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Abstract

Medical steerable needles can follow 3D curvilinear trajectories to avoid anatomical obstacles and reach clinically
significant targets inside the human body. Automating steerable needle procedures can enable physicians and patients
to harness the full potential of steerable needles by maximally leveraging their steerability to safely and accurately
reach targets for medical procedures such as biopsies. For the automation of medical procedures to be clinically
accepted, it is critical from a patient care, safety, and regulatory perspective to certify the correctness and effectiveness
of the planning algorithms involved in procedure automation. In this paper, we take an important step toward creating
a certifiable optimal planner for steerable needles. We present an efficient, resolution-complete motion planner for
steerable needles based on a novel adaptation of multi-resolution planning. This is the first motion planner for steerable
needles that guarantees to compute in finite time an obstacle-avoiding plan (or notify the user that no such plan exists),
under clinically appropriate assumptions. Based on this planner, we then develop the first resolution-optimal motion
planner for steerable needles that further provides theoretical guarantees on the quality of the computed motion plan,
i.e., global optimality, in finite time. Compared to state-of-the-art steerable needle motion planners, we demonstrate with
clinically realistic simulations that our planners not only provide theoretical guarantees, but also have higher success

rates, lower computation times, and result in higher quality plans.

Keywords
Motion Planning, Medical Robot, Formal Guarantees

1 Introduction

Steerable needles are highly flexible medical devices able
to follow 3D curvilinear trajectories inside the human
body, reaching clinically significant targets while safely
avoiding critical anatomical structures (Alterovitz et al.
2005; Park et al. 2005; Webster III et al. 2006; Cowan et al.
2011). Compared with traditional rigid medical instruments,
steerable needles can reduce a patient’s trauma, increase
safety, and provide minimally invasive access to previously
inaccessible targets. Steerable needles have been considered
for a wide range of diagnostic and treatment procedures
including biopsy, drug therapy delivery, and radioactive seed
implantation for cancer treatment (Abolhassani et al. 2007).

Direct manual control of steerable needles can be
unintuitive and impractical for human operators due to
the nonholonomic constraints on the needle’s 3D motion
and the cluttered nature of anatomical environments. Thus,
automation is critical to harnessing the full potential of these
needles and enabling physicians to maximally leverage their
steerability and ability to accurately and precisely reach
targets. To automate steerable needle procedures, physicians
first obtain a medical image (such as a computed tomography
(CT) or magnetic resonance imaging (MRI) scan) of the
relevant anatomy, from which we can segment (manually
or automatically) the relevant anatomy, including the target
to reach and obstacles to avoid. The next key ingredient
to the automation of steerable needle procedures is motion
planning, which requires computing feasible motions to steer
the needle safely around the anatomical obstacles and to the

target. Examples of scenarios of lung and liver biopsies are
shown in Fig. 1 (top).

For the automation of medical procedures to be clinically
accepted, it is critical from a patient care, safety, and
regulatory perspective to certify the correctness and
effectiveness of the algorithms involved in procedure
automation. To this end, a motion planner should first
guarantee that it will compute a solution, when one exists,
in finite time, or notify the user that no solution exists.
Moreover, the computed solution should strive to maximize
patient safety, which can be quantified using metrics
such as minimizing trajectory length (Favaro et al. 2018),
maximizing clearance from obstacles (Wein et al. 2008;
Kuntz et al. 2015; Agarwal et al. 2018; Strub and Gammell
2021), and minimizing damage to sensitive tissue (Fu et al.
2018; Bentley et al. 2021). Thus, a motion planner for
steerable needles should be complete, i.e., find a solution plan
in a finite number of steps, if one exists, and ideally should
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Figure 1. Top left: A medical steerable needle (cyan) is used
to reach a nodule (green) in the lung parenchyma for biopsy or
cancer treatment while avoiding critical anatomical structures
such as the bronchial tubes (brown) and major blood vessels
(red). Top right: A medical steerable needle (cyan) is used to
reach a nodule (green) in the liver tissue while avoiding major
blood vessels (red). Bottom: Our resolution-complete motion
planner uses search trees built using different resolutions,
illustrated here in 2D. A valid motion plan goes from the start
configuration (blue dot) to the goal point (green dot), while
avoiding obstacles (red) and satisfying kinematic constraints.
The left search tree uses a coarse resolution and fails to find a
plan while the right one uses a finer resolution and successfully
generates a motion plan (yellow).

be optimal, i.e., ensure that the returned plan has a cost (for
a given cost metric) that is close to the global optimum.
Unfortunately, no previously developed motion planner for
steerable needles offers a formal guarantee on completeness,
let alone optimality.

Although various motion planners have been proposed
for steerable needles, those planners do not have theoretical
guarantees for either returning a solution (Xu et al. 2008;
Hauser et al. 2009; Duindam et al. 2010; Van Den Berg
et al. 2010; Seiler et al. 2012; Patil et al. 2014; Favaro
et al. 2018; Pinzi et al. 2021) or returning a solution
that terminates within a clinically reasonable distance of
the target (Liu et al. 2016) when a solution exists. Some
prior motion planners for steerable needles do aim to
optimize motion plan cost but they lack global optimality
guarantees (Liu et al. 2016; Favaro et al. 2018; Pinzi et al.
2019; Favaro et al. 2021). Some sampling-based planners
are known to be both complete and optimal, albeit those
properties are usually proven only for an asymptotic regime
where the number of samples tends to infinity (LaValle
and Kuffner Jr 2001; Karaman and Frazzoli 2011; Sun
et al. 2015; Salzman and Halperin 2015; Hauser and
Zhou 2016; Li et al. 2016; Kleinbort et al. 2018, 2020;
Solovey et al. 2020). Thus, it is unclear what should be the
number of samples necessary to achieve those guarantees in
practice. Recent work has developed optimality guarantees
for finite sampling, although those results cannot be currently
applied to steerable needles as they deal with holonomic
systems (Tsao et al. 2020; Dayan et al. 2021).

Providing completeness and optimality guarantees for
a steerable needle motion planner is challenging in part
because motion planning for steerable needles in 3D
with curvature constraints is at least NP-hard (Kirkpatrick
et al. 2011; Solovey 2020). This challenge inspires us to
consider variants of completeness or optimality relevant
to medical applications. Some variants that only offer
asymptotic guarantees, such as probabilistic completeness
and asymptotic optimality (LaValle 2006), are not useful
for needle steering since these guarantees only hold
as computation time increases to infinity, but medical
applications typically require guaranteeing the planner’s
behavior within a finite time.

In this paper, we focus on specific types of guarantees
relevant to real-world medical applications: resolution com-
pleteness (LaValle 2006) and resolution optimality (Bar-
raquand and Latombe 1993; Pivtoraiko et al. 2009). Gen-
erally speaking, a resolution characterizes the discretization
of some space (e.g., state space, configuration space, action
space, and time). An algorithm is resolution complete if there
exists a fine-enough resolution with which the algorithm
finds a plan in finite time when a qualified solution exists,
and otherwise correctly returns that no such plan exists. An
algorithm is resolution optimal if it is resolution complete
and if, when it does return a motion plan, the plan’s cost is
guaranteed to be within a desired approximation factor of the
cost of a globally optimal qualified motion plan. We illustrate
at the bottom of Fig. 1 an example showing searches with
different resolutions for needle steering.

1.1 Contribution

In this paper, we first present Resolution-Complete Search
(RCS), an efficient, resolution-complete motion planner for
steerable needles based on a novel adaptation of multi-
resolution planning. RCS is resolution complete, which
means that under some mild assumptions on the system and
the solution (detailed in Sec. 5), the planner, in finite time,
is guaranteed to find a motion plan as long as the problem
admits a qualified solution. We then describe an extension
of RCS, called RCS*, that achieves resolution optimality.
In particular, RCS* explores the needle’s state space in an
A*-like fashion, with cost-aware duplicate pruning while
incorporating motion plan cost tracking and a heuristic
function to improve efficiency.

Our overall contributions include: (i) carefully defining the
motion primitives (Frazzoli et al. 2002) used by our planners,
which are specifically tailored to our domain of 3D steerable
needles (Sec. 4.1.1); (ii) introducing a set of domain-specific
optimizations that improve the efficiency of the algorithm
while maintaining resolution completeness and resolution
optimality (Sec. 4.3); and (iii) providing a proof to show
the resolution completeness and optimality of our methods
(Sec. 5).

We demonstrate the performance of our planners in two
clinically realistic scenarios where the needle should reach
a target while safely avoiding obstacles (e.g., blood vessels).
In the setting of (i) lung biopsy, where the needle is deployed
through a bronchoscope and must steer through the lung
parenchyma (the tissue of the lung outside the bronchial
tubes) and in the setting of (ii) liver biopsy, where the needle
is deployed into the liver through its anterior surface and
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must steer through the liver tissue. We compare in simulation
our planner with several other steerable needle planners and
demonstrate experimentally that RCS and RCS* outperform
the state-of-the-art in terms of computation time, success
rate, and plan quality.

This work is the integration and extension of two
conference papers (Fu et al. 2021b, 2022) where we
introduced RCS and RCS*, respectively. The main changes
in the current version from the previous conference papers
are (i) full proofs for resolution optimality that were
previously given as sketches, (ii) new experiments for a liver
biopsy scenario, and (iii) an extended set of experimental
results, including an ablation study on the algorithms’
parameters.

2 Related Work

Steerable needles have many different designs, including
bevel-tip flexible needles (Webster III et al. 2006; Cowan
et al. 2011), symmetric-tip needles (DiMaio and Salcudean
2003), needles with curved stylet tips (Okazawa et al.
2005), needles with tendon-actuated tips (Qi et al. 2014),
programmable bevel-tip needles (Ko et al. 2011; Secoli
and y Baena 2016), and fracture-directed waterjet steerable
needles (Babaiasl et al. 2020). In this paper, we focus on
bevel-tip flexible needles but our approach can be easily
applied to any mechanical design as long as the major
kinematic constraint to consider is the curvature of the needle
trajectory.

2.1 Motion planning for steerable needles

Early work studied planning and control for steerable needles
in the 2D plane (Alterovitz et al. 2007; Asadian et al. 2011;
Reed et al. 2011; Bernardes et al. 2012). To fully utilize the
capability of steerable needles, later work began to focus
more on needle steering in 3D environments. Duindam et al.
(2010) used inverse kinematics for planning but the planner
was tested only with simple geometrically shaped obstacles
and provides no theoretical guarantees.

Other planners built upon the probabilistic completeness
guarantees of sampling-based methods such as the Rapidly-
exploring Random Tree (RRT) (LaValle and Kuffner Jr
2001). For example, Xu et al. (2008) used an RRT variant
for needle steering (although having slow running times
when compared to alternatives we will mention shortly)
and Patil et al. (2014) developed an RRT-based needle
planner that guides the tree expansion by sampling in the
3D workspace (instead of the configuration space). Sampling
in a lower-dimension space and their customized distance
function made the planner work efficiently in many practical
cases, but this also invalidated the probabilistic-completeness
guarantee of RRT (LaValle and Kuffner Jr 2001; Kleinbort
et al. 2020). Sun et al. (2015) proposed a needle planner that
builds multiple RRTs, which is asymptotically optimal only
when the number of trees tends to infinity.

To avoid dealing with curvature constraints directly in
the RRT algorithms, there are also hybrid methods that
combine sampling and other techniques. Favaro et al. (2018)
proposed a method based on RRT* (Karaman and Frazzoli
2011) that builds a tree embedded in the 3D workspace
to generate candidate plans of low cost, followed by a

smoothing step to account for the curvature constraint. This
was later extended into another hybrid method that combines
sampling, optimization, and search (Favaro et al. 2021).
However, such a decoupling does not allow to guarantee
asymptotic optimality (Karaman and Frazzoli 2011; Solovey
et al. 2020).

Liu et al. (2016) proposed the Adaptive Fractal Tree (AFT)
for needle steering and used a Graphics Processing Unit
(GPU) to further speed up their algorithm. The method uses
a greedy approach for path refinement—it iteratively uses the
lowest-cost path in the previous iteration for plan refinement.
However, expanding the best path of a coarse resolution
does not necessarily lead to a best path of a finer resolution.
Furthermore, the authors use a cost function consisting of
three factors, only one of which is the distance to the goal,
also known as the targeting error. Thus, when provided with
a required targeting error, paths produced by the method are
not guaranteed to adhere to this constraint since the targeting
error may be sacrificed for a better cost for the other two
terms. Pinzi et al. (2019) later extended AFT to account for
goal orientation constraints.

