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A B S T R A C T   

This study uses mobility data in the context of 2017 Hurricane Harvey in Harris County to 
examine the impact of flooding on access to dialysis centers. We examined access dimensions 
using static and dynamic metrics. The static metric is the shortest distance from census block 
groups to the closest centers. Dynamic metrics are: 1) redundancy (daily unique number of centers 
visited), 2) frequency (daily number of visits to dialysis centers), and 3) proximity (visits weighted 
by distance to dialysis centers). The results show that: the extent of dependence of regions on 
dialysis centers varies; flooding significantly reduces access redundancy and frequency of dialysis 
centers; regions with a greater minority percentage and lower household income were likely to 
experience extensive disruptions; high-income regions more quickly revert to pre-disaster levels; 
larger centers located in non-flooded areas are critical to absorbing the unmet demand from 
disrupted facilities.   

1. Introduction 

Dialysis centers are critical to the health of persons suffering from renal failure or end-stage renal disease. Disasters can disrupt 
access to dialysis centers, resulting in life-threatening circumstances for dialysis-dependent patients (Smith et al., 2020). Lempert and 
Kopp (2013) defined a kidney failure disaster as “an event that places large number of patients treated with maintenance dialysis or in
dividuals with a recent onset of acute kidney injury (AKI) at risk due to lack of access to dialysis care” (Lempert and Kopp, 2013). Extreme 
weather events, such as hurricanes, flooding, and winter storms, can cause kidney failure disasters due to disrupted access to dialysis 
centers. Therefore, better understanding of access disruption to dialysis center services is critical for public health officials and disaster 
managers to design and implement preparedness and resilience strategies to meet the needs of dialysis-dependent patients. 

A dialysis center has a characteristic that makes it distinct from other healthcare facilities. Patients that visit these centers are often 
need to have recurring visits in order to receive a life-saving service (i.e., dialysis service). Therefore, unlike a hospital, an overall surge 
in the demand is not expected in the network of dialysis centers following a hazard event. Nevertheless, the challenge is to enable 
undisrupted access to dialysis service for people in need and guarantee that serviceable dialysis beds can meet the demand for all 
patients during the response and recovery phases and patients can have access to a nearby dialysis center. It requires developing 
specific metrics that can capture different crucial dimensions of access to dialysis centers. 
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1.1. Study objective and scope 

The main objective of this study is to use aggregated human mobility data to unveil vulnerability and inequality due to disrupted 
access to dialysis centers. We specified multiple access metrics to examine both static and dynamic dimensions of access, as well as 
access inequities in the context of 2017 Hurricane Harvey in Harris County (Houston metro area) in Texas. The static dimension of 
access was examined based on the shortest distance from census block groups (CBGs) to dialysis centers. The dynamic access di
mensions were determined daily number of unique dialysis centers visited by CBG residents (redundancy), daily count of visits to 
dialysis centers (frequency), and daily distances of visits weighted by visits to dialysis centers (proximity). We computed these metrics 
based on analysis of the human visitation network (CBG–dialysis center network) and investigated the fluctuations in dynamic access 
metrics and further examined their spatiotemporal patterns to reveal: (1) the extent of dependency of different CBGs on dialysis 
centers; (2) the spatial patterns of disrupted access and hotspots of vulnerability; (3) inequalities in disrupted access; and (4) the 
absorption of unmet demand of patients by other facilities. 

This study contributes to the body of knowledge by revealing the major determinants of the access disruption throughout a case 
study. Specifically, it shows the way that factors such as facility positioning factors (i.e., baseline patterns of facility dependence, 
spatial distribution and capacity of facilities), hazard exposure factor (i.e., flood exposure of regions and nearby facilities), and access 
vulnerability (i.e., inundation of road networks) contribute to the extent of access disruption. In addition, this study contributes to the 
body of knowledge in equitable disaster planning by analyzing the access to dialysis centers in Harris County during 2017 Hurricane 
Harvey that reveals inequalities in access among specific population groups (i.e., low-income and minority populations) and the need 
for addressing these inequalities in urban regions. The approach to analyzing access disruption to dialysis centers and the findings have 
important implications for public health officials and emergency managers to systematically examine the vulnerability of access 
disruption to dialysis centers and other critical care facilities during extreme weather events to inform their preparedness and resil
ience plans. 

2. Literature review 

Disruption in dialysis service provision could have life-threatening implications for dialysis-dependent persons constituting a 
medically vulnerable population (Soyibo et al., 2011; Weiner, 2009). Natural hazards such as floods can impact access to dialysis 
centers through disruption of access to the center (i.e., access road closure), disruptions that limit patients’ ability to access to the 
service (i.e., flood inundation in the neighborhood), and closure of dialysis centers. Therefore, it is crucial to examine access disruption 
to dialysis centers during both normal conditions and during flooding periods to meet the medical needs of persons this medically 
vulnerable population. Multiple studies have been conducted regarding the disruption in medical needs of dialysis-dependent patients 
during and after extreme weather events, such as Hurricane Katrina in 2005 (Bonomini et al., 2011; Kopp et al., 2007; Lempert and 
Kopp, 2013; Vanholder et al., 2009) and Hurricane Gustav in 2008 (Kleinpeter, 2009). In addition, missed regular dialysis sessions due 
to access disruption can cause second-order impacts, such as an increase in visits to other dialysis centers, a heavier burden of receiving 
more dialysis-dependent patients, and increased emergency department visits (Obialo et al., 2012; Saran et al., 2003). 

