Sustainable Cities and Society 97 (2023) 104693

Contents lists available at ScienceDirect

Sustainable Cities
and Society

Sustainable Cities and Society

journal homepage: www.elsevier.com/locate/scs

Anatomy of perturbed traffic networks during urban flooding
Akhil Anil Rajput?, Sanjay Nayak °, Shangjia Dong ¢, Ali Mostafavi **

a Zac Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77840, USA
P! ngl ng, 137 8

b Department of Computer Science and Engineering, Texas A&M University, College Station, TX 77843, USA

¢ Department of Civil and Environmental Engineering, University of Delaware, Newark, DE 19716, USA

ARTICLE INFO ABSTRACT

Dataset link: https://inrix.com/products/speed Urban flooding disrupts traffic networks, affecting mobility and disrupting residents’ access. Flooding events are
/ predicted to increase due to climate change; therefore, understanding traffic network’s flood-caused disruption
is critical to improving emergency planning and city resilience. This study reveals the anatomy of perturbed
traffic networks by leveraging high-resolution traffic network data from a major flood event and advanced

high-order network analysis. We evaluate travel times between every pairwise junction in the city and assess

Keywords:
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Resilience higher-order network geometry changes in the network to determine flood impacts. The findings show network-
Higher-order networks wide persistent increased travel times could last for weeks after the flood water has receded, even after modest
Disaster

flood failure. A modest flooding of 1.3% road segments caused 8% temporal expansion of the entire traffic
network. The results also show that distant trips would experience a greater percentage increase in travel time.
Also, the extent of the increase in travel time does not decay with distance from inundated areas, suggesting
that the spatial reach of flood impacts extends beyond flooded areas. The findings of this study provide an
important novel understanding of floods’ impacts on the functioning of traffic networks in terms of travel time
and traffic network geometry.

1. Introduction network connectivity, is essential to functioning of a community. But

the flood impact on traffic networks is not yet fully understood.

Transportation networks connect populations and services (FEMA,
2020). The stability of a transportation network is challenged by flood
hazards (Pregnolato, Ford, Wilkinson, & Dawson, 2017), which can
trigger compound physical and functional failure that results in net-
work connectivity loss (Dong, Gao, Mostafavi, & Gao, 2022). Commu-
nity recovery is further impacted when access to critical facilities such
as fire stations, shelters and hospitals is disrupted (Fan, Jiang, Lee,
& Mostafavi, 2022; Yuan, Xu, Li, & Mostafavi, 2022). The extent of
impact is expected to increase due to climate change (Ghanbari, Arabi,
Kao, Obeysekera, & Sweet, 2021; Wasko, Nathan, Stein, & O’Shea,
2021). Researchers have sought to understand how floods disrupt
transportation networks (Dong et al.,, 2022; Wang, Yang, Stanley, &
Gao, 2019) to improve infrastructure resilience planning (Esmalian
et al., 2022). Existing studies, however, focus mainly on either physical
road network topology during disruptions (Bagloee, Sarvi, Wolshon,
& Dixit, 2017; Mattsson & Jenelius, 2015; Wang et al., 2019) or
on transportation functionality in normal conditions without disrup-
tion (Hamedmoghadam, Jalili, Vu, & Stone, 2021; Li et al., 2015). Little
attention is devoted to the time-varying link functionality in trans-
portation networks. The flow of traffic through the network, as well as

* Corresponding author.

The use of percolation methods (Stauffer & Aharony, 2018) to ana-
lyze physical road networks provides limited insights regarding floods’
impacts on transportation systems. Although such measures adequately
quantify the extent of the impact on road networks, they give little to
no insights into how travel is impacted in the city. Percolation-based
analysis informs about the physical vulnerability of networks but does
not inform about impacts on transportation system functioning. One
key indicator of the functioning of traffic networks is travel time. Some
studies have tried to address this using the percolation approach (Ganin
et al., 2017; Sohouenou, Neves, Christodoulou, Christidis, & Lo Presti,
2021) but there is limited research on the understanding of traffic
networks under natural disasters such as flooding. However, little is
known about the extent to which floods perturb travel time in traffic
networks and whether the impacts on traffic networks would be local
to flooded areas or affect the more significant part of the network.
Or how long would the travel time impacts persist in the network
after the flood recedes? Therefore, percolation analysis does not fully
capture real-world networks’ temporal dynamics and spatiality. Recent
studies have shown the significance of understanding the geometric

E-mail addresses: akhil.rajput@tamu.edu (A.A. Rajput), sanjaynayak@tamu.edu (S. Nayak), sjdong@udel.edu (S. Dong), amostafavi@civil.tamu.edu

(A. Mostafavi).

https://doi.org/10.1016/j.scs.2023.104693

Received 22 November 2022; Received in revised form 28 March 2023; Accepted 28 May 2023

Available online 7 June 2023
2210-6707/© 2023 Elsevier Ltd. All rights reserved.


