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Abstract

This study aims to show the application of stochastic optimization for efficient and robust parameter calibra-
tion of engineering wake models. Standard values of the wake effect parameters are generally used to predict
power using engineering wake models, but some recent studies have shown that these values do not result
in accurate prediction. The proposed approach estimates the wake effect parameters using operational data
available from actual wind farms to minimize the prediction error of the wake model by using trust-region
optimization. To further improve computational efficiency, we implement stratified adaptive sampling. We
employ decision trees to stratify the data and propose two ways of adapting the sampling budget to the
constructed strata: budget allocation with dynamic weights and fixed weights. We extend our analysis to
determine the functional relationship between the turbulence intensity and wake decay coefficient. Our ex-
periments suggest that wake parameters or a functional relationship between turbulence intensity and wake
decay coefficient may need adjustments (from assumed standard values) for a particular wind farm using
operational data from that wind farm to characterize the wake effect better.

1. Introduction

In wind power systems, a wind turbine acts as an obstacle to the free stream wind speed resulting in the
development of a wake effect that is characterized by reduced wind speed and increased turbulence in the
downstream direction. A turbine present in the wake of another upstream turbine generates less power and is
under more structural and mechanical load. In a wind farm, this wake phenomenon is amplified as a turbine
might be affected by wakes due to multiple turbines. The wake effect is of major importance for various
engineering applications like predicting the annual energy production and wind farm layout optimization
[1, 2, 3, 4]. Thus it becomes necessary to numerically estimate these wake interactions to enhance the wind
farm performance.

Various computational fluid dynamics (CFD) techniques, such as large-eddy simulations (LES), can be
used to model the wake phenomenon accurately, but they are computationally overwhelming [5, 6]. The LES
simulations on a single turbine performed by Sedaghatizadeh et al. [7] needed 200 hours to complete using
a multi-core system. In Churchfield et al. [8], it took one million CPU hours to perform one LES simulation
of 10 minutes of real-time operation for a wind farm consisting of 48 turbines. The LES simulations run
by Breton et al. [9] were able to improve the computational time of the above wind farm but still needed
ten thousand CPU hours. These CFD models provide useful insights into wake mechanisms over a broad
spectrum of atmospheric conditions. However, enormous computational resource requirement limits the
usability of these methods for simulating or understanding large-scale wind farm operations for wind farm
optimization.
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Another school of thought is to devise purely data-driven models. Goégmen and Giebel [10] applied a
purely data-driven approach to estimate the power using Long short term memory recurrent neural network
using one hour historical data to predict the wind speed at downstream turbines. In [11] and [12], new
statistical models based on the Gaussian Markov random field are presented to characterize heterogeneous
wind deficits over free-flow wind conditions. However, pure data-driven approaches cannot capture a general
characteristic of wind flow inside a general wind farm. Instead their results are very specific to the data at
hand (or specific to the studied wind farm) and may not be generalized to estimate or understand the wind
field in other wind farms. While these models can achieve high accuracy, pure data-driven approaches may
not adhere to physics and their results could be less interpretable than those of physics-based models.

This study focuses on the engineering wake models that offer computational simplicity by expressing
the wake phenomena using parametric analytical formulations. One can classify the engineering models as
kinematic models and field models. Field models are implicit models that estimate the flow field at each
point in the downstream direction [13]. The Ainslie model [14] is one of the classic field models which
determines the flow field by numerically estimating Reynold’s Averaged Navier Stokes (RANS) equations.
The field models are more sophisticated as compared to the kinematic models. Still, the computation time
needed to solve these models renders them unable to be used for large-scale implementation, similar to the
CFD-based wake models [15].

On the other hand, kinematic wake models are derived by solving the conservation of mass and momentum
equations to get explicit formulations. The Jensen model, suggested by Jensen [16] and later modified by
Katic et al. [17], is one of the earliest kinematic models. This model assumes that the wake propagates
linearly in the downstream direction at a rate driven by a constant called the wake decay coefficient (WDC).
Its wide use in the industry is due to its ease of implementation and reasonable accuracy. There are also
newly developed extensions of the Jensen model to improve its accuracy. The model proposed by Frandsen
et al. [18] assumes instantaneous wake expansion in the downstream direction and expresses this initial
expansion rate in terms of the thrust coefficient. Bastankhah and Porté-Agel [19] proposed a model where
a Gaussian wake shape is employed to model the wake profile. Gebraad et al. [20] developed a multizone
model which assumes three different WDCs based on the region of the wake. While these models improved
the accuracy of the power generated at each turbine, they also increased the number of parameters needed to
characterize the wake. Larsen [21] proposed a model whose calibration is relatively complicated as they used
the RANS equations in conjunction with mixing layer theory to model wake. Considering that the original
Jensen model formulates the wake based on the wind speed deficit and does not consider the influence of
turbulence on the wake, recent studies extend the model by expressing the WDC as a function of the hub
height, surface roughness, and atmospheric stability [22, 23, 24]. Recently, Howland et al. [25] present a flow
control model that looks at the collective effect of simultaneously yawed and waked turbines in a wind farm.

The research on kinematic wake models that has been mentioned thus far focuses on the analytical
development of wake modeling. The accuracy of these models is significantly influenced by the choice of
wake parameters. Since they are influenced by a variety of wind farm characteristics, such as geography,
terrain effects, and wind farm layout, these parameters could be unique to each wind farm. This paper
creates a novel way of identifying the appropriate values of wake parameters in the kinematic wake models
using operational data from a wind farm. The primary advantage of the proposed methodology over the
strategy that is solely data-driven is that it still upholds the “physics” embedded in the kinematic wake
model, even while it makes use of operational data to enhance performance. More physics entails more
interpretability and more trust in practical application. Schreiber et al. [26] used the Bastankhah and
Porté-Agel’s [19] wake model as their baseline model and identified the model parameters directly from
operational data by expressing each parameter as the sum of a baseline constant value and correction term.
Then they estimated the correction term via maximum likelihood estimation. This type of approach to
identify parameter values using operational (or physical trial) data is called parameter calibration in the
statistical literature. Parameter calibration involves tuning the parameters such a way that the prediction
error of the analytical model is reduced and closely matches the physical data. In the literature, Bayesian
calibration approaches have been extensively used for parameter calibration in several applications [27].
Typically, with a limited number of computer simulations and/or physical trials, Bayesian approaches use
Gaussian Processes (GP) to quantify uncertainties. However, as the data size grows, the computational
time of the Bayesian approach increases rapidly, and thus, the Bayesian calibration gets inefficient, if not
infeasible, for a big data setting [28].



The geographic location and the terrain effects play an important role in the development of the wake,
implying that the WDC can be unique to each wind farm. Kinematic wake models with accurate parameters
can be efficiently used to design cooperative controls, such as yaw control, among turbines in a utility-
scale wind farm [25]. This study thus aims to demonstrate a methodology that can be used to calibrate
the wind farm-specific parameters in the engineering wake model using a large size of field data collected
from an operational wind farm. Due to the lack of a methodology that can handle large-scale data, most
studies in wake effects analysis are limited to using small-scale datasets [29, 30]. However, the resulting
calibration would be inaccurate when the small-scale datasets do not statistically represent the physical
process. Therefore, our goal is to use field data that covers a wide spectrum of operational conditions.

These big data settings have encouraged using stochastic optimization-based algorithms for parameter
calibration [28, 31]. Among several optimization methods, we use a derivative-free Trust-Region (TR) based
algorithm due to the versatility and stable performance of its class in the presence of stochastic noise. The
TR based stochastic optimization sequentially builds local response surfaces guided by the optimization
procedure. This procedure allows us to obtain the estimated outputs from the engineering wake model with
more refined wake parameters throughout the iterative procedure. As such, more informative local surrogate
models are built using the most updated information based on the parameter search trajectory. Specifically,
our approach builds surrogates for the loss function that measures the difference between the engineering
model output and physical observation. Doing so effectively guides computer experiments to identify the
best subsets of data for achieving computational efficiency and estimation robustness. While being effective,
the original TR algorithm faces noisy estimation when a subset of data is used at each iteration, which can
slow down the calibration process. To address the limitation, we integrate adaptive and stratified sampling
strategies into the TR based algorithm to reduce the computational cost of getting sufficiently accurate
estimates.