2.1. Disrupted access to dialysis centers during flooding 

The majority of existing studies related to access to critical care facilities services focus on service access during normal periods. 
Rosero-Bixby (2004) defined the demand–supply system connecting census population and health facilities using GIS tools, and then 
developed an accessibility index based on the distance to the nearest health facility to assess spatial access to health care in Costa Rica 
(Rosero-Bixby, 2004). Jin et al. (2015) used the census data at residential building cells as origins, and hospitals and clinics as des
tinations to examine the spatial inequity of access to healthcare facilities in China (Jin et al., 2015). The study developed an index of 
access to healthcare faculties as a function of the travel time from building cells to closest healthcare facility using a least-cost path 
analysis. Mayaud et al. (2019) also employed the travel time from grid cells disaggregated on census block groups (CBGs) to healthcare 
facilities to evaluate the access equity to healthcare facilities in Cascadia (Mayaud et al., 2019). The study used OpenTripPlanner, an 
open-source routing engine called within the travel-time matrix algorithm of Pereira (2020), to optimize and compute the travel time 
from grid cells of CBGs to the grid cells of healthcare facilities (Pereira et al., 2020). Existing studies mostly evaluate access to 
healthcare facilities by evaluating the existing spatial configuration of healthcare centers; not addressed are the dynamic aspects of 
access, such as the potential changes in the number of visits to facilities due to a disturbance in the system. 

2.2. Gap in the knowledge 

The body of research focusing on the impact of disasters on access to dialysis centers is limited. Kaiser et al. (2021) used the flood 
map of Hurricane Harvey to examine the flood status of dialysis centers in Harris County (Kaiser et al., 2021). Using the flood zone 
categories defined by Federal Emergency Management Agency (FEMA), the study categorized dialysis centers by their distance to 
flooded areas. Solely examining flood exposure of dialysis centers, however, does not provide a full picture of the vulnerability of 
patients whose access to dialysis centers is disrupted; other factors causing disruptions to dialysis center access could be road flooding 
(Ofri, 2012; Redlener and Reilly, 2012); flooding of the building causing equipment malfunction or requiring building closure (Kaiser 
et al., 2021; Kaji et al., 2007); and disruptions in communities where dialysis-dependent patients reside (Dong et al., 2012). 

In this study, we address this knowledge gap by analyzing privacy-preserving human mobility data to examine the extent, spatial 
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patterns, and inequality in disrupted access to dialysis centers in the context of 2017 Hurricane Harvey in Houston metro area. Recent 
advancements in data acquisition and data analytics have provided opportunities to examine the dynamics of human movement during 
a community-level disruptive events (Farahmand et al., 2022; Yuan et al., 2021) and access to essential facilities in disasters (Esmalian 
et al., 2022). 

3. Materials and methods 

Fig. 1 illustrates an overview of the research steps. To establish access during the normal period, we measured the shortest distance 
from the population centers of census block groups (CBGs) to the dialysis centers. In the next step, during the flood period, we analyzed 
the human visitation network from CBGs to different dialysis centers to explore dynamics of access to the dialysis centers. The access 
dynamics were quantified based on the three access dimensions of redundancy, frequency, and proximity. Then we examined the 
spatiotemporal patterns of access to identify the extent of dependence of CBGs on dialysis centers and the hotspots of disrupted access. 
In addition, we examined the absorptive capacity (i.e. the ability of the dialysis centers to maintain unmet needs during a flood event) 
of the network of dialysis centers by examining the facilities’ capacities along with the changes in the patterns of visits during flooding 
events. 

3.1. Study context 

Our study context is 2017 Hurricane Harvey in Harris County, Texas. Harris County, home to Houston, the fourth largest city in the 
United States, has seen rapid population growth over past decades. Harris County comprises 2,144 CBGs. Many of CBGs in the county is 
prone to flood and hurricane hazards due to its coastal location, burgeoning urban development, as well as lack of flood control 
infrastructure (Dong et al., 2020). Harris County also possesses a diverse population with varying sociodemographic characteristics, 
which provides a representative testbed for exploring the equitable access to dialysis centers across disasters. Within the county are 
124 dialysis centers with a total of 2,529 dialysis stations. Hurricane Harvey made landfall in Harris County on August 25, 2017, as a 
Category 4 storm caused catastrophic impact and wreaked extensive economic and social hardship in Harris County as well as in much 
of southeast Texas (NOAA, 2017). Due to the hurricane and ensuing flood inundations, nearly 150,000 residents left their flooded 
homes, and tens of thousands were stranded due to disruptions of roadways (Business Insider, 2019; CNN, 2019). 

Fig. 1. Overview of research steps for examining accessibility disruption for dialysis centers due to flood impact. In normal periods, shortest 
distance to nearest center is established as the static dimension of accessibility. During flooding periods, redundancy, frequency, and proximity 
metrics are used to examine access disruption and the disparities due to influential factors (i.e., flood extent, minority status, income status) in the 
census block group scale. 
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Table 1 
Data description, processing, and derived variables.  

