer with size 14. This minimizer

has a single color selected for each of the 5 leaf states

which have a choice, and then merges identically colored
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Fig. 2: (a) A nondeterministic filter. (b) A deterministic form
obtained via the power set construction. (c) A minimal filter.
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Fig. 3: (a) A 19-state deterministic filter that has no deterministic
minimizer with fewer than 14 states. (b) A minimal nondetermin-
istic 13-state minimizer for the filter above.

leaves. However, the filter can be shrunk still further: Fig. 3b

gives a nondeterministic minimizer possessing only 13 states.

Nondeterminism, then, provides extra freedom that can be

exploited to further reduce filter size.

To summarize: nondeterminism may be practical impor-

tance for two reasons: (i) nondeterminism in the input

allows minimization to proceed directly on models of certain

problems, potentially saving on expensive intermediate steps;

(ii) permitting nondeterminism in the filters produced as

output can deliver greater compression.

III. COMBINATORIAL FILTERS AND THEIR MINIMIZATION

We first give our model of combinatorial filters:

Definition 1 (procrustean filter [10]). A procrustean filter,

p-filter or filter for short, is a tuple (V, V0, Y, τ, C, c) where

V is the set of states, V0 is the set of initial states, Y is the set

of of observations, τ : V ×V → 2Y is the transition function,

C is the set of outputs (or colors), and c : V → 2C \ {∅} is

the output function.

We write the states, initial states and observations for

a filter F as V (F ), V0(F ) and Y (F ). A filter F =
(V, V0, Y, τ, C, c) is deterministic, if |V0| = 1 and for every

v1, v2, v3 ∈ V with v2 6= v3, τ(v1, v2) ∩ τ(v1, v3) = ∅.

Otherwise, we say F is nondeterministic. A filter can also

be viewed as a graph with states being its vertices, and

transitions being directed edges.

In a filter F = (V, V0, Y, τ, C, c), an observation sequence

(or a string) s = y1y2 . . . yn ∈ Y ∗ reaches a state w from

state v, if there exists a sequence of states w0, w1, . . . , wn

in F , such that w0 = v, wn = w, and ∀i ∈ {1, 2, . . . , n},

yi ∈ τ(wi−1, wi). In a filter F , for every state v, if there

exists a string that reaches v from some initial state, then we

say F is trim. Any filter that is not trim can be made so by

removing the states that are not reached by any string from

the initial states. We consider filters that are trim, w.l.o.g.

We collect the set of all states reached by s from some

initial state v0 ∈ V0, and denote it as VF (s). Specifically,

for the empty string ǫ, we have VF (ǫ) = V0. If no states

are reached by some string from any initial state, then we

say that string crashes on F . The set of strings that do not



crash on F is called the interaction language of F , and is

written as LI(F ) = {s ∈ Y ∗ | VF (s) 6= ∅}. The output of

string s on filter F is the set of outputs (or colors) of all

states reached by s from some initial state, and is written as

C(F , s) = ∪v∈VF (s)c(v).

In minimizing a filter, we are interested in reduced filters

that simulate the given filter in terms of outputs on its strings:

Definition 2 (output simulating). Let F and F ′ be two fil-

ters, then F ′ output simulates F if the following properties

hold: (i) language inclusion: LI(F ) ⊆ LI(F ′); (ii) output

consistency: ∀s ∈ LI(F ), C(F ′, s) ⊆ C(F , s).

This requires that F ′ be capable of processing all the

inputs which F can, and produce outputs that F could.

The input set is no smaller; the set of outputs no larger.

We wish to find minimal filters:

Problem: Filter Minimization (PFM)

Input: A filter F .

Output: A filter F † with fewest states, such that F †

output simulates F .

This is a generalization of its deterministic version in the

work [8], [9], which dealt only with deterministic input and

deterministic minimizer. We use ‘PF’ to denote the fact that

both the input and output of this problem can be general

nondeterministic p-filters, and use ‘M’ for minimization.