Other methods focus on accounting for uncertainties
during needle insertion but do not account for complete-
ness (Hauser et al. 2009; Van Den Berg et al. 2010; Seiler
et al. 2012; Pinzi et al. 2021). To summarize, to the best
of the authors’ knowledge, none of the existing steerable
needle planners provide provable guarantees on the planner’s
completeness.

2.2 Resolution-complete motion planners

Generally speaking, an algorithm is resolution complete
if it generates a plan to the goal whenever a solution
exists at the maximal resolution and returns failure
otherwise (Barraquand and Latombe 1991). This property
guarantees that given a predefined maximal resolution,
the algorithm terminates in finite time and provides a
deterministic result.

Barraquand and Latombe (1993) proposed a planner
for single/multi-body mobile robots with nonholonomic
constraints. They formally proved the planner is guaranteed
to generate a solution path when the discretization of the
search parameters is fine enough. This approach was later
extended by Lindemann and LaValle (2006) to suggest a
multi-resolution approach for 2D car-like robots. Both these
works (Barraquand and Latombe 1993; Lindemann and
LaValle 2006) serve as the algorithmic foundations of the
planner we present in this paper.

Sampling-based planners (such as RRT) typically ensure
probabilistic completeness (i.e., such a planner is guaranteed
to find a solution, if one exists, with probability one when
given infinite time). However, they can also be used to build
resolution-complete planners given some mild assumptions
on the minimal motion that the system can perform. Cheng
and LaValle (2002) proposed a resolution-complete version
of RRT for systems that satisfy the Lipschitz condition.
Yershov and LaValle (2010) formally analyzed the system
conditions for the existence of resolution-complete planners.
Kleinbort et al. (2018) later analyzed the assumptions for
RRT’s probabilistic completeness in kinodynamic planning.
However, their analysis can be adapted to resolution-
completeness guarantees.
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2.3 Resolution-optimal motion planners

Resolution optimality earned little attention, possibly due to
being rather complex to analyze mathematically, particularly
for nonholonomic systems. Consequently, many planners
developed for nonholonomic systems focus on asymptotic
optimality instead (Hauser and Zhou 2016; Li et al. 2016;
Gammell and Strub 2021; Shome and Kavraki 2021).

The previously mentioned method of Barraquand and
Latombe (1993) for resolution-complete planning with
nonholonomic constraints is optimal with respect to the
number of reverse maneuvers in the plan. Pivtoraiko et al.
(2009) proposed the idea of motion planning using state
lattices for field robots. Their state lattices planner is
resolution optimal since the search is optimal for a graph of
some resolution and the discrete state grid approximates the
continuous space as resolution increases. Ljungqvist et al.
(2017) later extended Pivtoraiko et al. (2009) for a general
two-trailer system in 2D. They used a two-point boundary
value problem (2pBVP) solver to generate a set of motion
primitives connecting 2D grid points.

The aforementioned planners can be used to plan for 2D
nonholonomic robots, but none account explicitly for the
challenges of planning with curvature constraints in 3D. (The
latter case is particularly challenging not only because of
the higher dimensional search space, but also because of
the absence of boundary-value solvers.) Additionally, these
planners are designed for large-scale workspaces (where the
minimum radius of curvature is relatively small compared
to the scale of the workspace), making them unsuitable for
tasks where a high level of precision is required, such as for
steerable needles.

3 Problem Definition

In this work, we consider steerable needles that operate
in a 3D workspace W € R3, which is cluttered with
obstacles W,ps C W. We define the configuration space
(or C-space) of the steerable needle as X C SE(3). Each
configuration x = (p,q) € X uniquely defines the pose
(i.e., position p € R? and orientation ¢ € SO(3)) of the
needle tip. We define a projection function Proj(-) : X —
W that projects configurations to points in the workspace,
ie.,, Proj(x) =p. A configuration x is collision free if
Proj(x) ¢ Wobs, and is in collision otherwise. The union
of all collision-free configurations is denoted as Afee. We
make the common assumption that the steerable needle
is sufficiently flexible so the needle shaft moves along
the trajectory created by its tip while the lateral motions
are negligible. Thus, a motion plan of the needle can be
uniquely defined as a trajectory o : [0,¢] — X, where £ is
the length of the trajectory defined in the 3D Euclidean
distance space. Such a motion plan o is collision free if
all configurations along the trajectory are collision-free.
Namely, Vs € [0, ], 0(s) € Xiree-

We also need to consider the kinematics of the steerable
needle. We specifically consider steerable needles that are
highly flexible and have an asymmetric tip (e.g., a bevel)
(Alterovitz et al. 2005; Cowan et al. 2011; Park et al.
2005; Webster III et al. 2006); the asymmetric tip exerts
asymmetric forces on the tissue in front of the needle tip, and
the high flexibility enables the needle to curve substantially

Figure 2. The kinematics of a bevel-tip steerable needle. The
needle can be inserted (characterized by ¢) and axially rotated
at its base (characterized by 0).

at maximum curvature K,y as it moves through the tissue.
Furthermore, rotating the needle axially at its base changes
the direction of the needle’s asymmetric tip, enabling the
needle to change its direction of steering. See Fig. 2 for an
illustration.

We say a motion plan is (kinematically) feasible if it
never exceeds the maximum curvature Ky .x. A valid motion
plan for the needle is both collision-free and feasible.
We also assume there exists a resolution describing the
smallest interval or precision of the achievable motions,
which may be limited by the physical system’s hardware
(e.g., motor, encoders, controller, etc.) and its interaction
with the environment. For the steerable needle application in
this paper, we determine this finest resolution by considering
the hardware’s ability to measurably change the steerable
needle tip’s position and orientation in tissue, which includes
parameters such as the minimum insertion distance and
rotational direction change per controller time step, as
defined in Sec. 4. Considering real-world effects such as
torsional wind-up of the needle shaft during actuation, the
control resolution of the needle tip is coarser than the control
resolution of the needle base where motors directly apply
controls. Thus, we are not using minimal motions of the
motors. Instead, we consider the minimal motions the tip of
the needle can perform. We assume there exists a lower-level
controller capable of controlling the tip to the desired pose,
as is common in needle steering systems (Rucker et al. 2013;
Ertop et al. 2020).

We are now ready to state two different problems
considered in this work. The first problem calls for
computing a valid motion plan for a given case while the
second problem is formulated as an optimization problem
with respect to the cost of a motion plan.

3.1 Steerable needle motion planning problem

Problem 1. A steerable needle motion
planning problem is defined as the tuple A =
(X; Wob37 Xstarty pgoab T, Ema}u Kmax), where Wobs is

the obstacle set, Xgtart, 1S the start configuration, pgeal € W
is the goal point, 7 > 0 is the goal tolerance, ., > 0
is the maximum insertion length, and kpax > 0 is the
maximum curvature. The problem calls for computing a
motion plan o : [0, ¢] — X subject to:

(i) o isvalid,
(11) U(O) = Xgtart»

(iii) trajectory length £ < /.y,
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(IV) ||PI‘OJ(0’(€)) 7pgoa1||2 <.

As we show in our discussion (Sec. 5), for any given
instance of Problem 1, under some mild assumptions, there
exists some fine-enough resolution Ryin = (04min, 00min)
(corresponding to the needle’s insertion and axial rotation,
respectively) for which our proposed planner, RCS, is
guaranteed to find a solution in finite time (when one exists)
or to indicate that no solution exists.

3.2 Optimal steerable needle motion planning
problem

To evaluate the quality of a motion plan, we consider a
configuration-based cost function c : X — R. We require ¢
to be well behaved (formally defined in Sec. 5), which
includes being Lipshitz continuous and bounded within
[min; Cmax)|- We define the cost of a motion plan as the
integral of the configuration-based cost function along a
given trajectory o, i.e.,

¢
Clo) = / c(o(s))ds. (1)
0
If a cost function satisfies the above form, we say it is an
integrated cost function. This definition captures a variety
of cost functions, including trajectory length and integrating
over a cost map derived from medical images.

Problem 2. An optimal steerable needle motion planning
problem is defined as an optimization problem, denoted by
a tuple A* = (A, C), where A is a steerable needle motion
planning problem defined in Problem 1 and C is an integrated
cost function. The current problem calls for computing an
optimal motion plan

o* = argmin, C (o)
subject to the same four conditions as in Problem 1.

Similarly, we will show in Sec. 5 that for any given
instance of Problem 2, under some mild assumptions, there
exists a fine-enough cutoff resolution Ryin = (64min, 00min)
for which our proposed planner, RCS*, is guaranteed to
return a motion plan with a cost to be within a desired
approximation factor of a globally optimal qualified motion
plan in finite time (if any qualified motion plan exists), or
indicate that no qualified motion plan exists.

4 Method

In this section, we first describe the resolution-complete
needle planner RCS in Sec. 4.1. We then provide in
Sec. 4.2 a resolution-optimal extension called RCS*. Finally
in Sec. 4.3, we highlight a set of optimizations that improve
the efficiency of both RCS and RCS*.

4.1 Resolution Complete Search (RCS)

Given our motion-planning problem, our needle planner
builds a search tree 7 = (V,£) embedded in the C-space
with Xga.rt as its root. Each node v € V is associated
with a configuration x, € X, and each edge e = (v,u) €
& represents the transition from x, to x,. To expand a

Figure 3. A motion primitive is a circular arc defined as

M = (k, §¢,060). The circular arc (dark green) lies in the
curving plane (light green) that contains the Z-axis (blue) at the
start configuration x,,. k is the curvature of the arc, 40 is the
angle between the curving plane and the XZ plane, and §/ is
the length of the arc. The figures show step-by-step how the
child configuration x,, = x, & M is generated.

node v € V, we construct new nodes (children of v) with
motion primitives (to be explained shortly in Sec. 4.1.1),
which are pre-defined feasible motions. A child node vcpjq is
accepted and added to the search tree if the trajectory from v
tO Vchilq 18 collision-free and vpjq 1s valid (will be detailed in
Sec. 4.1.3). The search tree grows until there is some node v
with configuration x,, whose tip is inside the 7-neighborhood
of pgoal (condition (ii) in Problem 1).

A key aspect of our search method (which is similar
in nature to other search-based planners like Lindemann
and LaValle (2006)) is to use a set of motion primitives
defined using multiple resolutions. Instead of expanding
each node in our search tree using the entire set of motion
primitives, we start with coarse motion primitives and use
finer motion primitives as the search progresses. Thus, we
start (Sec. 4.1.1) by describing the parameters required to
define a motion primitive. After that, we continue (Sec. 4.1.2)
to detail a hierarchy of motion primitives together with
an ordering that will be used in our search algorithm. We
then describe our search algorithm in detail (Sec. 4.1.3)
and elaborate on the method we use to handle “similar”
states, also known as duplicate detection (Du et al. 2019)
(Sec. 4.1.4).

4.1.1 Motion Primitives Motion primitives, introduced
by Frazzoli et al. (2002), have been used in many motion
planners (Islam et al. 2019, 2020; Lindemann and LaValle
2006; Pivtoraiko and Kelly 2011; Ljungqvist et al. 2017).
In our setting, the motion primitives are a set of predefined
kinematically feasible local motions. Roughly speaking, a
motion primitive defines with what curvature the needle
curves, how far the needle steers, and in which direction
(see Fig. 3). Since for each motion primitive, the curvature x
is explicitly defined, a motion primitive is guaranteed to be
kinematically feasible as long as x < Kpax-

More formally, to steer from configuration x,,, a motion
primitive is defined as a three-tuple M = (k,d/,d6),
where k € [0, Kimax] is the curvature, §¢ > 0 is the length of
the circular arc, and 66 € [0,27) is the angle between the
curving plane and the XZ-plane of x,, (see Fig. 3). Thus the
action space (or motion space) can be defined as A C R3,
which is the set of all motion primitives. We use x, =
X, @ M to denote the operation of extending x,, with motion
primitive M and obtaining the resultant configuration x,,.
See Fig. 3 for a step-by-step determination of x,. In the



The International Journal of Robotics Research 42(10)

Figure 4. Visualization of length and angle levels. Left:
Visualization of length levels. Smaller node sizes correspond to
higher length levels. The first length level (I, = 0) corresponds
to motion primitives of maximal length (6¢max). As l¢ increases,
the resolution of length becomes higher. The gray spheres show
the lengths at corresponding length levels while the white
spheres show the lengths that have been explored at a smaller
level. The gray arrows illustrate how motion primitives with the
first 4 length levels are generated during refinement. Right:
Visualization of angle levels. Nodes with angle levels 0, 1, and 2
are shown in red, yellow, and blue, respectively. The first angle
level (ly = 0) corresponds to motion primitives of

60 = {0, Z,m, 37}. As Iy increases, the resolution of orientation
becomes higher. The circular arrows illustrate how nodes with
the first three angle levels are generated during refinement.
Middle: 3D visualization of length and angle levels.

context of a search tree, by a slight abuse of notation, u =
v @& M denotes the resultant node u, obtained by extending
node v with the motion primitive M. We call M the
extending primitive of node u.

