Charting the trade-off between design complexity
and plan execution under probabilistic actions

Fatemeh Zahra Saberifar

Abstract—Practical robot designs must strike a compromise
between fabrication/manufacture cost and anticipated execution
performance. Compared to parsimonious designs, more capable
(and hence more expensive) robots generally achieve their ends
with greater efficiency. This paper examines how the roboticist
might explore the space of designs to gain an understanding of
such trade-offs. We focus, specifically, on design choices that alter
the set of actions available to the robot, and model those actions
as involving uncertainty. We consider planning problems under
the Markov Decision Process (MDP) model, which leads us to
examine how to relate the cost of some design to the expected cost
of an execution for the optimal policies feasible with that design.
The complexity of this problem —expressed via hardness in the
fixed parameter tractability sense—depends on the number of
actions to choose from. When that number is not negligible,
we give a novel representation and an algorithm utilizing that
structure that allows useful savings over naive enumeration.

1. INTRODUCTION

Each passing year brings with it a fresh harvest of tech-
nologies and innovations: novel sensors, new actuators, orig-
inal mechanisms, and more capable computing devices, each
offering some operational or economic advantage over the
already available offerings. On the face of it, this seems to
be unqualified good news for roboticists: more options afford
the ability to make better choices. But alas and/or alack, the
proliferation of choice can be an impediment. Because robots
integrate mechanism with information processing, designing
a robot for some task involves weighing a very wide range
of considerations (e.g., from energetics: size, mass, and wear,
to computational aspects: hardware, algorithms, data repre-
sentations, etc.). Most of these considerations impinge on
one another, so design necessarily entails the balancing of a
variety of compromises. To a designer attempting to make
informed choices for her robot, ever more options makes the
design endeavor increasingly arduous. One potential solution
is offered by tools that might help to ‘navigate’ the space of
feasible options, so our designer might better understand the
implications of various available choices.

To bring such tools closer to fruition the present paper
offers algorithms that can help illuminate the trade-off between
design complexity and anticipated robot performance. These
algorithms are intended for use during the early phases that

F. Z. Saberifar is with the Department of Computer Sciences at Tar-
biat Modares University, Tehran, Iran. D. A. Shell is with the De-
partment of Computer Science and Engineering, Texas A&M Univer-
sity, College Station, TX, USA. J. M. O’Kane is with the Depart-
ment of Computer Science and Engineering, University of South Car-
olina, Columbia, SC, USA. fz.saberifar@modares.ac.ir,
dshell@tamu.edu, jokanelcse.sc.edu This material is
based upon work supported by the NSF under Grants 1849249 & 1849291.

Dylan A. Shell

Jason M. O’Kane

@ Road Wheels |

5 @ Off-Road Wheels B
2 l @
O
o % Flippers
(0] o] QQ Agquatic thruster
W Jetpack

Fig. 1. Even simple settings can lead to complex trade-offs: Selecting
the design for a robot to transport an item from the ‘Start’ to the
‘Goal’ by choosing the appropriate actuation. [Inset right:] These
devices each have different purchase and integration costs, and differ-
ent motion properties during execution, including power expended,
range of availability (illustrated in summary form via colors), and
reliability (treated as stochastic transitions). [Inset left:] An example
of a highly-capable chimera-like tracked robot equipped with flippers
and a jetpack, which happens to be a candidate in the design space.

span the initial conception, exploration and consideration of
alternate options. We adopt an abstract model which considers
designs that differ in terms of the actions they are capable
of executing. Actions themselves are regarded as having
uncertain outcomes, treated as probabilistic transitions. Most
directly, designs may differ in terms of physical actuators
placed on the robot. Or, the actions available might represent
sub-systems (perhaps utilizing low-level feedback) that enable
execution of some action. Some combination can also be
handled as well. The approach we describe allows comparison
between robot designs capable of performing some action (say,
to turn left) versus ones which cannot. More interestingly,
since the transition dynamics are probabilistic, it also allows
one to explore the effect of increasing precision, to determine
whether paying additional cost to increase reliability of an ac-
tion will actually manifest as a sufficiently large improvement
in efficiency. Naturally, the effectiveness of such a change
depends on the role of the action within the context of the
other actions needed to reach the desired ends, that is, the
relevant considerations are not entirely local.

