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ARTICLE INFO ABSTRACT

Keywords: The use of crowdsourced data has been finding practical use for enhancing situational awareness
Data imbalance during disasters. While recent studies have shown promising results regarding the potential of
Data bias crowdsourced data (such as user-generated flood reports) for flash flood mapping and situational
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Situational awareness

awareness, little attention has been paid to data imbalance issues that could introduce biases in
data and assessment. To address this gap, in this study, we examine biases present in crowd-
sourced reports to identify data imbalance with a goal of improving disaster situational aware-
ness. Three biases are examined: sample bias, spatial bias, and demographic bias. To examine
these biases, we analyzed reported flooding from 3-1-1 reports (which is a citizen hotline allow-
ing the community to report problems such as flooding) and Waze reports (which is a GPS naviga-
tion app that allows drivers to report flooded roads) with respect to FEMA damage data collected
in the aftermaths of Tropical Storm Imelda in Harris County, Texas, in 2019 and Hurricane Ida in
New York City in 2021. First, sample bias is assessed by expanding the flood-related categories in
3-1-1 reports. Integrating other flooding related topics into the Global Moran's I and Local Indica-
tor of Spatial Association (LISA) revealed more communities that were impacted by floods. To ex-
amine spatial bias, we perform the LISA and BI-LISA tests on the data sets—FEMA damage, 3-1-1
reports, and Waze reports—at the census tract level and census block group level. By looking at
two geographical aggregations, we found that the larger spatial aggregations, census tracts, show
less data imbalance in the results. Through a regression analysis, we found that 3-1-1 reports and
Waze reports have data imbalance limitations in areas where minority populations and single
parent households reside. The findings of this study advance understanding of data imbalance
and biases in crowdsourced datasets that are growingly used for disaster situational awareness.
Through addressing data imbalance issues, researchers and practitioners can proactively mitigate
biases in crowdsourced data and prevent biased and inequitable decisions and actions.

1. Introduction

1.1. Background

Natural hazards are increasing in frequency and intensity, causing loss of life, inflicting damage to the built environment, and im-
posing severe economic repercussions. Flooding in particular, has caused extensive impacts in urban areas over the past decade [1-3].
Enhanced situational awareness is critical to responding to natural hazards, such as flooding events. One way to enhance situational
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awareness is to improve the extent of information used in disaster management. Emerging data sensing technologies are attracting in-
creasing attention to effectively map the status of hazard impacts and their spatial and temporal characteristics. Specifically, using
crowdsourced data to improve situational awareness in disasters, such as floods, has been growing in recent years [4].

The ubiquitous use of digital devices and crowdsourced data platforms offers a wealth of data whose analysis enhances sensing of
disaster situations. Crowdsourced data enrich information capacity and rapid interactivity by allowing the general population to
share critical information regarding the disaster, thus enhancing situational awareness [5-8]. Moreover, by interpreting the spatial
patterns of crowdsourced data during a disaster, emergency managers and city officials can identify the extent of impacts and priori-
tize resource allocation and response activities. While the use of crowdsourced data has been growing in recent years, limitations,
such as potential data imbalances still need to be addressed. Certain communities or geographical locations receive more attention on
crowdsourced platforms, which causes bias in these datasets. The crowdsourced platforms this research examines are 3-1-1 reports
and Waze reports. 3-1-1 reports are generated by residents who chiefly view flooding as a phenomenon that impacts their neighbor-
hood or the place that they currently reside. Waze reports are generated by drivers that view flooding on roads and streets from their
vehicle. The objective of this research is to examine data bias and potential data imbalances in disaster-related 3-1-1 and Waze reports
to enhance situational awareness for improving disaster response.

1.2. Types of bias in crowdsourced data

Crowdsourced and social media data has been under criticisms due to the disparities that the information from these data sets
[9,10]. For example, according to Dargin et al. and Zhang et al. crowdsourced data tends to represent high socioeconomic rather than
low socioeconomic communities. This occurs due to the social demographics of these two groups on crowdsourced platforms being
vastly different-such as, wealth and education [11,12]. Such a disparity is a result of data bias. To mitigate data bias (in domains other
than disasters), researchers have extensively studied how data aggregation enhances the results provided by the data. However, lim-
ited attention has been paid to data imbalance and biases in datasets (specifically crowdsourced data) vis-a-vis disasters. To address
this knowledge gap, we examine types of bias that occur in crowdsourced data and how to mitigate these biases for improving situa-
tional awareness. The following sections give an overview on the types of bias that the research aims to assess: section 1.2.1 examines
sample bias in crowdsourced data, section 1.2.2 discusses spatial bias and section 1.2.3 covers demographic bias.

1.2.1. Sample bias in crowdsourced data

Sample bias, which occurs when collecting crowdsourced data, can skew the information conveyed by the data. The majority of
studies focus on sample bias in Twitter data. For example, geotagged tweets suffer from a form of sample bias as these tweets form
only a small sample of Twitter data that may hide valuable information. Only about 1.0%-1.5% of tweets are actually geotagged [13],
and fewer than 0.42% of all tweets are associated with accurate geospatial information [14]. The lack of representation of geotagged
tweets compared with total tweets highlights the severity of sample bias; therefore, studies have addressed sample bias when collect-
ing datasets, such as disaster-related tweets. For example [15], examined how to mitigate data bias, particularly sample bias, within
Twitter's API system. Collecting Twitter data from their API presents a challenge for researchers as it limits the sample to only 1% of
all Twitter data. To address this bias, the researchers developed several algorithms that take advantage of Twitter hashtags, such as a
spectral clustering algorithm that incorporates similarities between Tweets, to work around the 1% sample limit. These algorithms
were tested with Twitter's sample APIL These algorithms were found to be effective in mitigating sample bias [15]. Another form of
sample bias that can emerge from collecting Twitter data is mapping tweets without examining their context; crucial information re-
garding preparedness and damage reports is lost from the tweets. Acknowledging sample bias [16], proposed to use machine learning
to examine the context of tweets to properly gather this information and identify which areas' residents needed rescue. The context of
tweets that their machine learning model captured after Hurricane Sandy holistically allowed the researchers to identify the severely
impacted areas from the larger sample of tweets. This larger sample allowed them to find that socially vulnerable communities did
not receive the resources or attention needed to properly recover from the disaster, as such information could not be captured without
looking at the context and a larger sample of tweets [16]. [17] assessed that social media traffic dropped off during Hurricane Sandy
to address sample bias in Twitter data. Their analysis reported correlations between infrastructure damage and the magnitude of so-
cial media activity changes from a defined steady state, which allowed them to monitor social media drop-offs. The analysis showed
the existence of sample bias introduced by the transition of a normal state to a crisis state during a disaster. Moreover, failing to recog-
nize social media drop-offs exacerbates sample bias and puts vulnerable populations at risk [17]. Despite the growing recognition of
the importance of understanding sample bias in crowdsourced data in disasters, limited attention is paid to 3-1-1 and Waze reports
that are commonly used for disaster situational awareness.