https://www.elsevier.com/locate/scs
http://www.elsevier.com/locate/scs
https://inrix.com/products/speed/
https://inrix.com/products/speed/
https://inrix.com/products/speed/
https://inrix.com/products/speed/
https://inrix.com/products/speed/
https://inrix.com/products/speed/
https://inrix.com/products/speed/
https://inrix.com/products/speed/
https://inrix.com/products/speed/
https://inrix.com/products/speed/
https://inrix.com/products/speed/
https://inrix.com/products/speed/
https://inrix.com/products/speed/
https://inrix.com/products/speed/
https://inrix.com/products/speed/
https://inrix.com/products/speed/
https://inrix.com/products/speed/
https://inrix.com/products/speed/
https://inrix.com/products/speed/
https://inrix.com/products/speed/
https://inrix.com/products/speed/
https://inrix.com/products/speed/
https://inrix.com/products/speed/
https://inrix.com/products/speed/
https://inrix.com/products/speed/
https://inrix.com/products/speed/
https://inrix.com/products/speed/
https://inrix.com/products/speed/
https://inrix.com/products/speed/
https://inrix.com/products/speed/
https://inrix.com/products/speed/
https://inrix.com/products/speed/
https://inrix.com/products/speed/
mailto:akhil.rajput@tamu.edu
mailto:sanjaynayak@tamu.edu
mailto:sjdong@udel.edu
mailto:amostafavi@civil.tamu.edu
https://doi.org/10.1016/j.scs.2023.104693

A.A. Rajput et al.

Sustainable Cities and Society 97 (2023) 104693

+A,

During/After Disaster

Ai : Delay due to disaster for ith segment

(a)
<,
S 4
ﬂ 4
‘ ly,+Ay
)
B
- -~ -
o - :
S;: Segment id
Before Disaster 1; : Travel time for ith segment
(b)
L J
®
o ®
[
adjust node ® @
positions by i . . i
travel time N i | A
Pk
Pt B ®
e ; ;
" | ®
- ®»

Travel Time: 1 min

Travel Time: 5 mins

Travel Time: 15 mins

Fig. 1. Conceptual illustration of the analysis performed. (a) Illustration of pair wise travel time and changes in temporal links due to perturbations. (b) Connected component
framework at different Filtration levels. Each filtration level corresponds to a travel time, within which the nodes (road junctions) in the network are connected, although they
may not have a direct link connectivity. Metric for the number of connected components at each filtration level represents the most basic higher order network analysis metric.

properties of spatial infrastructure networks such as road networks
(Badhrudeen, Derrible, Verma, Kermanshah, & Furno, 2022; Dumedah
& Garsonu, 2021; Liu & Li, 2019). However, when the flow dynamics
on the network are involved, we need to derive new metrics to under-
stand the network resilience properties. Traffic networks are spatially
embedded in cities and communities, and their link dynamic varies
temporally (Batty et al., 2012; Serok, Levy, Havlin, & Blumenfeld-
Lieberthal, 2019). We have learned the impact of floods on the spatial
geometry of the physical road network, but how the geometry of
the traffic network changes in the time domain has yet to be fully
understood. For example, when road inundations and heavy congestion
increase the travel time between two spatial nodes (i.e., road junction),
this is equivalent to the two spatial nodes becoming more distant from
each other. Hence, the temporal geometry of spatially-embedded traffic
networks would change.

To this end, the goals of this research are to assess (1) the extent
to which floods perturb travel time in traffic networks, (2) whether
the impacts on traffic networks would be isolated to flooded areas
or would affect a larger part of the network, and (3) length of time
that the impacts on travel time persist in the network after the flood
recedes. Traffic networks are defined as representations of a network
of roads with time-varying functionality. To characterize the anatomy
of perturbed traffic networks during floods, we adopted two novel
geometric properties of the dynamic traffic network (Fig. 1): (1) net-
work expansion and (2) simplicial complex change. Network expansion
refers to the extent to which travel time between the node pairs
(road junction pairs) in the networks increases due to perturbations.
In flooding, road inundations and congestion would increase travel

time between node pairs and hence, cause a virtual expansion in traf-
fic network topology. Simplicial complexes represent the topological
geometry of networks (Torres & Bianconi, 2020). They capture higher-
order topological changes in traffic networks during flooding. Hence,
the examination of changes in the higher-order traffic networks with
time-varying link functionality can provide a better understanding of
the perturbed traffic networks during floods. Both network expansion
and simplicial complex change simultaneously capture the effects of
road inundations and congestion caused by flooding, providing a more
complete understanding and quantification of flood impact on traffic
networks.

Using high-resolution empirical traffic data from Harris County,
Texas, collected during Hurricane Harvey (2017), We first examined
the average shortest travel time between node pairs (road intersections)
during normal status and during flood-disrupted states to quantify the
extent to which flooding expands travel time between node pairs,
and to infer the virtual expansion of the traffic network. Second,
we examined the Betti number at different filtration levels in traffic
networks, as fluctuations in the Betti number reflect the traffic network
simplicial complex change. Fluctuations in the Betti number expose
the characteristics of higher-order network changes and reveal the
extent of changes in traffic network topological features when flooding
causes direct (road inundation) and indirect (congestion) perturbations.
Using this travel time-based characterization of the traffic network, the
findings of this study move us closer to a complete understanding of the
impacts of flooding on transportation systems and the functioning of
cities. Fig. 1 shows the conceptual illustration of the idea of the paper.
More about it will be discussed in detail in the methods section.
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The study’s contribution lies in several aspects; for instance, as per
our knowledge, no prior studies have examined the impact of flooding
on traffic networks based on observational data and also from the
perspective of higher-order networks. Moreover, our study captures the
impact of both functional and physical failure simultaneously, which
traditional methods such as percolation analysis are not able to do.
The functioning of the road transportation system cannot be evaluated
only based on knowledge of road closures in a particular location. Since
traffic network’s role is to provide access to critical infrastructure at the
time of need and facilitate evacuation, understanding the travel times
from every part of the city to another is an important attribute, which
to our knowledge, had not been considered by any previous studies.
This study also evaluates the pair-wise travel time from every junction
in the road network to another to assess the impact of local flood-
related failures in the road network on the entire traffic system. The
results of this study have significant implications for city managers,
transportation planners, and emergency managers for better evaluating
network performance and recovery levels during disasters

The outline of the remaining sections is as follows. Section 2 dis-
cusses the review of past literature in the domain of city vulnerability
and infrastructure codependency, and resilience assessment using com-
plex networks. Section 3 discusses data, pre-processing steps, and novel
methodology implemented in this study. The results are discussed
in Section 4, and key results and their significance are highlighted
in discussion Section 5. We conclude this work by summarizing key
findings in Section 6.