As a basic example, consider the problem of designing a
robot to deliver emergency supplies after flooding. Figure 1
shows a section of the map of Florida with Knight’s Key
(top left) and Boot Key (a larger landmass, at bottom). The
robot starts at the position indicated with the yellow locator

and must arrive at the point marked with the red pin. As
the right inset box shows, a variety of options for actuators
exist, each with a different procurement price and resulting
in different actions being available to the robot. The up-
front cost to install an actuator may grant the ability to
traverse whole sets of edges. Some of the actuators have
broad applicability (like the various wheels), others (such as
the ‘jetpack’) provide powerful capabilities but for a narrow
niche. Certain choices might involve a difference in price for
a difference performance: ‘flippers’ may allow slow reliable
progress, while an ‘aquatic thruster’ unlocks the ability to
move at greater speeds for comparable joules, albeit with more
limited precision and hence poor fine manceuvrability. In our
model, this reduced precision shows up as transition dynamics
with greater entropy; energy expended in joules shows up as
a cost. One might also replace a combination of specialized
actuators with a single one that is applicable in the same
circumstances, paying then only a single cost up-front. Still, a
compromise between conditions likely loses some attractive
properties: e.g., the more expensive combination of ‘road
wheels’ and ‘tracks’ is more reliable off-road and faster on-
road than the parsimonious design with just ‘off-road wheels’.

These considerations are complex and raw intuition can be
misleading. Algorithmic tools would be most useful to help
provide insight and guide the design process. The contribution
of this paper is to introduce such algorithmic tools (Sections V
and VI) grounded in theoretical analysis of the problem’s
complexity (Section IV). We then investigate the effectiveness
of those new tools (Section VII).

II. RELATED WORK

Recently, several robotics research groups have been explor-
ing how algorithmic automation and computational methods
can help improve the quality of the robot designs, can ease
the design process, or shed light on specific elements that
make the problem especially complex [22]. A core line of
research is concerned with the notion of co-design: Censi [7],
[8] developed the mathematical theory of co-design problems,
which considers the relation between resource consumption
and the functionality of robots. Carlone and Pinciroli [6]
consider co-design when selecting robot system modules with
a given cost to maximize performance. They solve the problem
using binary linear programming. The term ‘co-design’ has
also been used more broadly (see [3], [21]) when different
aspects that play a role are considered jointly.

Aspects of design automation have additionally been
focused on considerations of fabrication [19], rapid-
prototyping [2], [14], interactive design [10], [11], [S]. Also,
there have been approaches to structured knowledge represen-
tation that can help with design problems [17], [18], [13].

Most closely related is the authors’ prior work [25], which
examines a notion of designs similar to this paper, but the
planning problems in that paper are under worst-case assump-
tions. The present paper makes two separate modifications,
both of which change the setting rather more significantly than
the authors originally anticipated. The first is to introduce a

notion of execution cost. The key consideration in [25] is a
decision problem, viz. whether a set of actuators suffices, or
whether dropping some actuator (or gadget) will incapacitate
the robot. Instead, the present study examines a Pareto front
with differing costs. Secondly, we now consider probabilistic
transitions. These confer a meaningful notion of expected
performance, permitting the impact of some action’s precision
to be considered quantitatively.

Because part of the problem we tackle involves estimating
value functions for Markov Decision Problems using an inter-
val approach (and terminating early), we point out that this is
similar in form to Haddad and Monmege [12], though their set-
ting has only a single objective. There is substantial prior work
on multi-objective MDPs (see [24], [9]), though that work
considers costs which are not design costs. Also relevant, albeit
more loosely, is literature dealing with hardness results for
MDPs (see, for instance, [4]), and asynchronous approaches
to value iteration [1], and reinforcement learning [26].

III. PROBLEM STATEMENT
A. Markov decision processes and action restrictions

We are interested in sequential decision-making problems
that can be modeled as Markov decision processes (MDPs).
We begin with three standard definitions [?], [26].

Definition 1. An MDP is a tuple (X, xo,U, p,c,v) with

1) a finite nonempty state space X,

2) an initial state xg € X,

3) a finite nonempty action space U,

4) a transition probability function p : X xU x X — [0, 1],
in which p(x, u, x") denotes the probability of transition-
ing to state x' upon selecting action u at state x,

5) a cost function ¢ : X xU — R, in which c(x, u) denotes
single-step execution cost of executing action u at state
x, and

6) a discount factor v € [0, 1).