1.2.2. Spatial bias in crowdsourced data

Spatial bias can limit the knowledge that can be acquired when examining spatial patterns of crowdsourced data. This bias can oc-
cur when assuming spatial concentrations of crowdsourced data need relief after a disaster because it over-simplifies the way these
data can be used to help vulnerable populations recover.

The geographical scale that is used for aggregation is one factor that influences of spatial bias in crowdsource data. For example,
the uneven spatial distributions of census tracts and ZIP Codes have been examined for data bias [18-21]. To address this spatial bias
[22], divided the Harris County region into even hexagonal shapes, rather than using census tracts, to examine how a range of differ-
ent geographical scales impacts the correlation between Twitter and Hurricane Harvey damage data. The power law relationship and
strength of correlation between Twitter and Hurricane Harvey damage data indicated that larger spatial scales provide improved re-
sults from disaster-related content on social media [22]. Additionally [23], identified a discrepancy in correlation values between
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Twitter activity (more importantly, non-geo tweets) and Hurricane damage at varying geographical scales, noting the apparent neces-
sity of including scale as a factor in any correlation analysis. Moreover, their spatial analysis revealed little Twitter activity in Staten
Island during Hurricane Sandy, despite half the deaths related to Hurricane Sandy came from Staten Island. The fact that social media
data did not identify an area that faced extreme devastation from Hurricane Sandy highlights the negative impact that spatial bias has
when using crowdsourced data for disaster assessments [23]. Geotagged tweets have an inherited spatial bias as they may not accu-
rately represent the spatial location of a disaster, yet a number of studies have used geotagged tweets to examine the impacts of flood-
ing events [24-26]. To mitigate the spatial bias of geotagged tweets [9], used a content-based analysis that focused on the context of
the tweets rather than merely treating tweets as a spatial point. Through the content-based analysis, the research assessed the rela-
tionship between population size of city centers and number of different types of Tweets with a power law relationship. The power
law relationship found in the study indicates that as the number of people grow within a city, the social media usage grows as well,
which gives preferential treatment in the spatial clusters of people who can use social media during a disaster [9].

1.2.3. Demographic bias in crowdsourced data

Demographic bias refers to the lack of representation of socially vulnerable groups in crowdsourced data. Real-time information
from users impacted by a disaster derived from crowdsourced data improves disaster situational awareness. However, access to digi-
tal devices is not uniform, instilling biases in crowdsourced data that may exacerbate the recovery process for communities with lim-
ited access. Sociodemographic factors that may underlie bias include: gender inequalities in reporting patterns, as women are typi-
cally not accurately represented on crowdsourced platforms; social capital reporting patterns, as lower-income groups often do not
have access to methods of reporting, such as a smart phone [27-29]; racial inequalities, which prevent minorities from being repre-
sented on crowdsourced platform [30].; [31,32], and age reporting, as elderly populations may not be familiar with ways to report or
the younger populations not having access to a way to report [33,34]. Thus, social demographic traits have an impact on representa-
tion on crowdsourced platforms; therefore, demographic bias needs to be examined in crowdsourced data to enable data-based equi-
table decisions and actions.

Several studies of demographic bias in crowdsourced data and have examined the extent to which socially vulnerable groups suf-
fer from unequal representation during a disaster. For example, during Typhoon Haiyan, in the Philippines [35], examined how digi-
tal inequalities on social media hindered the recovery of low-income participants. A year after the typhoon, the researchers found that
many low-income participants were living in temporary housing without stable forms of income, while middle-class social media
users had an improved recovery process [35]. [36] examined social and spatiotemporal inequalities in the use of Twitter after Hurri-
cane Irma in the Pinellas County, Florida. Their geographic weighted regression model assessed the relationship between racial mi-
norities in impoverished neighborhoods and social media content related to the disaster. They found that poorer inland communities
were absent on social media [36]. Yu [37] examined the spatial heterogeneity in the generation of tweets after Hurricane Sandy to ad-
dress which social groups were omitted from social media content during a disaster. They found that a community's socioeconomic
factors are more important than population size and damage levels in predicting disaster-related tweets [37].

1.3. Research framework and hypotheses

The objective of the study is to examine the type of biases that occur in crowdsourced reports to mitigate data imbalance for im-
proving situational awareness and provide key information recovery planners need to create an equitable recovery process. To assess
data imbalance issues in crowdsourced data for improving situational awareness during disasters, this study focuses on three research
questions addressed using the framework illustrated in Fig. 1. We examine two primary crowdsourced datasets: 3-1-1 reports and
Waze reports. These two crowdsourced datasets are used for situational awareness of extreme weather and flash flood events.

1. Sample bias: To what extent does expanding crowdsourced data to include more flooding-related impacts reduce sample bias in
3-1-1 reports?

To address research question 1, the Global Moran's I and Local Indicator of Spatial Association (LISA) test were used to compare
the spatial patterns of different topic categories of 3-1-1 reports. The rationale is that holistically looking at spatial patterns of 3-1-1
reports by expanding the categories (beyond street flooding) could reveal areas that experienced extensive flooding induced by the
disasters being studied.

2. Spatial bias: To what extent does the spatial level of aggregation for 3-1-1 and Waze report affect the insights obtained from
crowdsourced data for flood damage assessment?

The LISA and Bl-Local Indicator of Spatial Association (BI-LISA) tests are performed at two geographical aggregations, census
tracts (the larger aggregation) and census block groups (the smaller aggregation) to examine the impacts of spatial bias. By comparing
LISA maps of damaged areas and crowdsourced data, we identified spatial patterns at larger geographical aggregations and compared
those patterns at a smaller aggregation to assess the extent to which information was lost. Once general patterns are obtained through
the LISA test, we performed the BI-LISA test to identify areas with data imbalance clusters (areas with low damage, yet high reporting
or vice versa) and compare these imbalance clusters at both geographical aggregations.

