

and must arrive at the point marked with the red pin. As

the right inset box shows, a variety of options for actuators

exist, each with a different procurement price and resulting

in different actions being available to the robot. The up-

front cost to install an actuator may grant the ability to

traverse whole sets of edges. Some of the actuators have

broad applicability (like the various wheels), others (such as

the ‘jetpack’) provide powerful capabilities but for a narrow

niche. Certain choices might involve a difference in price for

a difference performance: ‘flippers’ may allow slow reliable

progress, while an ‘aquatic thruster’ unlocks the ability to

move at greater speeds for comparable joules, albeit with more

limited precision and hence poor fine manœuvrability. In our

model, this reduced precision shows up as transition dynamics

with greater entropy; energy expended in joules shows up as

a cost. One might also replace a combination of specialized

actuators with a single one that is applicable in the same

circumstances, paying then only a single cost up-front. Still, a

compromise between conditions likely loses some attractive

properties: e.g., the more expensive combination of ‘road

wheels’ and ‘tracks’ is more reliable off-road and faster on-

road than the parsimonious design with just ‘off-road wheels’.

These considerations are complex and raw intuition can be

misleading. Algorithmic tools would be most useful to help

provide insight and guide the design process. The contribution

of this paper is to introduce such algorithmic tools (Sections V

and VI) grounded in theoretical analysis of the problem’s

complexity (Section IV). We then investigate the effectiveness

of those new tools (Section VII).

II. RELATED WORK

Recently, several robotics research groups have been explor-

ing how algorithmic automation and computational methods

can help improve the quality of the robot designs, can ease

the design process, or shed light on specific elements that

make the problem especially complex [22]. A core line of

research is concerned with the notion of co-design: Censi [7],

[8] developed the mathematical theory of co-design problems,

which considers the relation between resource consumption

and the functionality of robots. Carlone and Pinciroli [6]

consider co-design when selecting robot system modules with

a given cost to maximize performance. They solve the problem

using binary linear programming. The term ‘co-design’ has

also been used more broadly (see [3], [21]) when different

aspects that play a role are considered jointly.

Aspects of design automation have additionally been

focused on considerations of fabrication [19], rapid-

prototyping [2], [14], interactive design [10], [11], [5]. Also,

there have been approaches to structured knowledge represen-

tation that can help with design problems [17], [18], [13].

Most closely related is the authors’ prior work [25], which

examines a notion of designs similar to this paper, but the

planning problems in that paper are under worst-case assump-

tions. The present paper makes two separate modifications,

both of which change the setting rather more significantly than

the authors originally anticipated. The first is to introduce a

notion of execution cost. The key consideration in [25] is a

decision problem, viz. whether a set of actuators suffices, or

whether dropping some actuator (or gadget) will incapacitate

the robot. Instead, the present study examines a Pareto front

with differing costs. Secondly, we now consider probabilistic

transitions. These confer a meaningful notion of expected

performance, permitting the impact of some action’s precision

to be considered quantitatively.

Because part of the problem we tackle involves estimating

value functions for Markov Decision Problems using an inter-

val approach (and terminating early), we point out that this is

similar in form to Haddad and Monmege [12], though their set-

ting has only a single objective. There is substantial prior work

on multi-objective MDPs (see [24], [9]), though that work

considers costs which are not design costs. Also relevant, albeit

more loosely, is literature dealing with hardness results for

MDPs (see, for instance, [4]), and asynchronous approaches

to value iteration [1], and reinforcement learning [26].

III. PROBLEM STATEMENT

A. Markov decision processes and action restrictions

We are interested in sequential decision-making problems

that can be modeled as Markov decision processes (MDPs).

We begin with three standard definitions [?], [26].

Definition 1. An MDP is a tuple (X,x0, U, p, c, γ) with

1) a finite nonempty state space X ,

2) an initial state x0 ∈ X ,

3) a finite nonempty action space U ,

4) a transition probability function p : X×U×X → [0, 1],
in which p(x, u, x′) denotes the probability of transition-

ing to state x′ upon selecting action u at state x,

5) a cost function c : X×U → R, in which c(x, u) denotes

single-step execution cost of executing action u at state

x, and

6) a discount factor γ ∈ [0, 1).