Using motion primitives allows pre-computing intermedi-
ate configurations and thus saving computation efforts during
planning by transforming these configurations to the frame
defined by x,,. Since the trajectory produced with one motion
primitive is a circular arc, it is possible to densely interpolate
the trajectory for collision-checking purposes.

In the following sections, we show how d&¢ and 6 are
gradually refined by the algorithm. In contrast, we keep a
fixed set of curvatures, {0, Kmax }, for all motion primitives.
As we will see (Sec. 5) this does not hinder the guarantees
provided by our approach. Moreover, as we demonstrate in
our experiments (Sec. 6), these primitives, coupled with our
planners, allow us to efficiently compute paths for non-trivial
instances where other planners fail.

4.1.2 Motion Primitive Hierarchy Our algorithm uses a
sequence of motion primitives, whose resolution changes
from coarse to fine. The coarsest motion primitives
are defined by parameters &0y, and 06p.c. In our
implementation and examples (e.g., Fig. 4) we have that
00max = 5 and 0lmax > 0 is a user-given parameter.

Since 660 € [0,27) and 0Onax = 5, there exist four
orientations (00 € {0, 5,7 2” }) that have the coarsest
orientation (see Fig. 4). There exists only one coarsest length,
which is §y,,x, since path length is accumulated when we
expand a node. To characterize how fine the resolution of a

motion primitive M = (x, 6/, 56) is, we define the notions

Top-down view !

\
§&v% 3
~~>\>/>X\</<~~

A RN

7] /&

[ RankO ® Rank 1

® Rank 2

Figure 5. Nodes of the first four ranks. We use motion
primitives with x = 0 (straight lines) and K = kmax (arcs with
maximum curvature).

of length level [, and angle level ly. More formally,

ly(M) =min{l € Z |1 > 0,MOD(6¢,27" - §4pmax) = 0},
lo(M) =min{l € Z |1 > 0,MOD(360,27" - §0,max) = 0},

where MOD(-) is the modulo operation.

For a motion primitive M = (k, §¢,66), we refine the
resolution of both the insertion ¢ and the orientation d6. The
new motion primitives constructed by refining ¢ are:

Moz = (k, 00+ 27T 50 50). )

Similarly, the motion primitives constructed by refining §6
are:

Moy = (5,80,60 £ 2= M+ 50 Y (3)

It is straightforward to see that the refined motion
primitives M,_ and M, both have a length level
of ly(M)+1 and the refined motion primitives Mg_
and M both have an angle level of lp (M) + 1 (see Fig. 4).

Note that when refining a motion primitive with l,(M) =
0 (resp. lg(M) = 0), we ignore My (resp. My_) as they
both exceed the range of exploration.

Similar to Lindemann and LaValle (2006), our search
algorithm expands nodes according to a node’s rank. Rank
captures both the depth of a node in the search tree and the
fineness of resolution along the branch connecting the node
from the root. We define the rank of the root node to be zero,
the rank of any other node v is recursively defined as:

Rank(v) = Rank(v.parent) + lp(M,) + lg(M,) + 1.
“
For a visualization, see Figs. 4 and 5.
4.1.3 Algorithm  Description We run an  A*-like

search (Hart et al. 1968) where nodes are ordered according
to their rank (Eq. 4). A distinctive feature from (vanilla)
A* is that when we expand a node, we also increase the
resolution of the motion primitives used to expand its parent
and add nodes using these finer motion primitives to the
search’s priority queue. The rest of this section formalizes
this idea.

Alg. 1 shows the pseudocode of our RCS needle planner.
We first initialize the coarsest orientations and the curvature
set (Alg. 1, line 1), then initialize the OPEN list and
CLOSED set (Alg. 1, line 3). The search algorithm then
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Algorithm 1 ResolutionCompleteSearch (RCS)
IHPUt: Wobs» Xstart s Pgoals Ty Kmax gmaxa (;gmaxa Rmin

Algorithm 2 RCS*
Input: Wobsa Xstarts Pgoals Ts Kmax emax» 5£maxa Rmin

1. © <« {0, %,m, 37”},[( +— {0, Kmax }
2: 100t < (Xstart, 0)

3: OPEN < {root}, CLOSED < §)

4: while not OPEN.empty() do

v < OPEN.extract()

6 if Valid(v, Wobs, DPgoal, émax) then

7: if not CLOSED.existDuplicate(v) then
8

9

> The root has rank 0

4

if GoalReached(v, pgoal, 7) then
return RetrievePlan(v)

10: for M € Primitives(K, §¢;,.x, ©) do
11: OPEN.insert(v & M)
12: CLOSED.insert(v)

13: if v !=root then

14: for M & RefinedPrimitives(M,,) do

15: if ValidResolution(v.parent, M, Ry,i,) then
16: OPEN.insert(v.parent & M)

17: return NULL

iteratively extracts nodes from the OPEN list (Alg. 1, line 5),
where nodes are ordered in a monotonically non-decreasing
order according to their rank.

Only at this point (Alg. 1, line 6) the extracted node is
validated. This is also known as lazy validation (Hauser
2015; Mandalika et al. 2019). Validation of node v involves
ensuring that:

(i) the circular-arc trajectory connecting v.parent and v
should be collision-free;

(i1) the trajectory from the root to v is not identical to
another node that only needs equal or coarser motion
primitives to get to; and

(iii) the accumulated trajectory length should not exceed
the maximum insertion length £y, .

An invalid node will be rejected and discarded. For
a valid node v, we further check if there exists any
similar configuration in the CLOSED set in order to
avoid considering equivalent or highly similar configurations
(Sec. 4.1.4). A valid node without a similar configuration
is accepted, expanded, and added to the CLOSED set
(Alg. 1, lines 10-12). The search terminates if the associated
configuration of the accepted node satisfies the goal
tolerance.

In our search algorithm, only the coarsest child nodes are
added to the OPEN list during the initial expansion of a node
(Alg. 1, lines 10-11). But additional child nodes, created with
finer motion primitives, are added when the coarse child
nodes are extracted from the OPEN list (Alg. 1, line 16).
More specifically, when node v is extracted, we refine its
extending motion primitive M, following Eq. 2 and 3
(Alg. 1, line 14), and use the refined motion primitives M+
and My to expand v.parent.

As specified in Sec. 3, for a physical needle-steering
robot there exists some smallest interval or precision
of the achievable motions, which induces the minimal

1. © <« {0, F,m, 37”},1( — {0, Kmax }

2: 10Ot <— (Xst arts 0, O) D> The root has rank 0 and cost 0
3: OPEN ¢ {root}, CLOSED < {), bestPlan +- NULL

4: while not OPEN.empty() do

5: v + OPEN.extract()

6: if not PotentiallyBetter(v.parent, bestPlan) then
7: continue

8 if Valid(v, Wobs, Pgoal, {max) then

9 if not CLOSED.existDuplicate(v) then

10: if GoalReached(v, pgoal, 7) then

11: bestPlan.update(v)

12: for M € Primitives(K, §fyax, ©) do
13: OPEN.insert(v & M)

14: CLOSED.insert(v)

15: if v !=root then

16: for M € RefinedPrimitives(M,) do

17: if ValidResolution(v.parent, M, R,;,) then
18: OPEN.insert(v.parent & M)

19: return bestPlan

insertion and axial rotation d¢;,;; and 06y, respectively.
We term Rpin = (04min, 00min) as the cutoff resolution
and stop adding refined nodes when the extending motion
primitive M satisfies 2= te(M) L5 < 8lppin OF 2 L0 (M)
00max < 60min (Alg. 1, line 15). Since we simultaneously
refine §¢ and §6, we also make sure one motion primitive is
applied only once to a node (Alg. 1, line 15).

4.1.4 Duplicate Detection To avoid re-expanding nodes
with the same or highly similar configurations multiple
times, search-based planners often employ duplicate
detection (Du et al. 2019) that prunes so-called “duplicate”
nodes. To prune duplicate nodes and enable the planner
to rapidly explore the entire C-space, we reject a node if
there already exists a similar configuration in the search
tree (Alg. 1, line 7). More formally, we reject node v with
configuration x,, if Ju € V, p(Xy, Xy) < dsim, Where dgiy, >
0 is a parameter we use to identify similar configurations.
Here, p(-) is a distance metric defined on X which in our
work is defined as

p(Xuvxv) = Hpu - pv||2 +a- diSt<i(Qu7 qv)7 (5)

where « >0 is a weighting parameter and dist<() is
the angular distance between two orientations. Note that
to guarantee resolution completeness, the value of dgjy
depends on other system parameters detailed in Sec. 5.

4.2 A resolution-optimal version of RCS
(RCS?)

Since RCS* can be seen as an extended version of RCS,
they share many basic components, as can be seen from the
pseudocode of RCS* shown in Alg. 2. In this section, we
focus on explaining the differences between RCS* and RCS.

Similar to RCS, RCS* builds a search tree with motion
primitives of multiple resolutions (as defined in Sec. 4.1.1
and 4.1.2).
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We first introduce the essential differences that guarantee
the resolution optimality of RCS*.

4.2.1 Termination Criteria In RCS, the first motion plan
obtained is returned directly. In a multi-resolution search,
optimality of the first plan is not guaranteed. So RCS*
terminates when the OPEN list is exhausted (Alg. 2, line 4),
and the best plan is returned (if any is found). RCS* is
guaranteed to terminate in finite time due to the cutoff
resolution.

4.2.2 Cost-Aware Duplicate Detection Similar to RCS,
RCS* avoids expanding nodes with highly similar configu-
rations by performing duplicate detection (Alg. 2, line 9). In
RCS*, we additionally consider the node’s cost C(v) when
determining whether the node is a duplicate. More specifi-
cally, a node v is determined as a duplicate if there exists
a node u in the CLOSED list that satisfies (i”) p(xy,X,) <
dsim and (ii”) C(u) < C(v), where p is the distance function
defined in Sec. 4.1.4. Condition (i) is shared between RCS
and RCS*, while condition (i) is important for keeping
RCS™ resolution optimal as it prevents nodes with lower cost
from being pruned away by nodes with higher cost.

In Sec. 5 we determine the value of dg;,,. Note that in
RCS*, we need to specify this value correctly not only to
ensure that the solution is valid, but also to satisfy a desired
approximation factor for trajectory cost.

4.2.3 Cost-Aware Node Ordering As is mentioned above,
RCS* does not terminate until the search is exhausted,
indicating it will, in the worst case, spend time on checking
almost all possible solutions. Thus, from the perspective of
computation efficiency, it is critical to find low-cost solutions
early and then prune the non-promising branches in the
following search. We now introduce these differences.

In each iteration of RCS*, an expansion of existing nodes
is performed in an A*-like fashion. In particular, nodes are
iteratively extracted from the OPEN list (Alg. 2, line 5),
wherein nodes are ordered according to their rank (as defined
in Sec. 4.1.2) and a secondary metric f(-). The secondary
metric f(v) = C(v) + h(v) has C(v) denoting the cost of the
trajectory from the root of 7 to v with respect to C and
h(v) being a heuristic function estimating the cost of the
trajectory from the node v to the goal point. For example,
in the case where C is trajectory length, we have h(v) be
the length of the Dubins curve (LaValle 2006) on the plane
spanned by X, and pgoal. Unlike in RCS, where nodes
with lower rank are always extracted first, RCS™ relaxes
this ordering by introducing a look-ahead parameter denoted
as nj, € N (similar to the idea in Lindemann and LaValle
(2006) and Mandalika et al. (2018)). At any time during
the search, we denote the minimum rank of nodes in the
OPEN list as 7open. Then we order all nodes with rank
T < Topen + Mia according to a secondary metric f(-). This is
done to prioritize searching nodes from a coarser resolution,
which speeds up finding an initial motion plan (this is similar
in nature to using a focal list (Pearl and Kim 1982) in A*-like
algorithms).

4.2.4 Node Pruning In addition to the node validation
conditions in RCS (Sec. 4.1.3), RCS* checks that the cost
C(v) is smaller than the cost of the best plan reaching the
goal region found so far. If the heuristic function h(-) is

admissible, we use f(v) instead of C(v) for node pruning,
as f(-) provides a better estimate of the node cost and hence
allows to prune more nodes.