To evaluate the proposed stochastic optimization-based calibration approach, we first implement the al-
gorithm with data from an offshore and a land-based wind farm using two wake models: the original Jensen’s
model, and the extended model that formulates the wake decay parameter to be linearly dependent on the
turbulence intensity (TI). We compare our approach’s prediction accuracy with the suggested values in the
literature to validate our calibration procedure. Our approach shows superior computational efficiency and
robustness over an alternative optimization approach. We then extend our approach to calibrate parameters
of an analytical wake model [25] with a Gaussian profile to showcase that the proposed approach can be
easily applied to other advanced engineering wake models.

Our contribution in this paper is two-fold: (i) we present a new data-driven stochastic optimization-
based approach using operational data to calibrate parameters in wake models; (ii) we further improve the
algorithm in terms of both accuracy and efficiency by reconciling the statistical variance reduction techniques
into the optimization framework. For further clarification, our objective is not to determine the wake decay
parameter in the Jensen wake model for all wind farms. As mentioned earlier, each wind farm has its unique
characteristics and with the help of operational data from each wind farm, this research aims to provide a
new method for determining the proper values of wake parameters in kinematic wake models that are specific
to that wind farm.

In the remainder of the paper, Section 2 discusses the engineering wake model in more detail. Section 3
presents the stochastic optimization framework to solve the wake calibration problem. Section 4 describes
the proposed algorithms that search for the WDC efficiently and robustly. Implementation and results are
presented in Section 5. Section 6 concludes the paper.

2. Engineering Wake Model

The Jensen model, an analytical engineering model, is one of the very first wake models. It is based on
the law of conservation of mass with some simple assumptions like constant wind speed within the wake
cross section and linear propagation of wake in the downstream direction. It was initially proposed to model
the wake of a single turbine and later modified by Katic et al. [17] to incorporate a multi-turbine setting.
Below we review the Jensen wake model and its extensions.

The wake profile in Jensen model is assumed to have a top-hat shape, shown in Figure 1. The diameter



Uy |-
—

L—/

T r=0x+r,
']

e

—

WL s
1l

Il

| - —

i

! lllllllm
H

Figure 1: Top-hat structure of the Jensen wake model, where 7, is the rotor radius and wug is the free-stream wind speed
(excerpted from [16]).

D,, of the wake at a downstream distance z can be estimated as
D, =D + 20z, (1)

where D is the diameter of the turbine and 6 represents the WDC. The wind speed u within the wake is less
than the free-stream wind speed and can be evaluated as

1—M}

Du/D (2)

U = Ug [1 —
with ug being the free stream wind speed and Cy the thrust coefficient of the turbine, a design parameter
specified by the turbine manufacturer.

The simplicity of this model makes it extremely viable to use but it’s accuracy largely depends on how
well we can estimate the WDC. Its widely accepted values in both industry and literature are 0.075 for land-
based wind farms, and 0.04 for offshore wind farms [17, 32, 33]. However, several studies suggest that these
recommended values do not accurately represent the wind speed deficits (or power deficits) in downstream
turbines [11, 12, 30]. It may thus be beneficial to calibrate a wind farm-specific WDC using the operational
data from the wind farm.

The original Jensen model and its extension to multi-turbine wind farms do not take into account the local
wind conditions of wind farms, because they use constant values for the WDC. Later, based on boundary
layer theory, Frandsen [34] suggested that the WDC can be expressed in terms of the turbine hub height
and the surface roughness of the wind farm. It was also suggested that the wake decay can be influenced by
turbulence. As the hub height of a turbine increases, the effect of surface roughness on the wake becomes
less prominent. In particular, the hub height for offshore turbines is typically taller than those of land-based
turbines (e.g., 100 meters), and it is projected to grow to about 150 meters [35]. Pena et al. [24] claim that
the intensity of wake decay is predominantly based on the atmospheric stability at higher hub heights. A
stable atmosphere resits the motion of air in the vertical direction [36]. The atmospheric stability is known
to directly affect the efficiency of wind farm. In general a wind farm is expected to be less efficient under
stable atmospheric conditions [37].

In literature, wake decay and atmospheric stability are often linked via TI. Barthelmie et al. [22] have
shown that TT impacts normalized power output of an offshore wind farm. TI is the ratio of the standard
deviation of the wind speed to the average wind speed during a certain time interval, say, 10 minutes. Higher
TT implies more mixing which causes faster dissipation of the wake in the downstream direction and thus, less
prominent the effect of wake decay. Generally, unstable atmospheric conditions have higher TI and stable
conditions have lower TI. However, under neutral conditions a wide range of TI values can be observed
[22, 38].

In attempts to relate the TT to the WDC 6, several studies suggested a linear equation for the WDC in



terms of TT [23, 38] under certain specific conditions of atmospheric stability as
0 =p+qxTIL (3)

where p and ¢ are positive constants. Alblas et al. [39] show that it holds § ~ 0.5 x TT under neutral
conditions, whereas under stable and unstable conditions 6 is of the order of TI or 1.5 to 1.9 times TI
respectively for offshore wind farms. Pefia et al. [38] estimate the WDC as 6 ~ 0.4 x TT for a flat homogeneous
terrain with hub heights ranging from 40 m—60 m for on shore wind farms under stable wind conditions.
Further, Niayifar and Porté-Agel [40] used LES data to express the WDC as 6§ = 0.003678 4+ 0.3837 x (TI)moa
for 0.065 < (TI)mea < 0.15, where (TI)mod, the modelled TT, is a combination of measured TT and wake-
added TI [13]. Modelling the WDC as a function of TI may improve the accuracy of the Jensen model,
but existing studies suggest different relationship between the WDC and TI. With such inconsistency and
uncertainties, it becomes necessary to calibrate the coefficient (and the relationship between 6 and TI) more
accurately. This calls for a new approach to solve the calibration problem using data-driven stochastic
optimization.

We further consider another state-of-the-art flow control model based on a blade element theory discussed
in [25]. This flow control model assumes a Gaussian shape of the stream-wise wake based on the lifting line
model, and the same Gaussian shape is also used to model the lateral wake [41]. We refer to this model
as the Gaussian wake model hereafter. This Gaussian wake model has two parameters: the wake spreading
coefficient k,, and the proportionality constant oy. The spreading coefficient k,, is used to estimate the
downstream effective wake diameter, and the downstream width of the Gaussian profile is determined by
multiplying the Gaussian proportionality constant oy by the effective wake diameter. These parameters
depend on the site-specific wind conditions and the wind farm layout and influence the prediction accuracy
of the wake model [25]. We present a data-driven stochastic optimization approach using operational wind
farm data to calibrate these parameters.

3. Stochastic Optimization for Wake Calibration (SOWCQC)

We formulate the calibration problem using data-driven stochastic optimization in Section 3.1 and present
a new approach to efficiently solve the problem in Section 3.2.

3.1. Problem Formulation

Consider an engineering wake model (e.g., the Jensen wake model) which generates a response vector
y¢(0; x) for a given weather condition x (e.g., wind speed) and a set of parameters . For instance, € is one-
dimensional in (2) or two-dimensional, i.e., [p,¢|T in (3). The accuracy of the wake model is then evaluated
by comparing its generated response y°(6;x) € R® with the observed response at the same input z. Consider
a dataset containing the field observations D = {(z;,y;)}}—;, z; € R being the operational input condition
and y; € R’ being the output response vector at multiple turbines in a wind farm. In particular, y; is a
vector containing the observed wind power at each of the b downstream turbines, whereas y°(6; x;) results
from the output of the wake model that simulates the power at each of those b downstream turbines with
the same input vector x;. In this study, we consider steady state conditions. Hence, (x;,y;) represents the
average measurements during a short time interval, e.g., 10 minutes.