An MDP models a discrete time sequential decision-making

scenario. Each execution begins at the initial state x0. At

each stage k, the robot is at state xk and executes action uk,

whereupon the system transitions to a new state xk+1 drawn

according to the probability distribution p(xk, uk, ·). During

this transition, the robot incurs a single stage cost c(xk, uk).
The actions selected by the robot are governed by a policy.

Definition 2. For an MDP (X,x0, U, p, c, γ), a policy is a

function π : X → U .

Intuitively, the policy describes the action selected by the

robot from each state in the state space, so that uk = π(xk).
The robot’s objective is to minimize the costs incurred as

it executes the policy, subject to discounting, which ensures

convergence across executions that are, in principle, infinite.

Definition 3. For an MDP (X,x0, U, p, c, γ) and a policy π,

the execution cost of that policy is

e(π) := E

[

∞
∑

k=0

γkc(xk, uk)

]

.

A policy is an optimal policy if its execution cost is minimal

among all policies.

In this paper we will have occasion to consider families

of MDPs formed by eliminating certain actions. The next

definition makes this idea more precise.

Definition 4. For an MDP M = (X,x0, U, p, c, γ) and an

action set U ′ ⊆ U , the restriction of M to U ′, denoted M(U ′),
is an MDP identical to M except that its action space is

U ′ rather than U . That is, M(U ′) = (X,x0, U
′, p′, c′, γ), in

which the transition probability and step-stage cost function

are p′ : X×U ′×X → [0, 1] and c′ : X×U ′ → R respectively,

with p′(x, u, x′) = p(x, u, x′) and c′(x, u) = c(x, u) for all x
and x′ in X , and all u in U ′.

Definition 5. For an MDP M = (X,x0, U, p, c, γ) a value

function is a scalar function VM : X → R, and an optimal

value function satisfies

V ⋆
M (x) = min

u∈U

∑

x′∈X

p(x, u, x′) [c(x, u) + γV ⋆
M (x′)] . (1)

Value functions V −
M , V +

M with V −
M (x) ≤ V ⋆

M (x) ≤ V +
M (x)

for all x ∈ X are termed, respectively, lower- and upper-

bounding value functions.

B. Design cost

Next, we adapt the notion of design cost introduced in our

prior work [25] from its original formulation based on worst-

case reasoning to the present stochastic setting.

Definition 6. A design cost function d : 2U → R ∪ {+∞}
assigns an extended real number to each subset of the action

space U .

The key distinction, which contrasts with traditional plan

costs, is that design cost depends on which actions may be

executed by a given policy, rather than on how often those

actions may be executed on any particular run of the system.

Definition 7. For a given policy π, the operative actions A(π)
are the actions associated with at least one state. That is,

A(π) := ∪x∈X{π(x)}. The design cost of a policy π is the

design cost of its operative actions, d(π) := d(A(π)).

A property which holds often in practice is that adding

additional capabilities to a robot will not decrease its cost,

and these are called monotone design costs.

Definition 8. A design cost function is monotone if, for any

sets U1 ⊆ U and U2 ⊆ U , we have

U1 ⊆ U2 =⇒ d(U1) ≤ d(U2).

We restrict our attention to monotone design cost functions

in this paper.

Note that Definition 8 admits a variety of cost functions

of varying complexity. For example, one useful family of

design cost functions characterizes the design choice as one of

selecting from a set of gadgets with which to equip the robot.

Each gadget is defined by the design cost of choosing it —from

which the overall design cost may be derived additively—

along with a set of actions it enables. This is appropriate for

the example in Figure 1.

C. Optimizing Execution cost and design cost

We now have the requisite elements in place to state the

central algorithmic problem. The exposition above introduces

two distinct measures by which a policy may be evaluated: its

execution cost (Definition 3) and its design cost (Definition 7).

