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Parameter calibration aims to estimate unobservable parameters employed in a computer model by utilizing

physical process responses and computer model outputs. In the literature, existing studies calibrate all

parameters simultaneously using an entire dataset. However, in certain applications, some parameters are

associated with only a subset of data. For example, in the building energy simulation, cooling (heating)

season parameters should be calibrated using data collected during the cooling (heating) season only. This

study provides a new multi-block calibration approach that considers such heterogeneity. Unlike existing

studies that build emulators for the computer model response, such as the widely used Bayesian calibration

approach, we consider multiple loss functions to be minimized, each for a block of parameters that use the

corresponding dataset, and estimate the parameters using a nonlinear optimization technique. We present

the convergence properties under certain conditions and quantify the parameter estimation uncertainties.

The superiority of our approach is demonstrated through numerical studies and a real-world building energy

simulation case study. Supplementary materials for this article are available online.
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1. Introduction

Recent advancements in computing have enabled the adoption of computer models as an essential

tool to design and control systems. In general, a computer model consists of a set of mathematical

functions that are based on complex physics-based first principals in order to closely resemble a

real-world system. A computer model is usually utilized with a simulator. A simulator receives

input variables that are typically observable or controllable, such as operational conditions, and it

generates outputs through simulation. Besides the input variables, additional parameters need to

be specified a priori to run simulation. These parameters are oftentimes not observable, thus their

values should be estimated using either physical laws or data. When physical laws that identify
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appropriate parameter values are not available, one can use a data-driven approach using data

collected from the physical system. Such a data-driven procedure is called parameter calibration in

the literature (Kennedy and O’Hagan 2001).

Over the last couple of decades, parameter calibration has been studied in many fields such

as biology, chemistry, climatology, and engineering (Santner et al. 2018). We provide a detailed

literature review in Section 3. Existing studies, by and large, utilize limited datasets when physical

trials are limited and computer models are expensive to run. To accommodate data scarcity, they

build surrogate models for computer models and calibration is performed with surrogate models.

Typically, they generate data from a computer model a priori through a fixed set of simulation runs.

With the resulting data, they build a response surface (or emulator) for the computer model output

using Gaussian processes (GPs) or other statistical models (Higdon et al. 2004, Tuo et al. 2021).

Consequently, calibration accuracy highly depends on the emulator accuracy. When the computer

model data are generated at less informative design points, e.g., values far from (unknown) true

parameter values, the emulator may not accurately characterize the response surface near the true

parameter values, leading to inaccurate calibration results.

Recently, Liu et al. (2021) discussed a necessity to develop a new calibration procedure for big

data settings. In many operational systems, thanks to the recent advances in sensing technology

and data acquisition systems, massive amounts of observational data from an actual physical

system have become available. Further, a sufficiently large number of simulation data can be

generated through a medium- or low-fidelity simulator or using advanced computing facilities, e.g.,

supercomputers. When a large number of field observations and simulation data are available, Liu

et al. (2021) presented a new approach to directly utilize data without building emulators.

The aforementioned existing literature calibrates all parameters in a similar manner despite of

heterogeneous data requirement. That is, they calibrate all parameters at once with the same

dataset. In some applications, however, some parameters are associated with certain specific oper-

ating conditions or a subset of datasets. Consider a building energy model (BEM). Among many

parameters that need to be calibrated, some parameters are season-dependent, and thus they should

be employed for simulating building energy operations only in specific seasons (Xu et al. 2021).

For example, “cooling supply air flow rate” is a cooling-season parameter, whereas “heating supply

air flow rate” is associated with a heating season. On the other hand, other parameters, e.g., “fan

total efficiency”, are global parameters that need to be employed throughout the year. This BEM

parameter calibration, as our motivating application, will be explained in more detail in Section 2.

From a data science point of view, these season-dependent (or block-dependent) parameters

should be calibrated using data (both field operational and simulation-generated data) associated

with the corresponding season (or block) only. That is, one needs to use a subset of data. When
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the required dataset for each group of parameters is exclusive from one another, one can calibrate

parameters separately for each group. However, when the subsets for different groups overlap, prior

methods become inappropriate.

This study develops a new calibration approach where parameters can be divided into multiple

groups and each group of parameters is associated with a subset (or block) of the entire dataset.

Specifically, we estimate the parameters by minimizing multiple loss functions, each of which is

associated with each group of parameters. Our proposed approach is useful when large computer

experiments can be conducted, e.g., from a low- to medium-fidelity computer model.

We summarize and highlight the key contribution of this paper as follows.

• Our approach estimates unobservable parameters employed in a computer model where param-

eters are associated with different subsets of observational data that possibly overlap with one

another. To the best of our knowledge, this is the first calibration study that takes this special

problem structure into consideration in the calibration procedure.

• One salient feature of the proposed approach is that it adaptively generates data on the fly

from the computer model during the calibration procedure so that the most appropriate data

can be produced from the computer model. This is different from the traditional frameworks

that generate simulation data at pre-selected data points a priori.

• To minimize multiple loss functions, we design a nonlinear optimization algorithm and derive

its associated convergence guarantees. Under certain (reasonable) conditions, our analysis

provides strong guarantees for our algorithm for different classes of functions.

• We conduct numerical experiments on a wide range of settings and a case study with real data

to demonstrate the performance of the proposed approach. The results indicate its superiority

with respect to multiple criteria, including estimation accuracy, uncertainty quantification,

computational efficiency, and scalability, over alternative approaches.

A preliminary version of this work is presented in a short conference paper (Xu et al. 2021).

In this paper, we substantially extend the analysis to connect the calibration procedure with the

statistical parameter estimation, derive and present convergence guarantees, quantify estimation

uncertainties, and provide extensive empirical results via numerical examples and a case study.

The rest of this paper is organized as follows. Section 2 discusses the BEM application as our

motivating example and other examples from various applications. Section 3 provides a literature

review of related methods. Section 4 gives a formulation of the problem. Section 5 develops a new

algorithm to solve the problem and studies the convergence properties. We evaluate the perfor-

mance of our methodology using numerical examples and building energy simulation case study in

Sections 6 and 7, respectively. Finally, Section 8 provides a brief conclusion.
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2. Applications

In this section, we introduce the motivating building energy application and discuss the wide

applicability of our proposed method.

2.1. Motivating Application: Building Energy Model

A physics-based BEM, which simulates the building energy operations, can play an important

role in optimizing building design and operations. To effectively use the BEM, several parameters

that specify building characteristics need to be estimated using operational data. Table 1 lists the

parameters employed in the BEM simulator, called EnergyPlus, which is developed and maintained

by the U.S. Department of Energy’s National Renewable Energy Laboratories (U.S. Department

of Energy 2019).

A unique aspect of the BEM is the seasonal dependency of the parameters, which is the focus

of our study. Among the parameters, some parameters related to lighting, domestic hot water,

window material, and ventilation can be considered as global parameters that are associated with

the entire year-long operational data and simulation. On the contrary, cooling- and heating-related

parameters are only associated with their seasonal portions of the year-long data. Interestingly, it is

possible that different seasons may overlap in some areas. For example, in Texas, buildings operate

heating devices from November to April, whereas cooling systems run from March to November.

Hence, during some periods of time, they operate both heating and cooling devices. Motivated by

the BEM parameter calibration, this study develops a new calibration approach when parameters

need to be calibrated with different portions of data.

Table 1 Seasonal dependency of the BEM parameters

Parameter group Description Schedule in Texas

global parameters θg

lighting level

January - December

ceiling fan design level
maximum supply air temperature

heater thermal efficiency
fan total efficiency

ventilation design flow rate

cooling-season parameters θc

solar transmittance

March - November
gross rated cooling COP

gross rated total cooling capacity
cooling supply air flow rate

heating-season parameters θh

fuel nominal capacity January - April,
burner efficiency November,

heating supply air flow rate December
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2.2. Other Applications

There are various applications where our proposed method can be utilized. First, consider the

hydrological computer model that simulates water flow to estimate natural system behaviors

affected by climate change, land use, etc. This model can be used to investigate the rainfall-runoff

relationship for the windrow compositing pad to estimate the amount of runoff (Duncan et al.

2013, Bhattacharjee et al. 2019). To accurately simulate rainfall-runoff dynamics, several param-

eters, including the depth of surface, depth of subsurface, saturated hydraulic conductivity of the

gravel media, and saturated hydraulic conductivity of the supporting soil below the media, need

to be calibrated. Among them, the depth of surface and depth of subsurface can be regarded as

global parameters that are associated with the entire year-long data, whereas others are possibly

season-dependent parameters associated only with their seasonal portion of data due to the fact

that they are generally affected by weather.

Another application is the wind flow model that characterizes spatially heterogeneous wind

patterns within a wind farm due to the interactions among turbines (You et al. 2017, 2018).

Recently, Howland et al. (2022) presented a flow model that consists of two sub-models: the power-

yaw model and wake effect model. The power-yaw model predicts the power production of upwind

turbines (yawed turbines) with a parameter λp that adjusts the power generation amount in a a

yaw-misalignment setting. The wake effect model predicts the wind speed deficit at downstream

turbines (waked turbines) due to the shading effect of upwind turbines (Liu et al. 2021) so that

it estimates the power production of the waked turbines. This wake effect model takes the wake

spreading coefficient kw and the proportionality constant of the modeled Gaussian wake σ0 as

parameters. Among the parameters, λp can be considered as a global parameter that is employed

in all wind conditions. On the other hand, kw and σ0 depend on atmospheric conditions (Howland

et al. 2022), which are calibrated using a portion of data collected under specific conditions.

Lastly, consider a system with a hierarchical block structure. One example could be a pandemic

simulation model for infectious diseases. When an outbreak, such as COVID-19, occurs, it is impor-

tant to predict the spread of infectious diseases. In the simulation models, some parameters such

as infection rate, reinfection rate, and positive test rate should be calibrated to achieve accurate

predictions and they are usually associated with specific geographical areas. These areas overlap

hierarchically from a country level, followed by state, county, city levels, etc. and each parameter

should be calibrated using the data obtained from the associated area of interest. For instance,

data to predict the infection rate at a city level overlap with that at a county level.

3. Literature Review

In this section, we provide a literature review of several relevant methodologies.
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3.1. Statistical Calibration Studies

The seminal work in modern parameter calibration is Bayesian calibration (Kennedy and O’Hagan

2001, Higdon et al. 2004). It uses a linear linkage model to connect the responses of physical pro-

cesses with computer model’s outputs, and the calibration parameters and hyperparameters in

mean vectors and covariance matrices of the GP emulators are estimated from posterior distribu-

tions. The Bayesian calibration methodology has gained popularity due to its ability to quantify

estimation uncertainties with limited field observations and/or scant simulation data (Kennedy and

O’Hagan 2001, Higdon et al. 2004, Gramacy et al. 2015). Recently, Tuo and Wu (2016) suggested

that the Bayesian approach could result in unreasonable estimates for imperfect computer models.

Here, an imperfect computer model implies that the outputs of the model, even with the optimally

calibrated parameters, are different from the expected outcomes of a physical process. To address

this limitation, Tuo and Wu (2015) presented a new calibration approach from a frequentist point

of view.

Among these statistical methods, studies in the building energy literature have mainly adopted

the Bayesian calibration approach (Chong and Menberg 2018, Coakley et al. 2014). However, the

Bayesian approach has several limitations. First, it is computationally intensive, so studies mostly

use aggregated data, e.g., monthly (Heo et al. 2012, 2013, 2015, Kim and Park 2016, Kristensen

et al. 2017b, Li et al. 2016, Lim and Zhai 2017, Sokol et al. 2017, Tian et al. 2016) or annual

(Booth et al. 2013) data. Some studies use hourly data, but they use a small subset of hourly data,

instead of using the whole dataset collected over a sufficiently long period of time (Chong et al.