We seek a calibration parameter that minimizes the difference between the wake model output and
observed data. We refer to this difference as loss, and denote it by £(y°(0;x),y) : R’ — R. Since both
y¢(0; ) and y are vector-valued, we consider the loss to be the Lo norm of their difference, i.e., the sum of
their squared residuals. Then we can formulate the calibration problem as

min  f(0) = Ex,y [((y°(6; X),Y)]
(4)

subject to  Opmin < 0 < Oas,

where 0,y and 0,,,,, are the lower and upper bounds for 6. Here, we assume that the function f(0) is bounded
below and its gradient Lipschitz continuous, that is, there exists L < oo such that |Vgf(01) — Vo f(02)] <
L[|y — 65]|. The input X and output Y follow an unknown joint distribution function. Further, the wake
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Figure 2: Overview of TR operation: At each iteration, the local model in purple curve approximates the true loss value in green
curve around each 6. In a derivative-free setting, the local model is fitted on close-by solutions, e.g., 0,5‘, 9,13. TR optimization
uses the minimizer of the local model My (0) inside a neighborhood of size Ay to make progress in the search space. The figure
on the right illustrates the trajectory of local models in purple and parameter adjusted in red.

model output y¢(6; x) does not take a closed-form expression. Therefore, we solve this problem based on the
principle of empirical risk minimization with the objective function of

= 7] > e B:a), ;)

(z;,y;) €D

with |D| being the total sample size of the operational dataset D.

When the data size is large, using the entirety of the available dataset for risk minimization may not
be efficient, because it needs to run the wake model for every data point. It may also result in overfitting
which will give inaccurate parameter values. To address it, we employ a stochastic optimization approach
that uses random subsets of the data set. Suppose n (n < |D|) data points are randomly chosen from the
entire dataset D. Then, we estimate the expected value in (4) with a sample average approximation, i.e.,

() :=@ S U 0:05), ) (5)

(z5,y;)€5(0)

with |S(0)| being the sample size of the subset sampled from the data, S(#) C D. It is assumed, in the
presence of a large D, that 13'(0) converges to f(6) almost surely, as the size of S(f) grows large. Despite
a common strategy for sampling, i.e., a fixed subset of data to use throughout the optimization, we show
subsets as functions of the parameter value gain more efficiency; we will discuss this further in the next
section.

3.2. Adaptive Trust-Region based Optimization

To solve the above optimization problem, we use a TR based method [42]. The TR method iteratively
approximates the true objective function f(#) by creating an easy-to-handle local model in a small neighbor-
hood using randomly chosen subsets of data. Optimizing this local model within that neighborhood provides
a new candidate solution to the true objective function if accepted, as an improved solution updates the
parameter value towards the optimality.

Specifically, suppose that ) is the current recommended parameter value and S(6y) is the subset of data
drawn from the entire dataset D at the k*" iteration. Let Mj(6) denote the local surrogate model at the
k" iteration that approximates the true loss function f(#) around 6y, in the region of size Aj. This region,
denoted by By, is often a closed ball around the incumbent solution 6y, i.e., By = {0 : ||0 — 0x|l2 < Ay}
Then we find the candidate of the next incumbent 0 that minimizes My(-) in By. Thus, the TR radius,
Ap, limits the size of the next step.



Note that we cannot compute the gradient of the objective function to get the next incumbent, because
the functional form of £(-) (or y°(-)) is unknown. That is, direct observations of gradients, Vof(y°(0;x;),y;),
are unavailable. This is why we employ the derivative-free stochastic optimization by building a local model
M. (0) (typically a quadratic function) using estimated objective functions at multiple s within Bg. Let
O = {Qk,ﬂ,(cj) € Bk, 7 =1,2,--- ,m} be a set including 6, and several other solutions around it. With
interpolation, we fit a M(-) whose gradient and higher order derivatives will capture the behavior of the
objective function around 6. This set needs to be poised such that the matrix

o' (0)) 20y - ¢m(el))

1/9(2) 2002\ . mp®2)
P — | O SO . om0 |
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is nonsingular with a polynomial basis ®(z) = (¢'(z), $2(2),--- ,¢™(2)) on R?. The local model My (6) =
Z;’L:l B;#7(0) is constructed as a Taylor-like approximation where 3 = (31, B2, -+ , B) is obtained by solving
the system of linear equations

P(®,04)8 = (F(0), 0D, F(o™))T. (6)

With a quadratic basis the model is My (0) = B1 + (0 — 0:)T (B2, - , Bayr1) + 1(0 — 0x)THi (0 — 6)), where
Hy, is an approximated Hessian using Bd+27 sy Bm The number of points needed to build the model m
depends on the dimension of the problem d and the order of polynomial interpolation. For a quadratic
M;.(-) with a complete Hessian m = d(d + 3)/2 [43], but when d > 1, to reduce m we can build a quadratic
My(+) with a diagonal Hessian, which will only need m = 2d points [44]. For a one-dimensional problem,
generating a quadratic model needs m = 2 points, i.e., O = {Hk,ﬁ,%,ﬁﬁ} as shown in Figure 2, where
0L = 0, — A and OF = 65 + Aj. The performance of the TR optimization depends on the quality of My (6),
which depends on the existence of ,é and how poised the set Oy is. A good quality model will ensure that
VoM (0) —V£(0)| < O(A}) for all § € By. Specifically, for the derivative-free TR, additional quality steps
to ensure a lock-step between VoM (6)) and Ay is needed: if Ay is too large as compared to the gradient
of the model at 6y, we reduce the TR radius [45]. This critical step can be relaxed for those iterations that
are not near optimality for faster performance.

The left panel of Figure 2 illustrates a single iteration where the next candidate solution §k+1 is selected
by minimizing the local model My (0) within Ay distance from the incumbent solution 6. The candidate
point is then accepted if the loss estimate also sufficiently reduces, in comparison to the reduction in the
model value, by moving to the candidates solution from 6. This test is done through computing what is
called the success ratio, pj, = reduction in the Joss estimates 5 checking whether it is at least as large as the
success threshold 71, which is a user-specified parameter of the TR algorithms. If successful, as a vote of
confidence, the next iteration starts with Apy; > Ag. Otherwise, we let ;41 = 0 and reduce the TR radius
(Akt+1 < Ag) to look more closely in that region. The convergence of this algorithm to a (local) optimum
is guaranteed when A — 0 as k — oo almost surely. The TR radius converges to zero because as the
algorithm approaches the optimal solution, it keeps reducing the radius in pursuit of a better solution which
it cannot find.

Since the local surrogate model My (6) is built on the estimates of the loss function using a subset of the
data, large stochastic errors can substantially impact the algorithm’s performance. One approach to address
this sensitivity to noise is to reduce the stochastic error by increasing the sample size only when distinguishing
better solutions requires higher precision. The fundamental idea in this adaptive sampling strategy is that
in the stochastic setting we use smaller subsets of data when the current incumbent is far away from the
optimal solution and use larger subsets as we near optimality. This adaptive sampling allows us to balance
the computational effort over iterations. Shashaani et al. [43] devised an almost surely convergent stochastic
optimization algorithm that leverages adaptive sampling within a TR framework by using higher orders of
the TR radius as a measure of optimality gap. Their algorithm is referred to as Adaptive Sampling TR
Optimization for Derivative-Free Stochastic Oracles (ASTRODF).

Specifically, the sample size S(0;) adapts the standard error of the estimator as small as a threshold that
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Figure 3: Adaptive sampling stops adding samples once the standard error drops below an approximate optimality gap. The
stopping occurs faster with the stratified sampling (orange) than without (gray) because it further reduces the standard error
with the same number of samples.

equals kAZ/y/Ax, that is,
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where 6%(0;) is the variance estimate of the loss value ¢(y°(y;x;),y;) at each individual sample in (5),
assuming each data point is independently and identically sampled from the dataset D. Hence the left-hand
side (LHS) in (7) is the standard error of the loss estimate F'(f;). In the right-hand side (RHS), & is a
positive constant, and A\, = O(log k) is a slowly increasing deterministic sequence that serves two purposes:
(i) it deflates the optimality threshold and enforces larger samples in the later iterations; (ii) it ensures that
sample size grows large even if by chance the standard error at later iterations is small. With the condition
in (7), the adaptive sampling strategy ensures that the sample size is initially small but increases as the TR
radius becomes small indicating that the incumbent solution is hard to beat. Note that the sample size at
each iteration becomes stochastic and is calculated using the optimality error and the TR radius Ay during
that iteration. Figure 3 illustrates the idea of adaptive sampling, where the horizontal blue line represents
the threshold of standard error, i.e., RHS of the inequality in (7), at a fixed solution. The height of the
vertical bars represents the standard error of the loss function estimate at that solution, and the left to right
direction shows this error decreases as the sample size increases. We stop adding more samples as soon as
the estimated vertical bars drop below the threshold, indicating that the estimation error, is commensurate
with the optimality gap.