Notice, however, that these measures can be expected to be

in tradeoff with one another: In general, modifications to a

policy that decrease its design cost by making some actions

inoperative can, by virtue of restricting the set of available

actions, increase the execution cost.

Thus, the root problem here is one of multi-objective

optimization, and we are interested in policies that are Pareto

optimal [28], in the sense that no other policy improves both

the design cost and the execution cost.

Problem: Optimal Design-/Execution-Cost Policies (ODECP)

Input: An MDP M and a design cost function d.
Output: The set of Pareto-optimal policies for M and d.

For purpose of complexity analysis in Section IV we can
also cast the problem as a decision problem.

Decision Problem: Feasible Design-/Execution-Cost Decision
(FDECP)

Input: An MDP M , a design cost function d, a design cost bound
d̄, and an execution cost bound ē.

Output: YES if there exists a policy π for M with design cost at
most d̄ and execution cost at most ē; NO otherwise.

IV. HARDNESS AND FIXED-PARAMETER TRACTABILITY

Before attending to data structures and algorithms for these

problems, a detour into their computational complexity will

be instructive.
Two proofs will use reduction from the following standard

problem, known to be NP-complete [16].

Decision Problem: SETCOVER

Input: A universe set R with n elements, a set T comprised of
m sets T1, . . . , Tm such that

⋃m

i=1
Ti = R, and integer k.

Output: YES if there is some set I ⊆ T such that I covers all
elements of R and the size of I is at most k.
NO otherwise.

Theorem 1. FDECP is NP-hard.

Proof. The construction used in Theorem 1 of [25] uses a

reduction from SETCOVER; the same construction can be re-

tooled for use here. (Only the required modifications are given

here.) Pick γ = 1
2 . For a SETCOVER instance with the set

size |R|, a state space of size |R|+2 works: we have a ‘goal’

state, x|R|+1, and a ‘crash’ state x0. Actions are constructed

analogously with that in [25]: If action a should connect state

xi to xi+1, then p sets only that probability to one, and zero

for all other xj , j ∈ {0, . . . , |R| + 1} \ {i + 1}. If action a
doesn’t depart from state xi, have it transition with probability

one to the ‘crash’ state x0. All actions loop at state x0. Assign

cost c(xi, u) = 0 for all u and every state xi except x0. Put

c(x0, u) = 1 for all u. Then, an optimal policy that reaches

the goal will have expected cost 0; any other policy reaches

x0 after the first step but no later than the |R|th-step, thus has

expected cost that is ∈ (12 , 1]. Hence, we choose d̄ to be the

cardinality of the desired cover (k in [25]), and ē to be 1
2 .

Lemma 1. Given MDP (X,x0, U, p, c, γ), an optimal policy

can be found in polynomial time.

Proof. The policy can be found using linear program-

ming [20], which has a solution in polynomial time (e.g., [15]).

In fact, Papadimitriou & Tsitsiklis [23] proved the stronger

result that solving for the optimal policy is P-complete.

Theorem 2. FDECP, parameterized by the size of the action

space, is fixed-parameter tractable (FPT).

Proof. Given MDP M = (X,x0, U, p, c, γ), choose as param-

eter the size of the action space, i.e., let λ = |U |. The obvious

algorithm works: enumerate the set of MDPs via the restriction

{M(V) | V ∈ 2U \ {∅}}. For each, evaluate the design cost

d(M(V)). If it is less than or equal to d̄, then construct an

optimal policy, and evaluate its expected cost to see if it is no

more than the execution cost bound ē, if so, answer YES. If

all have been enumerated and none found, answer NO. Since

construction of the optimal policy takes polynomial time via

Lemma 1, this algorithm is FPT because its running time is

2λnO(1).

Informally, the upshot of Theorems 1 and 2 is that, though

the problem in general is computationally challenging (unless

P = NP), that challenge is primarily concentrated in the

number of actions in our MDPs.