An MDP models a discrete time sequential decision-making
scenario. Each execution begins at the initial state xp. At
each stage k, the robot is at state x; and executes action ug,
whereupon the system transitions to a new state xj; drawn
according to the probability distribution p(xy,uy,). During
this transition, the robot incurs a single stage cost ¢(zx, ug).
The actions selected by the robot are governed by a policy.

Definition 2. For an MDP (X, xo,U,p,c,7), a policy is a
Sfunction m: X — U.

Intuitively, the policy describes the action selected by the
robot from each state in the state space, so that uj = m(xy).
The robot’s objective is to minimize the costs incurred as
it executes the policy, subject to discounting, which ensures
convergence across executions that are, in principle, infinite.

Definition 3. For an MDP (X, xo,U, p,c,7) and a policy =,
the execution cost of that policy is

Z ’ykc(xk, uk)] .
k=0

e(r) =E

A policy is an optimal policy if its execution cost is minimal
among all policies.

In this paper we will have occasion to consider families
of MDPs formed by eliminating certain actions. The next
definition makes this idea more precise.

Definition 4. For an MDP M = (X, xo,U,p,c,v) and an
action set U' C U, the restriction of M to U’, denoted M (U"),
is an MDP identical to M except that its action space is
U’ rather than U. That is, M(U') = (X,z0,U’,p’,,7), in
which the transition probability and step-stage cost function
arep’ : X xU'xX —[0,1] and ¢/ : X xU’" — R respectively,
with p'(z,u,z") = p(x,u, ') and ' (z,u) = c(z,u) for all x
and ¥’ in X, and all v in U’

Definition 5. For an MDP M = (X, x0,U,p,c,7y) a value
function is a scalar function Vy; : X — R, and an optimal
value function satisfies

Vir(e) = min 3" pla,u,a’) felw,w) + Vi @) ()
r’eX
Value functions V,;, V,§ with Vy,(z) < Vi (z) < Vi (z)
for all z € X are termed, respectively, lower- and upper-
bounding value functions.

B. Design cost

Next, we adapt the notion of design cost introduced in our
prior work [25] from its original formulation based on worst-
case reasoning to the present stochastic setting.

Definition 6. A design cost function d : 2V — R U {+o0}
assigns an extended real number to each subset of the action
space U.

The key distinction, which contrasts with traditional plan
costs, is that design cost depends on which actions may be
executed by a given policy, rather than on how often those
actions may be executed on any particular run of the system.

Definition 7. For a given policy 7, the operative actions A(m)
are the actions associated with at least one state. That is,
A(m) == Ugex{m(x)}. The design cost of a policy 7 is the
design cost of its operative actions, d(x) = d(A(x)).

A property which holds often in practice is that adding
additional capabilities to a robot will not decrease its cost,
and these are called monotone design costs.

Definition 8. A design cost function is monotone if, for any
sets U1 C U and Uy C U, we have

U, ClU; = d(Ul) < d(UQ)

We restrict our attention to monotone design cost functions
in this paper.

Note that Definition 8 admits a variety of cost functions
of varying complexity. For example, one useful family of
design cost functions characterizes the design choice as one of
selecting from a set of gadgets with which to equip the robot.
Each gadget is defined by the design cost of choosing it —from

which the overall design cost may be derived additively—
along with a set of actions it enables. This is appropriate for
the example in Figure 1.

C. Optimizing Execution cost and design cost

We now have the requisite elements in place to state the
central algorithmic problem. The exposition above introduces
two distinct measures by which a policy may be evaluated: its
execution cost (Definition 3) and its design cost (Definition 7).
Notice, however, that these measures can be expected to be
in tradeoff with one another: In general, modifications to a
policy that decrease its design cost by making some actions
inoperative can, by virtue of restricting the set of available
actions, increase the execution cost.

Thus, the root problem here is one of multi-objective
optimization, and we are interested in policies that are Pareto
optimal [28], in the sense that no other policy improves both
the design cost and the execution cost.

Problem: Optimal Design-/Execution-Cost Policies (ODECP)

Input: An MDP M and a design cost function d.
Output: The set of Pareto-optimal policies for M and d.

For purpose of complexity analysis in Section IV we can
also cast the problem as a decision problem.

Decision Problem: Feasible Design-/Execution-Cost Decision
(FDECP)
Input: An MDP M, a design cost function d, a design cost bound
d, and an execution cost bound eé.
Output: YES if there exists a policy 7 for M with design cost at
most d and execution cost at most €; NO otherwise.