2. Related work
2.1. City vulnerability based on infrastructure interdependence

A disaster’s impact and recovery time can be dramatically impacted
by how people, businesses, and governmental organizations behave
before, during, and just after the disaster (Aerts et al., 2018). Aerts
et al. (2018) explain why this is a problem and show that, despite
the inevitability of the initial efforts’ limited representation of human
behavior, innovations in flood-risk assessment that incorporate societal
behavior and behavioral adaptation dynamics into such quantifica-
tions may result in more accurate risk characterization and improved
evaluation of the effectiveness of risk-management strategies and in-
vestments. Existing research mainly focus on the link-node represen-
tation without taking into account important system features, such
as hydraulic features/structures for water distribution networks and
traffic flow characteristics for transportation networks (Mohebbi et al.,
2020). Cariolet, Vuillet, and Diab (2019) reviewed recent literature
and identified that methods for mapping hazard, vulnerability and
risk are well established. But for mapping resilience in urban areas
poses a challenge as there are no agreed-on methodological approaches
for doing so. Moreover, they identified that very few methods have
been used to identify inherent resilience at city scale. Serdar, Ko,
and Al-Ghamdi (2022) reviewed resilience assessment methods for
transportation networks, indicators, and disturbance categories. They
recommend a new representation for the relationships between perfor-
mance, time, and resilience, emphasizing other network characteristics
and their association with resilience.

Mohebbi et al. (2020) used an infrastructure oriented approach to
examine system interdependence and quantification of resilience for
different infrastructure networks. In order to examine the combined
impact of integrated infrastructure disruptions and socioeconomic fac-
tors on household vulnerability during disasters, Dargin, Berk, and
Mostafavi (2020) suggests a novel paradigm based on disaster risk
theory and Food-Energy-Water (FEW) Nexus systems thinking. They
evaluate disaster impact at household level. Utilizing extensive mobility
data gathered from Puerto Rico during Hurricane Maria, Yabe, Rao,
and Ukkusuri (2021) evaluated the socio-physical interdependencies in
urban systems and their impacts on disaster recovery and resilience.
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They showed that as cities get bigger and their centralized infrastruc-
ture systems get more extensive, key services recover more quickly,
but socioeconomic systems’ ability to rely on themselves in times
of crisis is reduced. Yang, Ng, Zhou, Xu, and Li (2019) propose a
synthetic physics-based framework for resilience analysis of interdepen-
dent infrastructure systems. They investigate the pre-event resilience of
interdependent stormwater drainage system and road transport system
to model the functional behaviors of diverse infrastructure systems
at the component level and capture the effects of interdependencies
across various systems. Yang, Ng, Zhou, Xu, and Li (2020) developed
a synthetic physics-driven framework for system-wide infrastructure
resilience analysis which takes into account the interdependence of
infrastructure systems.

2.2. City infrastructure resilience assessment using complex networks

Considering the geographic exposure of infrastructure to natural
hazards, Dong, Wang, Mostafavi, and Gao (2019) evaluated network
robustness by considering the post-disaster network access to important
critical facilities such as emergency services. Mostafavi (2017) provided
a System-of-Systems (SoS) methodology for a comprehensive evalua-
tion of resilience in US civil transportation infrastructure. To determine
how vulnerable the metropolitan road system is to flooding, Singh,
Sinha, Vijhani, and Pahuja (2018) developed an integrated framework
relating flood depth to speed reduction and assess the vulnerability of
the road network, connecting meteorological data, land use functions,
and hydrodynamic model with safety speed function. They discovered
that during a 100 year return period rainstorm event in India, more
than 40% of the network’s route length becomes impassable.

Morelli and Cunha (2021) discusses methods for measuring trans-
portation vulnerability to extreme events in urban road networks based
on travel distribution in a city in Brazil as a case study. They found
that shorter trips are more robust to these extreme events. Fan, Jiang,
and Mostafavi (2021) used adaptive reinforcement learning to evaluate
perturbations on urban mobility in disasters. Dong, Yu, Farahmand and
Mostafavi (2020) presented a probabilistic model based on the Bayesian
framework to assess risk of cascading failures on co-located road and
channel networks. Goldbeck, Angeloudis, and Ochieng (2019) devel-
oped an integrated, dynamic modeling and simulation framework that
combines network and asset representations of infrastructure systems
and models the optimal response to disruptions. Their framework takes
into account resources needed for operating and maintaining assets,
failure propagation dependencies, and system-of-systems architecture.