2017, Chong and Lam 2017, Manfren et al. 2013, Menberg et al. 2017, Kristensen et al. 2017a).

In Chong et al. (2017), only 80 hourly data samples are selected from the dataset collected for three

months. To relieve the computational burden, a lightweight Bayesian calibration that uses a linear

regression emulator is presented in Li et al. (2016). Menberg et al. (2017) employ the Hamiltonian

Monte Carlo sampling to obtain the posterior distribution more efficiently. Despite these advances,

the Bayesian calibration approach still remains computationally demanding, which limits the use

of large-size datasets.

Second, the results from Bayesian calibration are sensitive to the prior specification (Liu et al.

2021). Our analysis, which will be discussed in more detail in Section 7, indicates that the posterior

density is heavily affected by the prior specification. When a non-informative prior is employed, the

resulting posterior tends to become non-informative, showing a relatively flat posterior distribution.

We believe this is because the use of limited data (either aggregated monthly or yearly data, or a

small number of selected hourly data) provides insufficient information to generate a meaningful

posterior. While a more informative prior leads to a sharper posterior, it requires domain knowledge

for the appropriate prior setting.
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Further, the Bayesian approach in the BEM calibration studies limits the number of cali-

bration parameters to 2 to 5. This is because the hyperparameter estimation of the covariance

function becomes computationally prohibitive as the problem size grows. Further, compounded

with the aforementioned issues of limited data, when multiple parameters are calibrated, over-

parameterization may occur, resulting in a relatively flat posterior, which does not generate mean-

ingful calibration results.

Most importantly, existing approaches cannot handle multiple blocks of overlapping data. In

particular, when the block sizes are different, one might suggest that the problem is similar to the

class imbalance problem where the data size of each class is substantially different (Byon et al.

2010). In such cases, one possible solution could be to impose different weights on each data block.

However, how to differentiate weights across blocks is not straightforward. In particular, when data

blocks overlap, if the algorithm calibrates the parameters with their small portion of data with

a higher weight, it would also affect other blocks with larger portions of data. Thus, the weight

should consider the overlapping portion as well as the data size of each block; devising a proper

weighting scheme with rigorous justification is challenging.

3.2. Other Related Studies

We also review two other streams of work that are relevant to this study, namely, adaptive sampling

and multi-task learning. First, adaptive sampling, also known as sequential design in the statistical

literature and active learning in the machine learning literature, has been actively studied. The idea

is to collect informative data points sequentially in order to construct surrogates and/or minimize a

black box function by accounting for the trade-off between exploration and exploitation (Liu et al.

2018). First, in surrogate modeling studies that often use GPs, adaptive sampling strategies choose

the next design point that maximizes predictive variance or maximizes the average reduction in

variance (Gramacy 2020, Liu et al. 2018). These studies aim to construct accurate surrogates.

Second, Bayesian optimization (BO) has received much attention recently for minimizing expen-

sive black box function. BO proceeds by modeling the objective function via a GP, optimizing an

acquisition function to find the next design point and then updating the posterior distribution of

the GP. Acquisition functions, e.g., expected improvement (Jones et al. 1998) and lower confidence

bound (Srinivas et al. 2010), attempt to strike a balance between the exploration of a new design

point with high uncertainty and exploitation with a low objective function value. More details on

BO can be found in Shahriari et al. (2015) and Frazier (2018). Typically, BO aims to minimize a

single objective. Although the multi-task BO (Swersky et al. 2013) is proposed to handle multi-

ple objective functions, it uses the same training data for all objectives to perform optimization.

Our proposed method solves a multi-objective problem with multiple blocks of data that possibly

overlap with one another.
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On the other hand, multi-task learning aims to learn multiple tasks simultaneously by leveraging

knowledge learned from one or some tasks while exploiting commonalities and differences (Zhang

and Yang 2021). It helps to improve prediction accuracy and computational efficiency for learn-

ing multiple tasks, compared to individual task learning. In principle, the proposed multi-block

calibration methodology can be regarded as a special case of multi-task learning, if we consider

calibrating each block of parameters as each task; updated parameters associated with one block

affect the loss function in other blocks so that loss function values benefit from or are hurt by

others. However, multi-task learning is typically performed in a supervised learning setting with a

fixed dataset, whereas our proposed method exploits adaptive sampling. Moreover, in multi-task

learning, each task is learned with its own dataset which is disjoint from other tasks’ data, however,

our approach accounts for overlapping blocks of data.

4. Problem Formulation

We first present a calibration problem in a general single-block calibration setting in Section 4.1

and extend it to a multi-block parameter calibration problem in Section 4.2.

4.1. Single-block Parameter Calibration

Let x ∈ Ω⊆Rd denote the vector of physically observable input variables of dimension d ∈ Z+ in

a system, where Ω is a convex and compact region of input variables that is a subset of Rd. Let

θ ∈Θ⊆ Rp denote a set of calibration parameters of dimension p ∈ Z+. Let y(x)⊆ R denote the

noisy field observational data of its true physical process ζ(x) at input x. Let η(x,θ)⊆R denote

the response from the computer model, simulating the true process ζ(x) at input x. For instance,

in the building energy simulation, x can be hourly environmental condition such as temperature,

y(x) the actual hourly electricity consumption, and η(x,θ) the electricity consumption generated

from BEM. The unknown calibration parameter vector θ needs to be estimated using y(x) and

η(x,θ).

Assuming the simulator represents the physical process accurately, Higdon et al. (2004) present

the regression model to connect physical process responses with computer model outputs as

y(xj) = η(xj,θ)+ ϵj, j = 1,2, . . . , n, (1)

where n denotes the number of observations and ϵj an observation error that follows an indepen-

dently and identically distributed (iid) normal distribution, ϵj
iid∼ N (0, σ2).

The likelihood function of θ is then

L
(
θ, σ2|y(x)

)
=

n∏
j=1

N
(
η(xj,θ), σ

2
)
, (2)
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or more explicitly,

L
(
θ, σ2|y(x)

)
=

n∏
j=1

1√
2πσ2

exp

{
− 1

2σ2

(
y(xj)− η(xj,θ)

)2}
. (3)

To estimate θ, let us consider the maximum likelihood estimation (MLE) method. The log-

likelihood function is

ℓ
(
θ, σ2|y(x)

)
=−n

2
log 2π− n

2
logσ2− 1

2σ2

n∑
j=1

(
y(xj)− η(xj,θ)

)2
. (4)

We now maximize the log-likelihood to obtain θ̂MLE given σ2 as

θ̂MLE = argmax
θ∈Θ

1

n
ℓ
(
θ|y(x)

)
= argmin

θ∈Θ

1

n

n∑
j=1

(
y(xj)− η(xj,θ)

)2
:= F (θ). (5)

Note that maximizing the likelihood function is equivalent to minimizing the empirical loss

function that quantifies the discrepancy between the computer model output η(x,θ) and physical

process data y(x) with L2 norm. This calibration procedure that minimizes the empirical loss

aligns with the idea of L2 calibration studied in Tuo and Wu (2015). Tuo and Wu (2015) aimed

to find the parameters that minimize the L2 distance between the physical process responses and

computer model outputs. Under the limited data setting, they built emulators for both computer

model outputs and physical process responses. However, we consider a situation where a sufficiently

large number of physical observational data is available and a computer model is relatively cheap

to run.

With data availability, instead of generating data from a computer model at pre-defined design

points, we want to generate computer model data more effectively so more useful data can be

used for the calibration purpose and directly use it to estimate the parameters without building

emulators. To this end, we minimize the loss functions in (5) with respect to θ. As the computer

model output η(x,θ) is likely nonlinear, we consider nonlinear optimization techniques. Consider a

first-order optimization method, i.e., gradient descent (GD). The GD method works by iteratively

updating θ with θ← θ−α∇F (θ) until a suitable termination criterion is satisfied, where F (θ) is

the empirical loss function at θ, ∇F (θ) represents its gradient, and α is a step size. Here, because

η(x,θ), as the output from a black box computer model, does not have a closed-form expression,

∇F (θ) can be approximated using the central finite difference

[∇F (θ)]i ≈
F (θ+hei)−F (θ−hei)

2h
, (6)
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where h > 0 is a small disturbance to the ith component of θ, ei denotes a p× 1 vector with ith

element being one and others zero.

One key advantage of using nonlinear optimization is that it can adaptively generate computer

model data η(x,θ). In other words, as θ is updated through the iterative GD process, we can run

simulations to get η(x,θ) at the newly refined θ. It allows us to get more informative data toward

minimizing the empirical loss (or maximizing the likelihood).

4.2. Multi-block Parameter Calibration

The single-block parameter calibration presented in Section 4.1 treats all parameters equally using

the entire dataset. We propose a new block-wise calibration approach when some parameters are

associated with a specific subset of the entire dataset.

Recall that in the BEM application, we have three distinct groups of parameters, denoted by θg,

θc, and θh in Table 1. The parameter set θg consists of global parameters so it should be globally

employed with the entire year-long simulation. On the other hand, θc and θh include season-

specific parameters, associated with only cooling-season and heating-season portions of the entire

simulation, respectively. Let us generalize the problem structure, as illustrated in Figure 1. Consider

that the entire parameter set θ consists of B groups of parameters, i.e., θ= [θ1,θ2, . . . ,θB], where

θb ∈Rpb denotes the bth group of parameters. For instance, in BEM, we have θ1 = θg, θ2 = θc, and

θ3 = θh with B = 3. Suppose further that a parameter vector θb is associated with only a subset

of entire dataset for each b= 1,2, . . . ,B (see Figure 1). Note that these subsets are not necessarily

disjoint.

Figure 1 Illustration of multiple data blocks (Here, the data include both physical process data (xj , y(xj)) and

generated data (xj , η(xj ,θ)))

With this problem structure, we calibrate θb using its corresponding portion of dataset, i.e., the

bth data block. By using the right data block, it is expected to obtain more accurate estimates, com-

pared to the single-block calibration that does not differentiate the block-dependent heterogeneity.
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To account for the block dependency, we consider multiple likelihood functions, each associated

with the bth block of datasets, as follows:

Lb

(
θb, σ

2|y(x)
)
=

∏
j∈Ib

N
(
η(xj,θb;θ−b), σ

2
)
, ∀b, (7)

where Ib is an index set in the bth block of the dataset, associated with θb, and θ−b represents the

remaining parameters. η(xj,θb;θ−b) is the computer model output at input xj when the bth block

parameters are at θb and remaining parameters at θ−b.

While Ib does not have to be disjoint with other blocks, θb and θ−b are disjoint. Then the

corresponding log-likelihood function becomes

ℓb
(
θb, σ

2|y(x),θ−b

)
=−nb

2
log 2π− nb

2
logσ2− 1

2σ2

∑
j∈Ib

(
y(xj)− η(xj,θb;θ−b)

)2
, ∀b, (8)

where nb = |Ib| is the size of Ib. To maximize the log-likelihood, we consider the corresponding

empirical loss function as

Fb(θb;θ−b) =
1

nb

∑
j∈Ib

(
y(xj)− η(xj,θb;θ−b)

)2
, ∀b, (9)

and obtain the estimates for the bth block of parameters θb by

θ∗
b = argmin

θb∈Θb

Fb(θb;θ−b), ∀b. (10)

We refer to the proposed block-wise calibration approach as multi-block calibration (shortly, M-BC)

in the subsequent discussion.

It should be noted that the simulation output η(xj,θb;θ−b) could possibly depend on θ−b, as well

as θb, when the bth block of data overlaps with other blocks associated with some parameters in θ−b.