IV. HARDNESS AND FIXED-PARAMETER TRACTABILITY

Before attending to data structures and algorithms for these
problems, a detour into their computational complexity will

be instructive.
Two proofs will use reduction from the following standard
problem, known to be NP-complete [16].

Decision Problem: SETCOVER
Input: A universe set R with n elements, a set 1" comprised of
m sets 11, ..., Ty such that U?;l T; = R, and integer k.
Output: YES if there is some set I C T such that I covers all
elements of R and the size of I is at most k.
NoO otherwise.

Theorem 1. FDECP is NP-hard.

Proof. The construction used in Theorem 1 of [25] uses a
reduction from SETCOVER; the same construction can be re-
tooled for use here. (Only the required modifications are given
here.) Pick v = % For a SETCOVER instance with the set
size |R|, a state space of size |R|+ 2 works: we have a ‘goal’
state, T|R|41, and a ‘crash’ state xy. Actions are constructed
analogously with that in [25]: If action a should connect state
x; to x;41, then p sets only that probability to one, and zero
for all other z;, j € {0,...,|R| + 1} \ {i + 1}. If action a
doesn’t depart from state x;, have it transition with probability
one to the ‘crash’ state xy. All actions loop at state xy. Assign

cost c(x;,u) = 0 for all u and every state x; except zy. Put
¢(xg,u) = 1 for all w. Then, an optimal policy that reaches
the goal will have expected cost 0; any other policy reaches
g after the first step but no later than the |R|*®-step, thus has
expected cost that is € (3,1]. Hence, we choose d to be the
cardinality of the desired cover (k in [25]), and e to be % O]

Lemma 1. Given MDP (X, x0,U,p,c,7), an optimal policy
can be found in polynomial time.

Proof. The policy can be found using linear program-
ming [20], which has a solution in polynomial time (e.g., [15]).
In fact, Papadimitriou & Tsitsiklis [23] proved the stronger
result that solving for the optimal policy is P-complete. [

Theorem 2. FDECP, parameterized by the size of the action
space, is fixed-parameter tractable (FPT).

Proof. Given MDP M = (X, zo, U, p, c,7), choose as param-
eter the size of the action space, i.e., let A\ = |U|. The obvious
algorithm works: enumerate the set of MDPs via the restriction
{M(V) |V €2V \ {@}}. For each, evaluate the design cost
d(M(V)). If it is less than or equal to d, then construct an
optimal policy, and evaluate its expected cost to see if it is no
more than the execution cost bound €, if so, answer YES. If
all have been enumerated and none found, answer NO. Since
construction of the optimal policy takes polynomial time via
Lemma 1, this algorithm is FPT because its running time is
2200, O

Informally, the upshot of Theorems 1 and 2 is that, though
the problem in general is computationally challenging (unless
P = NP), that challenge is primarily concentrated in the
number of actions in our MDPs.

Another, alternative take on the hardness is that even if we
have the optimal MDP value function (say, via an oracle) then
we will still have a difficult problem. Consider the following.

Problem: Optimal Design Cost Policy (ODCP)
Input: An MDP M = (X,z0,U,p,c,v), an optimal value
function Vy;, and a design cost function d.
Output: A policy m with e(w) = Vyr(xo) such that d(m) is
minimal.

The decision problem is as follows.

Decision Problem: Feasible Design Cost Policy (FDCP)
Input: An MDP M = (X,z0,U,p,c,v), an optimal value
function Vyy, and a design cost function d, and a design
cost bound d.
Output: YES if there exists a w for M with e(m) = Vy;(xo) such
that d(7) < d; NO otherwise.

Theorem 3. ODCP is NP-hard.

Proof. To prove NP-hardness of ODCP, it is sufficient to prove
that its decision problem (FDCP) is NP-complete. So, we need
to prove FDCP € NP and all NP problems are reducible to
FDCP. For the first part, if given a putative 7 claimed to
correspond to a YES instance, we can check that the given

action at each state is indeed a v which minimizes (1). This
verification takes O(|X|) time.

For the second part, we present a polynomial reduction,
again, from SETCOVER: given an instance (R, T, k), construct

an instance of FDCP, (M, V3, d, d), as follows:

e We form an MDP M = (X, xzo,U,p,c,v) with state
space X = {xo,71,...,T|R|, Ty}, initial state x¢, and
U= {uy,ua,...,up}.

