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Reverse engineering of one-qubit filter functions with dynamical invariants
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We derive an integral expression for the filter-transfer function of an arbitrary one-qubit gate through the
use of dynamical invariant theory and Hamiltonian reverse engineering. We use this result to define a cost
function which can be efficiently optimized to produce one-qubit control pulses that are robust against specified
frequency bands of the noise power spectral density. We demonstrate the utility of our result by generating
optimal control pulses that are designed to suppress broadband detuning and pulse amplitude noise. We report
an order of magnitude improvement in gate fidelity in comparison with known composite pulse sequences. More
broadly, we also use the same theoretical framework to prove the robustness of nonadiabatic geometric quantum
gates under specific error models and control constraints.

DOI: 10.1103/PhysRevA.106.032611

I. INTRODUCTION

Accurate manipulation of noisy quantum systems is an
important problem in optimal control theory with potential
applications in the field of chemical reaction control [1-3],
quantum sensing [4,5], and quantum information process-
ing (QIP) [6], to name a few. In QIP, a typical strategy for
suppressing errors due to noise is to use dynamical decou-
pling [7-12] and composite pulse sequences [13—18]. These
techniques are designed to perturbatively suppress noise with
correlation timescales that are much longer than the tar-
get evolution time (quasistatic noise). In many instances,
however, quantum devices also suffer from nonstatic noise
that fluctuates on the order of the evolution time or faster
[12,19-21]. Composite pulses have limited efficacy in such
cases [22] and can even be detrimental to the quality of the
generated quantum gate [23].

An alternative solution to these control problems is to
use pulse shaping techniques [24-31]. The main idea of
this approach is to find, either analytically or numerically,
an appropriate set of time-dependent control Hamiltonian
parameters that produces a desired evolution. Since the time-
dependent Schrodinger equation (TDSE) is generally not
analytically tractable, analytical solutions are typically limited
to simple pulse shapes [32] or in restricted settings (e.g., for
static error [27,29] or state transfer protocols [25]). Numerical
solutions offer much more flexibility in the control landscape.
When combined with the formalism of filter functions [33],
which characterizes the sensitivity of a control protocol to
the power spectral density of the noise, it is possible to
generate quantum gates that are robust against a specified
spectral region of noise. Specifically, robust quantum gates
are obtained by minimizing the overlap between the control’s
filter function and the noise power spectral density (PSD) in
frequency space. This can be used, along with any control
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field constraints, to define a cost function to be minimized
using, for example, gradient-based methods. Optimization
algorithms that are designed for deep learning and are imple-
mented in platforms such as TENSORFLOW [34] or the JULIA
FLUX package [35] are especially well suited for these tasks
owing to their built-in automatic differentiation capability.
The power and flexibility offered by deep neural networks for
solving quantum control problems have been demonstrated
in a variety of recent works [36—41]. However, filter func-
tion engineering typically involves solving the TDSE for the
time-evolution operator. It is possible to circumvent this, for
example, using Hamiltonian reverse engineering based on the
theory of dynamical invariants [31]. Thus, it is possible to
further reduce the computational workload of the optimization
framework by reparametrizing the cost function in terms of
dynamical invariant parameters.

In this work we use dynamical invariant theory and
Hamiltonian reverse engineering to derive an integral expres-
sion for the filter function of an arbitrary one-qubit gate and
explore its theoretical and practical applications. Our work
is structured as follows. We begin Sec. II by reviewing the
theory of dynamical invariants. We follow with a derivation
of the one-qubit filter function for an arbitrary noise model
in terms of the dynamical invariant parameters. We explore
the practical applications of our results in Sec. III by numeri-
cally searching for optimal control solutions using deep neural
networks. Specifically, we consider noise models with a 1/f
noise spectrum [42] which is prevalent in solid-state qubits
[20,21,43-46]. In addition, we discuss in Sec. IV some theo-
retical implications of our result by proving the robustness of
geometric quantum gates against certain noise models under a
strict only two-axis driving constraint. We then conclude and
summarize our findings in Sec. V.