Additionally, we designate the problem of producing a deter-

ministic minimizer for a nondeterministic input filter ‘PFDM’,

a four-letter word where ‘D’ stands for deterministic.

IV. BACKGROUND AND PRELIMINARIES

We make use of some known facts from automata theory.

A finite automaton (NFA) is a tuple (Q,Q0,Σ, δ, A),
where Q, Q0, Σ, δ, A are the states, initial states, alphabet

(observations), transition function, and accepting states. Both

filters and NFAs are similar, both being transition structures.

Different from a filter, an NFA A has accepting states

not outputs (colors). For automata, we are interested in the

strings that reach some accepting states, which we term the

accepting language LA(A ). An NFA with a singleton Q0

and deterministic transition structure is also called a DFA.

Here are some results from automata theory:

Lemma 3 ([11]). Given two NFAs A and B, it is PSPACE-

complete to check if LA(A ) = LA(B).

Lemma 4 ([12]). For a given NFA A = (Q,Q0,Σ, δ, A),
it is PSPACE-complete to check whether LA(A ) = Σ∗.

Lemma 5 ([13]). Given a set of DFAs {A1, A2, . . . , An}
with common alphabet Σ, it is PSPACE-complete to check if

∪1≤i≤nLA(Ai) = Σ∗.

V. COMPLEXITY OF FILTER MINIMIZATION

We are now ready to show that finding minimizers for

nondeterministic input filters is hard.

The decision problem of the PFM problem is:

Decision Problem: P-filter Minimization (PFM-DEC)

Input: A filter F and k ∈ N
+.

Output: YES only if there exists some F † with no more

than k states, such that F † output simulates F .

Analogously, PFDM-DEC is the decision version of PFDM.

A. The hardness of PFM and PFDM

Now, we will show that the decision versions of PFM and

PFDM are, respectively, PSPACE-complete and PSPACE-hard.

Consequently, both PFM and PFDM are PSPACE-hard.

To check the output simulation requirement in polynomial

time, the following filter product will be helpful.

Definition 6 (tensor product). Given filters

F1 = (V 1, V 1
0 , Y

1, τ1, C1, c1) and F2 =
(V 2, V 2

0 , Y
2, τ2, C2, c2), their product, a graph denoted

(F1 ⊙F2), is constructed to capture strings in LI(F1) via:

1) List all pairs of vertices in V (F1) × (V (F2) ∪ {⊖}),
where ⊖ is a placeholder for an empty vertex.

2) Mark vertex (v, w) an initial state in graph (F1⊙F2).
3) Build a transition from (v, w) to (v′, w′) under label y if

y ∈ τ1(v, v′) and y ∈ τ2(w,w′). Notice that if y is not

an outgoing label of vertex v, then we say y ∈ τ1(v,⊖).
4) Remove the pairs reached from any initial state.

The tensor product of two filters is a transition structure

with initial states, i.e., a graph.

Lemma 7. PFM-DEC is in PSPACE.

Proof. Two steps: polynomial space suffices (1) to represent

and search for a filter, and (2) to ascertain whether a filter

output simulates F . For (1), since PFM-DEC requires we

encode filters of size k, we need to keep track of at most k2

transitions, at most |Y | labels for each transition, at most |C|
colors for each state, and at most k initial states. The space

needed to enumerate output filters is O(k2 × |Y |+ k× |C|).
For (2), we must verify both language inclusion and output

consistency. To show LI(F ) ⊆ LI(F ′), form product graph

G = F ⊙F ′. If there is no vertex (v,⊖) in G such that v ∈
V (F ), then LI(F ) ⊆ LI(F ′) since every string reaching a

vertex in F also reaches some vertex in F ′. If there exists

some such a vertex (v,⊖), then we must determine whether

the strings reaching (v,⊖) also reach some vertex in F ′. We

build an NFA A from G by treating all states {(v,⊖) | v ∈
V (F )} as accepting states. Next, construct a second NFA,

B, from F ′ by treating every state in F ′ as accepting. Then

we must show that strings reaching every (v,⊖) are accepted

by B, i.e., whether A and A ∩B are equivalent (where ∩
is automata intersection). Creating automata A and A ∩B,

and, via Lemma 3, showing their equivalence is in PSPACE.