Erath, Birdsall, Axhausen, and Hajdin (2009) analyzes the effects
of network-wide congestion on the transport-related implications of
link failures. They identify detours, mode shifts, destination shifts,
and trip-activity suppression as four potential demand shifts brought
on by single link failures. Their study shows that detours are the
most common demand response. Abenayake, Jayasinghe, Kalpana, Wi-
jegunarathna, and Mahanama (2022) used a network measure-based
method such as betweenness centrality and closeness centrality net-
work metrics for evaluating the failure of the entire transportation
system as a result of urban floods. As a result, they evaluate the effect
of urban floods on patterns of human migration.

3. Data and methods

To evaluate the dynamics of change in the geometry of traffic
networks, we employed the framework shown in Fig. 2. First, we
processed the raw data to correct any rounding errors and obtained the
required temporal resolution. Then we form a spatio-temporal network
where edge attributes change with time. Creating a network model is
the first step in the methodology. We then obtained a pair-wise node
distance matrix which were used in the two main approaches used
in this study to examine effects of disaster in spatio-temporal traffic
networks. Both shortest path analysis and higher network dimension
analysis are independently analyzed but they both rely on the distance
matrix. Each step in the method is explained below.
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Fig. 2. Framework used in this study to evaluate the dynamics of change in spatio-temporal traffic network.
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Fig. 3. Study region. Harris county is the most populous county in Texas state and includes the city of Houston. Due to its proximity to the coast and climate change, it is
susceptible to flooding-related events. The figure on the right shows the road network along with the flood-inundated areas during the peak of Hurricane Harvey.

3.1. Data and pre-processing

We used a weighted road transportation network of Harris County,
Texas, a period before and after Hurricane Harvey flooding (August 1
through September 30, 2017) for this analysis. Fig. 3 shows the study
region along with the road network on which we evaluate the travel
times. In 2017, Hurricane Harvey hit Houston, the fourth-largest city
in the United States. Houston suffered an estimated $125 billion loss,
mainly from the flooding triggered by the rainfall and the release of the
Addicks and Barker reservoirs (Costliest, 2018). A major flood occurs
somewhere in Harris County about every two years (Blackburn, 2021).
Due to the high risk of Harris County to flood-related events and data
availability, we chose this city for this analysis. The findings from this
study will provide valuable insights for city managers, decision makers,
and transportation planners in the region, enabling them to better pre-
pare for and respond to future flooding events. From INRIX, a private
analytics company, we acquired two components of traffic data: road
segment location data and segment attributes. The dataset includes the
travel time value for each major road segment in Harris County, within
which is located the city of Houston. INRIX collects location-based
data from both sensors and vehicles. INRIX traffic data contains the
average traffic speed of each road segment at 5-min intervals and their
corresponding historical average traffic speed. Each road segment’s
geometric information, such as name, geographic locations defining
its start and end coordinates, and length, is also available from the
INRIX data set. Aggregating these two datasets yields a dataset that has
location information of all the road segments and their corresponding
travel times and information on road closure.

Location attributes of some of the road segments varied at the fifth
decimal level when taken in degree decimal format. This resulted in
some of the road segments being disconnected from the main network,
although they were physically connected. To address this, coordinates
were rounded off to the fourth decimal to ensure that road segments
connect entirely when a network is formed. We then aggregated the
attribute information of the road segments at a daily resolution to re-
duce computational effort and provided an overall travel characteristic
for the entire day that may differ during rush hours and early morning.
Travel time for a road segment was calculated by taking the mean value
for all 15-min intervals for an entire day.

3.2. Network construction

We constructed a network from the processed road segment data
that contains 17,089 edges and 13,550 nodes. Where edges correspond
to road segments and nodes correspond to road junctions. We map each
of the road segments based on their location attributes to form this
network. The original network consisted of 19712 edges and 15390
nodes but we filtered the nodes and edges from the largest connected
component in the network and removed some of the nodes that had
no data even during non impact days. This step ensured that shortest
paths exist between every pairwise junction in the network as it is
a primary step in data processing in this paper. Having disconnected
nodes or clusters would lead to non-reachable junctions which are
not desirable for this analysis. The resulting giant component (largest
connected component) accounted for 88% of the nodes and 87% of the
edges from the original network.
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We use this network as a skeleton and construct weighted temporal
traffic networks for each of the days from August 1, 2017 through
September 30, 2017. We use travel time in minutes as edge weight in
the network that represents the time for a vehicle passing through an
edge (road segment) to traverse through it.

3.3. Distance matrix

After obtaining temporal networks with travel time as edge at-
tributes, we computed a matrix Aj3s09x13500 Where A;; corresponds to
the shortest travel time from road junction i to road junction j in
minutes. Since we treat the transportation network as an undirected
graph, travel time from i « j is the same as from j « i, thus
yielding a symmetric matrix, where A;; = A;. This distance matrix,
where distance between junctions i and j (or j and i), is evaluated in
time domain. This matrix contains information about the travel time
between any junction pairs in the network and collectively represents
the travel characteristics of the Harris County traffic network. We use
the Bellman-Ford algorithm (Bellman, 1958) to compute the travel time
for the shortest paths between every pairwise junction. Since, our net-
work has roughly 13,500 nodes and 17,000 edges, it is computationally
expensive to compute the shortest paths between every pairwise node
in the network. Python natively uses single core for computation so
Python libraries such as swifter, dask, and native libraries that allow
multi-core processing were adopted to speed the computation.