II. DYNAMICAL INVARIANTS

We consider as our starting point a general one-qubit con-
trol Hamiltonian with three-axis driving
_ 1| A@) Q(t)e ™
Hc(t) - 2|:Q(t)ei(p(l) —A([) . (1)
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This particular form is relevant in systems such as supercon-
ducting qubits [47], quantum-dot spin qubits [48], and NMR
qubits [49], to name a few, corresponding to the rotating-wave
approximation for a two-level system that is driven by an os-
cillating field with amplitude €2 at a carrier frequency detuned
from resonance by A and with phase ¢. Here three-axis driv-
ing means that all three control fields can be variably tuned to
produce arbitrary Bloch sphere rotations. The solution to the
time-dependent Schrodinger equation with this Hamiltonian
is not analytically tractable in general. It is possible, however,
to use the theory of dynamical invariants to reformulate this
problem so as to specify a resulting unitary evolution and
then analytically calculate a time-dependent Hamiltonian that
would produce it [31]. A dynamical invariant /(¢) is a solution
to the Liouville—von Neumann equation [50]

Al(t)
at

The eigenvectors |¢,(¢)) of I(¢) are related to the solutions of
the Schrodinger equation by a global phase factor |,(¢)) =
e ®|g, (1)), where a,(t) are the Lewis-Riesenfeld phases
given by [51]

i

— [Hc(), I(1)] = 0. 2

! ]
o (1) =/ (¢n(S)|i8— — He(s)|pn(s))ds. 3)
0 N

Within this framework, the time-evolution operator U, (¢) can
be expressed as

Ue(t) =Y €O g(t)) (¢4 (0)]. )

n==+

Thus, the theory of dynamical invariants effectively trans-
forms the problem of solving the time-dependent Schrédinger
equation to finding an appropriate /(¢) that satisfies Eq. (2).
As a consequence, we are free to choose a parametrization for
U.(t) by choosing the |¢,(¢)) appropriately. Suppose that we
choose

¢ (1)) = cos (@)e"ﬂ“nm + sin (@)ux 5)

t t .
|9 () = sin (?) 10) — cos (?)e’ﬂ“m, 6)
where y and B are the dynamical invariant parameters,
I1(H)|pn(t)) = £Q0/2|¢,(2)), and 2 is an arbitrary constant
with units of frequency. This allows us to express /(¢) in a
form similar to Eq. (1),

1) = 90[ cos(y) )

Qo sin(y e #
2 |sin(y)e’f :

—cos(y)

If we require Eqs. (1) and (7) to satisfy Eq. (2), we are left
with two coupled auxiliary equations [31]

y = —Qsin(f — ¢), ®)

A — B = Qcot(y)cos(B — ¢), 9)

which, along with the appropriate boundary conditions, can
be used to determine the control parameters €2(z), A(t), and
¢(t) that target a desired U, (¢). This choice of parametrization
allows us to write U.(¢) strictly in terms of the dynamical

invariant parameters and the Lewis-Riesenfeld phase
U.(t) = e~ 1B0)/2107 (=ily ()/2loy fills ()=¢ O))/2)o7

x ¢/lY©)/2loy ,ilB©O)/2lo7 (10)

where « = oy = —a— and we introduce a new dynamical
invariant parameter

(@) =2a() — B@)
- —ﬂ(0)+/t yeoup = o), (11)
0

sin y

The auxiliary equations provide a family of control so-
lutions that allow us to reverse engineer a desired quantum
gate. Since the gate only depends on the boundary values of
the dynamical invariant parameters, there are infinitely many
ways to generate the gate. It is desirable to use this freedom
in the control Hamiltonian such that the resulting evolution is
also robust against noise. To this end, filter functions provide a
convenient method of quantifying the gate fidelity’s suscepti-
bility to noise with respect to its spectral properties [33]. The
total one-qubit Hamiltonian in the presence of noise can be
written as