For instance, let us consider the cooling-season parameter θc. The simulation output during the

cooling season (March-November) also depends on the setting of global parameters θg. Also, during

March to April when the cooling and heating seasons overlap, heating-season parameters also affect

the energy consumption output during a part of the cooling season. Therefore, in solving (10), the

resulting θ∗
b may also depend on θ−b. Our ultimate goal is to find θ∗

b that minimizes Fb, while at

the same time, other block parameters minimize their own loss functions. In the next section, we

provide an iterative algorithm and its convergence properties under certain conditions.

5. Parameter Estimation and Convergence Properties in Multi-block
Calibration

In this section, we propose a new algorithm to calibrate parameters in a block-wise manner. We

also provide convergence guarantees for the algorithm under certain conditions. Finally, given

convergence, we employ the MLE’s asymptotic properties and construct confidence intervals to

quantify estimation uncertainties.
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5.1. Multi-block Calibration Algorithm

Recall that existing studies typically pre-generate data and build emulators for η(·) using the

generated data. This approach is not directly applicable to the multi-block parameter calibration

problem. One may attempt to build B emulators, say, η̂1(x,θ1;θ−1), . . . , η̂B(x,θB;θ−B), using each

block of data and try to calibrate θb with η̂b(x,θb;θ−b). However, as discussed earlier, the computer

model response at the bth block can be affected by the setting of θ−b, making η̂b(·) a function of

both θb and θ−b. If one calibrates θb and θ−b simultaneously using η̂b(x,θb;θ−b), the resulting

calibrated values might differ across multiple blocks. Further, instead of generating data from a

computer model at pre-defined design points, we want to generate computer model outputs more

effectively so more informative computer model data can be used for the calibration purpose and

directly use the data to calibrate parameters without building emulators.

To this end, we design a new algorithm to solve the block-wise calibration problem. The fun-

damental idea is to devise a block-wise optimization algorithm so that the parameters in different

blocks can be calibrated with their own objective functions over iterations. Specifically, we propose

cyclically optimizing one block of parameters each time while keeping the parameters in other

blocks fixed at their most up-to-date values. For instance, in the BEM calibration, we have θ1 = θg,

θ2 = θc, and θ3 = θh with B = 3. We iteratively optimize θg that minimizes Fg(θg;θ−g), while other

parameters in θc and θh are fixed at their current iterates. Then we optimize θc for Fc(θc;θ−c)

with the previously optimized θg and continue with a similar procedure for Fh(θh;θ−h) with the

previously optimized θg and θc. This procedure is repeated until pre-specified stopping criteria are

satisfied.

Let θk
b denote the iterate of θb after finishing the kth iteration for b= 1,2, . . . ,B. At the (k+1)th

iteration, let Fb(θb;θ
k+1
−b ) in (9) denote the loss function for the bth block of parameters θb, given

the remaining parameter iterates θk+1
−b . Without loss of generality, we optimize each block in an

ascending order, starting from the first block, i.e., b= 1. Therefore, in optimizing θb that minimizes

Fb(θb;θ
k+1
−b ), the remaining parameters become θk+1

−b = [θk+1
1 , . . . ,θk+1

b−1 ,θ
k
b+1, . . . ,θ

k
B]. Here, note that

the parameters before the bth block are previously updated, whereas those after the bth block are

not refined yet. In this scheme, the loss function for the bth block in (9) at the (k+1)th iteration

can be written as

Fb(θb;θ
k+1
−b ) =

1

nb

∑
j∈Ib

(
y(xj)− η(xj,θb;θ

k+1
−b )

)2
. (11)

The computer model output η(·) is likely nonlinear, as most computer models consist of a set

of complex mathematical functions. Hence, we consider nonlinear optimization methods to find θb

that minimizes Fb(θb;θ
k+1
−b ), given θk+1

−b . Among various optimization methods, we use the most
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commonly used method, which is GD. Our approach can be easily extended to other second-order

optimization methods such as Newton’s method or quasi-Newton methods.

In minimizing Fb(θb;θ
k+1
−b ) over θb, we further consider the inner iteration, given θk+1

−b . Here,

the inner iteration is for the GD-based parameter updates in each block, and the outer iteration

implies the cycle for all blocks. Let θk,m
b denote the iterate of θb at the mth inner iteration of the

outer (k+1)th iteration. We update θk,m
b by

θk,m+1
b = θk,m

b −αk,m
b ∇Fb(θ

k,m
b ;θk+1

−b ), (12)

where αk,m
b > 0 is the step size and the ith element of ∇Fb(θ

k,m
b ;θk+1

−b ) is

[∇Fb(θ
k,m
b ;θk+1

−b )]b,i =
∂Fb(θb;θ

k+1
−b )

∂θb,i

∣∣∣∣∣
θb,i=θ

k,m
b,i

,

(13)

where θb,i is the ith parameter in θb for i= 1,2, . . . , pb, with pb being the number of parameters in

θb for b= 1,2, . . . ,B. Since the loss functions have no mathematical closed-form expressions due to

the black box nature of the simulator, similar to (6), we use a finite-differencing to approximate

the gradient for each loss function as follows:

∂Fb(θb;θ
k+1
−b )

∂θb,i

∣∣∣∣∣
θb,i=θ

k,m
b,i

≈
Fb(θ

k,m
b +heb,i;θ

k+1
−b )−Fb(θ

k,m
b −heb,i;θ

k+1
−b )

2h
, (14)

where h> 0 is a small perturbation to the ith parameter of each θb and eb,i is a pb× 1 vector with

its ith element being one and others zero.

We repeat the inner iteration for each block until some termination criteria are met. Once we

obtain θb that minimizes the bth loss function Fb(θb;θ
k+1
−b ), denoted by θk+1

b , we move to the

next (b + 1)th block to minimize its loss function Fb+1(θb+1;θ
k+1
−(b+1)) over θb+1, given θk+1

−(b+1) =

[θk+1
1 , . . . ,θk+1

b ,θk
b+2, . . . ,θ

k
B]. After we finish the cycle with all blocks, we set k= k+1 and repeat

the procedure. We finish the iteration when either the norm of gradient of each loss function is less

than a small tolerance τ1, the relative difference of loss function values is less than a small tolerance

τ2, or the maximum number of iteration is larger than some value τ3. Algorithm 1 summarizes the

proposed M-BC procedure.

We would like to highlight that the proposed cyclic calibration approach is different from the

block coordinate descent (BCD) algorithm. The major difference is that our approach handles

multiple objective functions, each of which is associated with its corresponding subset of the dataset.

On the other hand, BCD considers a single objective function.

As discussed earlier, an important feature of our approach is that it adaptively generates com-

puter model outputs during the calibration procedure, unlike existing approaches that use pre-

collected samples. As the optimization proceeds, newer parameters that make the computer model
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Algorithm 1 Multi-block Calibration (M-BC)

1: Input: D=
{
y(xj),xj

}n

j=1
with an index set Ib for each bth block of D, b= 1,2, . . . ,B

2: Initialization: θ0 = (θ0
1,θ

0
2, . . . ,θ

0
B) and k← 0

3: while convergence criterion not met do

4: for b← 1 to B do

5: Set m← 1 and θk,m
b ← θk

b

6: while convergence criterion not met do

7: Run simulations for xj , ∀j ∈ Ib, at (θk,m
b ,θk+1

−b ) to obtain Fb(θ
k,m
b ;θk+1

−b )

8: Run simulations for xj , ∀j ∈ Ib, at (θk,m
b +heb,i,θ

k+1
−b ) and (θk,m

b −heb,i,θ
k+1
−b ) to obtain Fb(θ

k,m
b +

heb,i;θ
k+1
−b ) and Fb(θ

k,m
b −heb,i;θ

k+1
−b ), respectively

9: Calculate Gk,m
b =∇Fb(θ

k,m
b ;θk+1

−b ) using (13)-(14) and set a step size αk,m
b

10: Update θk,m+1
b ← θk,m

b −αk,m
b Gk,m

b

11: Set m←m+1

12: end while

13: Set θk+1
b = θk,m

b

14: end for

15: Set k← k+1

16: end while

17: Output: θ∗ = (θk
1,θ

k
2, . . . ,θ

k
B)

outputs closer to physical process responses are obtained. That is, once θk,m
b is updated to θk,m+1

b

through the GD procedure in (12), we run the simulator at the refined θk,m+1
b to get data that

leads to smaller loss. Through this iterative data generation procedure, more informative data can

be produced toward minimizing the discrepancy between the computer model output and physical

process response.

As a remark, in multi-block calibration one can randomly choose the next block, but in this

section we consider the fixed ordering that proceeds in a cyclical way. In Section 6, we empirically

compare the cyclic ordering with stochastic ordering. Additionally, we note that, depending on the

problem structure, the order of blocks may matter. However, in our numerical examples in a wide

range of settings, we obtain comparable results in different orderings.

5.2. Convergence Analysis

This section presents the convergence properties when each loss function Fb, b = 1,2, . . . ,B, is a

general nonconvex, strongly convex, or convex function. While we utilize the standard analysis

procedure of GD, the block-wise treatment with multiple loss functions poses substantial challenges

in analyzing the convergence properties of the proposed M-BC approach. In each of the three

settings, we impose conditions on Fb and possibly the iterates generated by Algorithm 1 to achieve
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certain convergence properties. In the special case where the number of blocks is equal to 1, our

results recover the standard results for GD. The detailed proofs of all lemma and theorems are

available in the online supplementary document.

Throughout the convergence analysis, we use the notations summarized in Table 2. We under-

stand that the notations are complex, mainly due to the double (inner and outer) iteration nature

in M-BC. For ease of understanding, Figure 2 presents the essence of the notations. For the num-

ber of inner iterations, denoted by Mb(k), we consider the fixed number of inner iterations, i.e.,

Mb(k) =Mb, but the analysis can be extended to variable number of inner iterations. Moreover,

we use a fixed step size αb for the bth block for b= 1,2, . . . ,B, but this could also be extended to

utilizing a backtracking line search.

Figure 2 Illustration of notations at the (k+1)th outer iteration

In our analysis, we make the following assumption.

Assumption 1. Let Fb be a continuously differentiable function in dom(Fb) for b= 1,2, . . . ,B.

Assume that Fb has a block-wise Lipschitz continuous gradient with a Lipschitz constant Lb <∞,

with respect to θb for any given θ−b, i.e., ||∇Fb(θb;θ−b)−∇Fb(θ
′
b;θ−b)||2 ≤Lb||θb−θ′

b||2, ∀θb,θ
′
b ∈

Rpb. Further, assume that Fb is bounded below so that the infimum of Fb, F
inf
b , exists and Fb has

at least one stationary point for all b.

We first show a descent lemma, a fundamental ingredient for the convergence analysis. Lemma 1

shows that the function value Fb(θ) decreases when the block parameter is updated from θk
b to

θk+1
b with θk+1

−b fixed.

Lemma 1 (Descent lemma). Suppose Assumption 1 holds with constants Lb for b =

1,2, . . . ,B. Let αb ∈ (0,1/Lb] for all b. Then, for all k≥ 0 and all b,

Fb(θ
k+1
b ;θk+1

−b )≤ Fb(θ
k
b ;θ

k+1
−b )− 1

2
αb

Mb∑
m=1

∥∇Fb(θ
k,m
b ;θk+1

−b )∥22. (15)
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Table 2 Nomenclature for convergence analysis

Category Symbol Meaning

Superscript k The iteration number for the outer iteration.
m The iteration number for the inner iteration, i.e.,

m= 1,2, . . . ,Mb(k).
Mb(k) The number of inner iterations for the bth block at the kth outer

iteration.
Mb Fixed number of Mb(k) regardless of the kth outer iteration.