3. Demographic bias: What social demographic traits explain the variation in the number of crowdsourced reports and how do these
characteristics affect crowdsourced reporting imbalances?

To address research question 3, linear regression models were developed to assess the extent to which social demographic traits
impacted crowdsourced reporting patterns. The independent variables for this analysis are social demographic traits and FEMA dam-
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Fig. 1. Analytical framework for assessing data imbalance in crowdsourced data for improving disaster situational awareness.

age claims, while the dependent variable are the crowdsourced reports. Moreover, the data used in the regression models were aggre-
gated at the census tract level and census block group level. The research hypothesizes that social demographic traits, such as minor-
ity status, are correlated with reporting patterns more than population size.

2. Study area and data description

In this study, we used 3-1-1 and Waze reports related to major flash flood events in the United States: Tropical Storm Imelda in
Harris county-which is 1778 square miles and 3663 people per square mile- [38] and Hurricane Ida in New York City-the most
densely populated city, with about 27,000 people per square mile. Tropical Storm Imelda occurred on September 19, 2019 and lasted
through September 21, 2019. Tropical Storm Imelda was one of two major flooding events that struck the Houston area in the past
two years, highlighting the frequency of extreme flooding that occurs in Houston [39]. During the flooding event, more than 50
inches of rain fell in the Houston and southeast Texas area. The disaster was the fifth-wettest tropical cyclone in the United States.
New York is prone to flooding as it is near the coast [40]. Hurricane Ida made landfall on August 29, 2021 and lasted through Septem-
ber 9, 2021. The Category 4 hurricane with 150 mph windspeed devastated almost one million homes and business along the US Gulf
Coast. When it reached New York City, Ida caused severe flash flooding in multiple parts of the city.

We collected 3-1-1 and Waze reports for these two flood events for the respective study areas. 3-1-1 is a citizen hotline that allows
the community to report problems, such as flooding, around their community. Waze is a GPS navigation app that allows drivers to re-
port road conditions, including flooding. Both crowdsourced datasets are characterized by a location and timestamp. These crowd-
sourced data are shown to be reliable for flash flood mapping [41,42]. For Tropical Storm Imelda, the baseline category was Flooding,
and the expanded categories were drainage, storm debris collection, and crisis cleanup. For Hurricane Ida the baseline category was
storm, and the expanded category was Sewer. These 3-1-1 reports were normalized based on housing units, while Waze reports were
normalized based on road lengths. The rationale behind road lengths is that as the length of road/streets increases, it is expected to
have more traffic, and therefore, the higher number of drivers that potentially report any flooding. The FEMA damage and crowd-
sourced datasets were gathered from September 19, 2019, to September 21, 2019, for Tropical Storm Imelda, and August 29, 2021, to
September 9, 2021, for Hurricane Ida. We also gathered 2018 census data from the American Community Survey at the census tract
and census block group level for the following social parameters: housing unit population, minority, single-parent households, no ed-
ucation (NOEDU), and poverty status. The aforementioned social parameters are in terms of percentages that were provided in the
datasets. To account for the impact of flooding imposed by Tropical Storm Imelda and Hurricane Ida, the research used FEMA damage
claims [43]. Since FEMA damage is reported at the household level, the data was normalized based on housing units. The FEMA dam-
age data was gathered on January 28, 2022. The FEMA damage data is aggregated at the census tract level and to uphold FEMA pri-
vacy guidelines, the only geographical information given were the census tracts in which that the claims were reported. Therefore, to
gather the FEMA damage data at the census block group level, the research multiplied the number of claims at the census tract level
by a weighted average ratio of census tract area divided by each census block group area [44]. All datasets were normalized by the
following equation (1), where q is the normalized parameter. x; is the individual data point, and the minimum (x) is the minimum value
of the whole dataset, while the maxmium(x) is the maximum value of the whole dataset.

X; — minimum (x)

4= €]

maxmium(x) — minium(x)
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3. Methodology

To address sample bias, we performed the Global Moran's I and LISA test on a baseline topic of 3-1-1 reports, flood and storm, and
on expanded categories that associate with debris clean up, sewer, and drainage. The LISA test revealed areas that experienced exten-
sive flooding by expanding the topics that are studied. After sample bias is addressed, we extended the LISA results to FEMA damage
claims and Waze reports in addition to the expanded 3-1-1 reports to address spatial bias. The research performed the LISA and BI-
LISA test at the census tract and census block group level to assess how geographical aggregation impacts the reliability of damage as-
sessments using crowdsourced data. To assess demographic bias, regression analysis was performed to gain a better understanding of
how social demographic traits can explain the variation in the number of crowdsourced reports in flood impacted areas.

3.1. Spatial analysis for addressing sample bias and identifying geographical disparities

Spatial analysis is performed on the FEMA damage, census data, 3-1-1 reports, and Waze reports to examine sample bias and spa-
tial bias. The objective of spatial analysis is to: 1) examine the extent to which expanding 3-1-1 topic categories enhance flash flood
mapping results; and 2) assess how spatial aggregation impacts the analysis results of flash flood mapping with crowdsourced data.

The first step of spatial analysis is to perform the Global Moran's I test on the two crowdsourced datasets, 3-1-1 reports and Waze
reports, and FEMA damage claims. The Global Moran's I statistic is computed to determine if neighboring census tracts or census
block groups share a similar status with crowdsourced reporting and if the damaged areas are near each other. The null hypothesis for
the Global Moran's I tests holds that the attributes being analyzed are randomly distributed among the features in the study area.
Therefore, a p-value of less than 0.05 indicates the emerging spatial patters are not random [45].

In the next step, the study area is decomposed into local clusters due to the statistical significance of the Global Moran's I test. To
break down the global space, the LISA statistic is used for identifying clusters which have a similar number of reporting or damage
patterns. Obtaining different spatial clusters through spatial analysis can help identify data imbalance by examining the spatial pat-
terns and social traits of the statistically significant clusters [46].