In the new improvement to this algorithm that we describe in Section 4, we integrate variance reduction
to ASTRODF to shorten the bars (see the gray bars in Figure 3) and stop sampling earlier without losing
any convergence guarantees. In this new framework, we not only set the size of the samples adaptively, but
we also decide which points to be added to the samples.

4. Stratified Adaptive Sampling and Trust-Region Optimization

For efficiency improvement and robustness, we integrate stratified sampling within ASTRODF. We first
describe the stratified sampling in Section 4.1 and propose the new algorithm in Section 4.2

4.1. Stratified Sampling

Stratified sampling is a variance reduction technique that divides the input domain D into multiple
strata due to the erratic behavior and impact of the data from each stratum on the objective function
estimate. Instead of assuming that all the data follows a single distribution, we allow each stratum to have
a unique data distribution. This design directly uses the heterogeneity in the input data to our benefit.
The central idea is that we allocate portions of the budget (overall samples) to each stratum based on its
contribution to the variance of the objective function estimator. By allocating more computational budget to
the more important strata, we reduce the estimation variance that leads to the acceleration of our calibration
procedure.



We divide the available data D into I disjoint strata such that D = U{Di and D; Nijzy Dy = 0: we will
discuss how to divide D to form I strata in Section 4.2. Let p; = |D;|/|D| be the ratio of total points in
stratum ¢ and 65;(6) be the estimated output variability at 6 in stratum ¢ for ¢ = 1,2, --- , I. If the estimated
objective in stratum i is F(6), i.e., the sample average of the loss value at stratum i, with S;(8) C D; being
the sample set drawn from stratum ¢ and n;(0) = |S;(0)|, then the overall estimated mean is

I
F(0) = piFi(0) (8)
i=1
and the estimated sample variance is
I 2.2
— . — p;o 1(9)
Var(P(6)) = 3 piVar(B(0)) = D0 PO ©)
i=1 i=1 ¢

with 63 ,(0) = (n:(6) — 1) [ £(y°(0; i), i) —13’1-(9)1n7.,(9)||§7 where ¢(y°(0; x;),y;) is a vector of loss functions
for stratum 4, {(z;,y;) € S;(#)}, and 1, is an n;(0)-dimensional vector of ones. The sample variance in
(9) is proven [46] to be smaller than the sample variance without stratification and the difference between
the two is maximized when n;(6), the sample size for a given 6 from D;, is proportional to p; and G ;(6),
ie.,

oo @) _ piori)
’U)i( ) = T = T - . (10)
Ej:l n;(0) Zj:lpngJ(e)

There are several questions in designing an integrated framework of TR optimization with adaptive
and stratified sampling: (i) How to stratify the input space and how much does that cost?; (ii) For each
stratum, how to adaptively allocate the budget and when to stop adding samples?; and (iii) How to reuse
observations and data utilized in previous iterations? Next, we describe the new algorithm that addresses
all these questions.

4.2. Stratified-ASTRODF with Dynamic Weights (SOWC-1)

Before successful stratified sampling, we need successful stratification (or partitioning) strategies. An
effective way for stratification is to divide the data such that within-stratum variance is small and between-
stratum variance is large [47]. The ideal stratification should minimize the total variance in (9). However,
the variance of the estimated loss F (0) depends on the incumbent 6, implying that we need to partition the
data at every visited solution. But doing so incurs additional computational burden. In a previous study,
Liu et al. [28] demonstrate a dynamic stratification integrated with stochastic gradient methods. However,
partitioning with a small dataset drawn in each iteration may increase the stochasticity during the search
procedure and ultimately reduce the efficiency.

As a remedy, we assume that the physical response variance oy is closely connected to the loss variance
or(0) irrespective of 6 and asynchronously partition the input data before the optimization. Although this
use of proxy variance does not precisely track the change in the output variance at different WDCs in the
search space, it has the advantage of being computed only once and reused at every iteration. To divide
the input space, we borrow the classification and regression tree (CART) idea and form the I disjoint strata
with I being a user-specified parameter of the algorithm. CART groups the data with similar characteristics
together by minimizing the overall sum of squared errors [48]. It helps achieve the minimum total variance
of the response outputs. Figure 4 shows the application of CART for stratification for a single experiment.
In this work we have used T1 to divide the data into multiple strata as T1 is closely related to the variance.

The next challenge is how to initiate the budget allocation for each stratum to estimate their variance
before invoking the adaptive sampling. Given the trajectory of the search and all the data used until right
before iteration £, this initial sample size for stratum 7, denoted by A ;, would remain unchanged through
sampling in iteration k. First, we use the most recent budget allocation w;(y) for stratum i following (10).
Then the initial sample size choice for stratum i will be

Aki = [no + w; (6k) X (max{ngu, At — nOI) —0.5], (11)
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Figure 4: Stratification with CART partitions the data based on TI.

where n® and nY; are user-specified parameters representing the minimum sample size for each stratum
and the minimum overall sample size. We allocate at least n® samples at each stratum to avoid too large
estimation error at the beginning. For illustration, suppose we have I = 2 strata with the most recent
weights wi(0x) = 0.3 and w2 () = 0.7, assuming the lower bound at an early iteration is A\ = 10, and the
minimum size parameters are n® = 2,n2Lll = 40. This gives A\;,1 = 13 and A, 2 = 27 as the initial sample
size for each of the two strata. If we were at a much later iteration with, say, Ay = 50, these numbers would
change to Ap1 =16 and A2 = 34.

Using Ax;’s, we adaptively determine the initial sample size of each stratum at the kth iterate 6. Recall
that the sample size is decided based on the inequality in (7) [43], where the LHS is the estimation error and
the RHS is the threshold (indicating the optimality gap). With stratified sampling, the variance estimate
is given by \H(F’((‘))) in (9). For the RHS, we employ the same threshold in (7) with some modifications.
Specifically, we replace the squared TR radius with the estimated loss itself. While the local optimality in
TR is measured by the square of the model gradient norm that is kept in lock-step with the TR radius, we
also know that F(Hk) = O,(A?%) because the models constructed need to have sufficient quality, ensured by
correct placement of the solutions in B. Hence, we decide the sample size of each stratum as

(Ni(6)), Vi=1,2,--- 1) = min{ni > Ny Vi=1,2,-+ T+ \/Var(F(6)) < 1F(9k)}. (12)
’ VAk

In (12), there are two major modifications to the adaptive sampling rule in (7). First, the LHS now uses the
function estimates via stratified sampling instead of the TR radius directly. This modification is important,
because it avoids algorithm’s sloppiness at the beginning due to the inappropriate choice of initial TR size,
which is a user-specified parameter. In other words, by this replacement we can reduce the sensitivity of
the algorithm to its parameters; note that we remove the constant parameter x here too. Additionally,
this change in the sampling rule ensures that in iteration k, all visited solutions 6 € Oy, U {041} determine
samples needed for their estimate’s precision using their own a (6), instead of using a fixed RHS via A% for all
f. Our modified adaptive sampling rule resembles progressively controlling the loss’ coefficient of variation,
which is defined as CV(Z) = ‘TE([g]) for a random variable Z. Lastly, we collectively consider all strata when
adding new samples, rather than doing an adaptive sampling with each stratum separately. This integration
of stratified sampling and adaptive sampling helps obtain maximum efficiency.