Iterate θk ∈Rp The iterate after all blocks are updated at the kth outer iteration,
i.e., θk ≡ (θk

1,θ
k
2, . . . ,θ

k
B).

θ∗ ∈Rp The unique global minimizer of Fb in the strongly convex case; a
point at which the minimum of Fb is attained in the convex case,
i.e., θ∗ ≡ (θ∗

1,θ
∗
2, . . . ,θ

∗
B).

θk
b ∈Rpb The iterate of the bth block parameters after finishing the inner

iteration of the bth block at the kth outer iteration.
θ∗
b ∈Rpb The unique global minimizer of Fb given θ∗

−b in the strongly convex
case; a point at which the minimum of Fb given θ∗

−b is attained in
the convex case, i.e., θ∗ ≡ (θ∗

b ;θ
∗
−b).

θk,m
b ∈Rpb The iterate of the bth block parameter at the mth inner iteration of

the (k+1)th outer iteration, given θk+1
−b . Note θk,1

b ≡ θk
b and

θk,Mb+1
b ≡ θk+1

b .
θk,∗
b ∈Rpb The unique global minimizer of Fb given θk+1

−b in the strongly
convex case; a point at which the minimum of Fb given θk+1

−b is
attained in the convex case.

θk
−b ∈Rp−pb θk

−b ≡ [θk
1, . . . ,θ

k
b−1,θ

k−1
b+1 , . . . ,θ

k−1
B ].

(θk
b ;θ

k+1
−b )∈Rp (θk

b ;θ
k+1
−b )≡ (θk+1

1 , . . . ,θk+1
b−1 ,θ

k
b ,θ

k
b+1, . . . ,θ

k
B). Note

(θk
b ;θ

k+1
−b ) = (θk,1

b ;θk+1
−b ), where θk,1

b is the initial value of θk
b at the

(k+1)th outer iteration with θk+1
−b being fixed.

(θk+1
b ;θk+1

−b )∈Rp (θk+1
b ;θk+1

−b )≡ (θk+1
1 , . . . ,θk+1

b−1 ,θ
k+1
b ,θk

b+1, . . . ,θ
k
B) with θk+1

−b being
fixed. Note (θk+1

b ;θk+1
−b ) = (θk,Mb+1

b ;θk+1
−b ), where θk,Mb+1

b is the final
value of θk

b at the (k+1)th outer iteration with θk+1
−b being fixed.

(θk,m
b ;θk+1

−b )∈Rp (θk,m
b ;θk+1

−b )≡ (θk+1
1 , . . . ,θk+1

b−1 ,θ
k,m
b ,θk

b+1, . . . ,θ
k
B) with θk+1

−b being
fixed.

(θk,∗
b ;θk+1

−b )∈Rp (θk,∗
b ;θk+1

−b )≡ (θk+1
1 , . . . ,θk+1

b−1 ,θ
k,∗
b ,θk

b+1, . . . ,θ
k
B) with θk+1

−b being
fixed.

Function Fb(θ
k)∈R The function value of Fb evaluated at θk = (θk

1,θ
k
2, . . . ,θ

k
B).

Fb(θ
k
b ;θ

k+1
−b )∈R The function value of Fb evaluated at (θk

b ;θ
k+1
−b ) to stress θk+1

−b is
fixed.

F inf
b A lower bound on the function value of Fb.

Gradient ∇Fb(θ
k
b ;θ

k+1
−b )∈Rpb The gradient of Fb evaluated at θk

b with θk+1
−b being fixed.

The result above is analogous to that of GD. Namely, the progress made over a sequence of

iterations (for M-BC, this is over the inner iterations) is proportional to the sum of the norms of

the gradient squared. Using Lemma 1, we first analyze the convergence properties of M-BC on the

general nonconvex case in Theorem 1.

Theorem 1 shows that under certain conditions, the iterate θk converges to a stationary point

θ∗ as k→∞, i.e., the norm of the gradient of all objective functions vanishes in the limit.
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Theorem 1 (General nonconvex case). Suppose Assumption 1 holds. Further, suppose that

Fb(θ
k)≥ Fb(θ

k
b ;θ

k+1
−b ),

Fb(θ
k+1
b ;θk+1

−b )≥ Fb(θ
k+1),

(16)

for all k≥ 0 and b= 1,2, . . . ,B. Let αb ∈ (0,1/Lb] for all b. Then, for all b,

lim
k→∞
∥∇Fb(θ

k
b ;θ

k+1
−b )∥2 = 0. (17)

We make a few remarks about the conditions in (16). From Lemma 1, it follows that

Fb(θ
k
b ;θ

k+1
−b ) ≥ Fb(θ

k+1
b ;θk+1

−b ). Thus, the inequalities (16) imply that Fb(θ
k) ≥ Fb(θ

k+1), i.e., the

function value for the bth block decreases after all blocks have updated their associated param-

eters (across outer iterations). This seems to be a strong assumption in that the blocks do not

compete over the course of optimization. However, this does not require that when every other

block updates, the function value Fb of the b
th block is non-increasing. Instead, Fb is non-increasing

across outer iterations.

The result in Theorem 1 has an important implication. When we eventually find the stationary

point θ∗
b for the parameters in the bth block, other blocks’ parameters also converge to a stationary

point θ∗
−b as well and Fb(θ

k
b ;θ

k
−b) eventually converges to Fb(θ

∗
b ,θ

∗
−b), ∀b. It implies that even though

we calibrate parameters in a block-wise manner, our approach obtains a concurrent convergence

of the whole parameter vector, that is, θk = (θk
1 ,θ

k
2 , . . . ,θ

k
B) converges to a stationary point θ∗ =

(θ∗
1,θ

∗
2, . . . ,θ

∗
B) under the non-competing condition in (16) as k increases using M-BC. Accordingly,

if Fb’s are strongly convex, Fb’s have a unique global minimizer θ∗. If Fb’s are convex, Fb’s have a

global minimizer θ∗, ∀b.
We make the possible extension of conditions in (16) at the end of this section. Additionally, we

relax the conditions in (16) and prove the similar result in Corollary 1 by instead assuming the

weaker technical condition in (18).

Corollary 1. Suppose Assumption 1 holds. Further, suppose that the infinitely cumulative sum

of the decreases of the function values during the inner iterations is finite, i.e.,

lim
K→∞

K∑
k=0

{
Fb(θ

k
b ;θ

k+1
−b )−Fb(θ

k+1
b ;θk+1

−b )
}
<∞, (18)

for all b= 1,2, . . . ,B. Let αb ∈ (0,1/Lb] for all b. Then, for all b,

lim
k→∞
∥∇Fb(θ

k
b ;θ

k+1
−b )∥2 = 0. (19)

Corollary 1 states that as long as the sum of loss function decreases is finite, M-BC converges

to a stationary point. It allows other block calibrations to increase the bth block loss, so the non-

competing condition in (16) is not needed. Thus, this result is more general than that in Theorem 1.
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Next, we show the convergence rates for the strongly convex (Theorem 2) and convex (Theorem 3)

cases.

Theorem 2 (Strongly convex case). Suppose Assumption 1 holds. Further, assume that the

function Fb is µb-strongly convex over θb for any fixed θ−b for b= 1,2, . . . ,B. Moreover, suppose

that
|Fb(θ

k+1)−Fb(θ
∗)| ≤ c1

{
Fb(θ

k+1
b ;θk+1

−b )−Fb(θ
k,∗
b ;θk+1

−b )
}
,

Fb(θ
k
b ;θ

k+1
−b )−Fb(θ

k,∗
b ;θk+1

−b )≤ c2|Fb(θ
k)−Fb(θ

∗)|,
(20)

for all k≥ 0 and b, where c1, c2 > 0 and c1c2 <
1

(1−αbµb)
Mb

. Let αb ∈ (0,1/Lb] for all b. Then, for all

k and b,

|Fb(θ
k)−Fb(θ

∗)| ≤ ρk|Fb(θ
0)−Fb(θ

∗)|, (21)

where ρ= c1c2(1−αbµb)
Mb < 1.

Both conditions in (20) bound the optimality gap between the progress made in inner iterations

versus the progress made in outer iterations. Since the objective function of each block is changing

across outer iterations, the absolute value safeguards against the possibility of a current iterate

having lower function value than the optimal solution. We note that this is possible in our setting

since the optimal solution of θ∗ = (θ∗
b ;θ

∗
−b) is defined as the point where all objectives are optimized

and thus can potentially have a higher function value than the point (θk,∗
b ;θk

−b) has.

Note that the conditions for Theorem 2 do not require that the function of the bth block is mono-

tonically non-increasing across outer iterations. That being said, these assumptions are relatively

weak and can be tightened so that the result still shows the linear convergence rate at possibly a

slower rate. We provide the corollary about this.

Corollary 2. Suppose Assumption 1 holds. Further, assume that the function Fb is µb-strongly

convex over θb for any fixed θ−b for b= 1,2, . . . ,B. Moreover, suppose that

|Fb(θ
k+1)−Fb(θ

∗)| ≤ c1
{
Fb(θ

k+1
b ;θk+1

−b )−Fb(θ
k,∗
b ;θk+1

−b )
}
,

Fb(θ
k
b ;θ

k+1
−b )−Fb(θ

k,∗
b ;θk+1

−b )≤ c2|Fb(θ
k)−Fb(θ

∗)|,
(22)

for all k≥ 0 and b, where c1, c2 > 0 and c1c2 <
1

(1−αbµb)
Mb

. Additionally, suppose that

Fb(θ
k)≥ Fb(θ

k
b ;θ

k+1
−b ),

Fb(θ
k+1
b ;θk+1

−b )≥ Fb(θ
k+1),

(23)

for all k and b. Let αb ∈ (0,1/Lb] for all b. Then, for all k and b,

Fb(θ
k)−Fb(θ

∗)≤ ρk
{
Fb(θ

0)−Fb(θ
∗)
}
, (24)

where ρ= c1c2(1−αbµb)
Mb < 1.
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Theorem 2 and Corollary 2 show linear convergence of the iterates generated by the M-BC

algorithm, analogous to that of GD (in the special case where b = 1, we recover the result of

GD). While convergence is derived across outer iterations, the rate of convergence depends on the

number of inner iterations. Note that ρ= c1c2(1−αbµb)
Mb < 1, thus, the larger the number of inner

iterations, the faster the rate (constant), or alternatively, the larger the errors that are acceptable

in (22) (larger constants c1 and c2). Note that compared to Theorem 2, Corollary 2 has somewhat

stronger result that shows outer function value Fb(θ
k) keep non-increasing with the linear rate

O(ρk).

Additionally, Theorem 3 shows the convergence rate for the convex case with certain assumptions.

Theorem 3 (Convex case). Suppose Assumption 1 holds. Further, assume that the function

Fb is convex over θb for any fixed θ−b for b= 1,2, . . . ,B. Moreover, suppose that

|Fb(θ
k+1)−Fb(θ

∗)| ≤ c1
{
Fb(θ

k+1
b ;θk+1

−b )−Fb(θ
k,∗
b ;θk+1

−b )
}
,

∥θk+1
b −θk+1,∗

b ∥22 ≤ ∥θ
k+1
b −θk,∗

b ∥22,
(25)

for all k≥ 0 and b, where c1 > 0. Let αb ∈ (0,1/Lb] for all b. Then, for all k≥ 1 and b,

1

k

k∑
l=1

|Fb(θ
l)−Fb(θ

∗)| ≤ c1∥θ0
b −θ0,∗

b ∥22
2αbkMb

. (26)

The first inequality in (25) is the same as the first condition in the strongly convex setting

(see (20)). The second bounds the distance between the difference from the current iterate’s function

value to the optimal solution’s function value across two outer iterations.