Another, alternative take on the hardness is that even if we

have the optimal MDP value function (say, via an oracle) then

we will still have a difficult problem. Consider the following.

Problem: Optimal Design Cost Policy (ODCP)

Input: An MDP M = (X,x0, U, p, c, γ), an optimal value
function V ⋆

M , and a design cost function d.
Output: A policy π with e(π) = V ⋆

M (x0) such that d(π) is
minimal.

The decision problem is as follows.

Decision Problem: Feasible Design Cost Policy (FDCP)

Input: An MDP M = (X,x0, U, p, c, γ), an optimal value
function V ⋆

M , and a design cost function d, and a design
cost bound d̄.

Output: YES if there exists a π for M with e(π) = V ⋆
M (x0) such

that d(π) ≤ d̄; NO otherwise.

Theorem 3. ODCP is NP-hard.

Proof. To prove NP-hardness of ODCP, it is sufficient to prove

that its decision problem (FDCP) is NP-complete. So, we need

to prove FDCP ∈ NP and all NP problems are reducible to

FDCP. For the first part, if given a putative π claimed to

correspond to a YES instance, we can check that the given

action at each state is indeed a u which minimizes (1). This

verification takes O(|X|) time.

For the second part, we present a polynomial reduction,

again, from SETCOVER: given an instance (R, T, k), construct

an instance of FDCP, (M,V ⋆
M , d, d̄), as follows:

• We form an MDP M = (X,x0, U, p, c, γ) with state

space X = {x0, x1, . . . , x|R|, xg}, initial state x0, and

U = {u1, u2, . . . , u|T |}.
For each u ∈ U , we define ∀k ∈ {0, g}, p(x0, u, xk) = 0,
and ∀k′ ∈ {1, . . . , |R|}, p(x0, u, xk′) = 1

|R| . To define p,

for each ui in U :
k ∈ {1, . . . |R|}, p(x0, ui, xk) =

1

|R|
;

j ∈ {1, . . . , |R|}, x ∈ X \ {xj , xg}, p(xj , ui, x) = 0,

p(xj , ui, xg) = 1Ti
(j), p(xj , ui, xj) = 1− 1Ti

(j);

x ∈ X, p(xg, ui, x) = 1{xg}(x).

Then, define to c, for each ui in U :

c(x0, ui) = c(xg, ui) = 0,

k ∈ {1, . . . |R|}, c(xk, ui) = 1− 1Ti
(k).

• Take γ = 1
2 .

• Compute V ⋆
M from M .

• Take as design cost d(A) = |A|.
• Set the design cost bound d̄ = k.

(Above, 1Y (·) is the indicator function for set Y .) In light of

Lemma 1, all steps in this construction take polynomial time.

For any instance (R, T, k), consider the FDCP (M,V ⋆
M , d, d̄).

Observe that V ⋆
M (x0) = 0 because SETCOVER stipulates that

every element in R is covered by at least one element Tj , so

each state {x1, . . . , x|R|} can take some action with cost zero.

If I ⊆ T with |I| ≤ k covers R, then for each i ∈
{1, . . . |R|}, the policy π selects any action uj where Tj ∈ I
covers the element in R corresponding to i. For x0 and

xg , reuse one of the actions already used elsewhere. Such

a policy π takes an action of cost 0 at each state (when

at state xℓ ∈ {x1, . . . , xR} it performs an action uj with

ℓ ∈ Tj , so c(xℓ, uj) = 1 − 1Tj
(ℓ) = 0). This is an optimal

expected execution cost, since all costs are non-negative. But

then d(π) ≤ k = d̄;

Conversely, if we have a policy π with c(π) = V ⋆
M (x0) = 0,

and d(π) ≤ d̄, then collect all the actions {uj1 , uj2 , . . . ujn} =
∪i∈{1,...|R|}{π(xi)}, where know jn ≤ k because these are the

operative actions. A zero cost action must be prescribed at

every state because, if it did not, then c(π) > 1
2 ·

1
|R| · 1 > 0.