As listed in Algorithm 2, at every new WDC value for which we need to evaluate the loss during iteration
k, we first use the information obtained for 6y, the recommended solution from iteration k& — 1. With (11)
we determine the initial sample size for each stratum through w;(6x). Once new samples drawn for 6, we
use those most updated w;(0y) values for the following solutions to be visited, e.g., the poised set for model
construction and the candidate incumbent for the next iteration. Why is the choice of initial sample size for
each stratum crucial? If our initial sample size is too small, our weights can be inadequate, and eventually,
we will spend a lot of time getting to a good point in the search trajectory. On the other hand, large initial
sample sizes can guarantee a good estimation of weights at the expense of utilizing a lot of our computational
budget. After initialization of samples in each stratum, if the stopping time condition (12) is not satisfied,
we add a single point, update the standard error from (9) and recheck the stopping time condition. We use
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what we call the selective randomized method, inspired by [49, 50], to determine the stratum to which this
point should be added. Based on this strategy, samples are added one by one to randomly selected strata
according to the probability mass function (pmf) described above until the stopping criteria is met. At
stopping, ideally the ratio of the number of samples from stratum ¢ to the total number of samples should
be equal to the weight of that stratum, i.e., w;(0x) = ¢;(0x) where q;(0y) := N;(0k)/ Z§=1 N;(6r). However,
since in the adaptive setting, the new samples are added randomly, it is possible that for some strata, ¢;(6x) is
greater or smaller than the corresponding weight. To use the optimal allocation information in the adaptive
sampling, we estimate the probability of adding the point to stratum i as

w; (O ) I{w; (0r) > qi(Ok) } .
Yy wi (06)1{w; (0x) > g;(0x)}

Using (7, 7¢,--+ ,7¢) obtained from dynamic weights in (13) as the pmf for stratum selection guarantees
that those strata whose allocation is lower than optimal receive more likelihood for selection. The adaptive
sampling in the derivative-free setting has to be conducted not just for the incumbent solutions, but also
for those solutions that will be used for the local model construction and those suggested as the candidate
incumbents by minimizing the local model. Recall that for large sample sizes, the standard error with random
sampling will be more than the standard error with stratified sampling. Thus with the new stratified adaptive
sampling strategy, we stop at a smaller sample size; see the grey bars in Figure 3, as compared to the orange
bars. We refer to the proposed stratified variant of ASTRODF with dynamic weights as SOWC-1.

78 = Pr{selecting stratum i} = (13)

4.83. Stratified ASTRODF with Fized Weights (SOWC-2)

In SOWC-1, the role of the dynamic weights computed by (10) as a budget allocation rate is in choice
of initial sample size per stratum (11) and adaptive addition of samples through (13). We now consider a
variant of the proposed approach that does not allow budget allocation ratio for each stratum to vary across
iterations. We adopt this fixed budget allocation strategy as an alternative because the dynamic scheme
causes a complexity, as every new sample changes 65 ;(6) for all 8 visited at iteration k, and hence changes
the weights themselves. In short, this dynamic change in the weights can incur additional variability in the
algorithm performance. For the sake of more stability, we consider a static weight for each stratum to lower
the variability throughout the search, as suggested in our earlier work [51], i.e.,

Di0y;

_— 14)
JE— (
Zj:l Pjoy,j

v =

Similar to the logic we use for the stratification, these fixed weights are based on the assumption that the
distribution of our estimated loss function will closely mimic the distribution of the observed outputs. One
advantage of this static weight scheme is the ease of implementation, since the weights are same for each
iterate, however, it can result in skewed estimates as it does not take into account the sampled distribution.
In SOWC-2, we also use the static weights in selecting a stratum for adaptive addition of new samples, akin
to (13) but with v; instead of w;(6y); we call these fixed probabilities (7}, 75, , 7).

Table 1 shows the difference between the computational budget allocation weights w;(0;) and v; in
SOWC-1 and SOWC-2, respectively, in one of our experiments. In SOWC-1, more data points from the high
TT condition (the last stratum) are used in the calibration, whereas SOWC-2 assigns similar efforts across
multiple strata. We note that despite using fixed weights in SOWC-2, the TT interval in each stratum is
different, rendering the stratified sampling philosophy: sample less from less important weather conditions
and more from important conditions for the calibration purpose.

Algorithm 1 summarizes the procedure of SOWC-1 and SOWC-2, where we combine stratified sampling
with the updated adaptive sampling criteria (12) that is detailed in Algorithm 2, to use fixed/dynamic
weights and randomized allocation.

5. Implementation Results

We use the multi-turbine extension of the Jensen wake model which takes into account multiple wakes and
partial shadows [17] to calibrate the WDC in (1)-(2). We use the Ly loss, i.e., £(y°(0;x),y) = ||y¢(6;2) —y||3
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Table 1: Stratification details for the two suggested methods in one experiment®.

. - SOWC-1 SOWC-2
Bins TIrange Probability mass (p;) 5r20) w,0) T
1 0.08-0.40 0.32 0.01 0.27 0.02 0.24
2 0.40-0.54 0.27 0.01 0.23 0.04 0.29
3 0.54-0.65 0.17 0.01 0.14 0.05 0.21
4 0.65-1.48 0.24 0.03 0.36 0.04 0.26

L For SOWC-1 6F,;(0) and w;(0) values are reported at 6 from the last iteration.

Algorithm 1 S-S ASTRODF for Wake Parameter Calibration

1: Input: Available dataset D, initial solution 6, and TR radius Ay, number of strata I, maximum budget
T, minimum sample size for each stratum n® > 2, total minimum sample size n%; > n°I, and success
threshold 77 > 0.

2: initialization: Set calls = 0 and iteration & = 0. Determine the strata by CART and compute their

properties {(D;, p;, 6v,i,vi), Vi =1,2,---,I} including fixed weights v; following (14).

while calls < T do

Generate Oy, a poised set within By.
Estimate F'(A) using Algorithm 2 for all § € Oy
Set calls = calls + > 5o, Zle N;(6).
Generate a surrogate model My(-) by interpolation using (O, F(0;)) following (6).
If the model gradient VM () is small relative to Ay, shrink the TR and go to step 4.
Minimize My(-) within By, to obtain a candidate solution ék+1.
10: Estimate F'(f)11) using Algorithm 2.
11: Set calls = calls + 25:1 Ni(Ops1)-

© PN D T w

F(0x)—F(0k11)

12: Compute the success ratio p = My (00)— My (Orin)”

13: if pr, > m then

14: Set k41 = k41 and Agyq > Ag.

15: else

16: Set 6k+1 =6 and Ak+1 < Apg.

17: end if

18: Set dynamic w;(6x) at the new incumbent solution following (10).

19: Set k =k + 1 and go to step 4.
20: end while R
21: output: Final calibrated wake parameter 6 and its estimated loss F'(6y).

in all of our experiments. However, other types of loss functions, e.g., Ly loss, can easily and flexibly be
considered. We first calibrate the WDC as a constant value, and then consider the TI dependent calibration
suggested in [22]. To provide reproducible implementation, our code, as well as the dataset used in Section 5.3,
can be found in https://github.com/sshashaa/s-astro-df.git.

5.1. Data Description

We have data collected from two wind farms: WFa an offshore wind farm, and WFb an onshore wind
farm. Table 2 summarizes some details of the two wind farms. Figure 6 shows the modified layout of
WFa with some turbines omitted due to confidentiality. The dataset consists of 10-minute average power
generated by each wind turbine along with ambient wind conditions collected in the met mast, such as the
10-minute average free-flow wind speed, 10-minute average wind direction, T1, etc. Each wind farm has one
meteorological tower (met mast). The turbine spacing between each row in WFa is about 11 times rotor
diameter.

The power generated by wind turbines is normalized by dividing each term by the maximum available
value. We have used data when the met mast is not under wake, where wind direction ranges from 165° to
315° in WFa and 165° to 195° in WF2. Moreover, TI ranges from 0.1 to 1.5 and wind speed ranges from 3
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Algorithm 2 Stratified Adaptive Sampling with Fixed/Dynamic Weights

1: input: TR radius Ag, deflation factor Ay, details of the strata including dynamic weights for the
incumbent solution {(D;, p;, dy,i, vi, wi(0)), ¥i =1,2,--- I}, and solution of interest 6.

2: fori=1,2,---,1 do

3: Compute Ay ; following (11) that uses w;(6y) for SOWC-1 or v; for SOWC-2.

4: Draw N;(#) = Ay,; random samples from D; and form S;(#) to compute 65 ;(6).