H(t) = Hc(t) + H(7), (12)

where H_.(t) is the ideal deterministic control Hamiltonian
and H,(t) is the stochastic error Hamiltonian. More explicitly,
H,(t) can generally be expressed as

3

Ho) =) Y 8,()xq.i(t)o, (13)

i=1 gq

where ¢ indexes a set of uncorrelated stochastic variables
84(t), x4,i(t) contains the sensitivity of the control parameters
(which generally can be a function of the parameters them-
selves) to §,(¢), and o; are Pauli operators. For sufficiently
weak noise, the average gate infidelity (Z) of the noisy evolu-
tion U (¢), which satisfies iU (1) = H (1)U (¢), where U (0) =
1, can be computed perturbatively. Up to the first-order
Magnus expansion, we can compactly express the gate infi-
delity as (see Appendix A)

1 o0
(T) ~ o Xq:f_m S,()F,(w)dw, (14)

where S, () denotes the noise PSD for the stochastic variable
8,4(t) and F(w) is the corresponding first-order filter function
which can be calculated using the equations

Fy(@) =) IRgx(@)], (15)
k
T
Rua@ =Y [ pasRraear, 0
— Jo
Ril) = 301U} ol 0o, (a7)

where T is the gate time.
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Combining Egs. (4) and (17) allows us to express Eq. (16) as

T
Ryi(@) =5 Y ($u(0)lowlhn (0)) /0 el = D y () (w (1)]oi|pu(2)) dt. (18)

inn'

Thus, the filter function corresponding to §,(t) is given by

Fy(w) =Y Ryx(@)R} (o)
k

T T
=3 /0 /0 D (Du(0)[ok I (0) (b (0) |0 ())& = TNy ity ) hy (11) 0l (1)) dlty

i,j:k,

n,m,n’ ,m'

x ellom() e )=ehly (1)) (¢, (12)| 0} | (t2)) 1o (19)

For a given n, n’, m, and m’, the k-dependent factors of this sum yield

Y (@a(0)]0k | (0)) (b ()] ok | (0)) = {5

k

1 if {n,n',m,m'} ={%, &, &, £}
1 if{n,n',mm'}={£, £, F,F}

if {n,n',m,m'} ={x, F, F, £}
0 otherwise.

(20)

We can use Egs. (5), (6), and (20) as well as the fact that (¢ (?)|ok|p+(?)) = —(P=(?)|ok|p+(2)) to simplify Eq. (19) into

T
Fpw)=)" (/O <¢+(t)|6,-|¢+(f)>xq,i(t)e"“’dt> </0

iJ

T

(¢+(t)|0j|¢+(t)>xq,j(t)e_’”dt>

T T
+%< /0 <¢_<r>|cn|¢>+(r>>xq,l~<r>e'2““)+“"'dr)(/O <¢+(t>|o_,-|¢_(t)>xq,,<r>e—’2“<”—“”fdr>

T
0

T
+ %(/ (¢+(Z)|O’;|¢(t))XqJ([)e12a(t)+lwfdt> (/(; ((p(t)|0j|¢+(t)>Xq,j(t)elza(t)lwtdl‘)_ @1

Finally, substituting in Eqs. (5) and (6) allows us to compactly
write Eq. (21) in the vectorized expression

o [xx®] |
Fjo) = / A@)| xgy (@) |€dt| , (22)
0 Xq.z(@)
where the entries of the matrix A are given by
A =cosBsiny,
A1p =sin Bsiny,
Az =cosy,
Ay = —cosBcosycos¢ —sinfBsing,
Ay = —sin B cosy cos¢ + cos fsin ¢, (23)

Aoz = siny cos ¢,
A3 = —cosBcosysing 4 sin fcos ¢,
A3y = —sinfBcosysin¢ —cosBcos¢,
A33 =siny sin¢.