Verifying output consistency also needs only polynomial

space. Remove the states of the form (v,⊖) from G , then,

for every state (v, w) in G such that c(v) 6⊇ c(w), to

output simulate, for every output o ∈ c(w) \ c(v), strings

reaching (v, w) must reach some state u in F with o ∈ c(u).
Otherwise o is not a legal output for some string. To see

whether o is a legal output, we build an NFA M from G by



treating (v, w) as accepting states, and another NFA N from

F by treating the states with color o as accepting states. If

LA(M ) ⊆ LA(N ), then o is safe. If every o ∈ c(w) \ c(v)
is safe, then the output of F ′ is consistent on that of

F . Otherwise, (v, w) is certificate for violation of output

consistency. This procedure takes polynomial space.

Lemma 8. PFM-DEC is PSPACE-hard.

Proof. We give a polynomial time reduction from NFA

universality (Lemma 4) to PFM-DEC. To show the accepting

language of a given NFA A = (Q,Q0,Σ, δ, A) is Σ∗, we

first create a filter F from A in polynomial time as follows:

1) Add the states, transitions, initial states of A to the

states, transitions, initial states of F .

2) Add a new initial state v to F , with a self loop bearing

all labels Σ from A .

3) Add a new vertex w to F . For every state in F arising

from an accepting state in A , add a transition to w

under some new label z, where z 6∈ Σ.

4) Add one more vertex u to F , and a transition from v

to u under z.

5) Color u blue, the all other vertices green.

Now, the interaction language for this filter is Σ∗z. Further,

the outputs of strings LA(A )z are both green and blue, while

the outputs for the strings (Σ∗ \ LA(A ))z are blue only.

If LA(A ) is Σ∗, then the minimal filter for F has only

one green state and it has a self loop bearing Σ ∪ {z}.

If LA(A ) is not Σ∗, then there there exists some string

s 6∈ LA(A ) where s only outputs green, and sz only

outputs blue. There must, therefore, be at least two states

(one colored green, and one colored blue) in its minimizer.

As a consequence, if the minimizer of F has only one state,

then LA(A ) is Σ∗. Otherwise, LA(A ) is not Σ∗.

Therefore, we get a polynomial time reduction from NFA

universality to PFM-DEC. PFM-DEC is PSPACE-hard since

NFA universality is PSPACE-complete.

Lemma 9. PFM-DEC is PSPACE-complete.

Proof. Combine Lemmas 7 and 8.

Theorem 10. PFM is PSPACE-hard.

Proof. This is a direct consequence of Lemma 9.

Having considered the case where both the input and

the minimizer may be nondeterministic, next we show that

limiting nondeterminism to only the input filter (what we

dubbed PFDM-DEC earlier) still retains its hardness.

Theorem 11. PFDM-DEC is PSPACE-hard.

Proof. We show the PFDM-DEC is PSPACE-hard by reducing

the DFA union universality problem (Lemma 5) to PFDM-

DEC. Given a set of DFAs, A1,A2, . . . ,An, let the union

of their alphabet be Σ. The DFA union universality problem

is to check LA(A1) ∪ LA(A2) ∪ · · · ∪ LA(An) = Σ∗. For

each DFA Ai, we first, we construct a DFA A ′
i , such that

LA(A ′
i ) = LA(Ai) and LI(A ′

i ) = Σ∗:

1) Initialize A ′
i as a copy of Ai.

2) If LI(A ′
i ) 6= Σ∗, then add a trap state v′ with a self

loop bearing all labels in Σ for each DFA A ′
i . For each

state w′ in A ′
i and every outgoing event y ∈ Σ, if y

crashes when traced from w′, build a transition from w′

in A ′
i to the trap state v′ under y.

3) Make all states corresponding to accepting states in Ai

the accepting states for A ′
i .