Note that the first assumption in (25) is relatively weak and can be tightened so that the result

still shows the sublinear convergence rate at possibly a slower rate. We provide the result about

this in Corollary 3.

Corollary 3. Suppose Assumption 1 holds. Further, assume that the function Fb is convex for

b= 1,2, . . . ,B over θb for any fixed θ−b. Moreover, assume that

|Fb(θ
k+1)−Fb(θ

∗)| ≤ c1
{
Fb(θ

k+1
b ;θk+1

−b )−Fb(θ
k,∗
b ;θk+1

−b )
}
,

∥θk+1
b −θk+1,∗

b ∥22 ≤ ∥θ
k+1
b −θk,∗

b ∥22,
(27)

for all k≥ 0 and b, where c1 > 0. Additionally, assume that

Fb(θ
k)≥ Fb(θ

k
b ;θ

k+1
−b ),

Fb(θ
k+1
b ;θk+1

−b )≥ Fb(θ
k+1),

(28)

for all k and b. Let αb ∈ (0,1/Lb] for all b. Then, for all k and b,

Fb(θ
k)−Fb(θ

∗)≤ c1∥θ0
b −θ0,∗

b ∥22
2αbkMb

. (29)
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Theorem 3 and Corollary 3 show that in the convex setting, the iterates generated by the M-BC

algorithm converge to a minimizer at a sublinear rate that depends on both the number of inner

and outer iterations. Again, this is analogous to GD, and in the special case with b= 1, we recover

the result of GD. Note that Corollary 3 has somewhat stronger result that shows outer iterates θk

keep non-increasing with the sublinear rate O
(
1/(kMb)

)
.

We make a comment about the number of iterations required for our algorithm to converge

(i.e., number of inner iterations for a given block and number of outer iterations) and provide the

computational complexity of M-BC. Of course, the number of iterations highly depends on the

convergence criterion used in Algorithm 1. To give a concrete example, consider the case of strongly

convex functions, where the convergence criterion in the inner loop is based on the optimality gap

and suppose the inner and outer termination tolerances for relative differences are set as 0< ϵouter ≤

ϵinner < 1. In this case, one can show that the number of inner iterations required for each block

is O
(
log (1/ϵinner)

)
, and the total number of iterations is O

(
logϵinner (1/ϵouter)

)
. Thus, combining

the time for data generation and for parameter estimation, the computational complexity becomes

O
(
n logϵinner(1/ϵouter)

)
, assuming that the simulation running time is proportional to the data size

n. Similar results can be shown for the convex and nonconvex cases under appropriate termination

conditions.

Finally, we would like to make additional remarks about the conditions in our analysis. While the

conditions we impose in deriving convergence properties, for example, that the objective functions

do not compete for all θb, may seem to be strong, we make these assumptions for the analysis of

the M-BC algorithm to be analogous to that of GD. Furthermore, the conditions in our analysis are

less restrictive than that as they are over the course of the iterates generated by the algorithm, and

not for the entire space. These conditions may not be verified except in relatively simple settings,

as they require information about the optimal solution and/or problem specific parameters. In

practice, after running the method on a specific problem, one can observe the trajectories to see if

the conditions are satisfied. In our numerical examples in a wide range of settings and the BEM case

study, we did not observe the situation that the non-competing conditions were severely violated.

That being said, we conclude this section by discussing possible extensions of the proposed

approach and convergence results. Suppose that in the general nonconvex case, instead of assuming

(16), we can relax the conditions as

Fb(θ
k)+ δkb,1 ≥ Fb(θ

k
b ;θ

k+1
−b ),

Fb(θ
k+1
b ;θk+1

−b )≥ Fb(θ
k+1)− δkb,2,

(30)

for all k ≥ 0 and b= 1,2, . . . ,B with δkb,1 > 0 and δkb,2 > 0. That is, we allow the objective function

of the block to increase by some levels (δkb,1 and δkb,2) after calibrating parameters in other blocks.
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Under this assumption, if δkb,1 = δ1 and δkb,1 = δ2 for all b = 1,2, . . . ,B, then we conjecture that

one can only show convergence to a neighborhood of the solution that depends on δ1 and δ2. On

the other hand, if δkb,1 and δkb,1 are summable, then a similar result to Theorem 1 can be proven.

Similarly, the conditions for the results in the strongly convex and convex cases can be relaxed,

and under appropriate conditions, convergence (and rates) can be proven. Our BEM case study

is Section 7 demonstrates that the non-competing condition in (16) is satisfied. However, we plan

to further investigate competing cases with (30) in our future study, as it may arise in other

applications.

5.3. Asymptotic Properties of Calibration Parameters

When θb converges to a minimizer θ∗
b for each b based on the results in the previous section, we

obtain the MLE for the calibration parameters. Thus, we can entertain its appealing theoretical

properties such as consistency and normality. From the likelihood function in (8), the consistency

property says θ̂b,MLE converges in probability to a true parameter vector, denoted by θb,0, as nb→

∞, i.e., θ̂b,MLE
p−→ θb,0 for each b. Further, the asymptotic normality indicates that the estimator

√
nb(θ̂b,MLE−θb,0) converges in distribution to a (multivariate) normal distribution N (0, I(θb,0)

−1)

as nb→∞, i.e.,
√
nb(θ̂b,MLE− θb,0)

d−→N (0, I(θb,0)
−1), where I(θb,0) is an expected Fisher infor-

mation matrix. We use the MLE’s asymptotic properties to construct the confidence intervals of

calibration parameters for uncertainty quantification.

Based on (8), the expected Fisher information matrix is represented by

I(θb,0) =−E

[
∂2ℓ̃b

(
θb|y(x),θ−b

)
∂θ2

b

] ∣∣∣∣∣
θb=θb,0,

(31)

where ℓ̃b
(
θb|y(x),θ−b

)
is a log-likelihood function from a single observation for the bth block as

ℓ̃b
(
θb|y(x),θ−b

)
=−1

2
log 2π− 1

2
logσ2− 1

2σ2

(
y(x)− η(x,θb;θ−b)

)2
. (32)

The expected Fisher information matrix can be approximated by its empirical counterpart,

I(θb,0)≈−
1

nb

∑
j∈Ib

∂2ℓ̃b
(
θb|y(xj),θ−b

)
∂θ2

b

∣∣∣∣∣
θb=θb,0.

(33)

Using the chain rule, we obtain the (i, i′)-entry of ∂2ℓ̃b
(
θb|y(xj),θ−b

)
/∂θ2

b as follows.

∂2ℓ̃b
(
θb|y(xj),θ−b

)
∂θb,i∂θb,i′

=− 1

σ2

∂η(xj,θb;θ−b)

∂θb,i′

∂η(xj,θb;θ−b)

∂θb,i
+

1

σ2

(
y(xj)− η(xj,θb;θ−b)

)
× ∂η2(xj,θb;θ−b)

∂θb,i∂θb,i′
. (34)
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Here, since the first- and second-order partial derivatives of η(xj,θb;θ−b) are not analytically

available, we obtain them numerically using the central finite difference (Abramowitz and Stegun

1972) as follows:

∂η(xj,θb;θ−b)

∂θb,i

≈ η(xj,θb +heb,i;θ−b)− η(xj,θb−heb,i;θ−b)

2h
, (35)

∂2η(xj,θb;θ−b)

∂θ2
b,i

≈ −η(xj,θb +2heb,i;θ−b)+ 16η(xj,θb +heb,i;θ−b)− 30η(xj,θb;θ−b)

12h2

+
16η(xj,θb−heb,i;θ−b)− η(xj,θb− 2heb,i;θ−b)

12h2
, (36)

∂2η(xj,θb;θ−b)

∂θb,i∂θb,i′
≈ η(xj,θb +heb,i +h′eb,i′ ;θ−b)− η(xj,θb +heb,i−h′eb,i′ ;θ−b)

4hh′

+
−η(xj,θb−heb,i +h′eb,i′ ;θ−b)+ η(xj,θb−heb,i−h′eb,i′ ;θ−b)

4hh′ , (37)

for i, i′ = 1,2, . . . , pb, where h,h′ > 0 are small perturbation values. Further, assuming the physical

process data y(x) have the same variance σ2 across multiple blocks, we can find its MLE as

σ̂2
MLE =

1

n

n∑
j=1

(
y(xj)− η(xj, θ̂MLE)

)2
. (38)

Then we can obtain the asymptotic 100(1−α)% Wald confidence interval (CI) for each compo-

nent of θ̂b,MLE as follows:

θ̂b,MLE,i ± z1−α/2

1
√
nb

√
I−1
ii (θ̂b,MLE), i= 1,2, . . . , pb, (39)

for b = 1,2, . . . ,B, z1−α/2 is a critical value of the normal distribution, and I−1
ii denotes the ith

diagonal entry of the inverse of the Fisher information matrix I.

5.4. Implementation Details

We provide guidance on defining the algorithmic parameters in M-BC (Algorithm 1).

• αk,m
b > 0 (step size of the bth block at the (k+ 1)th outer iteration and mth inner iteration):

The step size αk,m
b can be obtained by a backtracking line search, as described in Algorithm 2

below. In the backtracking line search, the parameters can be set as ᾱ= 1, ρ= 1/2, c= 10−4

(or 1/2) (Boyd and Vandenberghe 2004, Nocedal and Wright 2006). Note that, in principle,

the step size αk,m
b could also be set to a sufficiently small constant or a diminishing sequence

(e.g., 1/m).
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Algorithm 2 Backtracking Line Search

1: Choose: ᾱ > 0, ρ∈ (0,1), c∈ (0,1); Set α← ᾱ

2: while Fb(θ
k,m
b −αGk,m

b ;θk+1
−b )>Fb(θ

k,m
b ;θk+1

−b )− cα∥∇Fb(θ
k,m
b ;θk+1

−b )∥22 do

3: Update α← ρα

4: end while

5: Output: αk,m
b ← α

• h > 0 (bandwidth of finite-differencing when approximating the gradient): The bandwidth h

is set to 10−8, which is the square root of machine precision. We note that in the setting

where exact function values can be computed, the choice of bandwidth is optimal up to

constants (Moré and Wild 2012). In practice, we note that a sufficiently small value h works

well in most cases (e.g., 10−4).

• τ1 > 0 (termination tolerance: norm of the gradient): We suggest that τ1 would be set as any

sufficiently small value (e.g., 10−4).

• τ2 > 0 (termination tolerance: relative difference of loss function values): We suggest that τ2

would be also set as any sufficiently small value (e.g., 10−4).

• τ3 > 0 (termination tolerance: maximum iterations): The maximum number of iterations is

used to safeguard the algorithm from running forever. If the algorithm reaches this value, it

exits the loop. We suggest that τ3 would be set as sufficiently large value as long as computing

resources are available. In our implementation, we set 2000 for the outer loop and 1000 for

the inner loops of the algorithm.

6. Numerical Study

In this section, we evaluate the calibration accuracy of our proposed method in comparison with

other alternatives through numerical studies. We also report the half length of CI and coverage rate

of each parameter to quantify estimation uncertainties. All experiments, except those for alternative

methods in Section 6.4, are conducted with MATLAB 2014a. For the alternative methods in Section

6.4, R is used. All experiments use the following computing environment: 64-bit Windows OS with

the Intel Xeon CPU E5-2697 @ 2.60 GHz processor and 128 GB RAM.

6.1. Problem Settings

We consider three numerical examples with different settings of the following physical processes

and computer models.