This is our main result and we show in the following
sections some examples of its utility. Before we proceed, we
comment on the form of Eq. (22). First, although the simi-
larity between Egs. (15) and (16) and Eq. (22) might seem
to suggest that R(¢) and A(¢) are identical and we have not
really simplified anything, in fact what we have done is to
note that the dependence of R(¢) on the value of the dynamical

(

invariant parameters evaluated at + = 0 does not affect the
filter function value and A(#) does not carry that extraneous
dependence. Second, certain error models admit an alternative
interpretation for Eq. (22). For example, suppose we consider
the dephasing and overrotation noise models. The former can
be induced by an additive shift to the qubit detuning, A(¢) —
A(t) 4+ 8A(¢) and the latter can be induced by a multiplica-
tive shift in the pulse amplitude 2(t) — Q(#)[1 + S (¢)].
The corresponding error sensitivities are x, (f) = %[0, 0,1]7
and xo(t) = %[Q cos ¢, Qsin g, 0]T. Substituting these ex-
pressions into Eq. (22) yields the filter functions

2
T
Fa(w) = /0 3

T
Fo(w) = [0 %

Up to a scalar factor, the detuning filter function in Eq. (24)
can be reinterpreted as a position vector with constant speed
7 =[cosy, —siny cos¢, —siny sin¢].! If robustness at a

cosy
siny cos¢ |e“dt| , (24)
sin y sin ¢
Csin’y :
Csiny cosy cos¢ + ysing | dt
£siny cosysing — y cos¢
(25

I'The sign difference in comparison with Eq. (24) is a consequence
of our choice of parametrization for the dynamical invariant eigen-
vectors and is irrelevant since only the magnitude of 7 matters.
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certain noise frequency is defined by a vanishing filter func-
tion value, robustness against static detuning noise (i.e., at
o = 0) is equivalent to having the position vector trace a
closed three-dimensional curve whose curvature « is given by
€. Such a geometric interpretation has been noted previously
in the literature [52-58].

A similar observation can be made for the pulse amplitude
filter function. Note that the vector in the integrand of Eq. (25)
is equivalent to # x 7. This can be rewritten as Qb [59],
where b is the binormal vector corresponding to 7 and we
have used the fact that the curvature k = 2. Therefore, con-
structing a quantum gate that is simultaneously robust against
static detuning and pulse amplitude noise is mathematically
equivalent to finding a closed three-dimensional curve such

that [/ Q(0)b(1)dr = 0.

III. BROADBAND NOISE OPTIMIZATION

We demonstrated in Sec. II that it is possible through
Hamiltonian reverse engineering to analytically calculate the
filter function of an arbitrary one-qubit gate in terms of the
dynamical invariant parameters S(t), y(t), and ¢(¢) as well
as the sensitivity y,;(t). One immediate implication of this
result is the possibility of filter function engineering which
can be used for error suppression [36-39] or quantum sensing
[60]. In the context of error suppression, we can use Eq. (22)
to define a cost function which can be minimized in spectral
regions where the noise PSD is dominant. This approach
allows us to target any robust one-qubit gate provided that
we can find an appropriate y(¢) and B(¢). Furthermore, this
is different from previous filter function engineering results
since calculating the evolution operator is no longer necessary,
which helps to reduce the computational workload of the
optimization framework.

We consider again as an example the case where our sys-
tem is subject to detuning and pulse amplitude noise. Note
that both Eqgs. (24) and (25) depend only on y and ¢. This
means that § is a free parameter up to the boundary conditions
imposed by the reverse engineering process. This extra degree
of freedom can be used to impose control restrictions such as
strict two-axis control. Combining Egs. (8), (9), and (11) pro-
vides us with the reverse engineered Hamiltonian parameters
in terms of the dynamical invariant parameters:

Q= /y2+2sin’y, (26)

¢ = B — arctan - V , 27
gsiny
A=p—Ccosy. 28)

For simplicity, we can set A =0 by solving the differen-
tial equation B = ¢ cosy for B with the boundary condition
B(0) = —¢(0). Thus, all properties of the output gate is deter-
mined by y and ¢.