Dataset Description Processing Derived variables Data source 

Location-based data This aggregated dataset includes Stop Points by 
Device. Each row represents a trip from a CBG to 
different destinations. 

1) Overlapping the polygon of dialysis centers with point data which represents 
current locations of users; 
2) Aggregating number of points within the polygons of dialysis centers by days; 
3) Matching each user’s ‘Place_id’ with its ‘block_group_id’ to denote which trip 
comes from which CBGs. 

Daily trips from CBGs to 
dialysis centers. 

Mobility data provider 

Dialysis center data Data on 124 hemodialysis clinics in Harris 
County, such as location and number of stations. 

1) Filtering locations of dialysis centers; 2) Identifying facility capacities 
measured by the number of stations. 

Locations and dialysis 
capacity 

(Medicare.gov, 2023) 

Flood Impact data The flood inundation map of Hurricane Harvey 
produced by Federal Emergency Management 
Administration (FEMA). 

1) Overlapping the flood inundation maps of Hurricane Harvey from FEMA with 
the CBGs map of Harris County; 
2) Calculating the flooded percentages of CBGs; 
3) Selecting the median of CBGs with flooded area as the threshold to define flood 
status of CBGs (Flooded: > median of flooded percentage; non-flooded: 
otherwise); 4) Determining flood status of dialysis centers by projecting their 
locations within CBGs (Flooded: within flooded CBGs; Non-flooded: otherwise). 

Flood statuses of CBGs and 
dialysis centers 

(Federal Emergency 
Management  

Administration, 2018) 

Socio-demographic 
data 

The 2017 5-year estimates data, representing 
the estimates over the five-year period from 
2013 through 2017. 

1) Collecting three variables including the median household income, per capita 
income, and the ratio of minority (non-white) from the estimates data; 
2) Calculating the median of three variables for the 2,144 CBGs in Harris County; 
3) Using their medians to denote the levels of minority, household income, and 
per capita income (Low: <median and High: otherwise). 

Levels of minority, 
household income and per 
capita income 

(Census.gov, 2023)  
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3.2. Data description and processing 

Multiple datasets were used in this study: location-based human mobility, dialysis center facility data, flood impact data, and 
demographic data. We specified the study period from August 1, 2017, through September 30, 2017; the study period includes du
rations of time before, during, and after Hurricane Harvey landfall and the subsequent flooding. Table 1 summarizes the descriptions of 
each dataset, including data source and provider, processing required for data preparation, variables that have been derived from the 
processing, and data description. 

The anonymized and privacy-enhanced mobile phone data was collected using a Software Development Kit, in which the data 
provider received informed consent from devices which opted-in to the location data collection. For each anonymous user, more than a 
hundred data points on average are collected each day, providing an opportunity to gain accurate and precise knowledge of human 
mobility. High standards of privacy are followed to enable ethical and responsible data collection and use. All data is collected 
transparently after consent and de-identified. Users are free to opt-out of location sharing at any time. By analyzing the aggregated 
mobility patterns of more than 500,000 anonymous users (representing 12.5% of the population of the Puget Sound region under 
analysis), Wang et al. (2019) determined that smartphone-derived GPS data, as compared to cellular network and in-vehicle GPS data, 
benefits from a superior combination of large-scale, high-accuracy, precision, and observational frequency (Wang et al., 2019). Beyond 
validating scale and accuracy, the research (Wang et al., 2019) found that the data source is highly demographically representative. 
The data has a wide set of attributes, including anonymized device ID, point-of-interest ID, latitude, longitude, and dwell time of 
visitation. 

4. Methods 

4.1. Access metrics 

As mentioned earlier, we examined multiple access metrics. Table 2 presents the descriptions and equations related to the access 
metrics used in this study. As can be seen in the Table 2, a shorter distance is more desirable since it generally indicates easier access to 
service provided by dialysis centers. Redundancy captures the number of unique centers visited by the CBG and higher redundancy 
means more unique service providers and a higher chance of having access to a dialysis center during a flood. Higher frequency means 
that the number of daily visits per center is higher, which shows the importance of that facility in terms of demand in case of disruption. 
Finally, lower proximity captures the average shortest distance for a daily visit to a center. Each of the metrics above are subject to 
various sources of uncertainties that need to be considered. For example, while a shortest distance is generally considered as the 
desirable metric for selecting a service center, other factors such as traffic volume, trip time, and consideration in terms of the 
availability of required medical services may impact the selection of desired center by a patient. Similarly, while a higher redundancy 
generally shows more options of having access to the service, it is also dependent on the availability and capacity of the facilities, 
where multiple available facilities with limited capacity may not provide the level of redundancy as the same centers in case their 
capacity is higher. Finally, centers with high frequency of visits may have different condition depending on their capacity. For 
example, two centers with similar frequency might have different levels of susceptibility when their visit rate is equal but their capacity 
is different. In this case, the center with a lower capacity would have less capacity in absorbing the unmet demand due to disruptions in 
other facilities. 

4.2. Quantification of spatiotemporal access disparities patterns 

Baseline access metrics for access metrics for each CBG were calculated using equations 2–4. The baseline period is August 1, 2017, 
through August 21, 2017, which captures the time period before any flood related disruptions from Hurricane Harvey had begun (i.e. 