(a) Example I (perfect computer model, block-wise convex loss functions)

• Physical process

y(x) = I
(
x<

2

5
π

)
exp

( x

10

)
sin(x)+ I

(
2

5
π≤ x<

8

5
π

)
exp

( x

10

)
cos(x)+ I

(
x≥ 8

5
π

)
exp

( x

10

)
sin(x)+ ε.
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• Computer model

η(x,θ) = I
(
x<

2

5
π

)
exp

( x

10

)
sin(x)+ I

(
2

5
π≤ x<

8

5
π

)
exp

( x

10

)
cos(x)+ I

(
x≥ 8

5
π

)
exp

( x

10

)
sin(x)

− I
(
x<

2

5
π

)
(θ1 +1)

√
x2−x+1

2
− I

(
2

5
π≤ x<

4

5
π

)
(θ1 +1)(θ2− 10)

√
x2−x+1

10

− I
(
4

5
π≤ x<

6

5
π

)
(θ2− 10)

√
x2−x+1

10
− I

(
6

5
π≤ x<

8

5
π

)
(θ2− 10)(θ3− 5)

√
x2−x+1

10

− I
(
x≥ 8

5
π

)
(θ3− 5)

√
x2−x+1

20
.

(b) Example II (perfect computer model, nonconvex loss functions)

• Physical process

y(x) = I
(
x<

2

5
π

)
exp

( x

10

)
sin(x)+ I

(
2

5
π≤ x<

8

5
π

)
exp

( x

10

)
cos(x)+ I

(
x≥ 8

5
π

)
exp

( x

10

)
sin(x)+ ε.

• Computer model

η(x,θ) = I
(
x<

2

5
π

)
exp

( x

10

)
sin(x)+ I

(
2

5
π≤ x<

8

5
π

)
exp

( x

10

)
cos(x)+ I

(
x≥ 8

5
π

)
exp

( x

10

)
sin(x)

− 2I
(
x<

2

5
π

)
(θ1 +1)cos

(
θ1x

10

)
− I

(
2

5
π≤ x<

4

5
π

)
(θ1 +1)(θ2− 10)

2
cos

(
θ2x

20

)
− I

(
4

5
π≤ x<

6

5
π

)
θ2− 10

2
cos

(
θ2x

10

)
− I

(
6

5
π≤ x<

8

5
π

)
(θ2− 10)(θ3− 5)

2
cos

(
θ2x

20

)
− I

(
x≥ 8

5
π

)
θ3− 5

2
cos

(
θ3x

10

)
.

(c) Example III (imperfect computer model, nonconvex loss functions)

• Physical process

y(x) = exp
( x

10

)
+ I(x< π) exp

( x

10

)
sin(x)+ I(x≥ π) exp

( x

10

)
cos(x)+ ε.

• Computer model

η(x,θ) = exp
( x

10

)
+ I(x< π) exp

( x

10

)
sin(x)+ I(x≥ π) exp

( x

10

)
cos(x)

− 5
√
θ21 − θ1 +1

{
sin

(
θ1x

10

)
+cos

(
θ1x

10

)}
− I(x< π)

√
θ22 − θ2 +1

2

{
sin

(
θ2x

5

)
+cos

(
θ2x

5

)}
− I(x≥ π)

√
θ23 − θ3 +1

2

{
sin

(
θ3x

10

)
+cos

(
θ3x

10

)}
.

In all examples, x∼U(0,2π) and ε∼N (0,0.01). In Examples I and II, the terms can be divided into

three input domains x< 4π/5, 2π/5≤ x< 8π/5, and x≥ 6π/5, respectively, to represent different

blocks (e.g., seasonality in BEM). Hence, θ1, θ2, and θ3 are the block parameters that need to be

calibrated with dataset associated with the first, second, and third blocks of data collected when

x< 4π/5, 2π/5≤ x< 8π/5, and x≥ 6π/5, respectively. Note that these data blocks are not disjoint.
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For example, θ1 and θ2 together affect the computer model response for 2π/5≤ x < 4π/5. Thus,

one should not calibrate each θi separately. In Example III, the first term is globally employed

regardless of the input value. The second and third terms are employed when x < π and x ≥ π,

respectively, which mimic the block dependency. Thus, θ1 should be calibrated with the entire

dataset, whereas the block parameters θ2 and θ3 need to be calibrated with the second and third

blocks of data collected when x< π and x≥ π, respectively. Figure 3 illustrates the multiple data

blocks that are employed in Examples I, II and III.

Figure 3 Illustration of multiple data blocks for Examples I & II (left) and Example III (right)

In Examples I and II, the computer models represent perfect computer models with the true

parameters θ= (θ1, θ2, θ3) = (−1,10,5), implying that the computer models produce exactly same

simulation outcomes as the expected physical process response when their parameters are correctly

calibrated. However, Example III exhibits an imperfect computer model where there are no true

parameter values. Further, the loss functions in Example I for three blocks, F1,F2, and F3, are

block-wise convex, i.e., the block loss functions are convex in terms of their associated parameters,

given other parameters being fixed. On the other hand, Examples II and III generate nonconvex

loss functions.

In implementing the proposed approach, we choose the step size (αk,m
b in (12)) using the back-

tracking line search in Algorithm 2. The termination condition is set as the norm of the gradient

of the loss functions is less than 10−4 in both inner and outer iterations.

6.2. Implementation Results

We present the implementation results in comparison with the following two alternatives.

(a) Hybrid-block Calibration (H-BC): In this alternative, the computer model correctly sim-

ulates its response according to underlying block properties. Specifically, similar to M-BC, it con-

siders the block dependency, using the corresponding subset of data for each block, rather than
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using the entire data. However, unlike M-BC that uses multiple loss functions, H-BC uses a single

loss function in (5) and optimizes θ= (θ1, θ2, θ3) altogether, namely,

θ← argmin
θ∈Θ

1

n

n∑
j=1

(
y(xj)− η(xj,θ)

)2
. (40)

In solving (40), H-BC uses the correct block of data to compute the gradient of the loss function,

but instead of exploiting a block-wise minimization, it updates the parameters all at once, i.e., it

updates θ1, θ2, θ3 altogether at each GD iteration.

(b) Single-block Calibration (S-BC): This alternative ignores the block dependency of param-

eters. It treats all parameters as global parameters. Thus, when the computer model response is

generated, it employs all terms, ignoring I(·) in the above examples. For example, in Example III,

when η(x,θ) is simulated for x< π, it should employ the first global term and term with I(x< π)

only, but it also employ the other term with I(x≥ π). Then it uses the single loss function, shown

in (5), to calibrate parameters. We include S-BC because in the BEM simulation, seasonality can

be ignored and one may blindly run the BEM simulator without correct scheduling.

When loss functions are convex, we can start from an arbitrarily selected starting point to attain

a global minimum. In practice, however, we do not know the form of the loss functions, since the

computer model is a black box. Thus, we use multiple initial points and select the best estimates

that produce the smallest mean squared error (MSE) in a training set consisting of 1000 data

samples. We then evaluate the performance using a test set with another 1000 data samples.

Table 3 summarizes the average of calibrated parameters (and standard deviation) in the third

to fifth columns, obtained from 200 experiments, as well as MSEs in the test set in the last four

columns. Each Fi represents the MSE at the ith data block, and Fall in the last column is overall

MSE with all test data samples. Clearly, each calibrated value for θ1, θ2 and θ3 using M-BC in

Examples I and II is closer to the true parameter values θ= (θ1, θ2, θ3) = (−1,10,5).

We summarize some observations from Table 3.

• Since M-BC optimizes each block of parameters with the correct subset of data by minimizing

the corresponding loss functions, it provides the most accurate calibration results with the

lowest MSEs.

• H-BC also uses the correct portion of data, so its MSEs tend to be smaller than those from

S-BC. But, its calibrated values deviate from the true values in some cases, e.g., θ2 and θ3

in Example I. It is because its single loss function for all three groups of parameters is quite

complicated and highly nonconvex with interations between parameters (e.g., (θ1+1)(θ2−10)).

On the contrary, in the proposed M-BC, each loss function, given fixed parameters in other

blocks, is simpler than the H-BC’s loss function. For instance, in Example I, even though η(·)
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Table 3 Results of calibrated parameter values and MSE in test sets from 200 experiments (Note: Fi is the

empirical loss associated with ith block for i= 1,2,3. The values inside parentheses are standard deviations)

Ex Method
Calibrated parameter values MSE

θ1 θ2 θ3 F1 F2 F3 Fall

True value -1 10 5 - - - -

I
M-BC -1.00 (0.01) 9.99 (0.02) 5.00 (0.03) 0.01 (0.00) 0.01 (0.00) 0.01 (0.00) 0.01 (0.00)
H-BC -1.00 (0.02) 9.87 (0.21) 5.36 (1.86) 0.01 (0.00) 0.01 (0.00) 0.01 (0.00) 0.01 (0.00)
S-BC 4.69 (0.83) -2.05 (1.03) 0.55 (1.37) 42.35 (8.31) 72.3 (5.68) 600.36 (123.71) 3.17 (0.08)

II
M-BC -1.00 (0.00) 10.00 (0.01) 5.00 (0.01) 0.01 (0.00) 0.01 (0.00) 0.01 (0.00) 0.01 (0.00)
H-BC -1.00 (0.00) 10.00 (0.01) 5.00 (0.01) 0.01 (0.00) 0.01 (0.00) 0.01 (0.00) 0.01 (0.00)
S-BC -0.15 (1.64) 9.77 (1.61) 5.18 (4.16) 3.78 (16.94) 3.08 (5.59) 6.72 (26.02) 1.55 (0.35)

III
M-BC 0.38 (0.00) -5.75 (0.44) 8.18 (0.05) 6.89 (0.67) 11.35 (1.25) 2.47 (0.16) 6.89 (0.67)
H-BC 0.40 (0.01) 7.70 (1.08) 7.96 (1.46) 18.99 (2.43) 35.03 (2.15) 3.07 (3.94) 18.99 (2.43)
S-BC 0.34 (0.15) 4.52 (2.62) 2.81 (4.23) 41.48 (12.33) 38.95 (7.38) 17.94 (11.08) 41.48 (12.33)

is nonconvex over (θ1, θ2, θ3), the loss function for each parameter becomes block-wise convex.

This local convexification helps the M-BC procedure find the solution more effectively.

• The different performance of H-BC in Examples I and II is related to the problem structure

where different weights are assigned to each term. In Example I, for the term including I(x<

2π/5) in the computer model, we assigned 1/2, while we assigned 1/10 and 1/20 as weights,

respectively, for the terms including I(2π/5≤ x< 8π/5) and I(x≥ 8π/5). Thus, θ1 is the most

influential parameter and the loss function changes rapidly as θ1 varies. With this problem

structure, H-BC weighs θ1 more, leading to the correct calibration of θ1 relative to θ2 and θ3.

In Example II, the advantage of M-BC, compared to that of H-BC, in terms of calibration

accuracy, is less clear. We believe it is because the weights for each term are not substantially

different. These results indicate that the performance of H-BC is sensitive to the problem

structure. All things considered, M-BC achieves the best accuracy in all examples.

• Obviously, some of the parameter estimates from S-BC largely deviate from their true values

in many cases, leading to larger loss values. Recall that S-BC ignores the block property

(by ignoring I(·) terms in the computer models), while observational data from the physical

process are collected in different blocks. This mismatch between the physical process responses

and simulation outputs leads to poor calibration results with large MSEs.

M-BC also has a computational advantage over the two benchmarks, H-BC and S-BC, in general.