The Local Moran's I measure allows for the decomposition of the Global Moran's I index into individual observations to assess the
significance and contribution of the local clusters. The results of this test produced statistically significant polygons that formed clus-
ters of disruption. The cluster categories are as follows:

e High-high: Areas that have a high means and are surrounded by other geographical areas with similar values.
e Low-low: Areas that have a low means and are surrounded by other geographical areas with similar values
e High-low: Areas that have a high means and are surrounded by other geographical areas with lower values
e Low-high: Areas that have a low means and are surrounded by other geographical areas with higher values

Another component of the spatial analysis is using a multivariate analysis to assess data imbalance through the BI-LISA test. The
BI-LISA test measures the degree which the value for a given variable at a location is correlated with its neighbors for a different
value. This allows the research to assess data imbalance in high FEMA damage areas or low FEMA damage areas. For example, if an
area has high FEMA damage but low reporting there is an imbalance and vice versa.

3.2. Regression models for assessing social characteristics impact on reporting

Regression models are implemented to examine the extent to which social demographic traits explain the variation of crowd-
sourced reporting by examining the relationship of crowdsourced data with census data and FEMA damage data. The census data that
the research examines are in terms of percentages and are as follows: population, poverty, populations with no education (NOEDU),
single-parent households, and minority status. The independent variables are census data and FEMA damage data, while two crowd-
sourced data sets, 3-1-1 reports, and Waze reports, are the dependent variable. Moreover, all variables are aggregated based on census
tracts and census block groups. The following models were implemented to assess the degree that social demographic traits explain
the extent of crowdsourced reporting and which demographic traits experience demographic bias:

Model 1 : Crowdsourced Data = a + 8, Population + e (2)
Model 2 : Crowdsourced Data = a + pPopulation + p,FEMA Claim + e 3)
Model 3 : Crowdsourced Data = a + p,Poverty% + pNOEDU % + f3Single Parent Household% + p,Minority% + e (C))

Model 4 : Crowdsourced Data

= a + fPopulation + ,FEMA Claim + p3Poverty% + p4NOEDU% + PsSingle Parent Household% + pgMinority% + ¢ ®)
Model 1 includes only the population parameter as a baseline for examining how crowdsourced reporting is impacted by population
size. Model 2 adds the damage parameter to assess how the availability of material of reporting (damaged homes) affects the report-
ing patterns. Model 3 includes only the social demographic traits as the independent variable. By comparing Model 3 with Models 1
and 2, the research is able to compare the variation of crowdsourced reports between socially vulnerable areas with populous and
damaged areas. Model 4 includes all independent variables to holistically assess the variation in crowdsourced reporting. By examin-
ing all four models, the research addresses demographic bias by examining the extent that different social traits impact reporting pat-
terns.
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4. Results

We first present an overview of the descriptive statistics and descriptive maps of the data. Next, we discuss the sample bias results
in data by expanding the categories of 3-1-1 reports that are examined. This addresses the first research questions. The next set of re-
sults examine spatial bias by looking at the spatial concentration of FEMA damage and crowdsourced reporting using the LISA statis-
tic and BI-LISA statistic. Finally, we present the results related to the demographic attributes that explain crowdsourced reporting
variation, and which social demographics suffer from demographic bias through the regression models in section 3.2.

4.1. Descriptive analysis

Table 1 and Table 2 presents the descriptive statistics of normalized FEMA damage, 3-1-1 reports, Waze reports, and census data
at the census tract and census block group level for Harris County and New York, respectively. For Harris County and New York, it is
seen that the minority populations have the largest means among the social variables examined. Moreover, at the census block group
level, there are smaller mean values for FEMA damage, 3-1-1 reports, and Waze reports when compared to the census tract level. In
addition, Fig. Al and Fig. A2 in Appendix A, show the descriptive map of census, 3-1-1, and Waze data for Harris County and New
York Respectively.

4.2. Examining sample bias

To address sample bias, we examined the extent to which inclusion of other categories of 3-1-1 report beyond street flooding could
change the spatial results. Sample bias was not examined for Waze reports as the data had only one category available, flooded roads.
3-1-1 reports come from a citizen hotline that allows the community to report a wide array of problems in their area and provides dif-
ferent categories of reports. When using 3-1-1 reports to enhance flash flood situational awareness, most studies [47] have used flood-
related topics. The research, expands the topic of 3-1-1 reports to more than just flooding. For Tropical storm Imelda, the expanded
categories are, Flood, Drainage, Storm Debris Collection and Crisis Clean up. While for Hurricane Ida, the Storm and Sewer category
are expanded. In appendix A, the number of each category is seen in Fig. A3. The rationale behind considering these expanded topics
for Tropical Storm Imelda is that Drainage considers the overflow of drainage systems when intense flooding occurs, while Storm De-
bris Collection and Crisis Cleanup consider the debris that impose on the community and need to be cleared. The reasoning for select-
ing Sewer as an expanded category is that New York's sewer system may not be able to handle the intense flooding that Hurricane Ida
imposed.

Table 3 presents the Global Moran's I of only Flooding and Storm, referred to as Baseline Reports, and then the Global Moran's I of
the all 3-1-1 categories for both flooding events, referred to as Expanded Reports. The results show that the Expanded Reports, have a
stronger Moran's I at both the census tract and census block group level for Tropical Storm Imelda. Hurricane Ida had a stronger
Moran's I only at the census block group level.

Fig. 2 compares the spatial patterns of the Baseline Reports at the census tract level (2(a)) and at the census block group level (2
(c)) with the Expanded Reports (2(b)) at the census tract level; and at the census block group level (2(d)). It is seen that the spatial

Table 1
Tropical Storm Imelda descriptive statistics.

Census tract Census block group
Minimum Maximum Mean  Standard deviation Minimum Maximum Mean  Standard deviation
FEMA damage 0 191 4.07 15.6 0 191 4.38 0.17
3-1-1 report 0 273 1.86 12.1 0 196 5.75 0.681
Waze report 0 116 6.6 11.2 0 92 2.43 5.29
Population 150 22,567 5634 3119 83 22,394 2145 1791
Poverty 0 4174 979 771 0 4100 504 445
NOEDU 0 5424 1173 1015 0 5095 1450 1135
Minority 0 17,777 3877 2594 0 9095 797 869
Single parent household 0 3760 684 553 0 962 101 103

Table 2
Hurricane Ida descriptive statistics.