4.25 Open Node Skipping Since f(-) is only the
secondary metric for ordering nodes in the OPEN list, it is
possible that a node with a higher f(-) value is processed
before a node with a lower f(-). Thus, when a node is
extracted from the OPEN list, we first check whether the
parent node still leads to a better motion plan (Alg. 2, line 6).
Denote by C* the cost of the best plan found so far. Any
node v in the search tree is not promising if C(v) > C* (or
f(v) > C* in case that h(-) is admissible). Then for a node
v extracted from the OPEN list, we discard it directly if
v.parent is not promising (Alg. 2, line 7).

4.3 Domain-specific optimizations

We now describe several optimizations used to further speed
up the planners.

4.3.1 Early pruning by testing for goal reachability We
can prune away nodes that, due to curvature constraints,
cannot be part of a path that reaches the goal (see Fig. 6
for a 2D illustration). The curvature constraint defines so-
called “unreachable regions” of a node and testing if the
goal pgoa1 belongs to a node’s unreachable region can be
done efficiently (see Fig. 6). Such nodes are pruned away
and are not expanded.

However, recall that we allow some goal tolerance 7.
Thus, instead of requiring the goal point to be inside a
node’s reachable region, we only require that the distance
between pgoa1 and the boundary of the reachable region is
smaller than 7.

Note that in our setting, the needle tip cannot (physically)
turn more than 90° as the needle might buckle and shear
through the tissue, so we discard such motions. Thus, we do
not need to account for a needle entering the unreachable
region due to a “U-turn”.

4.3.2 Direct goal connection For each node v that is
added to the search tree with corresponding configuration x,,,
we attempt to connect x,, to the goal point pgq, directly (a
similar technique is used in the RRT-based needle planner in
Patil et al. (2014)). Such a direct-connection trajectory lies in
the plane determined by the tangent vector of x,, and pgoal.
We consider two different types of trajectories to perform
the direct connection. The first one is to use a circular arc
following the idea in Patil et al. (2014). The second one is
to use Dubins curve that starts with a maximum curvature
arc and then follows a straight trajectory. Both types of
trajectories can be deterministically computed according to
the relative position of x,, and pgga1. In our implementation,
circular arcs are used by default, we only use Dubins curve
for RCS*, which aims to optimize the trajectory cost.

If pgoar lies outside the reachable region of x, but the
distance between pgoa1 and the boundary of the reachable
region is no larger than 7, we steer the needle in the plane
following a circular arc of curvature x,,x to the point closest
t0 Pgoal- When the circular arc is collision-free, a solution has
been found and we terminate the search. This approach can
often dramatically speed up the search.
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Figure 6. (a) An illustration of reachable and unreachable
regions in 2D. The case in 3D is similar. The unreachable region
can be generated by rotating the circles around the Z-axis (blue
vector), which creates a donut-like shape in 3D that is
unreachable. It also visualizes how we check goal-reachability
when considering tolerance 7. We reject a configuration if the
relative position of pg.ai falls in the inner region (darker orange).
(b) The algorithm creates a direct connection to the goal when
Deoal IS oUtside but still close to the boundary of the reachable
region. We use a circular arc with curvature kmax to steer
towards pgoa1 and the arc stops at the closest point to pgoai- (€)
An example of valid nodes with rank 0-3 after checking goal
reachability.

Goal

Proj(x,) X,

Figure 7. A 2D illustration of the approximated reachable
workspace. The kinematically forward-reachable workspace is
shaded red (a 3D version can be obtained by rotating the region
around the tangent vector at x,,, which results in a trumpet
shape). The feasible workspace is shaded blue. The diameter of
the circular arcs is

d = max(2/Kmax, T + ||Proj(Xv) — Dgoat||2). The final
approximated reachable workspace is shaded in purple.

Goal Goal Goal

o Ss

Goal Goal Goal

Not
Reachable
X, X, X,

Figure 8. 2D illustration of example cases for inevitable
collision check. The connected region is shaded yellow,
obstacle voxels are shaded pink. This is an underestimation of
inevitable collisions so even if the goal is determined as
reachable in the check, it is not guaranteed that a valid motion
plan to the goal exists.

Reachable

4.3.3 Inevitable collision avoidance We try to account for
inevitable collisions (LaValle 2006) to eliminate potential
nodes that are bound to lead to collisions as they are
expanded. In particular, for a given vertex v and the goal
point, a “region-growing” process is performed from x,
within an approximation of the reachable workspace, while
considering the existence of obstacles. This region is defined
as the intersection of the kinematically forward-reachable
workspace and the olive-shaped feasible workspace defined
by X, Pgoal, and tolerance 7 (see Fig. 7).

We mention that due to (i) maximum curvature constraint,
(i) maximum turning angle constraint (the needle would
shear or buckle when turning over 7 /2), and (iii) maximum
insertion length constraint, the kinematically forward-
reachable workspace for a given needle configuration is a
trumpet-shaped volume rooted at the current needle position
(see Fig. 7 left).

Additionally, a position in the workspace is potentially
feasible only when there exists some orientation with which
the goal region is forward reachable while the start point
is backward reachable, considering the maximum curvature
constraint. This defines the olive-shaped feasible workspace
(see Fig. 7 middle) since for any position outside the region,
there is no orientation that is valid.

In the case that the goal is not reached by the grown
region, v is considered to have an inevitable collision and
thus to be invalid. Several examples are provided in Fig. 8.
Inevitable collision check allows us to efficiently identify and
discard invalid branches. However, compared to previously
mentioned optimizations, such inevitable collision checks
can be computationally expensive and is an underestimation
of the real inevitable collision. Thus, we only perform
inevitable collision check when a direct goal connection
fails, indicating there exist obstacles blocking the way toward
the goal region. We also keep a record of states that
successfully passed the inevitable collision check and skip
the check when a nearby node has already passed the check,
allowing us to sparsely check for inevitable collisions.

4.4 Parallelism

Our algorithms can be easily parallelized. One of the most
time-consuming tasks in our search algorithm is processing
a node after it is extracted from the OPEN list (namely,
evaluating whether the path to this node is collision-free,
and computing the relevant motion primitives for its parent
node and the corresponding new nodes). To this end, we
implemented a multi-threaded version of the algorithm
where each thread is tasked with processing a node extracted
from the OPEN list. This enables processing nodes in parallel
while maintaining the correctness of the algorithm by adding
standard locking mechanisms to the shared data structures
(i.e., OPEN list and CLOSED set).

To distinguish between different variants of the planners,
we use the notations in Tab. 1 in the following discussions,
where “S” stands for “single-threaded”, “B” stands for
“basic”, and “D” stands for “duplicates” (indicating we allow
similar configurations by not doing duplicate detection).
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Table 1. Different variants of RCS and RCS*.

Name Duplicate  Domain-Specific ~ Parallelism
Detection  Optimizations

RCS(*) Y Y Y

RCS(*).S Y Y N

RCS(*)B Y N N

RCS(*).D N N N

5 Theoretical Guarantees

We study the theoretical properties of our proposed
algorithms, namely RCS and RCS*, and provide a proof
for RCS and RCS* both being resolution complete while
RCS* is additionally resolution optimal. We start with some
general definitions pertaining to the notion of resolution
completeness adapted from LaValle (2006) in Sec. 5.1.
Unfortunately, their generality requires masking important
problem-related details such as, “is planning defined in
the C-space or in the control space?” or “what are the
specific assumptions on the system?” This is also the reason
that existing proofs (e.g., (Barraquand and Latombe 1991,
Appendix A) and (Cheng and LaValle 2002, Thm. 5.2))
cannot be used as is. Thus, in Sec. 5.2, we quickly move to
the specific setting of motion planning for steerable needles
which requires specifying the exact problem-related details
and definitions. We also explain in this section where we rely
on the aforementioned proofs and where we are required to
account for our specific domain and planner.

5.1 General resolution-related definitions

We now introduce some general definitions of resolution,
resolution completeness, and resolution optimality. These
general definitions will help in understanding later discus-
sions specific to RCS and RCS™.

Definition 1. Resolution. Resolution is a finite set of param-
eters R = (rg,...,7,), where each r; € R characterizes
the discretization of some dimension in some space (e.g.
state space, configuration space, action space, and time),
and a smaller number indicates a finer resolution on that
dimension. We say that resolution R' = (r{,...,rl) is finer

r'n

than R* = (rg,...,77) if Vi,r} <r7and 3jst.r} <r3”

T n

Definition 2. Resolution completeness. For a general
motion planning problem A, a planner P is resolution
complete if when a so-called qualified solution to A exists,
there exists some resolution R;, such that running P with
resolution R,,;, on A finds a solution in finite time.

Definition 3. Resolution optimality. For a general motion
planning problem A, a planner P is resolution optimal if
when at least one so-called qualified solution to A exists
and the solution with optimal cost (considering a cost
function C) among all so-called qualified solutions is ¢*,
there exists some resolution R;, such that running P with
resolution R, on A finds a suboptimal solution, o, in
finite time. More specifically, P guarantees C(o) < (1 +¢) -
C(0™), where ¢ is a predefined approximation parameter.

Clearly, the above definitions are more general intuitions
than specific definitions for the needle steering problem.

We need to define what a “qualified solution” is and what
“running P with resolution R ;, on A” means.

5.2 Resolution completeness of RCS and
resolution optimality of RCS*

When narrowed down to the specific case for our steerable
needle planners, the notion of resolution completeness and
resolution optimality can be informally stated as follows:

(i) Resolution completeness implies that RCS and RCS*
are guaranteed to find a plan as long as there exists
a qualified motion plan o, assuming that the cutoff
resolution Rynin = (0€min, 06min ) is fine enough, both
in terms of 04 and 46.

(i1) Resolution optimality implies that RCS™ is guaranteed
to find a plan whose cost is as close as desired
to the cost of the globally optimal qualified motion
plan o*, assuming that the cutoff resolution R, =
(0limin, 00min) is fine enough, both in terms of 64
and 96.

Thm. 1 and Thm. 2 given below state our main
theoretical contribution relating to resolution completeness
and resolution optimality, respectively. Before stating the
main theorems, we introduce some definitions that are
essential to state the assumptions in the theorems. Recall that
A is the action space, which is the set of all valid motion
primitives and that p(-) is a distance metric defined on X
(Eq. 5). In the following discussions, for some sequence
of motion primitives M, we will use x@ M to denote
the resultant trajectory obtained by sequentially applying
elements in M to x.

First, we provide a formal definition of Lipschitz
continuity of the steerable needle system, which is used
in (C1) and (C1’). We define Lipschitz continuity in our
primitive-based setting, which is based on the following
primitive-based metric.

Definition 4. Primitive-based metric p4. We define a
distance metric over the action space A as the two-way
Hausdorff distance between two resultant trajectories X &
{ Moy} and x & { M }, for some configuration x and actions
Mg, My € A. Formally, we have

pa(Mo, My) = max{ max { min p(oo(s),o1(t))},

te[0,41] s€[0,£o]

ax { mi ()},
sgﬂo,ﬁ]{téﬁ)l,?l]p(”()(s) o1(t))}
where 0g = x ® { My}, 01 = x® {M;}, and ¢y, {1 are the
trajectory lengths of o, o respectively.

In the above definition note that changing the initial
configuration x does not change the relative position between
the two trajectories. Thus, without loss of generality, we have
x = (p, q) where p = (0,0,0) and ¢ = (1,0,0,0).

Definition 5. Lipschitz continuous. The system is Lipschitz
continuous if there exists some constant L, > 0 such that

*Qur definition of a finer resolution is identical to the notion of dominance in
the study of multi-objective optimization (see, e.g., Herndndez et al. (2023)).
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for any x¢,x; € X', My, M; € A, the following inequality
holds:

p(xo ® Mo, x1 ® My) < Ly (p(x0,%1) + pa(Mo, My1)).

We then introduce the notions of robust and decomposable
trajectories, as well as a well-behaved cost, which will be
used to state the necessary conditions on the approximated
motion plan ¢ and cost function C required to prove our
results. The crux of the problem is that it may not be
possible to approximate some plan ¢ using motion plans with
a finite number of transitions without additional (realistic)
constraints on ¢ and C.

We provide two definitions that are used to characterize
motion plans that our algorithms can approximate. The first
definition is concerned with trajectories that are induced by
a finite set of motion primitives (not necessarily the ones
used by RCS and RCS*). The second definition is concerned
with so-called robust trajectories that admit some clearance
from the obstacles and the boundary of the goal region. A
motion plan is then considered qualified if it satisfies both
definitions.

Definition 6. Decomposable trajectory. Let o : [0,¢] — X
be some trajectory. We say that o is decomposable if it can
be decomposed into a finite sequence of motion primitives.
Namely, there exists M, = (M,...,M,,) C A, where nis
finite, such that 0 = o (0) & M,.