3.4. Shortest paths analysis

We use the distance matrix to evaluate the effective spatial transfor-
mation of traffic network in Harris County. As the travel time changes
for each road segment, the shortest paths between pairwise junctions
(nodes) denote the spatial proximity of these junctions in the time
domain. Fig. 1(a) illustrates a sample traffic network showing pairwise
travel time with impact on delays due to disasters. Each road segment
undergoes a change in travel time during disruption. This could be
both positive or negative. If a road segment experiences disruption due
to inundation, debris, or other disaster-related obstruction, it would
experience increased travel time. This would have a compounding
effect on travel times between different junctions, as multiple road
segments in the path experience disruptions. Other road segments that
are not in proximity to damaged areas may experience higher than
usual travel times, as they absorb additional traffic routed through
them.

To assess the impact of urban flooding on the entire traffic net-
work, we compute two parameters: the impact of flooding on the
average travel time between every pairwise road junction and the
impact of Harvey on different travel time ranges of 15-min intervals.
For both these parameters, the first two weeks of August 2017 were
used as a baseline to compute change during Harvey. The same days
of the week are compared to one another to account for different
mobility patterns during different days, such as the weekday-weekend
effect (Sita-Nowicka et al., 2016; Xia et al., 2018). The first parameter
provides an idea on the extent of the impact of flooded roads on the
average state of the entire network. The second parameter informs us
about the disproportionate impacts on different travel time ranges.

3.5. Higher network dimension analysis

The simple network based measures, such as average path length,
giant component size in the disrupted network, and other network-
related measures are not able to fully capture the underlying changes
in the network geometry (Dey, Gel, & Poor, 2019). The study of
interactions between higher-order network features gives a more thor-
ough understanding of topological changes in the network that may
uncover important roles that higher-order networks might play in the
understanding of dynamics of network topology during disruptions. We
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capture these hidden dynamics by considering the most basic high-
erorder feature computed using Betti number of zeroth order (Betti-0)
that gives a count of the number of connected components at different
distance thresholds (Islambekov, Kumer Dey, Gel, & Poor, 2018;
Torres & Bianconi, 2020). The Betti numbers are fundamental topolog-
ical invariants that characterize higher-order networks represented by
simplicial complexes (Bianconi, 2021).

Mathematically we can represent it as following: Let G = (V, E, »),
an (edge)-weighted graph, be a representation of a temporal traffic
network. If we select a certain threshold (or scale) € >0 and keep
only edges with weights between nodes u and v, ,,, is less than ¢;, we
obtain a graph G; with an associated adjacency matrix 4, = Ly, <e;-
Now, changing the threshold values, ¢, < ¢, < -+ < ¢, results in a hier-
archically nested sequence of graphs G, C G, C ... C G, that is called as
a network filtration. These filtration levels are depicted in Fig. 1(b) for a
sample network. Each sequence of graphs represents a list of junctions
that fall within a specific threshold, where threshold represents travel
time. Intuitively, each threshold of travel time indicates road junctions
that are accessible within a temporal distance of threshold. At the
lowest threshold (0 min), no other junction is accessible, so we have
the same number of components as nodes or junctions in the network.
As the threshold increases, more junctions become reachable to these
individual junctions; these are connected to form clusters. As the travel
time threshold is increased again, these clusters slowly start merging
with other clusters to form a single connected component. When the
accessibility to a junction is not broken, the last threshold yields just
one large connected component, as all junctions are reachable by one
another within this time period.

During non-impact days, the composition of the number of clusters
that get formed at different travel time thresholds changes and may
show certain characteristics in network geometry indicating higher
order dynamics of traffic networks. These changes may not be appar-
ent with basic network measures. Using Vietoris-Rips (VR) complex
(Carlsson, 2009; Otter, Porter, Tillmann, Grindrod, & Harrington, 2017;
Zomorodian, 2010), one of the most popular Topological Data Analysis
filtration methods, we track evolution of topological features such as
connected components using Betti numbers at different filtration levels.
In our case, the distance measure corresponding to travel time in
minutes was for a graph, G = (V, E,w); the vertices correspond to
road junctions, edges correspond to a link between every junction, and
weights account for the travel time between the vertices.

3.6. Spatial dependence

To determine if flood impacts show spatial decay, spatial patterns of
travel time change with respect to proximity to inundated areas were
evaluated for each road junction in the traffic network. To compute
this, we calculate the median change in the travel time at every
junction, considering travel to every other junction. This was done to
obtain an overall measure of the travel time change for each junction.
Next, we computed the distance from the flooded region for each road
junction to investigate if there was any spatial dependence on the
impact of flooding on the travel time change. To visually observe the
spatial dependence of flooded roads with travel times in every junction,
the junctions that exhibited an overall magnitude of change of more
than 15% were spatially visualized along with the traffic change in each
road segment. This allowed for a better understanding of the spatial
patterns of travel time change with respect to proximity to inundated
areas.

4. Results

4.1. Persistent travel time increase and temporal expansion in the entire
traffic network

Hurricane Harvey made landfall in Harris County on August 25,
2017, and significantly disturbed the traffic network. To evaluate the
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for travel times. The entire network experiences an average of 3% increase in travel time among node pairs even a month after Harvey landfall.

impact of flooding in the traffic network, we look at the changes in
the pairwise travel time in the network obtained from computing the
shortest paths between every road junction in the traffic network. In
the average network-wide pairwise travel time at different phases of
the Harvey (Fig. 4), we see that the travel time first decreased at the
time of Harvey’s landfall (August 25) due to residents sheltering in
place, thus reducing travel demand, in anticipation of Harvey’s landing.
Travel time then increases (August 28) due to the increase in flooding-
induced road closures. The travel time drops again between August 28
through 30, as flooding is receding but residents still have not started
traveling. By September (Fig. 4a), the number of flooded/perturbed
road segments decreased from 1.3% (August 28 and 29) to 0.25%.
The travel time slowly recovers as flooded roads become available
and debris is removed. By September 5, road conditions are largely
improved and travel demand is headed towards normalcy. Longer
travel times due to congestion have a persistent impact on the travel
time for the entire network for perturbed road segments that account
for less than 0.25% of road segments.