Table 2 
Descriptions and computation of access dimensions and variables.  

Variable Description Computation 

Shortest 
distance 

Distance from population centers of 
CBGs to their nearest dialysis centers. di = min

{

2r × sin−1
[ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

sin2
(φdj − φci

2

)

+ cosφdjφcisin2
(

ϕdj − ϕci

2

)√ ] }

(1) 

r: earth radius (6,378.137 km); φdj: longitude of dialysis center j; ϕdj: latitude of dialysis center j; φci: 
longitude of the population center of CBG i; ϕci: latitude of the population center of CBG i. 

Redundancy The daily number of unique dialysis 
centers visited per CBG on day d. 

reid = set(dailyvisiteddialysiscentersbyCBGiondayd)(2) 
set: function to measure the number of the unique dialysis centers within list of visited dialysis 
centers per CBG on day d. 

Frequency The daily number of visits averaged by 
redundancy per CBG on day d. 

frid =
volumeid

reid
(3) 

volumeid : number of daily visits from CBG i to dialysis centers on day d. 
Proximity The total daily distances from a CBG to 

all the dialysis centers averaged by 
redundancy per CBG on day d. 

prid =

∑
jdistanceijvolumeijd

reid
(4) 

distanceij : distance from CBG i to dialysis center j; volumeijd : number of daily visits from CBG i to 
dialysis center j on day d.  
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Fig. 2. Access disparities based on the shortest distance from CBGs to their nearby dialysis centers. (a) spatial distribution of dialysis centers and 
CBGs with their shortest distances in kilometers (km); (b) count of CBGs in terms of the range of their shortest distances to dialysis centers; (c) 
sociodemographic characteristics of CBGs versus their shortest distances; (d) dependence on dialysis centers based on weekly visits for 
different CBGs. 
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the normal period). For the remaining days in our study period (i.e., August 22 through September 30, 2017), we computed daily 
fluctuations for the baseline values of the access metrics using equations (5)–(7). The fluctuation values are essentially the percent 
change in each access metric during the flood impact period compared with the baseline period. 

f reid =
reid − reia

reia
(5)  

f frid =
frid − fria

fria
(6)  

f prid =
prid − pria

pria
(7)  

where f reid is the daily fluctuation between average redundancy and daily redundancy on day d; reia is average redundancy in CBG i; 
f frid is the daily fluctuation between average frequency and daily frequency on day d; fria is average frequency in CBG i; f prid is the 
daily fluctuation between average proximity and daily proximity on day d; pria is average proximity in CBG i. 

To calculate access disruptions, we used the 7-day moving average of percent changes in the access metrics to specify their temporal 
variation. Next, we implemented an agglomerative clustering algorithm to classify the CBGs into clusters based on their patterns of 
access disruptions (Ackermann et al., 2014). To do so, the bottom-up approach for clustering started with considering each input as a 
cluster, and through an iterative greedy process, similar inputs (i.e., clusters) were merged and scaled up the hierarchy. The similarity 
was calculated based on the Euclidean distance between clusters stored in a proximity matrix. The matrix was updated at each iteration 
based on the number of clusters and distance between them. Finally, all clusters were merged into one cluster. To implement the 
algorithm, the number of clusters should be specified; we determined number of clusters by performing a silhouette analysis (Eq. (8). 
The silhouette coefficient can determine the similarity of a data point within a cluster compared to other clusters. We assessed the 
number of clusters from one to ten and selected the optimal number of clusters with minimum silhouette coefficient. 

S(m) =

average
( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(rN − m)
2

√ )

− averagex∈M

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(x − m)
2

√ )

max
{

averagex∈M

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(x − m)
2

√ )

, average
( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(rN − m)
2

√ ) } (8)  

In Equation (8), S(m) is the silhouette coefficient of the data point m, and m is within the cluster M; averagex∈M

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(x − m)
2

√ )

is the 

average distance between m and all the other data points in the cluster M; average
( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(rN − m)
2

√ )

is the average distance from m to all 

clusters other than M; rN refers to the centroids of cluster N and N = 1, 2, … (excluding M). 

5. Results and discussion 

5.1. Access disparities in normal period 

We calculated the shortest distance from centroids of CBGs to dialysis centers (Fig. 2a). Each polygon represents a CBG, with the 
shortest distance differentiated by a range of colors. CBGs with the shortest physical distance to dialysis centers (shaded light yellow) 
are predominantly distributed in the downtown area of Houston. The results also show that the majority of CBGs have access to a 
dialysis center within 5 km. Fig. 2b also shows the distribution of shortest distances from centroids of CBGs to dialysis centers. 