Definition 7. Robust trajectory. A trajectory o : [0,1] = X
is y-robust, for some v > 0, if
has ~

@) it
min

S€[0,1],XE Xobs

clearance from obstacles, i.e.,

p(o(s),x) >,

(ii) its endpoint is within a distance of 7 — y to the goal
point. Namely, ||[Proj(o (1)) — pgoalll2 < T — 7.

Here, Xops = cl(X \ Xee) and cl(+) is the closure of a set.
Note that we implicitly assume here that the goal tolerance
satisfies 7 > 7.

We then define the notion of a well-behaved cost which
states that close-by configurations have similar costs and that
there are bounds on the values that the cost can attain.

Definition 8. Well-behaved cost. A configuration-based cost
function c is well-behaved if

(i) it is Lipschitz continuous, i.e., Vxg,X1 € Xfee,
le(xo) — e(x1)| < L - p(x0,%x1) for some constant
L. >0,

(1]) Vx € Xfreey C(X) € [Cmina Cmax} - (07 OO)

In such a case, we also say that the trajectory-based cost
function C(o) = foe c(o(s))ds is well-behaved.

We are now ready to state our main theoretical
results concerning resolution completeness and resolution
optimality.

Theorem 1. Resolution completeness. Let A=
(X, Wobs, Xstart s Pgoals T enlaxa Hmax) be a steerable
needle motion planning problem. Also, suppose that the
following conditions are satisfied:

(CI1) The steerable needle system is Lipschitz continuous
and characterized with L.

(C2) There exists a solution trajectory o that is decompos-
able and ~-robust with v = 3.

(C3) The radius dgi, used to reject similar nodes satisfies

Ls—1
dsim < min{dmina ’Y()}v

2(LT —1)
where dp,i, = 2 sin Rmax(%min,H = bmax )
max 2 6£min

Then RCS is resolution complete, i.e., for a fine-enough
cutoff resolution Ryin = (8min, 00min), RCS will find a
motion plan in finite time.

The following is a stronger property that is concerned not
only with finding a solution but also with finding a “good”
one.

Theorem 2. Resolution optimality. Let A=
(X, Wobs, Xstart, Pgoals Ts fmax, Kmax) be a  steerable
needle motion planning problem, A* = (A,C) be an
optimal steerable needle motion planning problem, and
Ecost € (0,00) be an approximation factor. Also, suppose
that the following conditions are satisfied:

(CI’) The steerable needle system is Lipschitz continuous
and characterized with L.

(C2’) The cost function C is well-behaved and characterized
with Lc; Cmin, Cmax- Denote k = m

Cmin

(C3’) The optimal solution trajectory c* is decomposable
and ~y-robust with -y = min{ ==t 71,

(C4’) The radius dsin, used to reject similar nodes satisfies

L.—1
dsim < min{dmina ’M}7

2(L -1)
2 max(sgmin gmax
where din, = sin r JH = .
max 2 6£min

Then RCS” is resolution optimal, i.e., for a fine-enough
cutoff resolution Ry = (0lmin, 00min), RCS* will find a
motion plan that satisfies C(c) < (1 + ecost) - C(0™).

Remark 1. The above theorems can be generalized
to approximate general solution trajectories that are not
necessarily decomposable. In particular, since any solution
trajectory has bounded curvature, it can be approximated
in terms of spatial proximity and solution quality to any
desired level of accuracy using a sequence of circular arcs.
The latter sequence yields by definition a decomposable
trajectory. Such an approximation of bounded-curvature
trajectories using circular arcs (also known as biarcs) has
been extensively studied in 2D (Hoschek 1992; Meek and
Walton 1995; Sabitov and Slovesnov 2010). Extending this
argument to the 3D case is rather technical and therefore
deferred to future work.

In the following sections, we provide proofs for Thm. 1
and Thm. 2. Both proofs follow two main steps. We first
show that a decomposable trajectory o can be approximated
by another plan o, that is composed solely of the motion
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primitives used by RCS and RCS*. Then, we show that
even though RCS might not be able to exactly find o,
due to pruning, it will find another solution ¢ due to the
robustness of ¢ and the choice of dg;,,, which closely follows
o¢. Similarly, RCS* will be able to recover another plan ¢*
whose cost is similar to that of ¢} (and o).

5.3 Approximation of decomposable
trajectories

We temporarily set aside the study of our algorithms’
behavior and prove the following basic result showing that
any decomposable trajectory can be approximated to any
desirable degree by a finite sequence of motion primitives
with fixed curvatures (discussed in Sec. 5.3.1) and fixed
resolution (discussed in Sec. 5.3.2).

Before stating the theorem, we introduce notions related
to trajectory approximations. We provide a formal definition
of the notion of piece-wise strict e-approximation. We first
define this notion for a single local “piece” in the following
definition, and then extend it to trajectories consisting of
several pieces.

Definition 9. Local strict approximation.  For two
trajectories o : [0,¢] — X and & : [0,¢] — X, and a value

€ > 0, we say ¢ is a local strict e-approximation of o if

(i) (< (14¢)-¢,
(i) Vs € [0,min(4, 7)), p(o(s),5(s)) <e,

(iii) Vs € [min(¢,0),¢], p(o(f),5(s)) <e.

Definition 10. Piece-wise strict approximation. For two
trajectories o : [0,£] — X and & : [0,/] — X, and a value
€ > 0, we say & is a piece-wise strict e-approximation of o
if there exist two sequences sg < s1 < --- < §, and 59 <

§1 < --- < §, such that
1) s0=0,5 =0,
(i) s, = 4,5, =,

(iii) Vi € [0,n — 1], the sub-trajectory &(35;, §;+1) is alocal
strict e-approximation of o (s;, s;+1).

Additionally, it will be convenient to introduce the notion
of a finest set of motion primitives.

Definition 11. Finest set of motion primitives. Given a
resolution R = (r¢,79), and a set of curvatures K, we define
the finest set of motion primitives as

My(R,K) = {(fe,rg,nrg) ‘ ke K,ne {0, ﬁ”” c Z}.

0

We now state the following theorem about trajectory
approximation.

Theorem 3. Let 0 be a decomposable trajectory and
let € > 0 be some real value. If the system is Lipschitz
continuous, there exists a fine resolution R(o,€) = (rg,T9)
and a finite sequence of motion primitives Mpg(s 0y C
Mi(R(0,€),{0, max }) such that o := 0(0) ® Mg, is
a piece-wise strict e-approximation of o. Moreover, when
we also consider a cost function, if c is a well-behaved cost
(characterized with L., Cyin, Cmax), then the trajectory cost
satisfies C(0.) < (1 +k-¢) - C(0), where k = LetCmax,

Cmin

x € [0,k

max]

(2N

Figure 9. lllustration of approximating arbitrary curvatures
using duty-cycling. Left: Decompose M; into multiple
segments with length ¢;. Right: Use three segments to
approximate one segment of M;, where the segments have a
curvature of 0, kmax and 0, respectively. The two-way Hausdorff
distance (the positional part marked as ¢; in the figure) depends
on ¢,. For a given kmax, to approximate M; (with curvature k),
the shorter ¢; is, the smaller ¢; is. This is because

g; < - (1/cos(0.5n) — 1), where r = 1/x is the radius of
curvature and n = ¢;/r is the central angle. Since the maximum
orientation difference along the trajectory is bounded by 0.57,
the two-way Hausdorff distance in configuration space is also
bounded. Also, the trajectory length of the original segment is

¢; = r - n, and the length of the three-segment trajectory is
Capprox < 2r - tan(0.57). Since lim,—, 222020 = 1, the
trajectory length ratio approaches 1 when 7 approaches 0. This
means the trajectory length can be approximated arbitrarily well.
Furthermore, the point-wise distance is bounded by

ei(1+€;) + S5, when we have a small enough ¢; that

Lapprox < (14 €;)¢;. As is shown in the figure, A and B are
points intersecting with a straight line originating from the center
of curvature, and C'is A’s corresponding point along M;. Then
|A — B|| < e; and the length of curve BC < ¢;4;, thus

|A = C|| < ei(1+ ¢;). Additionally, the orientation difference
between A and C'is bounded by 0.57 = £t.

We break the proof of this result into the following steps.
In the following discussions, we refer to the parameters of
M = (k,6L,80) as M.k, M.5¢, and M.60, respectively.

5.3.1 Approximating arbitrary curvatures using duty
cycling. As a first step, we show that any decomposable
trajectory o can be approximated arbitrarily well by a finite
sequence of motion primitives whose curvature is either 0 or
Kmax- We provide a justification of this property below.

When a bevel-tip needle is inserted without rotations, it
follows a trajectory with curvature xp,.x. When the needle
is inserted while applying axial rotational velocity that is
relatively larger than the insertion velocity, it follows a
straight line (i.e., of curvature zero). Minhas et al. (2007)
introduced the notion of duty cycling to approximate any
curvature for bevel-tip steerable needles. Roughly speaking,
combining periods of needle spinning (i.e., zero-curvature
trajectories) with periods of non-spinning (i.e., maximal-
curvature trajectories) enables the needle to achieve any
curvature up to the maximum needle curvature. This idea is
formalized in the following lemma.

Lemma 1. Approximating arbitrary curvatures using
duty-cycling. Let o be a decomposable trajectory and
let €4 >0 be some real value. There exists a finite
sequence of motion primitives Mp in which every element
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has curvature £ € {0, Kymax } such that the trajectory o(0) &
Mp is a piece-wise strict € g-approximation of o.

Proof. Here, to explicitly show how the approximation
factor ¢4 is used and to provide a more general discussion,
we provide a proof from a geometric perspective (and not
control-based as in the original work in Minhas et al. (2007)).

As the trajectory o is decomposable, there exists a
sequence of motion primitives M, = {M,..., M, } such
that o = 0(0) @ M, and each motion primitive M, has
arbitrary curvature £; € [0, Kmax]. To approximate M,
we construct a sequence of motion primitives M; =

{Mgl), . ,Mgni)} that satisfies

MW 56 = M,.50,
vj € [2,n:], MY .56 =0,
Vi € [1,n:], M7 .k € {0, Kimax}-

Namely, the first motion primitive /\/lz(-l) ensures that both
trajectories use the same curving plane and the rest of the
sequence stays within this curving plane and approximates
the (arbitrary) curvature x;.

We then decompose M; into small equal-length segments
of length ¢; where the specific value of ¢; is chosen according
to the value of €4 and M;’s curvature x. We then use three
motion primitives to approximate each of these segments
as illustrated in Fig. 9. Denote the j-th segment along M,
as M;; and the corresponding sequence of three primitives
approximating M; as My; = {M3;, Mj;, M3, }. Note that
(i) the start and end configurations of M;; and M;; are
identical, (ii) the two-way Hausdorff distance between M,
and M;; is less than ¢; if ¢; is carefully chosen, and (iii) for
each segment with length ¢;, the length of the three-segment
approximation is less than (1+¢;)-¢; if ¢; is carefully
chosen. The point-wise distance is then bounded by ¢;(1 +
4;) + akl;/2 (recall that « is the weighting parameter in
the distance metric Eq. 5). See Fig. 9 for details. Thus, by
carefully choosing ¢;, we can make sure the three-segment
approximation M;; is a local strict €4-approximation of the
original segment M,;, where €,(1 + ¢;) + arl; /2 < e4.

Let M3¢ = My - My - ... M, be this sequence of all the
newly constructed motion primitives. By definition o (0) &
MEe is a piece-wise strict € g-approximation of o. ]

5.3.2 Approximating curves using fixed-resolution primi-
tives. After the previous step, a decomposable trajectory can
be approximated by another decomposable trajectory with
only 0 or Kyax curvature, although the approximation might
require different resolutions. Next, we further show that
a decomposable trajectory can be approximated by fixed-
resolution primitives.

Lemma 2. Approximating curves using fixed-resolution
primitives. Let o be a decomposable trajectory and let
gr > 0 be some real value. If the system is Lipschitz continu-
ous (Def. 5), there exists a fine resolution R(c, &) = (rg,79)
and a finite sequence of motion primitives Mp(s.,) such
that 5(0) © Mp(s.c,) is a piece-wise strict € .-approximation
of 0. Moreover Mg,y C M (R(0,¢,), Ko), where K,
is the set of curvatures that appear along o.