Thus, sets Tj1 , Tj2 , . . . Tjn cover R.

V. THE LATTICE OF BOUNDS DATA STRUCTURE

In spite of the discouraging news of the previous section,

we turn now to the practical question of solving ODECP.

This section describes a data structure called a lattice of

bounds, which represents partial information about the design

and execution costs achievable with various sets of actions.

We describe its structure, its operation, and several important

invariants it maintains. This data structure forms that basis of

the algorithm in the next section.

Definition 9. A lattice of bounds for an MDP M =
(X,x0, U, p, c, γ) is a directed graph, in which each of the

finitely-many vertices v is labeled with a set of actions Uv ⊆ U
and value functions V −

v : X → R and V +
v : X → R.

The following two invariants form a connection between the

lattice of bounds and Pareto optimal solutions we seek.

Invariant 1. In a lattice of bounds, for each edge v → w,

Uv ⊃ Uw. That is, each edge represents a parent-child

relationship under which the parent has access to a strict

superset of the actions available to the child.

Invariant 2. In a lattice of bounds for MDP M =
(X,x0, U, p, c, γ), at each vertex v, V − and V + are lower and

upper bound value functions, respectively, for the restricted

MDP M(Uv).

These invariants are important because they establish a

connection to our objective of finding the Pareto front.

Lemma 2. For any lattice of bounds L in which Invariants 1

and 2 hold, and any policy π with execution cost e(π) and

design cost d(π), if there exists some vertex v in L for which

V +
v (x0) ≤ e(π) and d(Uv) ≤ d(π), then π is not a Pareto

optimal policy.

Proof. Vertex v provides a direct counterexample to the pos-

sibility of Pareto optimality of v.

To create a lattice of bounds, it suffices to construct

a collection of one or more vertices and to initialize the

V − and V + functions for each to (even very optimistic

or pessimistic) lower- and upper-bounds for the true value.

One safe way to do this, for each vuk
, is to initialize V −

uk

and V +
uk

values to
(

minx∈X,u∈Uuk
c(x, u)

)

/(1 − γ), and
(

maxx∈X,u∈Uuk
c(x, u)

)

/(1− γ), respectively.

Lemma 3. This initial lattice of bounds satisfies Invariants 1

and 2.

Other operations may mutate an existing lattice of bounds,

generally toward tighter bounds on the optimal value functions.

Operation 1. For a vertex and a state, perform one Bellman

update (the atomic step of value iteration) on V − or V + at

one state x. That is:

V −
v (x)← min

u∈Uv

∑

x′∈X

p(x, u, x′)
[

c(x, u) + γV −
v (x′)

]

, or

V +
v (x)← min

u∈Uv

∑

x′∈X

p(x, u, x′)
[

c(x, u) + γV +
v (x′)

]

, resp.

The rationale for the previous operation follows from this

lemma.

Lemma 4. Steps of value iteration monotonically decrease

(resp. increase) the value function when initialized from an

upper-bounding (resp. lower-bounding) value function.

Proof. The standard and, indeed, some modified methods —

possessing superior performance— converge monotonically. A

self-contained and explicit proof appears in [27]; for the

argument showing that the property holds for a subset of states

(or single state) see [1, Chapt. 7].

Operation 2. For an edge v → w and a state x, assign

V +
v (x)← min

(

V +
v (x), V +

w (x)
)

.

Rationale: As v has more actions, the costs at v never exceed

those at w. Thus, if the value at w is at most V +
w (x), then the

value at v can be at most V +
w (x) as well.

Operation 3. For an edge v → w and a state x, assign

V −
w (x)← max

(

V −
w (x), V −

v (x)
)

.

Rationale: As w has fewer actions, the costs at w can never

be less than those at v. If the value at v is at least V −
v (x),

then the value at w can be no less than V −
v (x) as well.