A small fraction of road closures impacts the entire traffic network.
According to Fig. 4(a), at peak inundation, 1.3% of perturbed roads
contribute to an average of 8% of increases in travel time in the entire
network, which is equivalent to the network being expanded by 8%

(every junction pair gets more distant from each other by 8% travel
time). However, it is interesting to note that both 1.3% (August 28
and 29) and 0.25% (Sep 4) of flooding-induced road closure can result
in an 8% of increase in travel time. This affirms two findings: (1) the
location of flooding is important. When a small number of critical roads
are perturbed, the impact is as extensive as the disruption of multiple
ordinary roads; (2) accounting for disturbed travel demand due to
flooding is a factor in assessing the impacts on the traffic network in
terms of travel time. During Hurricane Harvey, many roads were closed,
thus increasing overall travel time. In the post-Harvey period, travel
demand picked up, and thus more congestion on the road (while fewer
road segments were perturbed). With a small proportion of road closure
remaining, the compound flooding and congestion impacts led to an
increase in the travel time of 8% on September 4 (Dong et al., 2022).

Flooding affects traffic networks differently during weekdays and
weekends. As shown in Fig. 4(b and c), Travel times during weekdays
and weekends were both disturbed by the flooding; however, weekend
travel time quickly recovered to the pre-Harvey level, while weekday
travel sustained the average 3% of travel time increase even one
month after the Harvey. This persistent travel time increase during
weekdays can be attributed to the weekday commute demand change
in the aftermath of flooding. Weekend travel needs and schedules tend
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to be flexible, thus travel time returned to normal during weekends
more quickly. The 3% persistent travel time increase in the entire
network during weekdays can translate to significant social and eco-
nomic impacts in terms of user costs, additional CO, emissions, and
lost productivity.

4.2. Flooding disproportionately prolongs long-duration travel

For the shortest path between pair-wise road junctions (also called
node pairs), travel time is computed by summing the time contribution
of perturbations or disturbances in each road segment. This method
has a compounding effect on the overall time for movement from one
location to another. We evaluated the impact of flooding on trip ranges
by segregating trips into 15-min intervals: trips of less than 15 min,
between 15 up to 30 min, 30 up to 45 min and so on, the last interval
being 60 to 75 min. We then count the number of junction pairs that
fall within each travel time range and compare them with baseline.
This parameter provides insights about the disproportionate impact on
junctions within different temporal proximity. This interval classifica-
tion accounts for more than 99.9% of the trips on non-impact days;
therefore, represents the entire traffic network reliably. The distribution
of travel time versus fraction of node pairs (Fig. 5(a)) suggests that,
during peak inundation, travel time follows long-tailed distribution.
Changes in travel time of pairwise junctions on August 29 (Fig. 5b)
suggest that while peak inundation induces an overall increase in travel
time, due to disconnection of some junctions from main network due
to closure related to inundation and road damage. Nevertheless, a large
proportion of road segments show a decrease in travel time.

The results shown in Fig. 5(c—g) provide insights on the extent of
change and impact for travel time ranges. On average, trips with a mean
travel time of less than 30 min show a decrease of about 5 to 10%.
This is because trips of shorter travel time, thus fewer road segments,
are less subject to compounding effects. On the other hand, the extent
of increase in trips of greater than 60 min is about 50% on average
and increases to about 140% during peak impact day. On average,
the extent of impact increases as travel times increase between road
junctions. Thus, the impact on travel times due to urban flooding is
directly proportional to the distance between the places.

We also see a sharp decline in shorter travel times immediately after
Harvey, as there is less traffic on road. As evacuated residents return
and city recovers to normalcy, travel times increase exponentially,
reaching the same level as that during Hurricane Harvey. This is due
to the fact that some road segments are still littered with debris or
closures, but still must cater to high demand. It is worth noting that
the average levels of change for all time intervals reach almost the same
level as that observed during Harvey. This indicates that although the
actual landfall lasted only for a couple of days, its impact was observed
at virtually the same intensity on average until the end of September.

To examine the impact of flooding on higher-order network mea-
sures, we use a topology based measure, Betti-0, that computes the
number of connected components in a network at different travel time
thresholds. In the context of a traffic network, Betti number at a thresh-
old of 15 min (¢; = 15) would look at the number of connected network
components when road junctions within a 15-min proximity are merged
and considered as one component. At the initial thresholds of travel
time, there are multiple pockets of such connected components, since
not all junctions are reachable by one another given the threshold.
Hence, a number of clusters get formed. These clusters represent places
of closest proximity in terms of travel time. For simplicity, we focus
only on five thresholds, ¢;,i = 15,30,45,60,75. The results of the
percentage change in Betti numbers on different days for these five
filtration values are shown in Fig. 5(h-1).