To examine inequality in disrupted access, we first evaluated whether a disparity in access exists based on the distance to facilities 
in the normal period. To explore the access disparities in normal period, we used the sociodemographic attributes of the 
CBGs—minority population ratio, per capita income, and median of household income—from the U.S. Census 2017 American 
Community Survey 5-year estimates data for Harris County. Using the median for these three attributes, we defined two income 
categories. For each variable, CBGs with values higher than median fall in high group; CBGs with values lower than median fall in low 
group. Fig. 2c (from left to right) shows the distribution of shortest distances by minority, per capita income, and median household 
income. To evaluate the differences in shortest distance distributions across different sociodemographic groups, we conducted the two- 
sample t-test for these three sociodemographic variables. This analysis evaluates whether high and low groups have significant dif
ferences in terms of shortest paths to dialysis centers. Table 3 shows there is no significant difference between CBGs with low and high 
minority populations. On the other hand, shortest distance of CBGs with low per capita income and low median household income are 

Table 3 
t-test results for shortest distances among different sociodemographic groups.  

Sociodemographic characteristic Statistic p-value 

Minority  −0.80  0.42 
Per capita income  3.39  0.00069 
Median household income  6.89  6.98e-12  
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significantly different from CBGs with high per capita income and high median household income. Patients residing in higher income 
CBGs have longer shortest path to the nearest dialysis center. Fig. 2c also shows that CBGs with either low per capita income or low 
median household income have less median shortest distances than those with higher incomes. This result implies that the income level 
as a function of physical distance to dialysis centers may not be a factor contributing to inequality in disrupted access during the 
flooding period. Fig. 2d also shows the dependence of CBGs on dialysis centers based on weekly visits to different centers. CBGs that 
have visit to higher centers show more dependence to dialysis centers. A large number of the CBGs with higher dependence on dialysis 
centers are close to downtown in the central region of the Houston metro area. 

5.2. Spatial patterns of access disruption 

We used the agglomerative clustering algorithm to analyze CBG-level disparities in dialysis center access disruption. The analysis 
resulted in four clusters with spatiotemporal patterns of variations in their access metric. Fig. 3 and Fig. 4 illustrates the results of the 
clustering analysis. Descriptions and interpretations of the spatiotemporal patterns for access disruptions related to each metric are 
summarized in Table 4. 

As shown in Fig. 3 and Fig. 4, cluster 1 across all metrics experienced significant access disruption and did not recover until the end 
of September 2017. It should be noted that a significant access disruption is associated with significant drop in redundancy and 
frequency as well as surge in proximity. Across all the three metrics, around 80 CBGs fall into cluster 1. The CBGs in cluster 1 for all 
access metrics are spatially spread out throughout Harris County, indicating there was no spatial effect in the cluster. We can see, 
however, that some CBGs in cluster 1 are located on the periphery of the county, while the agglomeration of dialysis centers is in the 
central part of the county. This result implies that centralization of critical care facilities in regions with decentralized population 
distribution could be a factor in significant access disruptions. 

The majority of CBGs fall into Cluster 2 for the three metrics. CBGs in cluster 2 did not experience significant fluctuations in visits, 
and hence, access disruptions to dialysis centers. Unlike CBGs in cluster 1, CBGs in cluster 2 are located closer to the central part of the 
county. This result suggests that CBGs located closer to the concentration of dialysis facilities around the center of the county were less 
vulnerable to access disruptions due to being closer to the concentration of facilities. This result suggests that the proximity of a CBG to 
the closest facility might not be a reliable metric for evaluating access and vulnerability to access disruptions. Instead, being in a 
proximity of a concentration of facilities (which includes larger facilities as discussed in the next section) contributes to better access 
and less vulnerability to access disruption. 

Fig. 3. Spatiotemporal patterns of dynamic access to dialysis centers during Hurricane Harvey. (a–c) temporal pattern of fluctuations of redun
dancy, frequency, and proximity; red lines mark the time when Hurricane Harvey made landfall in Harris County; horizontal dashed lines represent 
the baseline. Y-axis shows the access metric in percentage. It is worth mentioning that CBGs in the same clusters of different access dimensions are 
not necessarily the same. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

F. Yuan et al.                                                                                                                                                                                                           



Transportation Research Part D xxx (xxxx) xxx

9

Cluster 4 across all metrics appears to include CBGs in which the visits to dialysis centers surged after flooding. These CBGs are in 
proximity to some of the severely flooded CBGs; hence, a possible explanation for the surge in visits is the relocation of patients from 
flooded CBGs to the CBGs in the proximity. This explanation is supported by patterns of Cluster 4 in the proximity metric. The distance 
to dialysis centers for CBGs in cluster 4 of the proximity metric increased; in other words, patients’ relocation from flooded areas put 
them in a location more distant from the dialysis centers they normally visit. While this interpretation is viable, we could not fully 
validate this interpretation since our mobility dataset was aggregated at the CBG level and we do not analyze individual users’ 
movements. CBGS in cluster 3 show reduction in the proximity metric. By closely looking at the CBGs in this cluster, we find that most 
of these CBGs are in cluster 2 of the frequency metrics, which indicates that frequency of visits in these CBGs did not change signif
icantly. By juxtaposing the results, we can find that, for the proximity metric, patients in CBGs of cluster 3 chose to go the closest 
dialysis center to their area to avoid flood-related disruptions (e.g., traffic congestions and busier facilities). 

Another noteworthy finding is the persistence of access disruptions in CBGs with the greatest impact until one month after flooding. 
This result is important since it reveals that disrupted access is not a transitory impact which diminishes along with the recession of 
flood water. Overall, these results paint a more complete picture of the extent of vulnerability to disrupted access and identifies clusters 
of CBGs with the greatest access disruption. Further examination of these results reveals the presence of inequality in access dis
ruptions, which is discussed next. 