Next, we build an NFA B′ as the union of all these A ′
i ’s,

so as to have LA(A1)∪LA(A2)∪· · ·∪LA(An) = LA(B′).
Additionally, no strings in Σ∗ crash on B′. The task, then,

is to check whether LA(B′) = Σ∗ holds or not.

To do so, create a filter F from B′ as follows:

1) Add the initial states, states, transitions of B′ to F .

2) Color the copies of the accepting states in B′ green,

and the copies of the non-accepting states red.

3) Add one more state, and color it green. Make this state

the destination reached from one goal state under a fresh

symbol z (i.e., where z is not a symbol from Σ).

By adding the new symbol z, we known that there is some

string ending with z which outputs only green in F .

Supposing H is a deterministic minimizer of F , there are

two cases. First, if H is a one-state filter, then it must be

green because there are some strings that must output only

green. Then every string in Σ∗ must output at least green in

F . Hence, every string in Σ∗ must reach the accepting states

in B′, and we conclude LA(B′) = Σ∗. Alternatively, if H

has more than one state, then there is at least one green state

and one red state. (Otherwise, H is not minimal.) Hence,

there must be some string in Σ∗ that can only output red.

Those strings with only red output never reach the accepting

states in B′. So, consequently, LA(B′) 6= Σ∗.

The procedure to solve PFDM-DEC involves checking

whether there is a one-state minimizer for F . If there is such

a minimizer, then the accepting language of the union of all

DFAs is Σ∗. Otherwise, it is not. Having given a polynomial

time procedure to reduce the DFA union universality problem

to PFDM-DEC, which is itself known to be PSPACE-complete,

shows that PFDM-DEC is PSPACE-hard.

Since PFDM can be no easier than its decision version,

PFDM is PSPACE-hard in terms of space complexity.

Theorem 12. PFDM is PSPACE-hard.

B. Is PFDM-DEC PSPACE-complete?

It seems natural to suppose that PFDM-DEC is simpler than

PFM-DEC and should also be in PSPACE since the problem is

narrower, focusing on more constrained (deterministic) mini-

mizers. However, from the perspective of space consumption,

this needn’t be the case.

To help elucidate, it’s useful to introduce some lightweight

notation for the problems showing their inputs and outputs

explicitly. We denote a minimization problem that converts

something of type A to a corresponding minimal instance

of type B as A
min−−→B. We will compare and contrast filters

with automata, and write deterministic and nondeterministic

instances as Det and NDet respectively.



Fig. 4: An overview about the size of the minimizer for both
automata minimization and filter minimization problems.

Fig. 4 gives an overview about how the size may change

during the process of filter minimization and automata min-

imization. From results known in the literature (and the pre-

vious figures in this paper), we know that for Det(F )
min−−→

Det(F ′) and NDet(F )
min−−→ NDet(F ′) in both filter mini-

mization and automata minimization, the resulting minimal

object is always smaller than (or equal to) the size of

the object provided as input. But this need not be true

when turning a NDet(F ) element into a Det(F ′) one,

as the minimizer is constrained to be deterministic and it

can be larger than the nondeterminsitic input. In particular,

for automata minimization, the ‘minimizer’ (DFA) can be

exponentially larger than the input automata (NFA) [14]. For

filter minimization, take the problem shown in Fig. 3, and

exchange the roles of the two graphs: the filter in Fig. 3a is a

deterministic minimizer for the nondeterministic filter shown

in Fig. 3b. There, the deterministic minimizer has one more

state than its nondeterministic input filter.

How big can the difference actually be? We give a

construction for a family of filters demonstrating that the

size of the deterministic minimizer may grow so that its size

is beyond any polynomial in the input size (highlighted as

blue in Fig. 4). First, we make a nondeterministic input filter,

then we follow that by giving its deterministic minimizer.

Construction 13. Fix some natural number r, and construct

the nondeterministic input filter with r rows depicted in

Fig. 5a. Create a cycle of white states under ‘a’ where the

number of white states at row i ∈ N
+ is the cycle of length

pi, the ith prime number. For example, the number of white

states in rows 1, 2, 3 are 2, 3, 5, respectively. Create a black

initial state that connects, via ‘a’, to one state at each of these

r rows. At each row, starting from the state connected with

the initial one, add a transition to a new child state. Color the

child with a color from the color list [o1, o2, . . . , opr
], that

excludes both black and white. Each child state is colored

as the first one that is not chosen in the row.