The results indicate that changes in the topological features in the
network follow distinct patterns. For features within 15- and 30-min
thresholds, we first see a decrease in the number of such connected
components, then an increase, followed by a slight decrease before
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reaching at equilibrium. For other filtration levels, we see an increasing
trend till the second day of Harvey (August 26) and then a decreasing
trend till immediately after Harvey (September 1). There is then an
increase in the connected components at the respective travel time
thresholds that stagnates at a higher or similar level, as observed during
Harvey. The percentage change in the number of connected compo-
nents within different time intervals is less than the changes observed
in the variation in the number of junctions connected at different
thresholds (Fig. 5h-1). This result indicates that higher filtration levels
(associated with connectivity of junctions with longer travel times)
show more sensitivity to changes in the network due to flooding. This
result confirms the earlier results regarding the greater sensitivity of
longer travels to flooding impacts.

The reduced number of the connected components during Harvey
for shorter trips is a result of decreased travel time due to less traffic,
making a greater number of nodes reachable within a time threshold as
compared to pre-Harvey conditions. In contrast, there was an increase
in the number of connected components for longer trips during Harvey,
implying lower reachability given the same time window, as if flooding
caused an invisible temporal expansion of the entire road network
of the city. This temporal expansion of the traffic network influences
the higher-order structures in the network and makes more junctions
reachable for shorter trips in terms of travel time and fewer junctions
for longer duration trips. The differences in travel time change for
various filtration levels reveals that floods affect travel durations dis-
proportionately, putting longer-distance travels in jeopardy. Coupled
with critical service needs and accessibility, such impact disparity
can further exacerbate the community vulnerability (Dong, Esmalian,
Farahmand and Mostafavi, 2020).

4.3. The extent of travel time change does not decay with distance from
inundated areas

We evaluated the spatial patterns of travel time changes with re-
spect to proximity to inundated areas. We spatially visualized the
junctions that show an overall magnitude of change of more than 15%.
Here we assess the impact by aggregating the travel times from one
junction to every other junction and calculate the average change in
travel time at a junction. We compared this result with road segments
having an average travel time change of more than 15% to evaluate
if they exhibit spatial colocation. Fig. 6(a) and (b) show spatial occur-
rence of the specified junctions and road segment, respectively, on peak
flooding day, August 29. The effect of perturbation in the filtered road
segments can be seen in Fig. 7(c), which corresponds to August 27,
two days after the landfall of Harvey in Harris County; Fig. 7(d) shows
the road segments that experienced an increase in travel times due to
flooding for the same day. Although the road segments on the major
highways show increased travel times, the effect can be seen over the
entire network. Most of the junctions show an increase in travel time of
more than 15%, with some showing more than a 50% increase. Similar
insights can be obtained by comparing the results for August 28 and
29.

When Harvey dissipated in the Houston area on August 30 and
31, the majority of junctions experienced a reduction in travel time,
consistent with the results obtained from comparing average travel
times in the overall network. Although some regions, such as southwest
Harris County, retained road segments with increased travel times, the
effect cannot be seen locally or throughout the entire network. But
a week later, the increase in travel time resolved in Southwest area,
despite roads unaffected by flooding showing increased travel time.
This result provides evidence that, although flood-related impacts on
the road network are local, the spatial reach of flooding on the overall
travel time and connectivity is extended beyond inundated areas. This
spatial reach does not decay with distance from inundated areas.

Further investigation of the absence of spatial decay evaluated the
change in travel time with distance from flooding (Fig. 6¢). The median
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Fig. 5. Perturbation characteristics of long and short trips in traffic network. (a) Distribution of the number of node pairs (junction-to junction-travel pairs) versus travel time for
August 29. Distribution for all days follows a bell curve for and has a mean value of around 30 min. (b) Proportion of the number of node pairs corresponding to travel time
percent change due to Harvey on August 29. Change of more than 100% was considered as 100% for better visual clarity. (c-g) shows the change in the trips for intervals of 0-15,
15-30, 30-45, 45-60, 60-75 min intervals respectively. (h-1) shows change in the number of connected components at thresholds of 15, 30, 45, 60 and 75 min, respectively. Longer
trips show higher impact due to traffic disruptions as impacts compound for longer commutes. Travel time and topology-based impact assessment show different characteristics of
disruption and recovery for different time intervals. Post-disaster sustained impact is seen in every time range in both assessments.
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Fig. 6. Spatial impact of floods on traffic network on August 29. (a) Percent change in travel time for each road segment along with flooded regions for that day. (b) Average
impact in terms of percent change in travel time at each node (road junction) when trips are considered to every other node. (c) Changes in travel time as a function of distance
from flooded region. Change for regions within inundated region is shown by Violin plot at 0 distance; plot at 5.5 km distance presents the aggregated changes for all road
junctions more than 5 km away, which accounts for less than 1% of the road junctions. There is no decay in change of travel time with respect to distance to inundated areas.

Areas far from the flooded regions also show same extent of travel time change on an average.

change in the travel time at every junction, considering travel to every
other junction, shows a similar pattern irrespective of the distance from
flooded region. Additionally, junctions in flooded areas have the same
change as those outside inundated areas, demonstrating that flooding
affects the entire traffic network irrespective of direct proximity to
flooded regions. We do not, therefore, observe any decay in flooding
impact on travel time with distance from flooded regions. While Li,
Wang, Liu, Small, and Gao (2022) show that mobility exhibits spatio-
temporal decay from crisis locations when observed at county, state,
and country resolution, our analysis at a much finer resolution does

not indicate the presence of spatial decay in the impacts flood on traffic
networks.