5: Update w;(6) for SOWC-1.

6: end for -

7. Calculate the sample mean F(6) in (8) and sample variance Var(F(6)) in (9).

8: while Var(F(6)) > £ F(6)? do

9:  Randomly select stratum j following the pmf (7¢)!_, for SOWC-1 or ()L, for SOWC-2.
10: Draw a random data point from D; and add to the sample set S;; increase N;(6) by 1.
11: Update 65,;(9), @(F(G)), F(0), and if SOWC-1, w;(0) for all i = 1,2,--- 1.

12: end while

output: Estimated loss F'(#) and the adaptive sample sizes N;(6) for all i =1,2,--- I
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Figure 5: Overall procedure consists of several macro-replications of dividing the data into modeling set, used for training and
optimization, and validation set, used for testing and evaluation. The outputs shown in the bottom right box illustrate the loss
trajectory and final solution with a fixed computational budget across the macro-replications.

Mean & Confidence Interval & Box Plots of Performances Measures:
(1) Loss trajectory, & (2) recommended wake decay coeff. by termination.

to 15 m/s in our dataset for WFa. For WFb, TI ranges from 0.3 to 2.5 and wind speed ranges from 4 to
13 m/s. Due to the data confidentiality required by the data provider, we omit more details about the two
wind farms.

Table 2: Information about the two wind farms.

Wind farm Type Data size Number of turbines  Layout
WFa offshore 9742 around 30 regular
WEFED land-based 1659 around 40 irregular

The Jensen wake model estimates the incoming wind speed at each turbine. But our dataset does not
contain the incoming wind speeds at downstream turbines. To compare the output from the Jensen wake
model with actual measurements, we estimate the power curve using data in one of the upstream turbines
closely located to the met mast. For the power curve construction, we use B-splines [52]. Once Jensen wake
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Figure 6: Layout of WFa.

model outputs incoming wind speeds, we use the resulting power curve to estimate the power outputs. For
the thrust coefficient in Jensen model, we use the manufacturer’s provided values.

An outlook to the full procedure is depicted in Figure 5. To evaluate the performance of the proposed
approach, we divide the data into two sets: the modeling set (D) and the validation set (D’). The modeling
set comprises of 70% of the data and is used exclusively for the parameter calibration. We use the remaining
30% of data for evaluating the calibration performance. We conduct the experiment 20 times (that is, 20
macro-replications) with different modeling and validation sets. For each experiment, we divide the modeling
set into four strata (I = 4) using CART. The initial TR radius (A) is 0.08, and the success threshold (7;) is
0.10. The minimum sample size for each stratum (n) is set at 2 and the total minimum sample size (n?),) is
40. The deflation factor A4 is an increasing function of the iteration number k and is set as A\x, = 80(log k)*-°.
It increases exponentially with iteration number, ensuring that towards the later half of the search we have
good estimates for MSE. We have restricted our search space to 6 € (0,1).

5.2. Numerical Results

This section reports the implementation results of the proposed methods. We compare our approach
with other stochastic optimization methods along with the comparison of the optimally calibrated parameter
values against the recommended values. The results are evaluated using MSE which is defined as the mean
of squared errors for all the turbines divided by the number of observations. We first summarize point
calibration results where the WDC is modeled as a constant value for WFa and WFb, followed by the
functional calibration results with the WDC as a linear function of TI for WFa.

5.2.1. Point Calibration

Table 3 first compares the results for WFa from the proposed approach with those when the recommended
value of § = 0.040 for an offshore wind farm is employed. It summarizes the estimated WDC and the
normalized MSE evaluated over 20 validation sets. Our proposed methods, SOWC-1 and SOWC-2, suggest
the WDC to be around 0.053 which is slightly different from the recommended value. The third column
suggests that the proposed approach can reduce the overall MSE by 0.87%, compared to the recommended
value. Further analysis shows that our approach achieves 2.38% reduction of MSE for turbines placed in the
second row, while the MSEs are comparable for turbines in the third and fourth rows. Overall, slightly higher
MSEs at the reference value of 0.04 indicate that using this default value may not be optimal, highlighting
the need for wind farm-specific WDC calibration.

Table 3: Comparison of MSE and estimated WDC for different methods for WFa. The second column summarizes the estimated
WDC, the third column summarizes the overall MSE, and columns four to size summarize the MSE for the turbines in the
second, third, and fourth rows, respectively (the value in the parenthesis is the standard error from 20 macro-replications.)

Algorithm WDC MSE (x1073)
Performance (9) Overall 2nd row 3rd row 4th row
Reference [17] 0.040 1611 (0.023) 4.332 (0.022) 4.595 (0.026) 4.900 (0.028)

SOWC-1  0.053 (0.010) 4.574 (0.025) 4.194 (0.023) 4.601 (0.028) 5.045 (0.029)
SOWC-2  0.052 (0.019) 4.578 (0.025) 4.198 (0.023) 4.593 (0.028) 5.035 (0.029)

Figures 7a and 7b shows the box plots of power deficits in the turbines across different wind speeds when
we optimally calibrate the WDC and blindly adopt the reference value for WFa. We observe clear differences
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in the power deficit distributions in both cases. With the optimally calibrated value of # = 0.053, Figure 7a
shows the maximum power deficit at the most downstream turbines is approximately 43% compared to the
upstream turbines. On the contrary, when we employ the recommended value of § = 0.040, the maximum
power deficit is around 54% in Figure 7b. Further, compared to Figure 7b, Figure 7a with = 0.053
demonstrates that the range of power deficits among turbines is smaller, compared to that with 8 = 0.040.
This result demonstrates the advantage of calibrating the WDC value, specific to each wind farm, using its
operational data.
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Figure 7: Comparison of the estimated power deficits for the optimally calibrated WDC (6 = 0.053) and the standard value
(6 = 0.040) for WFa. Power deficit is computed as the difference of the estimated power output at each turbine and the
maximum estimated power output amongst all the turbines.

Next, we compare our approach with alternative stochastic optimization methods. Liu et al. [28] adopted
the SG for wake decay calibration and showed its superior performance over the Bayesian approach. As the
TR-based optimization and SG are two representative stochastic optimization methods, we compare the
performance of TR with SG. To compare the performance of various algorithms we use certain performance
measures like mean-confidence interval curves. Specifically, after a macro-replication is run we get a set
of intermediate solutions along with their corresponding budget. The MSE is then evaluated at these
intermediate solutions using the remaining 30% set, the validation set, to get these performance measures.

Figure 8a plots the mean-confidence interval curves for the normalized MSE for WFa against the utilized
budget for the original TR-based algorithm (SOWC-TR) and SG (SOWC-SG). SOWC-TR exhibits a sudden
drop in the MSE value initially, implying fast convergence towards optimal solution. SOWC-SG, on the other
hand, requires more computational budget to converge towards the optimum which is a well-known problem
of SG. The slow convergence of SG can be attributed to the noisy steps that the algorithm takes during
each iteration. This is visible in Figure 8b, which plots the mean-confidence intervals of the trajectory of
the WDC during the search for WFa. In SG the intermediate solution is updated at each iteration and
these frequent updates are computationally expensive. TR-based methods, on the other hand, update the
intermediate solution only when there is sufficient reduction in MSE. The performance of SG also depends on
the accuracy of the gradient estimates. For problems like WDC calibration in engineering wake models, the
gradient cannot be expressed explicitly. Thus more computational budget is needed to get good estimates
of the gradient. Overall, the derivative free TR-based optimization approach, which eliminates the need for
good gradient estimates, exhibit many advantages over SG.

Figures 9a and 9b show the box plots for the normalized MSE and the estimated WDC, respectively for
WFa. The MSE and estimated WDC obtained from 20 macrorepliations of SOWC-TR have a smaller spread
(interquartile range), suggesting smaller variance amongst the experiments. This is of particular importance
in stochastic optimization because it signifies the robustness of the algorithm. Comparing the mean values of
MSE of the two algorithms we can conclude that SOWC-TR, gives better results than SOWC-SG. Figures 8
and 9 illustrate that TR-based optimization can be efficiently used for WDC calibration.