AC<LAB+BC
<AB+ BC,

curv

< ZAOB - OA + BC,

curv

< ZAOB - 0OA.,, + BC,

curv curv

< |601 - 692' . OAcurv + Bccurv

Figure 10. lllustration of the action distance between two
motion primitives with the same curvature. Here the shorter
motion primitive lies in curving plane 1, thus

IIliH{(Sél,de} = OAcurv and

|0¢1 — 642 = OCeurv — OAcury = BCeurv. Meanwhile, the
orientation difference between A and C satisfies

diSt< (147 C) S diStq(A, B) + diSt<[ (B7 C)

Proof. ¥ The trajectory o is decomposable, thus there
exists a finite sequence of motion primitives M, =
{My,...,M,} such that o =0(0)® M,. Set K, =
(J; M.k to be the set of all curvatures that appear in M,,.

To approximate each motion primitive M; using
primitives from the finest set of motion primitives
M;is(R(o,e.), K;) (Def. 11), we construct a sequence

motion primitive M; = {/\/ll(.l), . .MEM)}, where

MW 56 = k; -1,
Vi € [2,n:), MY .50 = 0,
Vi€ [1,n], MY k= M.k, MY 50 = r,.

Here, the first motion primitive ./\/ll(»l) accounts for the
curving plane (though here it can only be approximated)
and the rest of the sequence stays within this curving plane
and accounts for the length of the circular arc the trajectory
follows in this plane. Applying the sequence M; is equivalent
to applying one motion primitive M; = (M;.k,n; - r¢, k; -
rg). Thus, by carefully choosing 7, and ry, the distance
between M; and /\;ll (see Def. 4) can be arbitrarily small.

This is done for every motion primitive M,;. As M, is a
finite sequence of size n, for any £ > 0 we can always find a
fine-enough resolution (7, r9) that ensures that

pa(Mi, M;) < €, € [1,n].

This is because given that both motion primitives
have equal curvature, pa(Mi, M) < [067 — 662 -
min{001, 002} + |00y — 60o| + au(|66; — 66| + =22l
where 6¢; = M;.0¢ and 060; = M;.00. The above upper
bound for the action-space distance accounts for both

position and orientation. See Fig. 10 for illustration.

T Adapted from (Barraquand and Latombe 1991, Appendix A).
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Since the system is Lipschitz continuous,

p(o(0) ® My -+ ® My, 0(0) ® M- @ Mn)
<L,(p(c(0) D M- DMy _1,000) DM DM, 1)

<L - p(a(0),0(0)) + Y L™ pa(Mi, My)
i=1

Thus, to ensure that o(0) @ {M,..., M, } is a piece-wise
strict €,.-approximation of o, we only need to ensure that
¢E< % As both n and L, are fixed, we can choose
¢ to be as small as needed. Thus, the desired fine resolution

exists which concludes the proof. |

Having established Lem. 2, we can finalize the first part of
Thm. 3. Namely, we carefully set €4 and &,., so that the final
result is a piece-wise strict e-approximation.

Set ¢4 =¢, =+/1+4+ ¢ — 1. According to Lem. 1, there
exists a finite sequence of motion primitives Mp in
which every element has curvature k € {0, Kmax } such that
the trajectory o4 = 0(0) ® Mp is a piece-wise strict £4-
approximation of .

Note that by construction o4 is decomposable. Thus,
according to Lem. 2, there exists a fine resolution R(c, &,) =
(re,79) and a finite sequence of motion primitives
Mg,y such that 0. =0(0)® Mpg(s.,) is a piece-
wise strict &.-approximation of 4. Moreover, Mg, .,y C
Mis(R(o,er),{0, Kmax }) as the construction in the proof of
Lem. 2 does not add new curvatures.

Finally, as €4 = ¢, = /1 4+ ¢ — 1, the trajectory o, is a
piece-wise strict e-approximation of o. This is because for
every step above, we use segments of shorter lengths for
the approximation, thus segments along o, and o satisfy
condition (ii) and (iii) in Def. 9 with a distance upper
bound of (¢4 +¢,). So we only need to take care of the
first condition in Def. 9. Having ¢4 =¢, =+v1+e—1
would provide us with (1 +¢4)(1 4+ ¢,) =1+ ¢, thus the
trajectory length is also bounded, making segments in o,
local strict e-approximations of the corresponding segments
in o. By definition, o, is a piece-wise strict c-approximation
of 0.

5.3.3 Similar cost for piece-wise strict approximations.
To finish the proof of Thm. 3, we finally show that the
approximation of o also achieves a desirable cost.

Lemma 3. Similar cost for local strict approximations. If
a trajectory ¢ is a local strict e-approximation of another
trajectory o, and the cost function C is well-behaved
(characterized with L, Cmin, Cmax), then we have C(5) <
(1+k-€)-C(o), where k = LetCmax,

Cmin

Proof. We have

~

C(5) = /O c(5(s))ds
-/ (3 ())ds + / " (o s))ds
< /Ol (c(a(s)) +LC'E>d«9+€'Z'Cmax
= /Ol (c(cr(s)) + L. €+ Cmax - 5) ds
_ /Oi (1+ W) - e(o(s))ds
</ (1;?3“?)) ;c(o(s))ds
_ (1+) [ elatsas
_ (1 + E(Lc“mx)) .C(o).

To conclude, if every piece of the sub-trajectory is
bounded, the sum of costs of all pieces is then also bounded.
Thus, if a trajectory & is a piece-wise strict e-approximation
of o, then for a well-behaved cost, we also have C(5) <
(I1+k-¢) -C(o).

5.4 Proofof Thm. 1 and Thm. 2

We are in a position to complete the proof of Thm. 1 and
Thm. 2. Since the proof for Thm. 2 follows a similar idea as
the proof for Thm. 1, we first prove Thm. 1 and then add the
essential part that is unique to Thm. 2.

To prove Thm. 1, we first consider a simplified version of
RCS, termed RCS_D, which does not use node pruning as
part of duplicate detection (Alg. 1, line 7) and later extend
it to RCS. For simplicity, we assume that both RCS_D and
RCS do not use the additional optimizations described in
Sec. 4.3 or 4.4, which do not affect the validity of arguments
used below.

5.4.1 Resolution completeness of RCS_D. We show that
Thm. 1 holds for RCS_D. Since duplicate detection is not
applied, (C3) is not considered.

Let o0 be a valid solution to problem A that is
decomposable and y-robust. Following Thm. 3, there exists
a fine resolution R(o,€) = (r¢,r9) and a finite sequence of
motion primitives Mg, ) C Ms(R(0,¢€),{0, fmax}) such
that 0(0) @ Mp(o,c) is a piece-wise strict -approximation of
0. In our algorithm, the resolutions are divided by half as the
length level I, and angle level [y increase. Thus, there exists a
fine-enough resolution R= (27 - §lmax, 271 - 60 pax ) that
satisfies 275 - 00y < 17, 2750 - 50,105 < T¢. Setting the
cutoff resolution R, to be finer (both with respect to the
insertion as well as rotation) than R ensures that M R(oe)
can be approximated arbitrarily well.¥

#To be more precise, one needs to account for the cases where R(o, &) is
not in the sequence of resolutions considered by the algorithm and we may
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The search tree built with RCS_D is a subtree of a
dense tree in which each node is expanded with every
element in Mfs(.é, {0, Kmax })- This is because every coarse
motion primitive used in RCS_D can be decomposed into a
sequence of motion primitives in Mfs(R7 {0, Kmax })- Since
the dense tree encodes all possible trajectories that can be
decomposed with Mfs(.é, {0, kmax }), a piece-wise strict e-
approximation of o, denoted as o., will be encoded in the
dense tree.

Next, we take € = % and show that o, is collision-free
and satisfies the desired goal tolerance, which implies that
RCS_D will be able to find it. According to condition (C2),
o is y-robust. This implies that o, is at least (y — &)-robust.
Given that ¢ = % we further have o, is %-robust. Thus
for a cutoff resolution R, that is fine enough, o. will be
explored by the search tree constructed by RCS_D.

5.4.2 Accounting for pruning in RCS. Since RCS_D
terminates in finite time, RCS also terminates in finite time
since more nodes are rejected. We now prove that RCS can
find a solution plan if conditions (C1)-(C3) in Thm. 1 are
satisfied.’

Since o : [0, ] — X is a valid solution, there exists some
fine resolution R(o,¢) that can be used by RCS as the
cutoff resolution (as discussed above), with which we can
construct a piece-wise strict e-approximation of ¢. Denote
the decomposable approximation as o, and the sequence of
motion primitives to compose it as M, = {My,..., M,}.
When M, is sequentially applied to Xgtars, We obtain
a sequence of configurations {xo,x1,...,X,}, where
X0 = Xstart, Xi = Xij—1 © M;, 1 € [1, n]. For the rest of the
proof, we use M, [i,j] ={M,;,...,M;} to denote a
subsequence of M,_. We also use x + M,_[i, j] to denote
the configuration after sequentially applying {M;, ..., M,}
to x.

If we run RCS.D, every x; will be explored and o,
will be constructed when the search terminates. However,
if we run RCS, we prune nodes using duplicate detection
(Sec. 4.1.4). Thus, we need to show that even with pruning,
RCS will still find a plan. This will be done by showing
that the same sequence of motion primitives can be applied
to configurations that are “similar” to xg...X, and the
resultant plan & exists using the fact that ¢ is “similar” to
o (thus “similar” to o) and that o is y-robust. The rest of
this proof formalizes this idea.

Recall that (C3) defines dy,jn, which is the minimum
positional difference between a node and its successor. The
condition dgj;y, < dpin in (C3) guarantees that any successor
node is not pruned by its parent node, which keeps the
tree expanding. Now, let x; be the first configuration that
is pruned because of a similar configuration (see Alg. 1,
line 7). We will say that x; is replaced by a similar
configuration xg. As 7 > 1, in the worst case we have 7 = 1.
We then apply M,_[2,n] to x}. According to (C1), the
maximal error accumulated to x!, = x| + M,_[2,n]is & =
p(x),, x,) = L1 - dgy,. Similarly, when x} is replaced by
x4, we apply M,,_[3, n] to x4 and for x!! = x + M,_[3,n],
the accumulated error is & = p(x/!, %)) = L2 - dyes. The
same analysis applies for {xs, ...,X,}. According to (C3),
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Figure 11. A 2D illustration of configuration pruning. o. is
shown as black nodes, the plan after x; prunes x; is shown as
red nodes, the plan after x4 prunes x5 is shown as green
nodes, the plan after xff’) prunes x4 is shown as yellow nodes,

the plan after xf{“ prunes xf) is shown as blue nodes, and the

pruning configuration ng’) is shown as a purple node. The solid
circular arrows represent elements in M, _, and the dashed
circular arrows represent connections to predecessors of the
pruning configurations. In this particular example, as long as we
guarantee that ||[Proj(xs) — pgoatll2 < 7 — % (0c is %-robust)
and that £ = Zle & < 3, the resultant plan which ended at

xé5> still satisfies the required goal tolerance.

the total accumulated error then becomes:

5 = p(Xgln),Xn) < p(X;,Xn,) + e +p(X$Ln)7X$1,nil))
L?—1 v LT—-1
L,—1 2 LH-1

:§1+"‘+£n: dgim <

<7
-2

Next, we show that even in the worst case, the final state of
o (e., XSL")) satisfies goal tolerance 7. Recall o, is a piece-
wise strict e-approximation of o. According to (C2), o is
~-robust. So when we have ¢ < I, the e-approximation o is
2 -robust. Thus,

HPl”Oj (ngn)) - pgoal”Q

< |[Proj(x(”) — Proj(x,) |2 + [[Proj(xn) — pgoal2

Y

<%+T—§:T.

This implies that even in the worst case where all possible

replacements happen, the final configuration x%") still
satisfies the required goal tolerance (see Fig. 11).
Additionally, we prove that when pruning happens

for xgi), the motion plan constructed with M, _[i, n] is still

collision-free. Denote by o (x;_1, X;) the trajectory segment

from x;_; and x; along 0. Similarly define &(XE:D, X(Z)).

We now show that &(x\;",x!"

;) is a local e;-strict

approximation of o.(x;_1,%;) for g; = % - dgim. To see
that, first note that both trajectory segments use the same
motion primitive and have the same length. Additionally,

p(xl(.i),x,») < éfi - dsim. Finally, an intermediate state x’

introduce additional error when approximating R(o, e,-) with R. However,
this can be easily accounted for by using a finer resolution to approximate
the target resolution R(c*, €), similarly to Lem. 2.

§The proof is adapted from (Cheng and LaValle 2002, Thm. 5.2), which
considers a finite set of inputs. Here, we further consider the approximation
of an arbitrary decomposable trajectory without assuming it is discretized.
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along the edge is also close to the corresponding state x
along the original edge (on o.), since they can be obtained
by applying a motion primitive of a shorter length, and
Lipshitz continuity of the system guarantees p(x’,x) <
fj -dsim < 3. Since o is -robust (with ¢ < 3), we
guarantee that the motion plan ¢ is collision free.