For each u € U, we define Vk € {0, g}, p(xo, u, zx) = 0,
and V&' € {1,..., |RI}, p(zo,u, xp) = p7. To define p,
for each u; in U :
ke {1,...|R|},p(xo, ui, zk) = ﬁ;
je{l,...,|R|}, z € X \ {zj,zq}, p(x;,us,x) =0,

p(xj, ui,x9) = 113 (4), (), ui, 25) = 1= 11,(j);
€ X,p(zg,us,x) = 1(,, 3 (2).
Then, define to ¢, for each u; in U:

c(zo, ui) = c(xg,u;) =0,

ke {1,...|R[}, clanu) =1 — 1, (k).

o Take v = %

o Compute V}; from M.

o Take as design cost d(A) = |A|.

o Set the design cost bound d = k.

(Above, 1y (+) is the indicator function for set Y.) In light of
Lemma 1, all steps in this construction take polynomial time.
For any instance (R, T’ k), consider the FDCP (M, V3, d, d).
Observe that V3;(xo) = 0 because SETCOVER stipulates that
every element in R is covered by at least one element T, so
each state {z1,... ,x‘R‘} can take some action with cost zero.

If I C T with |I| < k covers R, then for each i €
{1,...|R|}, the policy 7 selects any action u; where T; € I
covers the element in R corresponding to i. For xp and
24, reuse one of the actions already used elsewhere. Such
a policy 7 takes an action of cost 0 at each state (when
at state 2y € {z1,...,zg} it performs an action wu; with
¢ € Tj, so c(xg,uj) = 1 —17;(£) = 0). This is an optimal
expected execution cost, since all costs are non-negative. But
then d(7) < k = d;

Conversely, if we have a policy 7 with ¢(7) = V;;(x0) =0,
and d(r) < d, then collect all the actions {u;, ,uj,,...u;, } =
Uieq,...|r[} 17 (z4) }, where know j,, < k because these are the
operative actions. A zero cost action must be prescribed at
every state because, if it did not, then ¢(m) > 1 - ﬁ -1>0.

Thus, sets T}, ,T5,,...Tj, cover R. O

IR

V. THE LATTICE OF BOUNDS DATA STRUCTURE

In spite of the discouraging news of the previous section,
we turn now to the practical question of solving ODECP.
This section describes a data structure called a lattice of
bounds, which represents partial information about the design
and execution costs achievable with various sets of actions.
We describe its structure, its operation, and several important
invariants it maintains. This data structure forms that basis of
the algorithm in the next section.

Definition 9. A lattice of bounds for an MDP M =
(X, 20,U,p,c,v) is a directed graph, in which each of the

finitely-many vertices v is labeled with a set of actions U,, C U
and value functions V, : X =+ Rand V7 : X — R.

The following two invariants form a connection between the
lattice of bounds and Pareto optimal solutions we seek.

Invariant 1. In a lattice of bounds, for each edge v — w,
U, D Uy,. That is, each edge represents a parent-child
relationship under which the parent has access to a strict
superset of the actions available to the child.

Invariant 2. In a lattice of bounds for MDP M =
(X,z0,U,p,c,v), at each vertex v, V~ and V' are lower and

upper bound value functions, respectively, for the restricted
MDP M(U,).

These invariants are important because they establish a
connection to our objective of finding the Pareto front.

Lemma 2. For any lattice of bounds L in which Invariants 1
and 2 hold, and any policy © with execution cost e(m) and
design cost d(r), if there exists some vertex v in L for which
Vi (o) < e(r) and d(U,) < d(x), then 7 is not a Pareto
optimal policy.

Proof. Vertex v provides a direct counterexample to the pos-
sibility of Pareto optimality of v. [

To create a lattice of bounds, it suffices to construct
a collection of one or more vertices and to initialize the
V= and VT functions for each to (even very optimistic
or pessimistic) lower- and upper-bounds for the true value.
One safe way to do this, for each v,,, is to initialize Vu’k

and V' values to (minwex,ueU% c(m,u)) /(1 —), and
(maxxex,ueU% c(z, u)) /(1 —~), respectively.

Lemma 3. This initial lattice of bounds satisfies Invariants 1
and 2.

Other operations may mutate an existing lattice of bounds,
generally toward tighter bounds on the optimal value functions.

Operation 1. For a vertex and a state, perform one Bellman
update (the atomic step of value iteration) on V=~ or V1 at
one state x. That is:

plz,u,2) [e(z,u) + vV, ()], or

p(z,u,z’) [c(x,u) + 'vaJr(o:')} , resp.

The rationale for the previous operation follows from this
lemma.