5. Discussion

This study examines the virtual expansion of traffic networks dur-
ing flooding by considering flood impact on travel time. The results
reveal three novel properties of perturbed traffic networks caused by
urban flooding: (1) persistent entire network travel time increase, (2)
long-tail effects on long-travel distance travels, and (3) absence of
spatial decay in travel time changes with distance from inundated
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areas. Specifically, the results show that 1.3% of flooded roads during
Hurricane Harvey in 2017 were responsible for an 8% increase in
overall travel time throughout the network. The impacts of flooding on
traffic networks persisted for several weeks after inundation receded.
Furthermore, such impact on travel time is not homogeneous but
affects longer trips (i.e., 45-60 min) more strongly than shorter ones
(i.e., less than 15 min). Such a heterogeneous impact of flooding on
travel times is a factor to be considered in disaster traffic management
to maintain a community’s access to critical services. Investigation of
high-dimensional features using the Betti number reveals that flooding
imposes an impact on traffic congestion post-disaster, which can be
as high as that observed during peak inundations. Although flood
disruption on road segments is localized, the generated impact is dif-
fused throughout the network, suggesting that the impact on the travel
time in a city is invariant of the location of disruption. Moreover,
the impact is sustained even one month after flooding and causes a
3% expansion of the traffic network for a fraction of unrestored road
segments.

The findings of this study had important implications: first, the
findings reveal the impact of floods on travel times in urban traffic net-
works. Prior studies focused on vulnerability of physical roads (Bagloee
et al., 2017; El-Maissi, Argyroudis, Kassem, & Mohamed Nazri, 2023;
Mattsson & Jenelius, 2015; Wang et al.,, 2019); our understanding
of the perturbed functioning of traffic networks during floods was
limited. Second, we found that the impacts of the flood are not local
but affect the entire network disproportionately when travel times are
considered. So even if flooding is localized in a city, the infrastructure
impact will be local and considered contained, but our study reveals
that the impact on travel time will be seen in the entire city. A
percolation-based approach is less equipped to provide these insights.
Third, unlike the majority of studies that use location-based human
mobility data for analyzing origin—destination trip fluctuations in floods
and other crises, this study dissected fine-resolution link-level travel
time data to analyze the perturbed dynamics of traffic networks. The
fluctuations in human mobility do not fully capture the functionality
of traffic networks in terms of travel time (the primary function of
transportation networks). The number of trips might return to normal,
but the travel time between junctions may stay elevated for a longer
duration.

This study employed topological network measures and higher-
order network analysis to capture both temporal dynamics and spa-
tiality of traffic networks. The prior studies on urban networks were
primarily based on percolation analysis (Stauffer & Aharony, 2018)
and were not able to capture temporal dynamics of links functionality
as well as the spatiality of real world networks, so new metrics were
needed to understand the network resilience properties, that we pre-
sented in this paper. Hence, the novel insights obtained from this study
move us closer to a better understanding of the impacts of floods on
urban traffic networks. Results from this study can be used to evaluate
the impact of floods on communities better. As multiple studies have
focused on aspects such as income, distance from the city center,
elevation, and accessibility to the road network, the results of this
study have implications for the community’s well-being. If travel times
increase, commuters’ quality of life will be impacted. Moreover, it will
have an additional cost for both individuals and businesses. Not only
will the communities and companies be impacted, but it will lead to an
increase in carbon emissions and other pollutants. The study provides a
more comprehensive way of understanding transportation vulnerability
which has potential implications for infrastructure planning in different
cities.

6. Concluding remarks
Urban flooding is a threat to large metropolitan cities, and the

frequency of floods is expected to increase with climate change. The
study revealed persistent and network-wide impact of floods and their
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heterogeneous impacts on trips of varying lengths, providing evidence
for planners and emergency officials to effectively manage the city
traffic during urban floods to ensure proper functioning of cities. The
pairwise junction travel assessment method and higher order analysis
employed in this study capture both temporal dynamics and spatiality
of traffic networks. The findings of this study would be generalizable to
other cities, and flood events since traffic and mobility networks show
similar characteristics in cities thought the world (Chan, Donner, &
Lammer, 2011; Noulas, Scellato, Lambiotte, Pontil, & Mascolo, 2012).
Therefore, they are likely to exhibit similar patterns of disruptions and
recovery during disasters. Moreover, This method can be transferred to
other spatially embedded and dynamic temporal networks and disaster
scenarios, such as the power grid during storm events. Application of
these methods on traffic networks showed that on average, localized
impact has same effect on travel times away from disrupted regions as
those within and in the nearest proximity to disruptions locations.

This study complements existing location-based human mobility
studies by dissecting fine-resolution link-level travel time data to an-
alyze the anatomy of flood-perturbed traffic networks. We reveal that
although the total number of trips might return to normal after flood-
ing, the travel time between junctions can persist for a longer duration.
The approach used in this study can be employed for assessing the
resilience of other spatially embedded and temporally dynamic net-
works, such as power grid networks. Given the importance of traffic
network function in terms of travel time, the findings of this study can
inform city managers, transportation planners, and emergency respon-
ders about the persistent and entire network impacts of local floods,
which are expected to grow with climate change impacts. The persistent
travel time increase in the entire network can translate to significant
social and economic impacts in terms of user costs, additional CO,
emissions, and lost productivity.
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