Restricting § in this manner does not necessarily diminish
our ability to target arbitrary one-qubit gates. In practice, a fi-
nite set of quantum gates is used to target arbitrary operations.
Although we can engineer y and ¢ to target gates directly, it is
worth pointing out that many qubit implementations have ac-
cess to virtual Z gates [61-64]. These zero-duration gates are

essentially perfect and implemented through abrupt changes
to the reference phase. We can take advantage of virtual gates
by noting that any one-qubit operation can be decomposed
into the product of Z gates and two X > [64]:

Utarget = ZGIXn/ZZOZXﬂ/ZZG3 . (29)

More generally, the reverse engineering method allows us to
replace X > in the gate decomposition with U.(T). We can
rewrite the engineered gate in Eq. (10) as

Uc(T) = ZpryYy 1) Ze 0)-2(1) Y=y 0)Z-p(0)
= 7y, XoZy,, (30)

where

cos(8) = cos[¢(0) — ¢(T)] sin[y (T)] sin[y (0)]
+ cos[y (T)] cos[y (0)] 31

and ¥ and Wz are angles that depend on the target gate.
Setting 0 = %, we find that X, » = Z_y, U.(T )Z_y,. This ex-
pression can be substituted into Eq. (29), which yields

Ularget = 261 —Y UC(T)ZGQﬂ//] —Yn UC(T )Z9371//2 . (32)

Since Z gates are executed virtually, we only need one
physical gate, U.(T') with 6 = 7, to produce any one-qubit
operation.

Hence, our goal is to optimize U.(T) by minimizing the
following cost function:

C=c [ " Fa(@)Sa(@)dw + o2 / " Fa(@)Sa(@)do
+ el cos[£(0) — ¢(T)]siny (T) sin  (0)
+cosy(T)cosy(0)| + c4 gf::
b g | e Sma(0. 50 1)
o

The first two terms correspond to the infidelity integrals for
detuning and amplitude noise with noise PSD S and Sq, re-
spectively. The third term is the constraint that targets 6 = 7.
The fourth and fifth terms set the boundary value of the pulse
amplitude to zero.” The sixth term imposes a maximum value
Qmax on Q by discretizing the interval [0, T] and evaluating
Q at each time value. The cost penalizes any point where
Q(t;) > Qmax through the function

0, x<0
x, x>0.

max (0, x) = { 34)
The seventh term imposes a bound on the slope of 2. This
accounts for the slew rate of the hardware that produces
our control pulse. We assume a maximum rate of change of

>These constraints are not necessary but they help with the overall
experimental feasibility of the pulses we produce
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FIG. 1. Schematic diagram of a feedforward deep neural network
with one input neuron, two output neurons, and two hidden layers
with four neurons each. A neural network is deep if it has at least
two hidden layers. As information flows from the input layer, each
subsequent layer nonlinearly transforms incoming information and
returns a value. The goal is to train the neural network so that the final
output optimizes the cost. In our case, we would like to train a neural
network to take time as input and return the optimized dynamical
invariant parameters y and ¢.

Qmax/ Tramp- Finally, ¢; are weighting parameters that can be
adjusted to ensure that the constraints are satisfied.

We demonstrate the flexibility of our approach by consid-
ering two examples. We first consider a case where the goal
is to produce a gate that acts as a stop-band filter against 1/f
detuning and pulse amplitude noise. We then consider a case
where the goal is to produce a gate that is optimal in the
presence of 1/f pulse amplitude noise and a static detuning
noise. To this end, we employ deep neural networks [65,66]
as our optimization framework. The power of neural networks
originates from their ability to represent complex ideas as a
hierarchy of simpler concepts. This allows them to efficiently
identify key abstract properties of a problem, which is highly
coveted in tasks such as pattern recognition [67]. It has also
been proven that neural networks with sufficient neurons and
layers can act as a universal function approximator [68,69].
This is ideal for our purpose since it eliminates the nontrivial
task of finding a suitably parametrized ansatz function to op-
timize over that will yield convergent solutions. Furthermore,
machine learning frameworks tend to have built-in automatic
differentiation capabilities which can be utilized for gradient-
based optimization.