Given that SOWC-TR provides superior performance than SOWC-SG, we further compare the perfor-
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Figure 8: Comparison of stochastic gradient (SOWC-SG) and TR optimization (SOWC-TR) over 20 macro-replications with
mean and 95% CI convergence curves for WFa. The MSE and WDC are plotted against the number of times Jensen wake
model is called during optimization.
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Figure 9: Comparison of the distribution of the outcome of SOWC-SG and SOWC-TR over 20 macro-replications gives mean
MSE (x10~3) for SOWC-SG = 5.000 and for SOWC-TR. = 4.800 for WFa.

mance of SOWC-TR with its enhanced version with adaptive stratified sampling: SOWC-1 with dynamic
weights and SOWC-2 with fixed weights. Even though SOWC-TR performs better than SOWC-SG, from
Figures 9 and 11, we can see that the output of SOWC-TR still has some outliers, indicating high variance.
We aim to reduce this variance by employing stratified sampling, thus warranting more accurate estimates.
This can be seen in the convergence curves for normalized MSE (Figure 10a). The confidence intervals in
Figure 10a are much narrower for SOWC-1 and SOWC-2, as compared to SOWC-TR. Further, during initial
stages of optimization the reduction of MSE for the stratified sampling methods is much more than that of
standard TR-based algorithm. This shows that by using stratified sampling we get better estimates with
higher certainty. Looking at the trajectory of WDC in Figure 10b, we can see that the estimated values of
WDC for SOWC-1 and SOWC-2 are more uniform across multiple macro-replications. The box plots for
MSE (Figure 11a) and WDC (Figure 11b) show that SOWC-1 has no outliers and SOWC-2 has one outlier.
This is extremely important because it shows that the algorithms are less sensitive to input uncertainty.
There is a slight difference in the performance of SOWC-1 and SOWC-2. SOWC-1 achieves slightly lower
MSE (Figures 10a and 11a) as compared to SOWC-2. This is expected because in SOWC-1 the weights for
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Figure 10: Comparison of the original TR optimization (SOWC-TR) and the proposed approaches: adaptive stratified sam-

pling with dynamic weights (SOWC-1) and with fixed weights (SOWC-2) over 20 macro-replications with mean and 95% CI
convergence curves for WFa.
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Figure 11: Comparison of the optimal solution over 20 macro-replications for WFa shows while over-performing SOWC-TR and
barely different from SOWC-2, SOWC-1 achieves a smaller variance.

stratified sampling are estimated using the variance of the loss function, whereas in SOWC-2 the weights
are fixed and do not depend on the intermediate values of the WDC during the calibration process. SOWC-
1, thus, captures the behavior of loss more accurately as compared to SOWC-2. This can be observed
in Figure 10 by the amount of wriggling in the convergence curves for SOWC-2 and their smoothness for
SOWC-1. We also observe SOWC-1 tends to yield more similar results in 20 different macro-replications,
providing more robust solutions. However, we would like to mention that even though SOWC-1 marginally
outperforms SOWC-2, SOWC-2’s ease of implementation makes it a very handy tool.

In summary, both SOWC-1 and SOWC-2 outperform their alternatives, including SOWC-SG and SOWC-
TR, by achieving faster convergence with higher certainty. Stratified sampling further improves the perfor-
mance of TR-based optimization, making it more robust and efficient.

Next, we investigate the performance of our proposed calibration approach using SOWC-1 and SOWC-2
for the land-based wind farm, WFb. Table 4 compares the results of SOWC-1 and SOWC-2 with those
of the recommended value of 6§ = 0.075 for land-based wind farms. Even though the recommended values
of WDC for SOWC-1 and SOWC-2 are different, their MSEs are rather comparable. The MSE with the
recommended 6 = 0.075 is slightly higher than the MSEs derived from the calibrated values. Despite the
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limited availability of data for WFEb, the proposed calibration approaches exhibit improved performance.

Table 4: Comparison of MSE and estimated WDC for different methods for WFb. The second column summarizes the
estimated WDC and the third column summarizes the overall MSE (the value in the parenthesis is the standard error from 20
macro-replications.)

Algorithm WDC MSE
(9) (x107?)
Reference [17] 0.075 14.276 (0.109)

SOWC-1  0.122 (0.056) 14.123 (0.119)
SOWC-2  0.143 (0.076) 14.140 (0.119)

Figures 12a and 12b show the distributions of MSE and WDC across 20 macro-replication for SOWC-1
and SOWC-2, respectively. While MSEs from SOWC-1 and SOWC-2 are comparable, the interquartile range
for SOWC-1 is smaller, suggesting more certainty, compared to SOWC-2.
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(a) Box plots for MSE. (b) Box plots for calibrated WDC.

Figure 12: Results from 20 macro-replications for WFb: While MSEs from SOWC-1 and SOWC-2 are comparable, SOWC-1
produces more consistent WDC calibration results with less variation.

5.2.2. Functional Calibration

Some studies suggest that the value of the WDC depends on the local atmospheric conditions and thus,
a constant value of WDC does not take into account these variations [39, 24]. Taking local atmospheric
conditions into consideration, in this section, we model the WDC as a linear function of TI in (3) for WFa.
The dependence of WDC on TT varies according to the atmospheric stability conditions. There are different
ways to determine the atmospheric stability conditions. Obukhov Length [53] is typically used to categorize
atmospheric stability. However, with the data available, we do not have enough information to determine
the Obukhov Length.

Another way to determine atmospheric stability is via the wind profile power law, which states that if
wind speed u, at a reference height z, is known, then wind speed u at some height z can be determined as

()@

where « is the wake shear coefficient [54, 55]. The value of the wake shear coefficient can be used to determine
near-neutral atmospheric conditions. The value of « varies with the terrain, and for lake or ocean surface,
it is assumed to be 0.1 [56] but for wind power offshore operations, other values of o have been used [57].
Since we cannot determine the exact value of the wake shear coefficient at the studied wind farm location
due to the limited information available to us, we use wind speeds measured at two different heights, one
below and the other at the hub height, to determine « in (15) in each data record. Then, with the goal of
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finding the parameters p and ¢ in (3) under near-neutral conditions, we choose a subset of the dataset that
exhibits the near-neutral conditions using the resulting wake shear coefficient values. Specifically, we divide
the data into two sets for different ranges of «; the first set comprises of lower « values between 0.05 and
0.1, and the second set has o between 0.1 and 0.15. The size of the two sets is 2,034 and 1,174, respectively.

In literature, the WDC is often assumed to be directly proportional to TI (§ = ¢ x TI) [23, 38, 39].
This is done because it is easier to estimate a single parameter. Calibrating two parameters increases the
dimensionality of the problem making it more complex to solve. However, with the robustness and the
efficiency that the our methods offer, the two-dimensional problem can be solved with relative ease.

We perform stochastic optimization on both sets to determine the optimal values of the intercept (p) and
the slope (¢). The setup is almost the same as the point calibration setup, the only difference being that
now we have a two-dimensional problem. Alblas et al. [39] suggested a relation between the WDC and TI,
0 ~ 0.5 x TI, for offshore wind farms under neutral conditions. We use this as a reference to compare the
results of our optimization which are summarized in Tables 5 and 6. The second column in the table reports
the estimated intercept, and the third column summarizes the estimated slope. The fourth column contains
the values of MSE obtained from 20 validation sets for the entire wind farm. The last three columns contain
the values of MSE for the turbines in the second, third, and fourth rows respectively.

Table 5 shows the results for the first data set having lower values of a. The optimal functional relations
obtained from SOWC-1 and SOWC-2 are § = 0.068+0.033 x TT and 6 = 0.079+40.026 x T1, respectively. The
MSE values from SOWC-1 and SOWC-2 are almost equal to the MSE value if we use the relation suggested
in [39]. The results for the second set are summarized in Table 6. For the second set, the optimal functional
relations suggested by SOWC-1 and SOWC-2 are § = 0.059 + 0.114 x TT and 6 = 0.059 + 0.098 x TI,
respectively. The MSE reductions in SOWC-1 and SOWC-2 are more clear for larger a. In particular,
similar to what we observed for point calibration, we obtain the substantial MSE reduction for turbines in
the second row; for larger «, the MSE reduction is almost 19.01%, whereas it is approximately 1.72% for
smaller a.