5.3. Disparities in disrupted access 

We examined the spatiotemporal patterns of disrupted access with consideration of sociodemographic characteristics. We used the 
percent of Hispanic population as the minority status indicator, average household income as the indicator of income status, and total 
population as an indicator of the population size. Fig. 5 shows the boxplots of distribution of sociodemographic characteristics for 
clusters of CBGs based on patterns of disruption of access based on redundancy, frequency, and proximity. Using the insights from the 
results in Fig. 5 together with spatial and temporal patterns of access disruptions found in Fig. 3, we investigated the presence of 
inequality in disrupted access to dialysis centers. To do so, we compared the distribution of sociodemographic characteristics of 
clusters with highest access disruption (cluster 1 and cluster 2) with other clusters. As can be seen in Fig. 5a and 5b, cluster 1 and 
cluster 2 have higher ratios of minority populations. This result shows that areas with minority status experienced more severe access 
disruptions to dialysis centers during the flood event, especially in terms of redundancy and frequency indicators. 

Fig 5d–f shows the association between population size and access disruption extent. As can be seen, there is no considerable 

Fig. 4. Spatiotemporal patterns of dynamic access to dialysis centers during Hurricane Harvey. (a–c) geographic distribution of temporal patterns of 
variations of redundancy, frequency, and proximity. 
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Fig. 5. Sociodemographic characteristics of identified spatiotemporal clusters related to fluctuations in access to dialysis centers. (a-c) minority 
status distribution of different clusters for each access indicators; (d-f) total population distribution of different clusters for each access indicators (g- 
i) household income distribution of different clusters for each access indicators. 

Table 4 
Descriptions and interpretations of spatiotemporal patterns of dynamic access dimensions.  

Variable Cluster Description Interpretation 

Redundancy 1 Significant decrease of redundancy after Hurricane Harvey and 
slight recovery by the end September. 

Significantly less redundancy compared with baseline means 
severe disaster impact to access to dialysis centers (fewer options of 
dialysis centers to visit). 

2 Decrease of redundancy after Hurricane Harvey and recovery to 
baseline at the end of first week in September. 

Redundancy near the baseline means normal recovery of access 
activity to dialysis centers (similar number of options of dialysis 
centers to visit). 

3 More significant decrease of redundancy after Hurricane Harvey 
and greater recovery to baseline at the end of first week in 
September, compared with cluster 2. 

Increased redundancy compared to baseline means greater 
recovery of access activity to dialysis centers (more options of 
dialysis centers to visit). 

4 Slight decrease in redundancy after Hurricane Harvey and quick 
recovery to baseline at the beginning of September. 

Non-significantly lower redundancy compared with baseline 
means slight disaster impact, while quick recovery of redundancy 
and increased redundancy after hurricane indicate quick and 
greater recovery of access to dialysis centers. 

Frequency 1 Decrease of frequency after Hurricane Harvey and slight 
recovery by the end September. 

Significantly lower frequency compared with baseline means 
severe disaster impact to access to dialysis centers (less visits to 
dialysis centers). 

2 Slight fluctuations of frequency around the baseline. Slight fluctuations of frequency mean slight disaster impact on 
visits to dialysis centers. 

3 Increased visits to dialysis centers compared with baseline. Greater recovery of access activities to dialysis centers (more visits 
to dialysis centers). 

4 Increased visits to dialysis centers compared with baseline when 
hurricane made landfall, while slight decrease trend till the end 
of September. 

Increased frequency at the beginning of hurricane means more 
medical need probably due to disaster, while decreased trend of 
frequency later means medical needs become mild and recovery of 
visits to dialysis centers to the normal baseline level. 

Proximity 1 Decrease of proximity after Hurricane Harvey and recovery to 
the baseline level in almost two weeks. 

Good access to dialysis centers or fewer visits to dialysis centers in 
the first two weeks of the hurricane. 

2 Decrease of proximity after Hurricane Harvey and recovery to 
the baseline level in almost one week. 

Good access to dialysis centers or fewer visits to dialysis centers in 
the first week of the hurricane. 

3 Decrease of proximity after Hurricane Harvey and no recovery 
to the baseline by the end of September. 

Fewer visits to dialysis centers after Hurricane Harvey. 

4 Significant fluctuations of proximity to dialysis centers. This cluster contains only seven CBGs, which could be the reason 
for high fluctuation.  
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difference in population size among different clusters. Fig. 4g–i shows the association between income level and experienced 
disruption of access to dialysis centers indicated by cluster numbers. Exploring the trend of access redundancy shows that clusters 4 
and 3, which experienced considerably lower access disruption compared to clusters 1 and 2, have higher household income. Similarly, 

Fig. 6. Spatiotemporal pattern of provided services levels of dialysis centers (a) and geographic distribution of the identified clusters and flooded 
status of CBGs in Harris County (b). 
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a general increasing trend can be observed in Fig. 4i that shows that as the disruption extent decreases from cluster 1 to cluster 4, 
household income increases. However, no distinctive trend can be observed in the visit proximity–income relationship. Therefore, it 
can be concluded that the areas with higher income had higher redundancy and frequency of access to dialysis center that provide 
better access to dialysis services during and in the immediate aftermath of the flooding compared with areas with lower income. 