In particular, we use a feedforward neural network
(sometimes referred to as multilayer perceptron) which is con-
structed using layers of interconnected computational units
called neurons such that information travels only in one direc-
tion, starting with an input layer, then a series of hidden layers,
and finally onto an output layer. A schematic diagram of a
feedforward neural network is shown in Fig. 1. Each adjacent
layer acts as a function that takes a vector input and produces
a vector output using the model

Xip1 = o (Wix; +b;), (35)

where x; is the input in the ith layer, W; is a matrix that
describes the neural connections between the ith and (i 4+ 1)th
layers, b; is a bias vector, and o (-) is a nonlinear activation

(@ 1.0f

0.5}

0.0f

-0.5}

| S —_— e LA
o Qax 27

0:0 0:2 0:4 0:6 0:8 1:0
t (units of T)
(b) ' ' ' '

100¢

10f

0.100¢

0.010¢

1

0.001f

2
max

..... Fq (o.;) 0?

max

1074 0.001 0.010 0.100 1
w (units of Qax)

FIG. 2. Plot of (a) the optimized Hamiltonian and (b) the filter
function for the case of simultaneous 1/f detuning and pulse ampli-
tude noise over a finite-frequency range.

function such as max(0, -) or tanh(-). Our goal is to train
the neural network using optimization algorithms (e.g., Adam
[70], L-BFGS [71], and BFGS [72]) to return the optimized
dynamical invariant parameters y and ¢ on the output layer by
feeding in time on the input layer. For our optimization we use
a feedforward deep neural network with one input neuron, two
hidden layers with 32 neurons each and a tanh activation func-
tion, and two output neurons for a total of 1186 parameters.’

A. The 1/ f stop-band filter for both detuning and pulse
amplitude noise

For our first example, we consider identical noise PSD for
detuning and amplitude noise

A forwy < |o| < o,

Sa(@) = Sa(@) = {O otherwise, (36)

3In feedforward neural networks, each neural connection adds one
free parameter. Furthermore, each receiving neuron applies a bias
parameter to incoming data. Thus, if we have a 1-3-2 network (one
input neuron, one hidden layer with three neurons, and two output
neurons), we have (1 % 3 + 3) + (3 * 2 + 2) = 14 free parameters to
optimize. In our work, we use a 1-32-32-2 network that has (1 % 32 +
32) + (32 %32+ 32) 4+ (32 %« 2 + 2) = 1186 free parameters.
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TABLE I. Comparison of infidelities between our deep neural
network (DNN) output, the naive pulse, and known composite pulse
sequences. The subscript of the gate infidelity Z; indicates whether
the case of Sec. III A or that of Sec. III B is in consideration. The
naive and composite pulses target an X, gate which can then be
used as a building block for arbitrary one-qubit operations as shown
in Eq. (29). Similarly, the DNN output uses Eq. (32) to produce
arbitrary one-qubit operations. We report a substantial decrease in
infidelity in all cases we considered. We also indicate robustness
against static detuning and/or pulse amplitude noise. Robustness
is defined by a vanishing filter function at @ = 0 [e.g., robustness
against 5, means Fx(0) = 0].

Robust ~ Robust
Pulse IA IB to SAI) to (SQ?
naive (square) 1.0 x 1071 1.0 x 1071 no no
short CORPSE 2.1 x 107! 4.9 x 107! yes no
BB1 83x102 6.4x1072 no yes
CinBB 7.5%x 1073 5.0 x 1072 yes yes
CinSK 1.1x1072 1.1 x 107! yes yes
DNN 28x107* 7.4 x1073 no no

where [wp, w.] defines the frequency stop band in which
we wish to suppress noise. We set wy= 10722 maxs
we = 107" Quuax, T = 167/ Qunax, and Tramp = 0.5/ Qpnax. We
present in Fig. 2 a plot of the optimized control fields and filter
functions. The details of our numerical optimization scheme
are provided in Appendix B.