Lemma 4. Steps of value iteration monotonically decrease
(resp. increase) the value function when initialized from an
upper-bounding (resp. lower-bounding) value function.

Proof. The standard and, indeed, some modified methods —
possessing superior performance— converge monotonically. A
self-contained and explicit proof appears in [27]; for the

argument showing that the property holds for a subset of states
(or single state) see [1, Chapt. 7]. O]

Operation 2. For an edge v — w and a state x, assign
V. (@) < min (V.M (2), V) (2)) -

Rationale: As v has more actions, the costs at v never exceed
those at w. Thus, if the value at w is at most V,} (), then the
value at v can be at most V,} (x) as well.

Operation 3. For an edge v — w and a state x, assign

V, (z) < max (V,; (z),V, ().

w v

Rationale: As w has fewer actions, the costs at w can never
be less than those at v. If the value at v is at least V, (),
then the value at w can be no less than V, (x) as well.

Definition 10. For a lattice of bounds for MDP M =
(X, z0,U, p,c,v) with vertices V, a set of actions U' C U is
unrepresented if there is no vertex v € V such that U, = U’.
For an unrepresented set, a bracketing pair consists of two
vertices u,w € V such that Uy, 2 U’ D U,

Operation 4. For an unrepresented set U’ with bracketing
pair v and w: add the vertex v with actions U,, = U’, and add
all edges p — v with U, 2 U’, and add all edges v — q with
U’ D Uy, and remove any edges r — s with Us 2 U’ 2 U,.
Set V, =V, and V,) =V, .

u

Lemma 5. Operations 1-4 maintain Invariants 1 and 2.

VI. AN ALGORITHM FOR COMPUTING THE PARETO FRONT

The concept of a lattice of bounds forms the core data-
structure underlying our algorithm. Actually, the preceding
definition invariants offer plenty of scope for a variety of
different approaches and, in what follows, we describe one
effective means for combining these elements. (The next
section will provide evidence for the claim of effectiveness
by revisiting the motivating scenario, as a case study).

The algorithm is composed of several elements, each of
which periodically mutates the lattice bounds.
0. Initialization: = For MDP M = (X,z,U,p,c,7), we
construct an initial lattice of bounds comprising |U| vertices.
The action sets for these vertices are seeded with each distinct
action u and then greedily expanded to contain a maximal set
of actions that have the same design cost as u individually.
The V~ and VT bounds for each vertex are initialized as
described above.
1. Improving Execution Cost Estimates at the Widest Gaps:
We maintain a priority queue of states, ordered by 6V, (z) =
V.t (x) — V7 (x), for all the states across all the vertices. This
allows the state with the largest discrepancy between lower and
upper bounds on the value to be selected and improved using
Operation 1 (one iteration for V'~ and another for V). After
this, JV,(x) is re-computed (it may have decreased) and the
element in the priority queue updated. Operations 2 & 3 are
then applied recursively to propagate the available information
up and down the lattice.

2. Improving Execution Cost Estimates Globally: Similarly,
we also maintain a cyclic queue of all of the states at all of
the vertices, using it to apply Operation 1 to them in a round-
robin fashion. This ensures that progress continues to be made
even when the widest gaps occur at states where value iteration
cannot yet improve the bounds because the bounds at potential
next states are as yet too weak.

3. Removing vertices from consideration: If at some point
we have two vertices v and w with the property that

d(v) > d(w) and Vrec X, V, (z)>V](x)

with at least one of the inequalities strict, then v is dominated
and there is enough information to declare that it will remain
so even with further improvement of the cost estimates. (Recall
Lemma 2.) We can thus remove those elements of v from
the priority queue and cyclic queue used for execution cost
updates. (It remains in the lattice of bounds because it may
be useful for the vertex creation step.)

4. Creating vertices: New vertices are created by selecting
an existing vertex, adding a new action, and then expanding
that action set greedily to reach a plateau of the design cost
function, just as in step 0.

The preceding text described a collection of mostly inde-
pendent strategies for investing computational effort to make a
lattice of bounds more accurately reflect the true Pareto front.
How are these elements combined into a working algorithm?
The initialization is done once at the start, obviously. Steps
I1-3 can be executed under a variety of policies. We currently
employ a simple approach where each of Steps 3. operate at
each iteration of a main loop. Step 4, which expands the lattice
into unexplored portions of the design space, is triggered
with the 0V, (zg) bound in Step I falling below a chosen
threshold e; when the bounds for the currently-represented
vertices begin to converge, the time is right to explore further.