An equivalent deterministic filter, shown in Fig. 5b, is

produced via the power set construction. Notice that all states

in the nondeterministic filter of Fig. 5a reached by a common

string share the same color, so there are no choices for each

state in the deterministic filter: every state must be colored

to correspond. (Part of the next lemma will show this to be

the minimizer.)

Lemma 14. The deterministic minimizer of a nondetermin-

istic input filter can exceed any polynomial of the input size.

Proof. First we argue that the deterministic form of the

nondeterministic input filter from Construction 13 is a deter-

ministic minimizer, and then show that the gap between the
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a

x1

x2, . . . , xr

a

x1
x2

xr

a

(b) A minimal deterministic filter for (a), where the total number
of white states is the product of first n prime numbers.

Fig. 5: An example to show that the number of states in
the deterministic minimizer is larger than polynomial size of the
nondeterministic input filter.

size of the nondeterministic input filter and its deterministic

minimizer is larger than any polynomial of the input size.

The deterministic filter shown in Fig. 5b is already a

minimal one for the filter depicted in Fig. 5a. The n colors

must be included as they are each produced by some string;

the white vertices could only be merged if there was a

common divisor in the cycle lengths, but the cycle lengths

are all distinct primes. Hence, no pair of states in Fig. 5b

can be merged since they either have different outputs or

disagree on the outputs of their common extensions.

Let n be the total number of states in this nondeterministic

input filter. Then we have n = 2 · S(r) + 1, where S(r) =∑r

i=1 pi is summation of the first r prime numbers, and

Bach and Shallit [15] have shown that S(r) ∼ 1
2r

2 ln r holds

asymptotically. When 1 < r, n = r2 ln r + 1 < r3.

Let z represent the total number of states in the determin-

istic filter. Then we have z = 1+P (r) + pr, where P (r) =∏r

i=1 pi is the primorial, i.e., the product of the first r prime

numbers. According to the prime number theorem and the

first Chebyshev function, we have that P (r) ∼ e(1+o(1))r log r

and pr ∼ r log r holds asymptotically [16]. Hence,

z = 1 + P (r) + pr

= 1 + e(1+o(1))r log r + r log r > er for large r.

Since r > 3
√
n, we have z > e

3
√
n. So we write this lower

bound of z as f(n) = e
3
√
n =

∑∞
m=0

n
m
3

m! (Taylor series).

Now consider any polynomial of n of degree k and write it

as g(n, k) =
∑k

m=0 αmnm. Let c = max{α0, α1, . . . , αk}.



If n > c · (k+1), then we have for all i ≤ k, the coefficients

have αin
i < c · nk, and the sum

∑i=k

i=0 αin
i < nk+1.

To bring the two bounds in relation to one another: when

n > (3k + 6)!, then f(n) > n
3k+6

3

(3k+6)! > n
3k+6

3

n
= nk+1,

Hence, f(n) > nk+1 if n > (3k+6)!. Thus for n > max{c ·
(k + 1), (3k + 6)!}, we have that z > f(n) > nk+1 >

g(n, k). This is true for any k, so the size of the deterministic

minimizer, z, is larger than any polynomial of n.

One implication of the preceding example is that:

Lemma 15. PFDM is not in P.

Proof. Since the size of the minimizer can be larger than any

polynomial of the input size, it takes more than polynomial

time to output the minimizer. Therefore, PFDM 6∈ P.

Then, considering time complexity further, we can con-

clude that PFDM is strictly NP-hard.

Theorem 16. PFDM is NP-hard, but not in P.

Proof. The deterministic input to deterministic output filter

minimization problem, the decision problem form of which

is NP-complete [5], is properly contained in PFDM (one just

happens to select an input that is deterministic). We have

that PFDM is NP-hard, and combining with Lemma 15, we

can conclude that PFDM is strictly NP-hard.