We see from Fig. 2 that the control pulse we produced sat-
isfies the imposed constraints. We compare the total infidelity
of our optimized pulse with that of known pulse sequences
in the literature that address either detuning noise or pulse
amplitude noise, or both. We present in Table I a summary
of these comparisons. We establish a fixed reference point by
setting the noise PSD amplitude A so that the naive pulse has
an infidelity of 10~!. Furthermore, we also assume that the
Magnus expansion converges and that the first-order filter
function is sufficient to estimate the infidelity (see Ap-
pendix A). The reverse engineered gate can be related to
X2 (up to a global phase factor) by using ¥y = —1.16177
and v, = 1.73487 in Eq. (30). We find that our broadband
optimized pulse yields an infidelity that is at least an order of
magnitude lower than any other pulse sequences. Specifically,
the minimum improvement is roughly a factor of 27, which
is in comparison with the concatenated CORPSE [73-75] and
BBI1 [76] pulse sequence (CinBB) [77]. CinBB is designed to
mitigate static additive detuning and multiplicative pulse am-
plitude noise simultaneously. The difference in performance
between CinBB and our engineered pulse can be attributed to
the fact that composite pulse sequences are generally designed
to suppress static noise. Although composite pulses offer
some protection against noise in the quasistatic frequency
regime, their ability to suppress noise that fluctuates on the
order of Q. is severely limited. At worst, they can even
amplify the detrimental effects of such noise sources.

Broadly speaking, suppressing noise that fluctuates at a
certain frequency would require control field modulation at
a higher frequency [33]. Our optimization scheme takes ad-

OO 0:2 0:4 0:6 0:8 10
t (units of T')

FIG. 3. Plot of the dynamical invariant parameters y and ¢ for
the CORPSE pulse sequence targeting X ;.

vantage of this fact by generating pulse shapes with reduced
frequency response (as characterized by the filter function)
inside the stop band. On the other hand, this also causes
the optimized pulse to respond strongly to noise frequencies
above w.. In other words, the performance improvement in
our optimized pulse comes at the cost of increased noise
sensitivity in frequency regions beyond the indicated stop
band. This behavior is typical when suppressing broadband
noise and can be addressed by modifying the stop-band range
[78]. We note that constraining Q to account for hardware
limitations can prevent the optimizer from finding solutions
that effectively suppress the target noise.

We can also investigate the effects of symmetry using
our theoretical framework. We say a pulse is symmetric if
Q(t) = Q(T —t) and antisymmetric if Q) = —Q(T —1t).
Symmetry arguments have been used in certain static noise
models to analytically derive robustness conditions for the
control parameters [25,27,29]. Since we defined noise robust-
ness at a certain frequency by a vanishing filter function value,
enforcing static noise robustness effectively turns Eq. (22)
into a vector of average integrals. If the dynamical invariant
parameters y and ¢ are symmetric or antisymmetric during the
evolution (which then produces a symmetric €2), then a certain
choice of parameters can cause these averages to simultane-
ously vanish. One particular example is the CORPSE pulse
sequence whose dynamical invariant parameters are shown
in Fig. 3. Here the antisymmetric y and symmetric ¢ lead
to robustness against static detuning noise since Fa(0) = 0.
We emphasize, however, that symmetry is not necessary to
produce robust control fields. In general, there are infinitely
many ways to choose y and ¢ that lack symmetry proper-
ties but still satisfy the condition that Fx(0) [and/or Fo(0)]
equals zero.*

“For example, since the Hamiltonian control parameters and the
dynamical invariant parameters are related by coupled ordinary
differential equations (ODEs), their correspondence is not unique.
Changing the initial condition of the ODEs allows us to produce the
same CORPSE pulse sequence in Fig. 3 using asymmetric y and ¢.
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FIG. 4. Plot of (a) the optimized Hamiltonian and (b) the filter
function for the case of static detuning noise and 1/ f pulse amplitude
noise. Unlike the previous example, the 1/f spectrum here has a
1/£? tail which penalizes large filter function values in the o, < |o|
region.