Census tract Census block group
Minimum Maximum Mean Standard deviation Minimum Maximum Mean  Standard deviation
FEMA damage 0 101 0.78 3.55 0 101 0.9 4.19
3-1-1 report 0 127 5.19 8.32 0 65 3.7 1.79
Waze report 0 1289 43.56 98.45 0 230 3.59 0.46
Population 20 28,272 3933 2202 15 8830 1349 650
Poverty 0 5017 743 713 0 548 47.8 58.3
NOEDU 0 4318 515 478 0 398 893 477
Minority 0 25,738 2715 2008 0 6344 781 596
Single parent household 0 1518 143 150 0 1222 118 103
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Global Moran's I result of intuitive reports and expanded reports.
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Event Tropical Storm Imelda

Hurricane Ida

Spatial unit Census tract

Census block group

Census tract Census block group

02477+
0.5964:**

Baseline reports
Expanded reports

0.229%**
0.367***

0.448%**
0.034***

0.016**
0.053**

a) 3-1-1 Baseline reports: census tract level

A

Not Significant (711) i

B High-High (10)

B Low-Low (50)
Low-High (15)
High-Low (0)

c) 3-1-1 Baseline reports: census block group level

Not Significant (2004)
B High-High (60)
B Low-Low (2)
Low-High (44)
High-Low (34)

b) 3-1-1 Expanded reports: census tract level

Not Significant (627)
B High-High (32)
B Low-Low (114)
Low-High (12)
High-Low (1)

d) 3-1-1 Expanded reports: census block group level

-y ™ A

C‘- =
e’ .
LY L
e \
: 7’ o
Not Significant (1937)
B High-High (107)
. Low-Low (19)
Low-High (54)
High-Low (27)

Fig. 2. Harris County spatial maps of (a) baseline reports at the census tract level, (b) expanded reports at the census tract level, (c) baseline report at the census block

group level, and (d) expanded reports at the census block group level.

patterns of the Expanded Reports provide more reliable insights at both geographical scales as there are more statistically significant
clusters due to the research addressing sample bias by expanded the 3-1-1 categories.

Fig. 3 compares the Baseline Reports (3(a)) at the census tract level and at the census block group level (3(c)) with the Expanded
Reports at the census-tract level (3 b) and the census block group level (3(d)) during Hurricane Ida. The same pattern can be seen

with Hurricane Ida as with Tropical Storm Imelda.

By expanding the topics of 3-1-1 reports, this research addresses potential sample bias and demonstrates the importance of miti-

gating sample bias in crowdsourced data. This research will use the expanded reports (referred to as 3-1-1 reports from this point for-
ward). Categories at both the census tract and census block group level for further analysis in section 4.3 and 4.4.

4.3. Identifying data imbalances by examining spatial biases

We examined spatial bias by performing the Global Moran's I test at the census tract and census block group level to assess the ex-
tent that geographical level of aggregation impacts the spatial results. First, the Global Moran's I was performed, and once statistically
significant results are provided, the LISA test was performed on FEMA damage claims, 3-1-1 reports, and Waze reports. The LISA test
identifies overlapping patterns between the three datasets to assess if damaged areas received attention through crowdsourced report-
ing. To further investigate spatial bias, the research then performs the BI-LISA test on FEMA damage claims with 3-1-1 reports and
FEMA damage claims with Waze reports. The BI-LISA test identifies data imbalance by identifying areas of high damage with low re-
ports and areas of low damage with high reports.

4.3.1. Local Cluster Assessment for Indicating Spatial Biases
Table 4 shows the statistically significant Global Moran's I value for FEMA damage, 3-1-1 reports, and Waze reports for Hurri-
cane Ida and Tropical Storm Imelda at the census tract level and census block group level. Moreover, the positive values for the
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a) 3-1-1 Baseline reports: census tract level b) 3-1-1 Expanded reports: census tract level

Not Significant (1692) Not Significant (1378)
M High-High (165) e . B High-High (191)
B Low-Low (190) 5 B Low-Low (460)

Low-High (33) ?} - 5 Low-High (62)
: S

R
High-Low (25) : - High-Low (14) - Tt ®

Not Significant (4775)
B High-High (78)
M Low-Low (918)
Low-High (302)
High-Low (37)

w

Not Significant (4396)
B High-High (348)
B Low-Low (1059)
Low-High (290)
High-Low (17)

= By

Fig. 3. New York spatial maps of (a) baseline reports at the census tract level, (b) expanded reports at the census tract level, (c) baseline report at the census block group
level, and (d) expanded reports at the census block group level.

Table 4
Global Moran's I result for Hurricane Ida and Tropical Storm Imelda.

Data sets Census tract level Census block group level
Hurricane Ida Tropical Storm Imelda Hurricane Ida Tropical Storm Imelda
FEMA damage 0.111%* 0.342%%* 0.037** 0.447%%%*
3-1-1 reports 0.355%%* 0.247%%* 0.001% 0.229%%*
Waze reports 0.239%** 0.604*** 0.018* 0.503%***

*p < 0.05, **p < 0.01, ***p < 0.001.

Global Moran's I test indicate that neighboring census tracts and census blocks share a similar experience with reporting or damage
patterns. The difference between the Moran's I for census track and census block in FEMA damage claim is expected as the FEMA
claims at the census tract level were used as inputs to generated the FEMA damage at the census block; therefore, the aggregation
may impact the strength of the test. The statistical significance of the study areas as a whole allows for both study areas to be de-
composed into local clusters using the LISA statistic since the patterns are not random, as indicated by the Global Moran's I test.

Fig. 4 presents the statistically significant clusters during Tropical Storm Imelda, generated by the LISA test at the census tract
level for FEMA damage claims (4(a)), 3-1-1 reports (4(b)), and Waze reports (4(c)). Areas 1 and 2 in Fig. 4(a) highlight the low
FEMA damage claims, 3-1-1 reports, and Waze reports. The consistency of these patterns shows that there is no evidence of data im-
balance in these areas. Area 3, however, shows high damage areas and a small cluster of high-high 3-1-1 reports in an area with
low-low Waze report clusters. This indicates a form of spatial bias, as certain areas are receiving attention from crowdsourced re-
porting from one data set, while the same area does not share similar attention with another data set, yet this area has high FEMA
damage claims as seen in area 3 in Fig. 4(a). Finally, area 4 shows a large concentration of high-high Waze reports in Downtown
Houston, showing that most roads were flooded due to Tropical Storm Imelda. The spatial results presented show how to mitigate
data imbalance by assessing and cross validating different data sets and examining their spatial patterns to holistically look at the
impact of the disaster.