Definition 10. For a lattice of bounds for MDP M =
(X,x0, U, p, c, γ) with vertices V , a set of actions U ′ ⊆ U is

unrepresented if there is no vertex v ∈ V such that Uv = U ′.

For an unrepresented set, a bracketing pair consists of two

vertices u,w ∈ V such that Uu) U ′) Uw.

Operation 4. For an unrepresented set U ′ with bracketing

pair u and w: add the vertex v with actions Uv = U ′, and add

all edges p→ v with Up) U ′, and add all edges v → q with

U ′) Uq , and remove any edges r → s with Us) U ′) Ur.

Set V −
v = V −

u and V +
v = V +

w .

Lemma 5. Operations 1–4 maintain Invariants 1 and 2.

VI. AN ALGORITHM FOR COMPUTING THE PARETO FRONT

The concept of a lattice of bounds forms the core data-

structure underlying our algorithm. Actually, the preceding

definition invariants offer plenty of scope for a variety of

different approaches and, in what follows, we describe one

effective means for combining these elements. (The next

section will provide evidence for the claim of effectiveness

by revisiting the motivating scenario, as a case study).

The algorithm is composed of several elements, each of

which periodically mutates the lattice bounds.

0. Initialization: For MDP M = (X,x0, U, p, c, γ), we

construct an initial lattice of bounds comprising |U | vertices.

The action sets for these vertices are seeded with each distinct

action u and then greedily expanded to contain a maximal set

of actions that have the same design cost as u individually.

The V − and V + bounds for each vertex are initialized as

described above.

1. Improving Execution Cost Estimates at the Widest Gaps:

We maintain a priority queue of states, ordered by δVv(x) =
V +
v (x)−V −

v (x), for all the states across all the vertices. This

allows the state with the largest discrepancy between lower and

upper bounds on the value to be selected and improved using

Operation 1 (one iteration for V − and another for V +). After

this, δVv(x) is re-computed (it may have decreased) and the

element in the priority queue updated. Operations 2 & 3 are

then applied recursively to propagate the available information

up and down the lattice.

REFERENCES

[1] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computa-

tion: Numerical Methods. Prentice Hall, 1989.

[2] N. Bezzo, A. Mehta, C. D. Onal, and M. T. Tolley, “Robot makers: The
future of digital rapid design and fabrication of robots,” IEEE Robotics

& Automation Magazine, vol. 22, no. 4, pp. 27–36, 2015.

[3] G. Bravo-Palacios, A. D. Prete, and P. M. Wensing, “One robot for
many tasks: Versatile co-design through stochastic programming,” IEEE

Robotics and Automation Letters, vol. 5, no. 2, pp. 1680–1687, 2020.

[4] T. Brázdil, K. Chatterjee, V. Forejt, and A. Kučera, “Trading perfor-
mance for stability in markov decision processes,” Journal of Computer

and System Sciences, vol. 84, pp. 144–170, 2017.

[5] B. Canaday, S. Zapolsky, and E. Drumwright, “Interactive, iterative robot
design,” in Proceedings of IEEE International Conference on Robotics

and Automation (ICRA), 2017, pp. 1188–1195.

[6] L. Carlone and C. Pinciroli, “Robot co-design: beyond the monotone
case,” in Proceedings of IEEE International Conference on Robotics

and Automation (ICRA), 2019, pp. 3024–3030.

[7] A. Censi, “A Class of Co-Design Problems With Cyclic Constraints and
Their Solution,” IEEE Robotics and Automation Letters, vol. 2, no. 1,
pp. 96–103, Jan. 2017.

[8] ——, “Uncertainty in monotone co-design problems,” IEEE Robotics

and Automation Letters, vol. 2, no. 3, pp. 1556–1563, 2017.

[9] K. Chatterjee, R. Majumdar, and T. A. Henzinger, “Markov decision
processes with multiple objectives,” in Annual symposium on theoretical

aspects of computer science. Springer, 2006, pp. 325–336.