5.4. Varying services capacity provided by dialysis centers 

In the next step, we quantified the service levels provided by dialysis centers based upon the number of CBGs that visit the facility. 
Using an agglomerative clustering algorithm, setting boundaries with a silhouette coefficient, we identified three clusters of dialysis 
centers based on service levels (Fig. 6). Most of the dialysis centers were in cluster 1. Facilities in this cluster received patients from 
only two to three CBGs. The number of CBGs that visited the facilities in cluster 1 did not show significant fluctuation during the 
flooding period. Dialysis centers in cluster 2 served a greater number of CBGs during normal period than clusters 1 or 3. While the 
number of CBGs which visited the facilities in cluster 2 decreased in the aftermath of Harvey, the numbers returned to the normal 
period within a week. Dialysis centers in cluster 3 showed a medium level of service based on the number of CBGs they serve. They 
experienced a slight decrease in the number of CBGs that visited and recovered to their previous service level in almost two weeks. The 
pace of recovery is greater in cluster 2 compared to cluster 3, which means that the facilities that serve more patients took longer to 
bounce back to normal functionality level. This result can also indicate that these facilities played a critical role in absorbing the unmet 
demand (due to disruptions in access to other facilities). 

To further explore variations in the provided service levels by dialysis centers, we considered three factors: 
(1) flood inundation status of dialysis centers: if the dialysis center is in an inundated CBG, it is denoted as flooded (although the 

facility might not have flooded: the rationale is if a facility is in a flooded CBG, accessing the facility would be more difficult due to road 
inundations, closures, and other disruptions); 

(2) capacity: we used the number of stations within dialysis centers to represent their service capacities. Using the median of 
numbers of stations of all the dialysis centers, we defined the threshold as 17 to determine the capacity levels of dialysis centers: centers 
with more than 17 stations (66 centers) are considered as high capacity while other centers are considered as low capacity (58 dialysis 
centers); and. 

(3) Combined evaluation of flood inundation status with dialysis center capacity: we also used the combination of flood inundation 
status of the center and its capacity. In this analysis, a facility can have four statuses based on the status of flood inundation (flooded/ 
non-flooded) and the capacity of the center (high/low). 

The analysis results are shown in Fig. 7 According to Fig. 6a, we can see the percentage of dialysis centers considered as flooded in 

Fig. 7. Flood inundation status (a), capacity (b), and integration of flood status and capacity (c) of different clusters of dialysis centers based the 
number of daily visited CBGs; (d) maximum percentage change of visits to high- and low-capacity dialysis centers during flood period compared to 
normal period. 
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cluster 3 is much larger than that in cluster 1. This could explain the fact that dialysis centers in cluster 3 experienced moderate 
fluctuations in terms of the number of CBGs that visited them, while number of visits from CBGs to the dialysis centers in cluster 1 
remained almost constant (i.e., not considerable fluctuations in the number of visits). Furthermore, the capacity of the dialysis centers 
plays a major role in the variation of visited CBGs. Fig. 6b shows a larger percentage of dialysis centers with high capacity in cluster 1 
than that in cluster 3. On the other hand, we know that the number of CBGs served by dialysis centers in cluster 1 is much lower than 
cluster 3. This result implies that patients’ decision regarding visiting a dialysis center is not determined by the capacity of the center, 
which might be an important factor during emergency situations when the supply decreases due to malfunction of a portion of centers 
and cause delay for service provision in centers with low capacity and increased demand. This finding shows a need for proper 
planning for enhancing patient awareness and re-distribution of patients with unmet treatment to other centers based on a system- 
optimization approach that accounts for both capacity of all facilities, as well as travel distance. This can include providing infor
mation about centers with high capacities located in areas with lower risk of flooding due to direct impacts (i.e., facility inundation) or 
indirect impact (i.e., loss of access due to road closure and loss of functionality due to power outage or supply shortage). Such a patient- 
center allocation optimization system during emergency events (such as flooding) could increase the overall resilience of the network 
of facilities. To further explore the fluctuation in visits between low- and high-capacity centers, we plotted the distribution of 
maximum percentage change of visits in flood period compared with normal period for centers of high and low capacity. As the boxplot 
Fig. 6d shows, the general shape and median of the distributions are similar, while the low-capacity group has slightly higher 
maximum percentage change inclined more toward positive changes (i.e., increase in visits). In fact, higher percentage increase has 
been observed in low-capacity centers, which highlights the importance of both low- and high-capacity dialysis centers in absorbing 
the unmet demand of the patients. 

With the combined analysis of the impacts of flood status and service capacity, we found that the proportion of dialysis centers with 
high capacity and non-flooded status is much larger than the sum proportions of those with high/low capacity and flooded status; this 
result can explain the absence of significant fluctuation in the provided service level of dialysis centers in cluster 1. In cluster 3, the 
number of dialysis centers with high capacity and flooded status is larger than those with high capacity and non-flooded status, which 
resulted in the moderate fluctuation in the provided service levels of dialysis centers in this cluster. These results suggest that larger 
capacity centers that remain accessible can absorb the unmet demand of patients from other dialysis centers and contribute to the 
absorptive capacity of the network of facilities. 