At the census block group level, Fig. 4(d)-4(f) shows overlapping patterns with the spatial clusters at the census tract level. A re-
duction in the reliability of flood mapping can be seen at a smaller geographical scale as areas 1 and 2 in Fig. 4(e) shows fewer 3-1-1
reports. Notably, the statistically significant clusters of crowdsourced data at smaller geographical scale are reduced, highlighting
those smaller geographical aggregations impose a reduction of data. This reduction shows the sensitivity of flash flood mapping to the
spatial level of aggregation and the fact that a smaller scale of aggregation could introduce spatial biases (blind spots) in mapping
flash flood damages using crowdsourced data.
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Fig. 4. LISA Test of (a and d) FEMA damage, (b and e) 3-1-1 reports, and (c and f) Waze reports at the census tracts (a—c) and census block group (d—f) for Harris County

during Tropical Storm Imelda.

Fig, 5 shows the statistically significant local clusters for Hurricane Ida generated by the LISA test at the census tract and census

block group level. As shown in Fig. 5(c), area 1 has a large cluster of high-high Waze reports implying these areas were flooded, yet
they have a large concentration of low-low 3-1-1 report clusters. This highlights a form of spatial bias as there is one data set that
shows low flooding (3-1-1 reports), yet another data set (Waze reports) indicates flooding, all the while having little FEMA damage
claims in this area. If disaster planners only look at one source of information for flooding, they could be missing key information.
Therefore, to improve situational awareness during flash floods, it is important to examine spatial biases in crowdsourced data. Area 2
had similar patterns for all three data sets, showing that this area was severely impacted by Hurricane Ida as FEMA damage, 3-1-1 re-
porting, and Waze reporting had an abundance of high-high Clusters. Area 3 shows similar patterns for FEMA damage and 3-1-1 re-
ports, but there is a lack of Waze reports.
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Fig. 5. LISA Test of (a and d) FEMA damage claims, (b and e) 3-1-1 Reports, and (c and f) Waze Reports at the census tract level (a—c) and census block group level (d—f)
for New York City during Hurricane Ida.
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When examining the datasets at the census block group level, Fig. 5(d) shows that FEMA damage has overlapping high-high clus-
ters in area 3 with 3-1-1 reports, but area 3 in Fig. 5(f), shows low-low clusters of Waze reports in area 3 at the census block group
level in area 3. Comparing 3-1-1 reports in area 1 at the census tract (Fig. 5(b)) and census block group resolution, in area 1 in Fig. 5
(b) (census tract level) and 5e (census block group level), these areas show a cluster of 3-1-1 reports; however, unlike at the census
tract level in area 1, Fig. 5(f), at the census block group level, does not have a corresponding cluster of high-high Waze reports. Area 2
in Fig. 5(f) (Waze reports at the census block group level) does not have the cluster of high-high Waze reports that was noted at the
census tract level (Fig. 5(c)). The difference in crowdsource reporting pattern can be explained by the characteristics of data, as Waze
users are in vehicles, while 3-1-1 users are in residential homes. This result further highlights spatial bias as changing the geographi-
cal aggregation can impact the results. To mitigate spatial bias, it is important for future research to be mindful of the geographical
level of aggregation that is used and gain an understanding of how the aggregation impacts the nature of the dataset. For example, a
smaller geographical aggregation (census blocks) caused a loss of Waze reports’ reliability for flood mapping but not 3-1-1 reports.
This shows that the data sets used have their own unique characteristics, as Waze reports focuses more on roads, while 3-1-1 reports is
at the household level.

4.3.2. Examination of data imbalance clusters using multivariate analysis

To further investigate data imbalance, we performed the BI-LISA test as it is able to identify spatial areas with data imbalances,
such as high reports but low damage claims and visa versa. First, the Global Moran's I statistic was performed on FEMA damage claims
with 3-1-1 reports and FEMA damage claims with Waze reports at both geographical aggregations during Tropical Storm Imelda and
Hurricane Ida. The results are highlighted in Table 5, showing that all Moran's I values are statistically significant. Moreover, during
Hurricane Ida, at the census block group level, FEMA damage with Waze reports had a negative coefficient, meaning that neighboring
census block groups did not share similar experiences with damage and reporting. The remaining coefficients are positive, which indi-
cates neighbors share a similar experience with damage and reporting extent. The statistical significance of all Moran's I values allows
the research to perform the BI-LISA test.

Fig. 6 shows the results of the BI-LISA analysis of FEMA damage with 3-1-1 reports during Tropical Storm Imelda in Harris
County at the census tract level (6(a)) and census block group level (6(c)), and Hurricane Ida in New York City at the census tract
level (6(b)) and census block group level (6(d)). The BI-LISA results reveal spatial bias as it breaks down the geography into four
categories: high damage-high reports, low damage-low reports, high damage-low reports, and low-damage reports.

The results show that there is data imbalance in area 1 and area 2 (Harris County) indicated by the low-high clusters in Fig. 6(a)
and (c). This means that communities in these areas may experience damage but did not have flood insurance during Tropical Storm
Imelda, therefore there was reporting of flood impacts but low FEMA damage estimation. Moreover, Fig. 6(c) shows a concentration
of high-low cluster above the downtown area at the census block group level. This could indicate that the populations in this commu-
nity might not have had the means to report. When examining Hurricane Ida (New York City), the results show that areas 2 and 3 at
the census track and census block levels contain low-high clusters, which could indicate data imbalance. Area 1 in Fig. 6(b) and (d)
has overlapping clusters of low-low reports which indicates a lack of data imbalance, as these communities had low damage and felt
little need to report.