[10] R. Desai, Y. Yuan, and S. Coros, “Computational abstractions for inter-
active design of robotic devices,” in Proceedings of IEEE International

Conference on Robotics and Automation (ICRA), 2017, pp. 1196–1203.

[11] S. Ghasemlou, J. M. O’Kane, and D. A. Shell, “Delineating boundaries
of feasibility between robot designs,” in Proceedings of IEEE Interna-

tional Conference on Intelligent Robots and Systems (IROS), Madrid,
Spain, 2018, pp. 422–429.

[12] S. Haddad and B. Monmege, “Interval iteration algorithm for MDPs and
IMDPs,” Theoretical Computer Science, vol. 735, pp. 111–131, 2018.

[13] H. Hu, D.-y. Liu, and X.-y. Du, “Semi-automatic hardware design
using ontologies,” in ICARCV Control, Automation, Robotics and Vision

Conference, vol. 2, 2004, pp. 792–797.

[14] M. Indri, F. Sibona, and L. O. Russo, “P&p-standard architecture to
enable fast software prototyping for robot arms,” in Proceedings of

IEEE International Conference on Emerging Technologies and Factory

Automation (ETFA), vol. 1, 2018, pp. 721–728.

[15] N. Karmarkar, “A new polynomial-time algorithm for linear program-
ming,” in Proceedings of the sixteenth annual ACM symposium on

Theory of computing, 1984, pp. 302–311.

[16] R. M. Karp, “Reducibility among combinatorial problems,” in Complex-

ity of computer computations, 1972, pp. 85–103.

[17] O. Karrenbauer, S. Rader, and T. Asfour, “An ontology-based expert
system to support the design of humanoid robot components,” in Pro-

ceedings of IEEE-RAS International Conference on Humanoid Robots

(Humanoids), 2018, pp. 1–8.

[18] E. E. Karsak, “Expert decision system for robot selection,” Wiley

Encyclopedia of Computer Science and Engineering, pp. 1–11, 2007.

[19] C. Liu, W. Yan, and A. Mehta, “Computational design and fabrication
of corrugated mechanisms from behavioral specifications,” 2020.

[20] A. S. Manne, “Linear programming and sequential decisions,” Manage-

ment Science, vol. 6, no. 3, pp. 259–267, 1960.

[21] M. Morelli and M. Di Natale, “Control and scheduling co-design for a
simulated quadcopter robot: A model-driven approach,” in International

Conference on Simulation, Modeling, and Programming for Autonomous

Robots (SIMPAR), 2014, pp. 49–61.

[22] A. Q. Nilles, D. A. Shell, and J. M. O’Kane, “Robot Design: For-
malisms, Representations, and the Role of the Designer,” in IEEE ICRA

Workshop on Autonomous Robot Design, Brisbane, Australia, May 2018,
https://arxiv.org/abs/1806.05157.

[23] C. H. Papadimitriou and J. N. Tsitsiklis, “The complexity of markov
decision processes,” Mathematics of operations research, vol. 12, no. 3,
pp. 441–450, 1987.

[24] D. Scheftelowitsch, P. Buchholz, V. Hashemi, and H. Hermanns, “Multi-
objective approaches to markov decision processes with uncertain tran-
sition parameters,” in Proceedings of EAI International Conference on

Performance Evaluation Methodologies and Tools, 2017, pp. 44–51.

[25] D. A. Shell, J. M. O’Kane, and F. Z. Saberifar, “On the design of
minimal robots that can solve planning problems,” IEEE Transactions

on Automation Science and Engineering, vol. 18, no. 3, pp. 876–887,
2021.

[26] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction,
2nd ed. MIT press, 2018.

[27] D. White, “Monotone value iteration for discounted finite markov
decision processes,” Journal of mathematical analysis and applications,
vol. 109, no. 2, pp. 311–324, 1985.

[28] P. Yu, “Multiple criteria decision making: Five basic concepts,” Hand-

books in Operations Research and Management Science, vol. 1, pp.
663–699, 1989.