This is mainly because M-BC calibrates each block of parameters using its associated data only,

unlike H-BC and S-BC that update all parameters simultaneously. Table 4 summarizes the average

computation time for each run with Examples I, II, and III. Hereafter, the unit of computation time

is seconds, and the average computation time for each run is reported. In Example I, S-BC slightly

runs faster than M-BC, but recall that S-BC does not provide accurate results. Overall, M-BC is



Jeong et al.: Multi-block Parameter Calibration in Computer Models
28 Article submitted to INFORMS Journal on Data Science; manuscript no. IJDS-2022-0008

computationally more efficient than H-BC and S-BC. Further, its running time is similar in all

three examples, whereas the computation time of H-BC and S-BC varies significantly depending

on the problem structure.

Table 4 Average computation time for each experiment

Ex
Computation time (sec)

M-BC H-BC S-BC

I 0.8 12.4 0.7
II 0.7 1.5 5.7
III 0.8 2.1 1.1

We additionally note that comparing computation performance in terms of number of iterations

between the three methods is far from trivial. This is because M-BC has the double-loop structure

with inner and outer iterations, whereas H-BC and S-BC does not have inner iterations. Moreover,

another difficulty is related to the way the data is utilized by the methods. Specifically, as discussed

in Section 5.2, assuming that the simulation running time is proportional to the data size n,

computational complexity for M-BC can be expressed as O
(
n logϵinner(1/ϵouter)

)
in the strongly

convex case. The analogue for H-BC and S-BC (assuming a tolerance of ϵouter) can be expressed

as O
(
n log(1/ϵouter)

)
. While the terms in order notation look similar, hidden are condition number

dependencies. For M-BC the dependence is on
∑

b κb where κb is the condition number for each

block problem, whereas for H-BC and S-BC the dependence is on κ, the condition number of the

full problem. Thus, their computational complexity cannot be readily and easily compared.

6.3. Uncertainty Quantification

Table 5 summarizes the average half length of 95% CI for each parameter and an empirical coverage

rate from the 200 experiments in each method. Coverage rates show how often the derived con-

fidence intervals include true parameter values. Ideally, they should be close to the nominal rate,

95% in this case. Since Example III represents an imperfect computer model where the true values

do not exist, we do not report the coverage rates. Overall, the results suggest that M-BC provides

its empirical coverage rates close to the nominal rate of 95%. On the contrary, the coverage rates

of H-BC deviate from the nominal rates in some cases, e.g., those for θ2 or θ3 in Example I. The

low coverage rates in S-BC are related to inaccurate estimations shown in Table 3.

6.4. Performance Comparison with Other Methods

We compare the performance of M-BC with two common calibration approaches in the literature,

including L2 calibration (Tuo and Wu 2015) and Bayesian calibration (Kennedy and O’Hagan

2001, Higdon et al. 2004).
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Table 5 Uncertainty quantification results from 200 experiments (values inside parentheses are standard

deviations)

Ex Method
Average half length of 95% CI Empirical coverage rate (%)

θ1 θ2 θ3 θ1 θ2 θ3

I
M-BC 0.029 (0.001) 0.050 (0.005) 0.055 (0.008) 94.5 93.0 94.0
H-BC 0.030 (0.002) 0.045 (0.016) 0.064 (0.030) 96.0 81.0 77.6
S-BC 0.004 (0.001) 0.016 (0.017) 0.107 (0.052) 0.0 0.0 0.0

II
M-BC 0.007 (0.000) 0.030 (0.002) 0.029 (0.001) 95.0 95.5 93.5
H-BC 0.007 (0.000) 0.030 (0.002) 0.030 (0.002) 95.0 95.0 95.5
S-BC 0.038 (0.011) 0.189 (0.150) 0.508 (0.727) 0.0 1.6 4.9

III
M-BC 0.036 (0.015) 0.194 (0.162) 0.175 (0.208) N/A N/A N/A
H-BC 0.097 (0.231) 0.147 (0.121) 0.186 (0.172) N/A N/A N/A
S-BC 0.065 (0.061) 0.153 (0.150) 0.151 (0.093) N/A N/A N/A

We briefly explain the two benchmark approaches. More details are available in Tuo and Wu

(2015), Kennedy and O’Hagan (2001), and Higdon et al. (2004). Given physical observations

{y(xj),xj}nj=1, L2 calibration first obtains the estimated true physical process response ζ̂, where

y(x) = ζ(x)+ϵ with an observation error ϵ, using kernel ridge regression (Wahba 1990) in the repro-

ducing kernel Hilbert space. Similarly, using computer model responses {y(xj′), (xj′ ,θj′)}n
′

j′=1 gener-

ated at pre-specified design points, it builds an emulator η̂(·, ·), often constructed by a GP (Santner

et al. 2018), for the computer model. Then, θ is calibrated by solving the following optimization

problem:

θ̂
L2

= argmin
θ∈Θ

∥ζ̂(·)− η̂(·,θ)∥L2(Ω), (41)

Next, the Bayesian calibration approach formulates the physical observation using the linear

linkage model as y(x) = η(x,θ) + γ(x) + ϵ, where γ(x) represents the model discrepancy to cor-

rect a model bias between the physical process and the computer model responses, and ϵ is an

observation error. Typically, η(x,θ) and γ(x) are modeled by GPs, and the calibration parameters

and other hyperparameters in mean vectors and covariance functions are estimated from posterior

distributions. To explore posterior distributions, Markov chain Monte Carlo (MCMC) is utilized.

We compare the performance between M-BC, L2 calibration, and Bayesian calibration for the

imperfect computer model represented in Example III. For both M-BC and L2 calibration, we

conduct 200 experiments with different training and test sets with 8 starting points. Due to heavy

computation time, Bayesian calibration only runs 10 experiments with two prior specifications:

uniform and Gaussian. Here, since the computer model is imperfect, we do not know the true

parameter values. Instead, we compare MSE values in test sets for each block among three methods.

Table 6 reports the comparison results. With n= 50, M-BC achieves the best performance with

much smaller MSE values for all blocks, F1, F2, and F3. There is also a computational advantage

when using M-BC, taking 0.05 sec, compared to 24.63 sec for L2 calibration and about 41400 sec
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Table 6 Comparison between M-BC, L2 calibration, and Bayesian calibration in Example III (Note: the values

inside parentheses are standard deviations, and “-” means that the running time of the algorithm is excessive so

the results are not obtained)

Ex Method n
Calibrated parameter values MSE

θ1 θ2 θ3 F1 F2 F3

III

M-BC 50 0.38 (0.02) -3.29 (4.61) 8.22 (0.22) 10.20 (5.47) 18.09 (11.57) 2.61 (0.78)
L2 calibration 50 -0.08 (1.36) -7.12 (2.55) 7.80 (3.30) 59.78 (172.99) 50.06 (91.32) 70.71 (269.67)

Bayesian (uniform) 50 0.00 (0.00) -0.61 (1.93) 0.78 (2.48) 21.65 (13.52) 25.19 (13.15) 18.14 (17.13)
Bayesian (Gaussian) 50 -0.14 (0.43) -0.78 (2.45) 0.60 (1.88) 25.15 (12.56) 33.29 (15.48) 16.47 (12.67)

M-BC 200 0.38 (0.01) -4.80 (2.65) 7.71 (2.49) 7.99 (2.99) 13.51 (5.88) 2.42 (0.37)
L2 calibration 200 0.30 (0.18) -6.08 (2.16) 8.01 (0.71) 9.28 (11.24) 15.14 (19.93) 3.39 (3.38)

Bayesian (uniform/Gaussian) 200 - - - - - -

M-BC 1000 0.38 (0.00) -5.75 (0.44) 8.18 (0.05) 6.89 (0.67) 11.35 (1.25) 2.47 (0.16)
L2 calibration 1000 - - - - - -

Bayesian (uniform/Gaussian) 1000 - - - - - -

for Bayesian calibration, on average for each run. With a larger sample size of n= 200, we could

not get Bayesian calibration results because it is computationally prohibitive with our computing

resources (each experiment takes 5+ days). While MSE values from L2 calibration decreases with

the larger training data, M-BC still outperforms for all blocks. Meanwhile, computation time for

L2 calibration grows very fast; it takes 50.46 sec, while M-BC only runs for 0.76 sec for each run.

Clearly, it demonstrates the advantage of M-BC in both performance metrics.

With the training size of n = 1000, M-BC performs very well in terms of MSE values with

smallest standard deviations of calibrated parameter values and MSEs. Note that small standard

deviations indicate robustness and precision of the respective method. The computation time of L2

calibration and Bayesian calibration is excessive and they do not produce results in 5 days for each

run. In summary, M-BC elicits the superiority of calibration accuracy as well as computational

efficiency and scalability, compared to the two existing methods.

We make comments about the difficulty in theoretically comparing computational complexity

between the M-BC and Bayesian approach. First, their data generation mechanisms are different.

The Bayesian approach generates a fixed set of data from pre-specified design points a priori,

whereas M-BC collects computer response data on the fly. Next, in terms of computation after data

is generated, in Bayesian calibration, the main computational issue is the numerical integration

with respect to the posterior distribution of calibration parameters θ and matrix inversions for

each θ value when using GPs in this numerical integration. If the number of observational data

and computer experiments are small, the matrix inversion can be done with O
(
(n+ n′)3

)
in an

iteration where n denotes the number of observational data and n′ the number of computer experi-

ments (Kennedy and O’Hagan 2001). However, when the data size gets larger, the matrix inversion

becomes challenging. Further, it uses MCMC methods to explore posterior distributions. It is

known that the MCMC computation generally depends on the number of parameters θ, proposal
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distribution, and number of simulation runs (or iterations). Chains’ mixing time to its station-

ary distribution also affect the total computational complexity of the Bayesian approach. On the

contrary, the computational complexity for M-BC is O
(
n logϵinner(1/ϵouter)

)
in the strongly convex

case as discussed in Section 5.2. With these reasons, the direct comparison of the computational

complexity between the M-BC and Bayesian approach does not seem to be adequate. Further, the

termination conditions of the two approaches are different. However, their empirical performance

shows the computational efficiency and scalability of M-BC over the Bayesian approach.

6.5. Performance Evaluation of M-BC Variants

We consider some variants of the proposed calibration approach. The first variant removes the

inner iteration in M-BC. We refer to this variant as M-BC-V. Even with no inner iterations,

it still updates parameters in a block-wise manner, but unlike M-BC, it does not perform the

block-wise minimization. It may seem to be similar to H-BC. However, the main difference is

that H-BC updates all parameters simultaneously at once, whereas M-BC-V sequentially updates

each parameter block based on the most up-to-date information of other blocks. We also consider

another variant using a random block selection. This algorithm is the same as M-BC-V but the

block is selected randomly, instead of sequentially (or cyclically). This algorithm is referred to as

M-BC-VS with ‘S’ standing for ‘stochastic’.

Table 7 summarizes calibration results from these variants. In Examples I and II, M-BC-V and

M-BC-VS provide results comparable to the original M-BC. However, they yield inaccurate results

in terms of MSE and unstable estimates with higher standard deviations in Example III. It appears

that the block-wise minimization (i.e., the inner iteration for each block) in M-BC brings appealing

improvements in some cases and provides consistently better results.