Fig. 7 shows the results of the BI-LISA test for FEMA damage with Waze reports during Tropical Storm Imelda in Harris County at
the census tract level (7(a)) and census block group level (7(c)) and during Hurricane Ida in New York City at the census tract level (7
(b)) and census block group level (7(d)). During Tropical Storm Imelda, there was a large concentration of low-high clusters in area
4. This indicates that among the downtown area of Houston experienced data imbalance as certain communities in this area could
not withstand the damage Tropical Storm Imelda imposed and were thus compelled to report. When looking at the clusters during
Hurricane Ida, inconsistencies emerge between the two geographical aggregations except in area 1, where a low-high cluster is
found. Moreover, in area 2 are found low-low clusters interspersed with just a few high-low clusters at the census tract level; how-
ever, these high-low clusters are lost at the census block group level highlighting spatial bias. Area 3 in Figs. (7(b)) and (7(d)) show a
clear discrepancy report as a variety of clusters are statistically significant. When examining the two flooding events for data imbal-
ance, New York has inconsistent Waze reporting patterns compared to Harris County. However, the 3-1-1 reporting patterns are con-
sistent among both spatial groups. This highlights how spatial aggregation affects the results of different datasets and future research
must be mindful when spatially aggregating data.

4.4. Identifying data imbalances by demographic bias

Table 6 shows the regression results for the four models presented in section 3.2 during Tropical Strom Imelda and Hurricane Ida
at the census tract level and census block group level. The rational for using four regression models is to highlight the impact of each
parameter. Adding and dropping variables in different models allows the research to better explain the effect of the independent vari-

Table 5
Global Moran's I result for BI-LISA parameters.

Census Tract level Census Block Group level

Hurricane Ida Tropical Storm Imelda Hurricane Ida Tropical Storm Imelda
FEMA damage with 3-1-1 reports 0.043%** 0.044%** 0.004* 0.188%**
FEMA damage with Waze reports 0.044*** 0.067*** —0.004* 0.049%**

*p < 0.05, **p < 0.01, ***p < 0.001.
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Fig. 6. BI-LISA test for FEMA Damage with 3-1-1 Reports during Tropical Storm Imelda in Harris County at the (a) census tract level, (c) census block group level. BI-
LISA test for FEMA damage in New York City during Hurricane Ida at the (b) census tract level, (d) census block group level.
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Fig. 7. BI-LISA Test for FEMA damage with Waze Reports during Tropical Storm Imelda at the (a) Census Tract level, (¢) Census Block Group level and during Hurricane
Ida at the (b) census tract level, (d) census block group level.

able on the target variables. It also enhances the understanding of the relationship between the interdependent variables in the cases
that there is a correlation between independent variables.

The results for Model 1 show that population has a negative coefficient for Tropical Storm Imelda at the census tract level and a
small coefficient at the census block group level. During Hurricane Ida, however, the coefficient at the census tract level was small yet
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Table 6
Regression analysis of Waze reports at census tract and census block group level.

Event Tropical Storm Imelda Hurricane Ida

Model Model 1 Model 2 Model 3 Model 4 Model 1 Model 2 Model 3 Model 4

Census tract level

Constant 0.104%*** 0.102%** 0.076%*** 0.098%*** 0.019%*** 0.019%** 0.0446 0.054
Population —0.165*** —0.162%** —0.118%*** 5.00e-6*** 4.36e-6%** 4.016e-6%***
FEMA damage 0.057 0.073* 0.387%** 0.374%**
Poverty% 0.226%*** 0.187%*** 0.005 0.004
NOEDU% —-0.041 —0.063** —-0.014 —-0.049
Minority% —-0.006 0.015 —-0.015* 8.76e-5
Single parent household% —0.184%*** —0.156*** 0.138%*** 0.078%***
R"2 0.052 0.054 0.078 0.106 0.029 0.077 0.018 0.084
Census Block Group

Constant 0.0015%*** 054 —-0.0345 —-0.003 0.005%** 0.006%** 0.0053*** 0.0053**
Population 4.29e-07 —3.46e-6** 4.3e-07 0.003 0.0029 —1.86e-3
FEMA damage 0.122%** 0.176%*** -0.010 —-1.27e-2
Poverty% —0.359%** —0.350%** 1.37e-5 1.46e-5
NOEDU% 0.237%%* 0.275%** —1.8%-3 —1.35e-5
Minority% 0.002 0.005 1.55e-4 1.55e-4
Single parent household% 0.051 0.002 —1.15e-2 —1.05e-2
R™2 —0.00027 0.0601 0.0627 0.2977 —0.001 —0.002 —0.002 —0.0005

*p < 0.05, **p < 0.01, ***p < 0.001.

statistically significant. For Model 1 at the census block group level, population loses statistical significance for both disasters. Once
the damage parameter was incorporated in Model 2, the coefficient patterns stayed relatively similar at the census tract level for both
disasters; however, at the census block group level for Tropical Storm Imelda, FEMA damage and population both had statistical sig-
nificance, while population had a negative small coefficient. Model 3 had statistical significance for Poverty% during Tropical Storm
Imelda at both geographical levels; however, at the census block group level, Poverty% had a negative coefficient implying that the
lower the poverty population, the fewer reports there are. A similar pattern can be seen with Single parent households% at the census
tract level, as that parameter has a negative coefficient. During Hurricane Ida, Minority% with a negative coefficient at the census
tract level was revealed in Model 3; however, no social parameter was statistically significant at the census block group level. By com-
paring Model 3 with Models 1 and 2, it is apparent that social demographic traits have an impact on the variation of reporting rather
than populous areas as both disaster events had either a negative coefficient for population or small coefficient for population. How-
ever, the social demographic traits such as Single parent household% (during Tropical Storm Imelda) and Minority% (during Hurri-
cane Ida), had a negative coefficient, implying that these groups do not have access to reporting and suffer from demogrpahi bias at
the census tract level. Once all parameters are incorporated into Model 4, Single parent households% during Tropical Storm Imelda
still had the negative coefficient, while Minority% loses statistical significance. This shows that single parent households are impacted
by demographic bias, as this group has a negative coefficient with reports, implying that as the number of reports increase, single par-
ent households decrease. At the census block group level, the patterns seen in previous models remained the same. During Hurricane
Ida, the social parameters had no statistical significance at the census block group level. This highlights the concept that data imbal-
ance has smaller geographical scales have little consistency.