To summarize, Construction 13 and Lemma 14 show that

the gap between the size of the deterministic minimizer can

be larger than polynomial of the input size. It indicates that

constructing and storing the deterministic minimizer in its

entirety to determine its size would disqualify PFDM-DEC

from PSPACE. Of course, other cleverer means may exist,

so whether PFDM-DEC is PSPACE (as a consequence, PFDM-

DEC is PSPACE-complete) or not remains an open question.

VI. A COMPARISON BETWEEN AUTOMATA MINIMIZATION

AND FILTER MINIMIZATION

With the preceding hardness results for filter minimization

problems established, we now compare them with the hard-

ness of automata minimization in Fig. 6. It is worthwhile

to try distill intuition for a couple of reasons: firstly, the

automata hardness results were used in the arguments above,

so their connection might seem obvious at first blush. But

the notion of equivalence beween two automata is quite

different from that beween two filters, as, importantly, are

specific requirements on interaction vs. accepting languages.

Secondly, recall that the initial supposition that determinis-

tic filter and deterministic automata minimization problems

were identical, was wrong.

In the first column of Fig. 6 (Det(F )
min−−→ Det(F ′)):

automata minimization problem (F is a DFA) can be

solved efficiently by identifying Myhill–Nerode equivalence

classes [17], while the decision version of filter minimization

problem (F is a filter) is NP-complete. The main reason

for this hardness separation between these two problems is

the extra degree of freedom (DOF) for filter minimization.

Filters can choose to assign any output for the strings that

Fig. 6: A comparison between hardness results of decision versions
of automata minimization and filter minimization.

crash (informally, we call this DOF I). To exploit this degree

of freedom optimally, it is equivalent to searching for a

minimum clique cover in the compatibility graph of the input

filter [8], which makes the problem computationally hard.

For the other two columns of Fig. 6: As we consider

nondeterminism in the input or output object, the hardness

separation between automata minimization and filter min-

imization disappears. Informally speaking, it appears that

the hardness arising from DOF I is dominated by other

sources of complexity. When nondeterminism appears in

both input and output, i.e., NDet(F )
min−−→ NDet(F ′), the

decision problems of both filter minimization and automata

minimization are PSPACE-complete [18]. For both, there

could be multiple states simultaneously reached by the same

string (DOF II) though it takes no more than polynomial

space to check the outputs of those states. Though both

are PSPACE-complete, the problems differ in the degrees

of freedom they have—though, clearly, this difference is

not enough to manifest as a hardness gap. On the one

hand, nondeterministic filter minimization (F is a non-

deterministic filter) has DOF I while nondeterminsitic au-

tomata minimization (F is an NFA) does not. On the other,

non-deterministic filter minimization requires all outputs of

all states reached by the string be constrained, whereas non-

deterministic automata minimization can choose to accept the

states or not, as long as at least one is accepted (DOF III),

If we keep nondeterminism in the inputs but remove it

from the outputs, the problems NDet(F )
‘min’−−−→ Det(F ′)

do not become any easier. When outputs are restricted to

be deterministic, the size of the output can be substantially

larger than that of the input filter, (IV). If one were to think

of this as a search problem, a more restrictive type can

drastically increase the search space size. It only ever takes

polynomial space for Det(F )
min−−→ Det(F ′), but it is unclear

whether this holds for NDet(F )
‘min’−−−→ Det(F ′), and the

increase in output size is unfavourable (though inconclusive)

evidence to the contrary.

VII. CONCLUSION

This paper shows the value of nondeterminism in com-

binatorial filter reduction, analyzes the hardness of nonde-

terministic filter minimization problems, and shows that the

hardness separation between deterministic filter minimization

problems disappears in the nondeterministic cases.

Future work might consider the hardness results for finding

nondeterministic minimizers for deterministic input filters,

which is only known to be in PSPACE. Another direction is to

examine complete, approximation, and heuristic algorithms

to solve nondeterministic filter minimization.
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