Table 7 Results of M-BC variants from 200 experiments (values inside parentheses are standard deviations)

Ex Method
Calibrated parameter values MSE

θ1 θ2 θ3 F1 F2 F3 Fall

I
M-BC -1.00 (0.01) 9.99 (0.02) 5.00 (0.03) 0.01 (0.00) 0.01 (0.00) 0.01 (0.00) 0.01 (0.00)

M-BC-V -1.00 (0.02) 9.99 (0.02) 5.00 (0.03) 0.01 (0.00) 0.01 (0.00) 0.01 (0.00) 0.01 (0.00)
M-BC-VS -1.00 (0.02) 10.00 (0.03) 5.00 (0.03) 0.01 (0.00) 0.01 (0.00) 0.01 (0.00) 0.01 (0.00)

II
M-BC -1.00 (0.00) 10.00 (0.01) 5.00 (0.01) 0.01 (0.00) 0.01 (0.00) 0.01 (0.00) 0.01 (0.00)

M-BC-V -1.00 (0.00) 10.00 (0.01) 5.00 (0.01) 0.01 (0.00) 0.01 (0.00) 0.01 (0.00) 0.01 (0.00)
M-BC-VS -1.00 (0.00) 10.00 (0.02) 5.00 (0.02) 0.01 (0.00) 0.01 (0.00) 0.01 (0.00) 0.01 (0.00)

III
M-BC 0.38 (0.00) -5.75 (0.44) 8.18 (0.05) 6.89 (0.67) 11.35 (1.25) 2.47 (0.16) 6.89 (0.67)

M-BC-V 0.36 (0.15) 0.12 (6.76) -0.99 (7.05) 15.03 (12.43) 23.33 (16.15) 6.80 (18.80) 15.03 (12.43)
M-BC-VS 0.36 (0.14) -0.92 (6.30) 1.83 (6.89) 13.15 (10.15) 21.31 (13.98) 5.07 (11.96) 13.15 (10.15)

Further, we investigate whether the block ordering affects the estimation performance in M-

BC. With three blocks, there are six pathways in the cyclic block ordering. We do not notice
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any significant differences in calibration results among the six pathways in all three examples. In

the future, we plan to explore other variants and study their theoretical properties and empirical

performance.

6.6. Scalability Analysis and Block Dominance Case

Additionally, we examine the scalability of the method in various settings such as the number of

samples, the extent of block overlaps, and the number of blocks/parameters, using a newly designed

problem structure. Due to the limited space, we omit the details of the problem structure and

results but we discuss them in the online supplementary document. The results show that M-BC

yields consistently good results in all settings in terms of calibration accuracy and uncertainty

quantification. In particular, it demonstrates that the proposed method is suitable even for the

problems with a significant data overlap. In the online supplementary document, we further examine

the performance of M-BC when block domination occurs. Our approach provides superior results

in terms of both calibration accuracy and uncertainty quantification across different levels of block

dominance.

7. Case Study: Building Energy Simulation

We evaluate the performance of our proposed approach in the BEM application. We use the

hourly electrical energy consumption data and the simulation outputs obtained from the simulator,

EnergyPlus 9.3.0 (U.S. Department of Energy 2019) on a municipal building of Mueller, Austin

in Texas. EnergyPlus is a widely used BEM simulator to model both energy consumption–for

heating, cooling, ventilation, lighting, plug and process loads–and water use in buildings. Each run

for year-long simulation takes about 2 minutes with a standard desktop computer.

Among a large number of parameters employed in EnergyPlus, we choose important parameters

in the building energy use, based on domain knowledge and previous studies (Manfren et al. 2013,

Chong et al. 2017), including lighting, ventilation, domestic hot water, window material (optical

properties), and heating and cooling systems, as summarized in Table 1. In this case study, we let

θg = (θg,1, . . . , θg,6)
T denote the vector of year-long global parameters and θc = (θc,1, . . . , θc,4)

T and

θh = (θh,1, . . . , θh,3)
T , respectively, represent cooling- and heating-season parameter vectors.

7.1. Implementation Results

We use the implementation setting similar to that in numerical examples. We terminate iterations

when the relative difference between consecutive loss function values becomes smaller than a ter-

mination tolerance 10−4. We also use a small perturbation h = 10−4 in computing the gradient.

The step size is decided using the backtracking line search.

Figure 4 shows the example of loss function values for each seasonal block from the proposed

M-BC approach. Each dashed vertical line indicates the iteration index where the inner iteration
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terminates, and each solid line marks the iteration index for the outer iteration. In the inner

iteration, we first minimize the year-long loss Fg, followed by Fc and Fh sequentially. Each plot

in Figure 4 illustrates how these loss functions change over iterations. Interestingly, Figure 4(a)

shows that Fg decreases mostly when θc is updated. This is because the cooling season during

March to November (see Table 1) largely overlaps with the global block (January to December) in

the studied Texas region. Similarly, the loss Fh during the heating season also decreases when θc

is calibrated. It is because heating and cooling seasons overlap during three months (see Table 1).

Overall, all of the three loss values converge within a few outer iterations, which indicates the

important role of inner iterations that calibrates each block of parameters.

(a) Fg (b) Fc

(c) Fh

Figure 4 Examples of the trajectories of loss function values (MSEs) from M-BC

Next, we compare the performance of M-BC with H-BC and S-BC. To initialize the parameters

in implementing these methods, we use five different sets of starting points obtained from the Latin

hypercube sampling (LHS). For each initial setting, we calibrate parameters using a training set

consisting of 70% of data points and evaluate the performance with the test set from the remaining

30% of data points. Table 8 summarizes the results from five different starting points, referred to as
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LHS 1 through LHS 5. In all cases, M-BC achieves the smallest global (Fg), cooling-season (Fc), and

heating-season (Fh) loss values (MSEs). In some cases (e.g., with LHS 3 and 4), the performance

of H-BC is comparable to M-BC, but M-BC outperforms H-BC in other initial settings. S-BC

performs worse than M-BC and H-BC in most cases.

Table 8 MSEs with 5 different initializations using Latin hypercube design

Method
LHS 1 LHS 2 LHS 3 LHS 4 LHS 5

Fg Fc Fh Fg Fc Fh Fg Fc Fh Fg Fc Fh Fg Fc Fh

M-BC 0.29 0.34 0.16 0.35 0.39 0.23 0.33 0.36 0.22 0.33 0.39 0.18 0.31 0.36 0.18
H-BC 0.32 0.38 0.16 0.36 0.41 0.24 0.33 0.36 0.22 0.33 0.39 0.18 0.37 0.44 0.23
S-BC 0.36 0.37 0.25 0.40 0.40 0.32 0.40 0.42 0.32 0.36 0.37 0.26 0.39 0.40 0.29

To further compare the approaches, we conduct additional experiments with 10 different training

and test sets. Because we get the lowest MSEs with LHS 1 in three methods in Table 8, we fix the

starting point at the LHS 1 setting. Table 9 reports the average MSEs and standard deviations in

the test sets from the 10 experiments. M-BC achieves the lowest MSEs in all three blocks. Notably,

it also consistently produces similar results in 10 experiments, resulting in the small standard

deviations. On the contrary, the ranges of the final loss values in H-BC are much wider that those

in M-BC, implying that its performance is sensitive to the choice of data. This result is consistent

with what we have observed in Section 6 (see Ex III results in Table 3).

7.2. Comparison with Bayesian Calibration Approach

We further compare our approach with Bayesian calibration. To obtain posterior distributions,

we exploit the No-U-Turn Sampler (NUTS), which is known to be useful for sampling from a

high-dimensional posterior distribution as suggested in Chong and Menberg (2018). The NUTS is

developed based on Hamiltonian Monte Carlo (HMC) which allows MCMC to converge faster in

that it explores the high-dimensional posterior distribution by optimizing the tuning parameters

such as a scaling factor and the number of leapfrog steps. More details are available in Chong and

Menberg (2018). Even with NUTS, Bayesian calibration is computationally intensive, as discussed

in Section 2. With the computational resources available to us, it takes an unrealistically long time

if we use hourly year-long data. Thus, we use weekly data in the Bayesian analysis as in Kristensen

et al. (2017b). Even with weekly data, one experiment requires about five days to calibrate the

BEM parameters.

We consider two prior specifications in Bayesian approach: non-informative priors with uni-

form distributions and informative priors with Gaussian distributions, as suggested in Chong and

Menberg (2018). In both prior settings, we use the settings in LHS 1 as the prior means for the
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Table 9 Comparison results from 10 experiments under LHS 1 initialization (values inside parentheses are

standard deviations)

Method
MSE

Fg Fc Fh

M-BC 0.29 (0.01) 0.34 (0.01) 0.16 (0.01)
H-BC 0.30 (0.02) 0.35 (0.03) 0.17 (0.01)
S-BC 0.35 (0.01) 0.37 (0.01) 0.24 (0.01)

parameters. We set the prior standard deviation as 0.2 in the informative prior settings, as in Chong

and Menberg (2018).

Table 10 shows the MSEs in the test sets from 10 independent experiments where we use the

posterior means as the calibrated estimates. Compared to M-BC, Bayesian calibration in both prior

settings generates larger MSE values especially in the global and cooling-season blocks. We note

that the MSE from M-BC in the heating-season block is slightly larger than that of the Bayesian

approach with the Gaussian prior. One possible reason is that the underlying heating-season loss is

nonconvex and M-BC may attain the local minimum. Additionally, in the attempt to minimize all

three losses simultaneously, calibrating the global and cooling-season parameters may negatively

affect the loss function in the heating season, because the three data blocks overlap one another

and global and cooling season blocks dominate the data portion.

Table 10 Comparison with the Bayesian calibration approach from 10 experiments (values inside parentheses

are standard deviations)

Method (Prior)
MSE

Fg Fc Fh

M-BC 0.29 (0.01) 0.34 (0.01) 0.16 (0.01)
Bayesian (uniform) 0.36 (0.01) 0.45 (0.01) 0.15 (0.00)
Bayesian (Gaussian) 0.33 (0.01) 0.40 (0.01) 0.14 (0.01)

To further investigate, Figure 5 shows the posterior distributions of one of the parameters–

lightening level–when non-informative uniform and informative Gaussian priors are used. It turns

out that the resulting posterior distribution when using the non-informative prior is still close to its

prior distribution, showing large uncertainties. It implies that the calibrated parameter value from

the posterior density does not deliver meaningful information. Meanwhile, when the informative

prior is employed, the posterior distribution changes from its prior. Still, its MSEs are much larger

in the global and cooling-season blocks (see Table 10).

8. Conclusion

In this study, we present a new multi-block parameter calibration methodology when computer

model parameters need to be calibrated using different, possibly non-disjoint, subsets of data. We
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(a) Non-informative prior case (b) Informative prior case

Figure 5 Results from the Bayesian approach for the normalized lightening level parameter (green area: prior,

red area: posterior, and gray histogram: posterior samples)

consider multiple loss functions, each for their associated block of parameters that use the corre-

sponding dataset. In addition to the block property, our approach is different from the existing

literature that generates the computer model responses at pre-selected parameter settings and

builds emulators using the fixed dataset. Although being widely adopted, such traditional approach

decouples the data generation stage and calibration stage. On the contrary, our approach adap-

tively runs the simulation at new parameter settings recommended by the nonlinear optimization

procedure. As such, more instructive data is generated from the computer model, which makes the

calibration procedure more effective.

Our implementation results in both numerical examples and BEM case study demonstrate that

the discrepancy between the physical process and the computer model outputs can be significantly

reduced, when the multi-block dependency of parameters is taken into consideration. Further, in

our case study, the performance of the proposed M-BC algorithm is more robust, compared to the

alternatives. We also construct CIs using asymptotic properties of ML estimators. Our approach

yields more stable performance with narrower CIs while maintaining empirical coverage rates close

to the nominal rates, compared to other methods. The comparison with the widely used Bayesian

calibration elicits the advantage of our approach in terms of improved calibration accuracy.

In the future, we would like to extend the approach under more general settings, e.g., compet-

ing cases and time-variant processes (Byon et al. 2016). Developing multi-task learning and BO

approaches that can handle overlapping data would also be a possible future research task. Addi-

tionally, we plan to use the well-calibrated BEM computer model to control building energy end

use such as demand control (Jang et al. 2020, Li et al. 2020).
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