Table 7 shows the regression model of 3-1-1 reports during Tropical Strom Imelda and Hurricane Ida at the census tract and census
block group level. Model 1 shows that population has a negative statistical significance for Tropical Storm Imelda at the census tract
level and no statistical significance at the census block group level. During Hurricane Ida, Model 1 showed a small statistically signifi-
cant coefficient at the census tract level, and a negative coefficient at the census block group level. These results show that 3-1-1 re-
ports have occurred in less populated areas. Once the damage parameter was incorporated into Model 2, the population size coeffi-
cients stayed relatively the same for both disasters at all geographical scales. The FEMA damage claim parameter had statistical sig-
nificance for both models except during Hurricane Ida at the census block group level. Model 3 examines the social parameters and at
the census tract level during Tropical Strom Imelda: all parameters were statistically significant except NOEDU%. Moreover, Minor-
ity% and Single Parent Household% had negative coefficients. At the census block group level, all parameters had a positive coeffi-
cient. During Hurricane Ida, at the census tract level, only Minority%—with a negative coefficient—and Single parent household%
had statistical significance. However, at the census block group level, only NOEDU% had statistical significance. By comparing Model
3 with Models 1 and 2, we find that social demographic traits impacted the variation of crowdsourced reporting. For example, popu-
lation size has a negative coefficient or nearly zero coefficient in Models 1 and 2; however, demographic traits such as Minority% and
Single parent households% had a negative coefficient during Tropical Storm Imelda. During Hurricane Ida, Minority% had a negative
coefficient in Model 3. This shows that Single Parent Households and Minority groups suffer from demographic bias as these demo-
graphic groups are not represented on crowdsourced platforms as evidence by their negative coefficient. Model 4 includes all parame-
ters and shows that Minority% loses statistical significance during Tropical Strom Imelda at the census tract level, but at the census
block group level this parameter gained statistical significance. During Hurricane Ida, all parameters followed the patterns from the
previous models at the census tract level; however, at the census block group level, none of the social parameters were statistically
significant. This shows how a smaller geographical aggregation can lead to a loss of data, causing data imbalances.
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Table 7
Regression analysis of 3-1-1 reports at census tract and census block group level.
Event Tropical Storm Imelda Hurricane Ida
Model Model 1 Model 2 Model 3 Model 4 Model 1 Model 2 Model 3 Model 4

Census tract level

Constant 0.0220%** 0.020%** 0.026*** 0.028*** —0.001 —0.0009 —-0.013 —-0.009
Population —0.041%** —0.039%** —-0.016 1.361e-6*** 7.56e-7%* 4.74e-7
FEMA damage 0.059%*** 0.058%** 0.361%** 0.340%**
Poverty% 0.091*** 0.086%** —-0.021 —-0.015
NOHSDP% 0.005 —0.004 0.047 0.029
Minority% —0.040%*** 0.005 —0.024%*** —0.014%**
Single parent household% —0.042** —0.039** 0.102%** 0.066***
R"2 0.014 0.027 0.057 0.07 0.0092 0.194 0.0507 0.221
Census block group

Constant 0.0015%** 0.0012%** —-0.0302* —-0.029* 0.024** 0.023%*** 0.0154%*** 0.022%**
Population 4.29e-07 3.10e-7 4.3e-07 —0.056*** —0.0576%*** —0.053***
FEMA damage 0.176%*** 0.176%** 0.074 0.087
Poverty% 0.0601* 0.067* —3.812e-5 -1.72e-5
NOEDU% 0.038** 0.032* 0.006* —-0.016
Minority% 0.009 0.014** 0.026 0.027
Single parent household% 0.004 0.038 0.011

R"2 —0.00027 0.0601 0.005 0.2977 0.0029 0.00308 0.0004 0.0027

*p < 0.05, **p < 0.01, ***p < 0.001.

5. Concluding remarks

The objective of this study was to examine the type of biases that occur in crowdsourced reports to mitigate data imbalances for
improving situational awareness. To achieve this objective, three types of biases were assessed: 1) sample bias, 2) spatial bias, and 3)
demographic bias. To addresses these biases, we used spatial analysis techniques for addressing sample bias and spatial bias and a re-
gression model to address demographic bias for the following flooding events: 1) Tropical Storm Imelda in the Harris County area in
2019, and 2) Hurricane Ida in New York in 2021. The results showed three types of data bias in crowdsourced data that often occur
during emergency management, and we assessed how these biases can inhibit reliable mapping of flash flood impacts.

While this study provides insight on how to efficiently identify data bias within crowdsourced reports, the study has the following
limitations. Moreover, FEMA damage claims were not available at the census block group level due to FEMA upholding privacy poli-
cies that only provide the latitude and longitude to one decimal place. One limitation with 3-1-1 and Waze reporting is the fact that
users could report information incorrectly due to concerns for their wellbeing. Another limitation with crowdsourced data is that
users who pass by a community could report information despite not living there, which could hinder vulnerable areas from being
represented as they are least traveled. This also brings up the idea that populus areas are likely to report more. Therefore, to account
for this, the research did normalize crowdsourced data by population and used the normalized results for interpretation. To general-
ize the research, it is recommended that the data sets being used must be understood to properly interpret results, moreover, combin-
ing different datasets with unique properties can provide a holistic view. This research acknowledges that 3-1-1 reports are generated
by homeowners and Waze reports are generated by users in vehicles; therefore, these unique properties are taken into account for in-
terpretation and in fact enrich the findings of data imbalance. Future research can use the unique property of datasets to gain a holis-
tic view of the impacts of disasters.

While the number of studies leveraging crowdsourced data for disaster situational awareness is growing, limited attention has
been paid to data imbalance and biases in these datasets. This study and its findings provide important insights to researchers, emer-
gency managers, and public officials who utilize crowdsourced data for crisis situational awareness and reveal the nature of biases in
these datasets. Moreover, these decision makers can implement the analytical framework presented to identify more vulnerable com-
munities who are prone to flooding and can use the data from an unbiased perspective to create a more equitable recovery process.
Hence, the study outcomes move us closer to better understanding of nature of biases in different crowdsourced data and ways to mit-
igate them to get the most out of these crowdsourced data for better situation awareness in crises.
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Fig. Al. Descriptive map of (a and d) FEMA damage, (b and e) 3-1-1 reports, and (c and f) Waze reports at the census tracts (a—c) and census block group (d—f) for Har-

ris County during Tropical Storm Imelda.
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Fig. A2. Descriptive map of (a and d) FEMA damage, (b and e) 3-1-1 reports, and (c and f) Waze reports at the census tracts (a—c) and census block groups (d—f) for New
York during Hurricane Ida.
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Fig. A3. Descriptive bar graph of 3-1-1 categories related to (a) Tropical Storm Imelda and (b) Hurricane Ida.
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