The algorithm terminates either when no maximal (in the
sense of being able to add actions without increasing design
cost, as in Steps 0 and 4) action sets remain to be represented,
or when a timeout expires.

VII. CASE STUDIES

In order to demonstrate and evaluate our python implemen-
tation of the algorithm, we encoded the problem shown in
Figure 1 as an ODECP. Space constraints require that omit
specific quantitative details and parameters of the model, but
we emphasize a few aspects. Firstly, each arc in the graph
shows up as an action. The design cost was constructed so
that for a set of actions, the addition of any extra action which
is already possible using the gadgets employed in the set does
not increase the design cost. This satisfies the requirements for
monotonicity. The specific procurement and per-action costs
model the approximate ordering one would expect (e.g., the
jetpack is two orders of magnitude more dear than the wheels,
and one order more than the thruster). We modeled some
actions as unreliable (like the thruster and flippers) by having
some probability for failure, which the transition dynamics
cause to incur cost with no change in state.

S
o
!

W
[l

w
o
L

N
w
L

Design Cost
N
(=]
/

ind

\44

-500 0

BN

—1500 -1000
Execution Cost

0 T
—2500 —2000

w
o

I all vertices
4 Il dominated vertices

N
v

N
o
f

Lattice Vertices
= [
o w

v
L

20000 30000 40000

Calls to Operation 1

0 10000

Fig. 2. [top] The Pareto front visualized for the scenario in Figure 1.
Four choices dominate the other options. The inset figures show
the actions selected for four designs: the bottom right, with lowest
design cost has only ‘road wheels’; the bottom center one has ‘road
wheels’ and ‘off-road wheels’; bottom left has *flippers’ and ‘off-
road Wheels’; the design at top has ‘flippers’, ‘off-road wheels’, the
‘jetpack’. [bottom] A performance plot showing the progression of
the algorithm as it executed.

Figure 2 [top] gives a visual summary of the final Pareto
front as charted by the algorithm. Notice, in particular, the
horizontal lines: these are vertices where V'~ and V™ have
not needed to be iterated until convergence—they are detected
as dominated and computation is saved by stopping early. The
plot in Figure 2 [bottom] gives a progression of the imple-
mentation functioning across time, using calls to Operation 1,
the most frequent operation, as the independent variable. The
shrinking 6V, () will fall below e, triggering Operation 4
periodically (visible in the diagram as vertical steps where
additional vertices are introduced). The plot also shows the
increase in number and proportion of dominated vertices.

VIII. CONCLUSION

This paper tackled the problem of designing robots and
forming plans for those robots, in contexts where both exe-
cution cost (i.e. time, energy, etc.) and design costs (i.e. fixed
costs to equip the robot with certain capabilities) are germane,
and the tradeoffs between these costs must be explored. The
particular setting involved uncertainty about the outcomes
of actions. We established several computational complexity
results and introduced a data structure and accompanying
algorithm the solve that problem.

[1]
[2]

[3]

[4]

[5]

[6]

[7]

[9]

[10]

(11]

(12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]
[20]

[21]

[22]

[23]

[24]

REFERENCES

D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computa-
tion: Numerical Methods. Prentice Hall, 1989.

N. Bezzo, A. Mehta, C. D. Onal, and M. T. Tolley, “Robot makers: The
future of digital rapid design and fabrication of robots,” IEEE Robotics
& Automation Magazine, vol. 22, no. 4, pp. 27-36, 2015.

G. Bravo-Palacios, A. D. Prete, and P. M. Wensing, “One robot for
many tasks: Versatile co-design through stochastic programming,” IEEE
Robotics and Automation Letters, vol. 5, no. 2, pp. 1680-1687, 2020.
T. Brazdil, K. Chatterjee, V. Forejt, and A. Kucera, “Trading perfor-
mance for stability in markov decision processes,” Journal of Computer
and System Sciences, vol. 84, pp. 144-170, 2017.

B. Canaday, S. Zapolsky, and E. Drumwright, “Interactive, iterative robot
design,” in Proceedings of IEEE International Conference on Robotics
and Automation (ICRA), 2017, pp. 1188-1195.

L. Carlone and C. Pinciroli, “Robot co-design: beyond the monotone
case,” in Proceedings of IEEE International Conference on Robotics
and Automation (ICRA), 2019, pp. 3024-3030.