6. Conclusions 

6.1. Summary of key findings 

To address the lack of analysis of access disruption to dialysis centers during floods, we evaluated the accessibility disruption due to 
flood impact on dialysis centers in the context of 2017 Hurricane Harvey in the Houston metro area and broader Harris County, Texas. 
We defined metrics to capture static and dynamic access dimensions. Shortest distance from CBGs to closest dialysis centers during 
normal period were used as the main indicator of accessibility of different CBGs during the normal period. We analyzed fluctuations in 
redundancy, frequency, and proximity metrics during the flood event and explored the spatial patterns of areas with similar access 
disruption based on the fluctuation of different metrics. 

The analysis revealed important findings regarding the impact of flood on the access to dialysis centers and the underlying 
mechanisms and disparities in the fluctuations in visits to dialysis centers. (1) the extent to which each CBG is dependent upon dialysis 
centers varies and it can be quantified with the developed metrics; (2) the redundancy and frequency of access to dialysis centers is 
significantly reduced due to flood disruption and can persist for more than one month after the flood event; (3) areas with a larger ratio 
of minority population and lower household income experienced a greater disruption in access to dialysis centers; (4) access patterns of 
high-income CBGs recover more quickly to their pre-disaster levels; (5) dialysis centers with high capacity that are located in areas 
with lower exposure to flood inundation are critical to absorb the unmet demand from disrupted facilities and thus can be considered 
as facilities that contribute to the absorptive capacity of the network of dialysis facilities in the region. 

6.2. Study implications and contributions 

The ability to evaluate disruptions in access to critical care facilities (such as dialysis centers) using location-based mobility data 
enables a more proactive and near-time monitoring of the impacts of hazard events on vulnerable patients. Using the approach 
presented in this study, emergency managers and public health officials could proactively evaluate the areas with the greatest access 
disruptions and devise response measures to re-allocate patients to other facilities by establishing temporary facilities. Also, results 
inform future hazard mitigation and response strategies by understanding the patterns of dialysis visits during normal and perturbed 
periods and identifying and protecting facilities whose operation plays a critical role in maintaining the resilience of the regional 
facility network. These insights would significantly improve the ability of emergency managers and public health officials to effectively 
mitigate and respond to the impacts of hazard events on dialysis facilities and vulnerable patients who depend on their care services. 

Methodologically, this research demonstrates how human dynamics of large-scale mobility data can be used as a tool to examine 
the access disparities to dialysis centers across normal and flood periods. To quantify the access to dialysis centers, we defined a four- 
dimension access metric for both normal (static) and disaster (dynamic) periods. For fluctuations of dynamic access dimensions, we 
implemented an agglomerative clustering algorithm to identify the spatiotemporal patterns of their access disparities to dialysis 
centers. Our proposed framework for examining access inequity issues from CBGs to dialysis centers can be directly applied to the 

F. Yuan et al.                                                                                                                                                                                                           



Transportation Research Part D xxx (xxxx) xxx

14

access studies of other critical facilities, such as groceries and drugstores. In addition, this study contributes to the body of knowledge 
of smart flood resilience field (Bowo et al., 2022). One essential component of smart flood resilience is predictive infrastructure failure 
monitoring, which considers the assessment of neighborhood vulnerability to lose access to hospitals. 

The theoretical contributions of this study are twofold: (1) findings revealed that baseline patterns of facility dependence, spatial 
distribution and capacity of facilities, flood exposure of facilities and CBGs, and inundation of road networks are major determinants of 
the extent of access disruption. Hence, it is critical to incorporate human network dynamics based on human mobility data in 
examining vulnerability of access disruptions and inequalities for critical care facilities; and (2) the analysis showed that inequalities in 
access redundancy, frequency, and proximity among low-income and minority populations need to be addressed. In addition, in terms 
of the emergency management and public health planning for dialysis centers, the findings indicate that the role of the absorptive 
capacity of high-capacity centers located in areas with lower inundation exposure should be incorporated into planning for dialysis- 
dependent patients. This can significantly facilitate accommodating unmet demands of facilities to which access is disrupted. 

6.3. Limitations and future research recommendation 

This study has some limitations that need to be considered in the interpretation of findings and can be addressed in future research. 
First, the application of human mobility data always deals with aggregation, which may pose inaccuracy in areas where limited data is 
gathered by the platform. Next, the static and dynamic metrics that are presented are best descriptive if the behavior of the patient is 
only determined by decision to take the closest center as the destination, however, other factors may impact behavior of patients for 
selecting their target center. Finally, a single event has been studied in this study; Nevertheless, replicating the study in other events 
and regions can consolidate the findings in this study and/or unveil other behaviors and patterns in the disrupted access to critical 
facilities. 

This study defined several metrics that can capture different aspects of access disruption to dialysis centers and associated in
equalities. With our defined static and dynamic access dimensions to dialysis centers derived from by human dynamics, future research 
can include access disparities to essential facilities. Furthermore, the application of these metrics can be expanded into smart flood 
resilience frameworks and various planning practices such as positioning of future essential facilities. This promotes more equitable 
essential service coverage during extreme events by leveraging ubiquitous human mobility data. 
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