To summarize, as long as the required conditions are

satisfied, RCS finds a motion plan.

5.4.3 Resolution optimality of RCS™_D. Similarly to the
proof of RCS, we first consider a simplified version of RCS*,
termed RCS*_D, which does not use node pruning as part
of duplicate detection (Alg. 2, line 9) and later extend it
to RCS*. For simplicity, we assume that both RCS*_D and
RCS* do not use the additional optimizations described in
Sec. 4.3 or 4.4, and do not use C(bestPlan) for early pruning,
which does not affect the validity of arguments used below.

First, following the discussion in Sec. 5.4.1, RCS*.D
terminates in finite time. Then, to show that Thm. 2 holds
for RCS*.D, we consider a reference trajectory o* and
assume that conditions (C1°)-(C3’) are satisfied. According
to (C1’), (C2’), and Thm 3, as ¢* is decomposable, for some
e > 0, there exists a fine resolution R(c*,¢) with which a
piece-wise strict e-approximation of o* can be constructed.
We denote such piece-wise strict e-approximation as o.
Moreover, it holds that C(c%) < (1+ k- ¢) - C(c*), where
k= % is as defined in (C2’). Furthermore, we
mention that the precise value of ¢ will be assigned later on
and for now we only assume that € € (0, 3].

Similar to the discussion in Sec. 5.4.1, o} is at least
F-robust given ¢ < 4. Thus, for a cutoff resolution Ry,
that is fine enough, o} will be explored by the search tree
constructed by RCS*_D

5.4.4  Accounting for pruning in RCS™. The proof for this
theorem follows the same idea as Sec. 5.4.2, so we only
focus on cost approximation. Since the optimal trajectory
o* is curvature bounded, there exists some fine resolution
R(o*,¢) that can be explored by RCS*, with which we
can construct a piece-wise strict e-approximation of o*. We
denote the approximation as ¢ and the result found by RCS*
aso*.

Similar to Sec. 5.4.2, we denote the sequence of motion
primitives that composes o as M,: = {M;,..., M}, and
the sequence of configurations along o* as {xq, X1, ...,Xn },
where X = Xgtart, Xi = X;i—1 ® My, 1 € [1,n]. Following

©)

the notion in Sec. 5.4.2, x;”’, 7 < i denotes the configuration

(.J) + Mo+ [j +1,4], where x(j) is the configuration along

&* that replaces xgj b,

We now consider the cost of *. Note that in RCS* we
only allow XE " to replace xz( ) when C( ) < C( )
Here, C(x) denotes the cost of a node assoc1ated w1th X in
the search tree. Thus, for the final configuration along ¢* we
have
)+ el X

n—1

cx™) < e(x"

It remains to bound the expression C(x; ( Z)) for any

(
1 <4 < n. Following the proof of Thm. 1, N*( E]),x(-))

(2

is a local &,,-strict approximation of ¢ (x;_1,x;) for ¢, =
H - dgim < 3. According to the similar-cost property of

local strict approximation, we have that
e x) < (14 ken) - Cloximt, ),

where k is as defined in (C2’). To summarize, the
accumulated cost of ¢* is as follows:

(n) <ZC 21’1‘

< (1+key)- ZC(Xifhxi)

i=1

= (1+ key) - C(o7)

< (1+k%)

< (1+kg) (1+ ke) - C(o™)
:(1+k-%+k-s+k2-%€)'c(0*)-

It remains to determine the value of ¢ to achieve a desired
approximation factor of 1 4 e.q5. So far we required € <
< (14 ecost) - C(0o™)
holds, we require that ¢ < 252=t=k  Thyg we take ¢ =

E(2+k7)
min{3, %} According to condition (C3?) it follows

that, v < EC;“ , S0 we always have € > 0.

To summarize, as long as the required conditions are
satisfied, RCS” still finds a valid motion plan o that satisfies
C(o) < (14 cecost) - C(o™).

3. To further guarantee that C (xn"))

6 Experiments

We evaluate our new motion planners for steerable needles
using scenarios based on the medical tasks of lung biopsy
and liver biopsy:

(i) Lung biopsy: Lung cancer is the deadliest form of
cancer in the United States, killing over 130,000
Americans each year according to American Cancer
Society (2022). Early diagnosis is critical for
patient survival, and biopsy of suspicious nodules
is required for diagnosis. Steerable needles deployed
from bronchoscopes have the potential to safely
and accurately reach nodules throughout the lung
for biopsy and localized treatment (Kuntz et al.
2016; Swaney et al. 2017). In this procedure, the
steerable needle is deployed from a bronchoscope
inside the lung and must steer from the start pose just
outside a bronchial tube (the furthest pose reachable
by the bronchoscope) to the nodule while avoiding
anatomical obstacles that include the large blood
vessels, the bronchial tubes, and the lung boundary.

(i) Liver biopsy: Liver cancer accounts for roughly
840,000 new cancer cases and 780,000 cancer-related
deaths each year worldwide. It is more prevalent in
countries in sub-Saharan Africa and Southeast Asia
than in the US and is one of the few cancers whose
death rates are still on the rise (Bray et al. 2018).
Similar to lung cancer, early diagnosis is key with
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Figure 12. Visualization of the anatomical environments and 10
representative plans for each scenario computed by RCS
(cyan). Top and bottom figures depict three views of the lung
environment and the liver environment, respectively. In all
figures, the needle steers to targets (green) while avoiding
anatomical obstacles including major blood vessels (red) and
the lung or liver boundary (gray). In the top figure, bronchial
tubes are depicted in brown.

one tool being biopsy of suspicious nodules. In liver-
biopsy procedures, the steerable needle is deployed
through the surface of the liver and must steer from
the start pose near the liver surface to the nodule while
avoiding anatomical obstacles including large blood
vessels.

The CT scans used in both experiments are from The
Cancer Imaging Archive (TCIA) (Clark et al. 2013), a
public medical image repository for cancer studies. The
chest CT scan for lung biopsy scenario is from the Lung
Image Database Consortium and Image Database Resource
Initiative (LIDC-IDRI) image collection (Armato III et al.
2011, 2015), while the abdomen CT scan for liver
biopsy scenario is from the CT volumes with multiple
organ segmentations (CT-ORG) dataset (Rister et al. 2019)
We illustrate in Fig. 1 (top) volumetric models of the
relevant anatomy segmented from a CT scan. For the lung
segmentation, we follow the method described in Fu et al.
(2018). For the liver segmentation, we use the segmentation
labels from the CT-ORG dataset for the liver region. The
major blood vessels are also segmented using the method
described in Fu et al. (2018).

6.1 Test Case Generation

To create test cases for planning, we randomly sample 50
collision-free start configurations for each scenario, and for
each start configuration, we sample 10 collision-free goal
points uniformly inside the kinematically forward-reachable
workspace of the needle. Since we consider two different

values for k.« (see Sec. 6.2), for each start configuration,
two different sets of goal points are sampled. This is because
with a larger kpa.x, the kinematically forward-reachable
workspace would also be larger. Thus, each scenario has
1000 test cases in total, including 500 cases for each needle
design.

More specifically, in the lung biopsy scenario, start
configurations are sampled along the bronchial tube walls
(i.e., points reachable by the bronchoscope from which the
steerable needle can be deployed), and the goal points are
sampled in the lung parenchyma (i.e., points in the tissue
of the lung outside the bronchial tubes in which nodules
requiring biopsy may occur). In the liver biopsy scenario,
start configurations are sampled near the anterior surface of
the liver (i.e., points where the liver is close to the abdomen
skin from which the steerable needle can be deployed), and
the goal points are sampled in the liver tissue (i.e., points in
the tissue of the liver in which nodules requiring biopsy may
occur). See Fig. 12 for the scenarios and representative plans
computed by RCS.

To avoid skewing the data with trivial test cases, we
discarded test cases where the start configuration can be
connected directly to the goal point with a collision-free arc.
Additionally, we use inevitable collision check (mentioned
in Sec 4.3) to disallow cases where the start configuration
has an inevitable collision deeming the problem unsolvable.
Finally, note that it is not guaranteed that a valid plan exists
for a test case.

6.2 Setups

We consider a steerable needle with two different maximum
curvatures Kmax = (100mm)~—* and (50mm)~*, both with
a device diameter of 2mm and maximum insertion length
of 80mm. The simulated workspace was reconstructed
from preoperative CT scans where W,p,s is a point cloud
representing the anatomical obstacles described above. We
use a collision-checking resolution of 0.5mm and a goal
tolerance of 7 = 1.0mm.

We compare in simulation RCS and RCS* with several
other steerable needle planners:

(i) RRT: The RRT-based needle planner (Patil et al. 2014;
Kuntz et al. 2015) with 5% goal biasing and 100% goal
connecting ratio.

(ii) AO-RRT: AO-RRT (Hauser and Zhou 2016; Kleinbort
et al. 2020) adapted for steerable needles, with
maximum rotation control of 27 and a maximum
insertion control of 16mm. We follow the guidelines in
Kleinbort et al. (2020) for cost sampling and distance
weighting between the configuration space and cost
space. For a fair comparison, we use the same goal-
connecting method as RRT.

(iii) AFT: The AFT-based needle planner (Liu et al. 2016;
Pinzi et al. 2019), with setup following Pinzi et al.
(2019). AFT internally uses a hybrid cost function
to choose the plan to optimize in the next iteration;
we use Chybrid(0) =w - C(0) + ||o(l) — Pgoatll2/T,
where w is a weighting parameter depending on the
scale of C. Note that Cpyiria is only used internally
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Figure 13. Success rate as a function of computation time. All plots use logarithmic time axes.

in AFT while C is always used for performance
comparison across different planners.

For our proposed planners RCS and RCS*, we have

0lmax = 16mm and the system cutoff resolution is
computed for control frequency 40Hz, which corresponds to
a time interval of 0.025s: 04, = 5(mm/s) - 0.025s =
0.125mm, §6,,;, = 27(rad/s) - 0.025s ~ 0.157rad.
The value of insertion and rotation velocities are taken
from Rucker et al. (2013) and the control frequency
is the measurement rate of the NDI Aurora tracking
system (Northern Digital 2022). Additionally for RCS*, we
use a look-ahead value of nj, = 3, and for all cost functions,
we set the approximation parameter to be .5t = 0.1. Other
system constants (e.g. L) are empirically determined.

We also ran a search-based planner denoted as SIN-
GLE_RES that includes all optimizations of RCS mentioned
in Sec. 4.3 and 4.4 but that uses only the finest resolution
(with no multiple resolutions).

All experiments were run on a dual 2.1GHz 16-core
Intel Xeon Silver 4216 CPU and 100GB of RAM. All
parallelizations were implemented with Motion Planning
Templates (MPT) (Ichnowski and Alterovitz 2019). All
parallelized versions (including RRT and AO-RRT) use 60
threads. Code for our proposed planners is available on
GitHub (Fu et al. 2021a).

6.3 Success Rate Comparison

We now present results pertaining to the success rate of the
different algorithms. In our setting, the success rate is the
ratio of solved cases among the set of 500 test cases. All
planners other than AFT were allowed 100 seconds. As for
AFT, while the original AFT algorithm is GPU accelerated,
here we present results for our CPU-based implementation
and only focus on the feasibility of the method and not on
the computation times (we let AFT run until it finishes three
iterations as suggested in Liu et al. (2016)). For planners
that require a cost function C as input (i.e., AO-RRT, AFT,
RCS™), we used trajectory length as the cost function when
comparing success rate. Since the hybrid cost function in

AFT does not necessarily favor paths with minimal goal
tolerance and thus may affect its success rate, we set the
weighting parameter w = 0 for success rate analysis. In
RCS*, the plan obtained keeps being updated (Alg. 2 line 11)
and only the minimal-cost plan is returned. To fairly compare
success rate, the ability to find any valid (not necessarily
optimal) plan, we consider RCS* to succeed as long as it
finds a plan (bestPlan # NULL).