A. Censi, “A Class of Co-Design Problems With Cyclic Constraints and
Their Solution,” IEEE Robotics and Automation Letters, vol. 2, no. 1,
pp. 96-103, Jan. 2017.

——, “Uncertainty in monotone co-design problems,” IEEE Robotics
and Automation Letters, vol. 2, no. 3, pp. 1556-1563, 2017.

K. Chatterjee, R. Majumdar, and T. A. Henzinger, “Markov decision
processes with multiple objectives,” in Annual symposium on theoretical
aspects of computer science. Springer, 2006, pp. 325-336.

R. Desai, Y. Yuan, and S. Coros, “Computational abstractions for inter-
active design of robotic devices,” in Proceedings of IEEE International
Conference on Robotics and Automation (ICRA), 2017, pp. 1196-1203.
S. Ghasemlou, J. M. O’Kane, and D. A. Shell, “Delineating boundaries
of feasibility between robot designs,” in Proceedings of IEEE Interna-
tional Conference on Intelligent Robots and Systems (IROS), Madrid,
Spain, 2018, pp. 422-429.

S. Haddad and B. Monmege, “Interval iteration algorithm for MDPs and
IMDPs,” Theoretical Computer Science, vol. 735, pp. 111-131, 2018.
H. Hu, D.-y. Liu, and X.-y. Du, “Semi-automatic hardware design
using ontologies,” in ICARCV Control, Automation, Robotics and Vision
Conference, vol. 2, 2004, pp. 792-797.

M. Indri, F. Sibona, and L. O. Russo, “P&p-standard architecture to

enable fast software prototyping for robot arms,” in Proceedings of

IEEE International Conference on Emerging Technologies and Factory
Automation (ETFA), vol. 1, 2018, pp. 721-728.

N. Karmarkar, “A new polynomial-time algorithm for linear program-
ming,” in Proceedings of the sixteenth annual ACM symposium on
Theory of computing, 1984, pp. 302-311.

R. M. Karp, “Reducibility among combinatorial problems,” in Complex-
ity of computer computations, 1972, pp. 85-103.

O. Karrenbauer, S. Rader, and T. Asfour, “An ontology-based expert
system to support the design of humanoid robot components,” in Pro-
ceedings of IEEE-RAS International Conference on Humanoid Robots
(Humanoids), 2018, pp. 1-8.

E. E. Karsak, “Expert decision system for robot selection,” Wiley
Encyclopedia of Computer Science and Engineering, pp. 1-11, 2007.
C. Liu, W. Yan, and A. Mehta, “Computational design and fabrication
of corrugated mechanisms from behavioral specifications,” 2020.

A. S. Manne, “Linear programming and sequential decisions,” Manage-
ment Science, vol. 6, no. 3, pp. 259-267, 1960.

M. Morelli and M. Di Natale, “Control and scheduling co-design for a
simulated quadcopter robot: A model-driven approach,” in International
Conference on Simulation, Modeling, and Programming for Autonomous
Robots (SIMPAR), 2014, pp. 49-61.

A. Q. Nilles, D. A. Shell, and J. M. O’Kane, “Robot Design: For-
malisms, Representations, and the Role of the Designer,” in IEEE ICRA
Workshop on Autonomous Robot Design, Brisbane, Australia, May 2018,
https://arxiv.org/abs/1806.05157.

C. H. Papadimitriou and J. N. Tsitsiklis, “The complexity of markov
decision processes,” Mathematics of operations research, vol. 12, no. 3,
pp. 441-450, 1987.

D. Scheftelowitsch, P. Buchholz, V. Hashemi, and H. Hermanns, “Multi-
objective approaches to markov decision processes with uncertain tran-
sition parameters,” in Proceedings of EAI International Conference on
Performance Evaluation Methodologies and Tools, 2017, pp. 44-51.

[25]

[26]

[27]

[28]

D. A. Shell, J. M. O’Kane, and F. Z. Saberifar, “On the design of
minimal robots that can solve planning problems,” IEEE Transactions
on Automation Science and Engineering, vol. 18, no. 3, pp. 876-887,
2021.

R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction,
2nd ed. MIT press, 2018.

D. White, “Monotone value iteration for discounted finite markov
decision processes,” Journal of mathematical analysis and applications,
vol. 109, no. 2, pp. 311-324, 1985.

P. Yu, “Multiple criteria decision making: Five basic concepts,” Hand-
books in Operations Research and Management Science, vol. 1, pp.
663-699, 1989.