Table 5: Comparison of MSE and estimated WDC for 0.05 < o < 0.1 for WFa (the value in the parenthesis is the standard
error from 20 macro-replications).

Algorithm intercept slope MSE (x10~3)
Performance (p) (9) Overall 2nd row 3rd row 4th row
Reference [39] 0.000 0.500 12.365 (0.182) 11.817 (0.174) 12.653 (0.183)  12.739 (0.211)
SOWC-1 ~ 0.068 (0.065) 0.033 (0.069) 12.379 (0.190)  11.569 (0.172)  12.747 (0.198)  12.999 (0.222)

SOWC-2 0.079 (0.105)  0.026 (0.035) 12.430 (0.190) 11.588 (0.172) 12.807 (0.198)  13.082 (0.222)

Table 6: Comparison of MSE and estimated WDC for 0.1 < a < 0.15 for WFa (the value in the parenthesis is the standard
error from 20 macro-replications).

Algorithm intercept slope MSE (x10~3)
Performance (p) (q) Overall 2nd row 3rd row 4th row
Reference [39] 0.000 0.500 12.406 (0.225) 11270 (0.224) 12.578 (0.253)  13.671 (0.229)

SOWC-1 0.059 (0.035)  0.114 (0.056)  9.957 (0.241)  9.039 (0.235)  10.221 (0.254)  10.836 (0.256)
SOWC-2 0.059 (0.023)  0.098 (0.051)  9.952 (0.241)  9.039 (0.235)  10.212 (0.254)  10.829 (0.256)

Figure 13 plots the three functional relations for two different « ranges. The WDC values suggested
by SOWC-1 and SOWC-2 increase steadily with TI. Even for lower values of TI, the suggested functional
relations give a respectable value. On the other hand, the WDC value estimated using the relation suggested
in [39] is very low for lower TI values and then gets close to the values suggested by SOWC-1 and SOWC-2
for higher TT values.

The lower MSE achieved using stochastic optimization indicates that using the relation of  ~ 0.5 x TT is
not optimal for this studied wind farm. Further the slope and intercept values obtained for the two sets are
slightly different. This implies that the values of slope and intercept may need to be calibrated separately
depending on «. An interesting thing to note is that the optimization algorithms always give a non-zero
value for intercept. This suggests that direct proportionality between the WDC and TI cannot always be
assumed.
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Figure 13: Comparison of the optimal functional relations between WDC and TT and the relation suggested by Alblas et al [39]
for the two subsets for WFa.

5.8. Extension to Other Wake Models

Jensen’s model was among the first engineering wake models. Recent literature contains several improve-
ments to Jensen’s model. We implement the proposed calibration methodology to a more sophisticated wake
model that integrates the lifting line and power yaw models assuming a Gaussian wake [25]. This integrated
model also uses a secondary steering model that takes into account non-zero lateral wind speeds downstream
of yawed turbines.

We apply our methodology to calibrate the wake parameters (k,,, 0g) of this Gaussian model for a simple
two-turbine setting. We assume that the parameters for both turbines are the same. The layout of the two
turbines is available in Figure 8.6 of [58] (see Pair 1 therein). These turbines are a part of the larger wind
farm, but there are no turbines within ten times the rotor diameter distance of this pair. To calibrate the
model parameters, we use the operational data from this pair of turbines, including wind speeds and power
being recorded at each turbine and the wind direction measured at the met mast [58]. The dataset does
not include the yaw angle information, and we assume zero yaw angle. More information about the wind
farm can be found in Section 8.6 of the “Data Science for Wind Energy” book [58], and the dataset can be
accessed online at [59].

The bearing angle between the two turbines is 307.1°. Thus we have filtered the data to include wind
directions between [122.8°,131.4°] and [302.8°,311.4°], where the wake phenomenon is expected to be most
prominent. The size of this filtered data is 1,804. Though the power curve should be estimated using the free
stream wind speed at the met mast, due to the unavailability of these wind speeds in the dataset available
to us, we have used the wind speed at the upstream turbine to determine the power curve using B-splines
[52], where the wind direction determines the upstream turbine. First, we stratify the data into two subsets
based on the wind direction ranges. Then wind speed is used to further stratify the data in each of these
intervals of wind direction using CART.

Figure 14 depicts the trajectories of MSE of the proposed stratified sampling-based methods, SOWC-1
and SOWC-2, as well as those of the original TR method without stratification, SOWC-TR. All of the
three methods converge well with sufficient computational resources, e.g., when the computational budget
allows up to 5000 evaluations, as shown in Figure 14(b). However, the stratified sampling-based methods
exhibit faster convergence given limited computational resources, e.g., when the allowed budget is only up
to 2,000 evaluation, as shown in Figure 14(a). Here, each evaluation implies each call of the Gaussian wake
model with one data record. This faster convergence is essential in calibrating parameters in real use cases
because actual wind farm sizes are significantly greater and data quantities are typically larger. This result is
consistent with the finding that the non-stratified SOWC-TR requires a much larger computational budget
for calibration when calibrating the Jensen’s model parameter, as illustrated in Figure 10.

The outcomes of 20 macro-replications are summarized in Table 7. There is a small difference between
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Figure 14: Comparison of MSEs between SOWC-TR and the proposed SOWC-1 and SOWC-2 for calibrating the Gaussian
wake model [25] with different computational budgets.

the calibrated parameter values from SOWC-1 and SOWC-2. This is because the MSEs are similar around
the final converged values of k,, = 1.80 and sigmag = 0.32 (notice that the MSE of each technique is within
+ 1 standard error of another approach).

Table 7: Averages of calibrated wake parameters and MSE for the Gaussian wake model in the studied wind farm from 20
macro-replications(the value in the parenthesis is the standard error.)

Budget Algorithm K oo MSE

5,000 SOWC-1  0.172 (0.009) 0.314 (0.007) 163.767 (1.931)
SOWC-2  0.186 (0.008) 0.333 (0.007) 164.148 (1.971)

2,000 SOWC-1  0.178 (0.008) 0.318 (0.005) 163.906 (2.165)
SOWC-2  0.180 (0.011) 0.328 (0.011) 165.121 (1.811)

6. Concluding Remarks

Accurate estimation of the WDC is of significant importance for the performance of the Jensen wake
model. This work shows the applicability of data-driven stochastic optimization for wake calibration. We use
novel stochastic optimization methods to get reliable estimates for the WDC. The robustness of the TR-based
method is further improved by applying variance reduction techniques like stratified sampling. Decision trees
are used to split similar data into multiple bins efficiently. Adaptive sampling is used in conjunction with
stratified sampling to determine the optimal sample size from each stratum during optimization. With
effective adaptive and stratified sampling, we pick the right sets of data points to estimate the loss function,
leading to coherent computational budget usage. We present two algorithms: SOWC-1 uses dynamic weights
that are calculated using the local loss function, which changes according to the search trajectory. SOWC-2
uses fixed weights using the variance of the original data, assuming that the variance of original data is
positively correlated to the variance of the loss function. These proposed methods outperform the widely
used SG methods.

We demonstrate a unique method that can be used to determine the wind farm-specific optimal parameter
values of the Jensen model. We extend the proposed methodology to solve two-dimensional functional
calibration problems. Using large datasets, one can efficiently use the new point and functional calibration
approach. To illustrate that our approach can be easily applied to other advanced wake models, we implement
it with the Gaussian wake model. Overall we show that the proposed strategy can result in efficient and
robust calibration in engineering wake models and can be extended to other wake models [18, 19, 21, 25].
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The proposed approach enables an understanding to power deficit patterns in existing wind farms, which
can help design new wind farms optimally. Moreover, with use of wind profile power law for functional
calibration, we show calculation of the wake shear coefficient and determine the points recorded when the
atmospheric stability is near-neutral. In the future research, more information about the data will be
explored to determine atmospheric stability. Our other future research direction is to implement dynamic
stratification wherein the partitioning changes according to the search trajectory. Future research directions
also involve calibrating wake parameters for individual turbines using collaborative learning approaches [60]
and investigating how the wake effects influence the turbine reliability in a wind farm [25, 61].
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