The results are shown in Fig. 13. First, among RCS
variants, RCS_S performed much better than RCS_B (see
Tab. 1 for details about these variants), indicating the
three domain-specific optimizations introduced in Sec. 4.3
dramatically improved the efficiency of the algorithm.
Furthermore, except for the slight overhead affecting
the early stage of the planner (< 50ms), RCS achieved
even better performance than RCS_S. Moreover, RCS*
showed similar performance as RCS. The single-resolution
planner, SINGLE_RES, achieved low success rates (<
40%), suggesting that the multi-resolution approach in RCS
variants is necessary for high performance. Second, the
single-threaded RCS_S achieved better performance than
the single-threaded RRT_S, comparable to and often with
higher performance than the multi-threaded RRT, and always
with higher performance than the multi-threaded AO-RRT.
AO-RRT, although outperforming RRT in the early stage
(< 0.1s), showed slow convergence in the later stages of the
search. From the perspective of computation time, RCS and
RCS* in general solved over 75% of the test cases within
a second and were over 100x faster in reaching RRT’s
final success rate (at 100 seconds). When looking at each
test case, RCS and RCS* on average took only 42.2% of
the computation time spent by RRT, indicating they were
roughly 2.4x faster than RRT. Similarly, RCS and RCS*
were on average 1.5x faster than AO-RRT on a per-case
perspective. AFT achieved a success rate of between 55%
and 75%, which was significantly lower than that of RCS
and RCS*, with many of the failures due to the computed
trajectories not satisfying the maximum-allowed targeting
error of 7 = 1mm. From the perspective of the final success
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Figure 14. Plan quality comparisons. Without specification, a plot shows the relative cost (vertical axis) as a function of
computation time (horizontal axis), where the time axis is logarithmic, solid lines show the average relative cost when compared to

RCS*, and shaded regions show the corresponding standard deviation. The final costs for AFT (shown relative to RCS*) are
provided in the table. We also include a detailed comparison of RCS and RCS* for the cost metrics that are not trajectory length
(i.e., cost map for lung scenario and obstacle clearance for the liver scenario), shown as a cumulative distribution function (CDF).

rates, RCS and RCS* were on average 5.4% higher than
RRT, 7.2% higher than AO-RRT, and 23.1% higher than
AFT.

6.4 Plan Quality Comparison

We continue to compare plan qualities, considering three
different well-behaved cost functions:

(i) Trajectory length: Vx € X, ¢(x) =1. This cost
function is by nature well-behaved given cpin, =
Cmax = 1, L. = 0.

(i) Cost map: this cost function is informed by a cost map

derived from medical images (Fu et al. 2018), where

each voxel in the 3D cost map is associated with a

cost value that represents tissue damage. We forced

Cmin = 0.01 and then used trilinear interpolation to

smooth out the voxelized cost map to make it well-

behaved.

Obstacle clearance: Cost function f(f cl(o(s))~tds,
where cl(-) is the clearance from obstacles, has been
widely used (Wein et al. 2008; Agarwal et al. 2018;
Kuntz et al. 2015; Strub and Gammell 2021) since
it captures both trajectory length and clearance from
obstacles. Here we modify the point-based cost to be
c(x) = min{cl(x) !, emax }, forcing the cost not to
exceed Cax = (0.1mm)~! to make it well-behaved.

(iii)

For the lung biopsy scenario, we considered the cost
functions of trajectory length and cost map (i.e., costs (i)
and (ii), above). In contrast, for the liver biopsy scenario,
we considered the cost functions of trajectory length and
obstacle clearance (i.e., costs (i) and (iii), above). This is
because the method for constructing a cost map in Fu et al.
(2018) was designed specifically for the lung anatomy where
plenty of small blood vessels exist. For liver anatomy, the

cost map constructed using the same method is far less
informative.

For this set of experiments, we only evaluated RCS*,
RCS, RRT, AO-RRT, and AFT. All four planners except
AFT were parallelized and were allowed 10 seconds, while
we allowed AFT to finish three iterations. To compare how
plan quality is improved as more computation time is given,
we kept track of the best plan found by each planner at each
time stamp.

For all cost functions, the cost of a plan may vary
significantly between test cases. For example, trajectory
length is affected by how far away the target lies relative to
the start pose and cost map values are much higher when
the needle is steering in a vessel-cluttered region. Instead
of averaging across different test cases directly, for each
test case, we compute the relative cost using the RCS™ as
a reference. More specifically, for a given time step, the
relative cost is valid if both the target planner and RCS™ have
successfully found a plan and the value of the relative cost
is computed by Crelative = Crarget/Crcs*- We then averaged
across all test cases with a valid relative cost for each time
step.

The results are shown in Fig. 14. We start our analysis by
considering the trajectory length. For all four corresponding
plots (for both the lung and liver and for both needle
curvatures), the relative costs mostly lie between a factor
of 1.01x and 1.04x the cost obtained via RCS*, with
RCS* outperforming all other planners. Additionally, the
relative cost is flatter for Kmay = (100mm)~! compared to
(50mm) !, indicating that the more flexible the needle is,
the greater room for improvement there is. Thus, as needles
that are more flexible would be developed, the relative
advantage of our method would increase. To understand
why the improvement here is relatively low, consider
any bounded-curvature trajectory that is 80mm long (the
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maximum insertion length). Here, the theoretically minimum
Euclidean distance between the two ends is 77.88mm and
71.74mm for a radius of curvature K pyay = (100mm)~! and
(50mm)~!, respectively. Thus, the upper bounds for the
relative cost are 1.027 and 1.115, respectively.

We continue our analysis by considering the cost map
(representing tissue damage) evaluated in the lung scenario.
Here, RCS* and RCS showed a larger advantage over RRT
and AO-RRT, achieving between 4.5% and 25% lower cost
on average. Interestingly, RCS quickly achieved a relative
cost that is only slightly higher than 1.0, indicating that its
cost is comparable to the cost of RCS*. We also see that
RRT was able to improve its path quality but since this is
not optimized directly by the algorithm, the relative cost was
not improved further. Finally, for AO-RRT, although being
asymptotically optimal, its convergence rate was relatively
slow and achieved a final cost (at 10s) which was higher than
RRT’s.

We finish this part of the analysis by considering
the obstacle clearance, evaluated on the liver scenario.
Here, RCS and RCS” still outperform RRT and AO-RRT.
However, in the early stage of the search (i.e., for < 1s), RCS
achieved better costs than RCS* (relative cost being less than
1.0). A possible explanation is that RCS can better explore
different plans with different cost values in the early stage
of the search because of its less-strict duplicate detection.
As more running time was given, RCS*, with its resolution
optimality and with the help of its heuristic (see Strub and
Gammell (2021)), was able to improve the cost of paths and
the two methods achieved comparable cost at 10s. Here, we
also see that RRT and AO-RRT achieve relatively low costs,
compared to other cost metrics. This could be because the
cost function is dominated by points that get very close to
the obstacles. Thus, a planner achieves a low cost as long as
it is able to find a plan with these “good” dominating points.

We notice that RCS and RCS* achieved comparable
costs, indicating that RCS, even without optimality
guarantees, was performing well in practice for our highly
constrained test scenarios. On the other hand, for RCS*
to guarantee resolution optimality, it needed to be much
more conservative, considering the cost metric properties for
worst cases and exploring all potentially better branches in
the search tree. From the accumulative distribution function
(CDF) plot in Fig. 14, we see that RCS* achieved equal or
better costs (at 10s) than RCS for 90% of the cost map cases
and for 70% of the obstacle clearance cases.

Finally, we also report the final relative cost for AFT in
Fig. 14. Since AFT’s design addresses both finding a path and
optimizing a given cost via one hybrid cost function Cpybrid,
it treats the targeting error as a part of Cpybriq and may
sacrifice the cost function C for a lower targeting error. Thus,
we can see that AFT had the highest relative cost among all
planners.

6.5 Heuristic Balancing in RCS and RCS*

In this section, we depict how our algorithms are affected by
different parameter choices. We start by evaluating how our
definition of rank (Eq. 4) affects the behavior of RCS and
then continue to evaluate the effect that the lookahead has on
the behavior of RCS*.
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Figure 15. Comparing the performance of RCS for different
rank definitions (i.e., parameter values a and b) on the lung
biopsy scenario with the cost map metric.

Evaluating the effect of rank on RCS. Recall that the rank
of a node (Eq. 4) allows RCS and RCS* to balance between
refining the resolution used in a parent node and expanding a
node. Roughly speaking, the former corresponds to creating
finer motions that make small progress towards the goal but
create higher-quality paths or better avoid obstacles while the
latter corresponds to using coarser motions to make bigger
steps towards the goal.

To depict this tradeoff we consider the cost map metric
for lung biopsy and evaluate RCS for a refined rank function
using two new parameters a and b:

Rank(v) = Rank(v.parent) + a(lg(M,) + lg(M,)) + b.

Results, depicted in Fig. 15, demonstrate that if resolution
refinement is not penalized (a = 0), all resolutions are
treated equally without prioritizing the coarse resolution, and
both the success rate and plan quality are negatively affected.
This suggests that using multiple resolutions is important and
we should prioritize coarse resolutions.

Evaluating the effect of the lookahead on RCS*. Recall
that in RCS*, a secondary heuristic f(-) is used to guide the
search, and the look-ahead parameter nj, is used to balance
between a node’s rank and f(-). Having a large n;, value
allows RCS* to prioritize nodes with potentially lower cost,
but as the rank plays a less important role, the benefits of the
multi-resolution framework are weakened and it may take
longer to find solutions (although with higher quality).

To depict this tradeoff we consider again the cost map
metric for lung biopsy and evaluate RCS* for different
lookahead values (Fig. 16). We see that when nj, is
increased from 0 to 3, the success rate hardly changed.
However, when n;, = 10, RCS* achieved lower success rate
between 0.05 and 5 seconds. When pushing this to the limit
and taking a value of nj, = 100, RCS* struggled to improve
the success rate after 0.1 second, indicating that after solving
the easy-to-solve scenarios, RCS* cannot efficiently find
solutions for a harder problem using this lookahead. This is
because the larger ny, is, the more similar RCS* is to a basic
A* search that heavily relies on f(-).
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Figure 16. Comparing the performance of RCS* for look-ahead
parameters on the lung biopsy scenario with the cost map
metric.

When it comes to plan quality, we see that RCS* with
a lookahead value of nj, = 10 achieved higher cost values
in the early stages of the search but was able to converge
quickly to match the other variants. However, when taking
this to the extreme and using larger lookahead values (n), =
100), the slowdown is too big and RCS* was not able to
efficiently find low-cost solutions.

To summarize, this experiment shows, from another
perspective, that the multi-resolution framework is important
both for efficiency and as a general heuristic without
considering a specific cost function. As a general guideline,
we need to keep my, not too large to retain the benefits of
prioritizing coarse resolutions. In our settings, we choose
n1a = 3 which proved to adequately balance the success rate
and the ability to improve the overall plan quality.

7 Conclusion

In this paper, we took an important step toward creating
a certifiable optimal motion planner for steerable needles.
Specifically, we introduced a resolution complete motion
planner for steerable needles, RCS, and an extended version,
RCS*, that is also resolution optimal. We provided formal
proof to show that, under some mild assumptions on the
system and the solution, RCS is guaranteed to find in finite
time a plan as long as the problem admits a qualified motion
plan. RCS* is guaranteed to find in finite time a plan whose
cost can be as close as desired to the globally optimal
qualified motion plan. We also showed that our proposed
planners outperform state-of-the-art needle planners in
clinically realistic simulations considering clinically relevant
cost functions by achieving higher success rates, lower
computation times, and higher plan qualities.

We view this work as an algorithmic foundation required
to obtain certifiable optimal motion planning for steerable
needles. Our planner is the first planner for steerable needles
that guarantees resolution completeness and resolution
optimality, but more work remains.

(i) Our analysis showed that, under some mild assump-
tions, when a qualified solution exists, if the cutoff

resolution is fine enough and the plan is robust to some
degree (i.e., has some clearance from the obstacles
and the goal region boundary), the algorithms will
find it. However, it would be valuable for medical
applications to provide the precise relation between
the system’s controls and this cutoff resolution. Sub-
sequently, we need to provide the precise relation
between this cutoff resolution (i.e., what does it mean
to be “fine enough”) and the clearance of plans (i.e.,
what should “some clearance” be?). In the ideal case,
when a desired clearance is given (e.g., say we do not
consider plans that get overly close to obstacles as
a reference plan to approximate), we should be able
to provide a cut-off resolution, in an explicit form,
that guarantees resolution completeness and resolu-
tion optimality. Future work will use this foundation
to compute the relation between the aforementioned
parameters in order to give physicians certifiable soft-
ware for motion planning for steerable needles.
(i) Although our proposed steerable needle planners
showed good efficiency in experiments, the worst-case
computation time can be long. We will also investigate
techniques to further speed up the planners (e.g., GPU
acceleration or additional optimizations for effective
early pruning).

(iii) We have started experimentally evaluating the planner
with steerable needles in ex-vivo animal tissues. We
also will explore how these certifiable guarantees
can help gain the trust of physicians for autonomous
medical robots.
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