B. Static detuning and 1/ f pulse amplitude noise

For our second example, we consider the case where we
have a static detuning noise as well as a 1/f pulse amplitude
noise

Sa(w) = 10Aé(w), 37
0, 0 < ol < w
Sa(@) =15, wy < o] < o, (38)
A_aé(.’ a)c < |C()|,

[0}

where we have assumed an order of magnitude difference in
the detuning and pulse amplitude noise strength. Here we set
wo = ]0_9Qmaxa We = 10! Qumax, T = 57 /Qmax, and Tramp =
0.5/Qmax. We present in Fig. 4 a plot of the optimized control
fields and filter functions. We again compare our optimized
pulse with known pulse sequences and the results are summa-
rized in Table I.

The resulting gate is related to X;,, by using ¥y =
—1.27497 and v, = 0.8685x in Eq. (30). Unlike the previous
case, we only see a minimum improvement in infidelity by a
factor of 7. In the previous example, the difference in perfor-
mance is due to the fact that filter function values outside the
stop band do not contribute to the infidelity. This is no longer

true here due to the presence of a 1/f? tail in the noise PSD
that penalizes large filter function values for noise frequencies
greater than w,. Furthermore, since we cannot suppress noise
that fluctuates much faster than the control fields, this effect
worsens with increasing gate time. This is why we picked a
smaller value of 7 than in Sec. [IT A.

IV. ROBUSTNESS OF GEOMETRIC PHASES

We can also apply our result in Sec. II to explore the
robustness properties of geometric quantum gates. In gen-
eral, a quantum system can accumulate two types of phase:
a dynamical phase and a geometric phase. This was first
noted by Berry in the context of cyclic adiabatic evolution
[79]. In particular, it was noted that a cyclic adiabatic change
in the Hamiltonian parameters produces a dynamical phase
that generally depends on the duration of the evolution and
a geometric phase that only depends on the geometry of
the cyclic path in the Hamiltonian’s parameter space. The
theory of dynamical invariants can be viewed as a nonadi-
abatic generalization of this observation [80]. In particular,
whereas the Hamiltonian eigenvectors form the natural ba-
sis for computing phases in the adiabatic limit, they can be
replaced by dynamical invariant eigenvectors in the nonadi-
abatic case. Thus, analogous to Berry’s result, a dynamical
invariant eigenvector parameterized as in Egs. (5) or (6) accu-
mulates a geometric and a dynamical phase during evolution
given, respectively, by the following expressions:

T
a
ng(T) = / (¢>i(t)|i8—|¢i(t))dt, (39)
0 t

T
o a(T) = —fo (P ()|H 1)+ (1))dt. (40)

Note that the sum of these expressions yields the
Lewis-Riesenfeld phases in Eq. (3). A geometric gate is a
quantum gate for which the unitary dynamics, up to a global
phase factor, is determined only by the geometric component
of the total phase. This is commonly achieved by setting the
integral in Eq. (40) to zero. Alternatively, if the qubit com-
putational subspace is energetically degenerate, a geometric
gate can still be produced even when «, 4(7T) # 0. Since all
states that belong to the subspace have the same energy, the
dynamical component of the phase effectively behaves like
a global phase factor. Finally, we impose the condition that
|¢,(0)) = |¢,(T)). This particular choice fixes the U(1) gauge
freedom on our choice of dynamical invariant eigenvectors as
well as reinforce the connection between dynamical invariant
theory and Berry’s result.

Geometric gates are of practical interest in quantum com-
puting due to their potential robustness against noise. Since a
geometric phase depends only on the properties of its corre-
sponding cyclic path, it is insensitive to noise that affects the
speed at which the path is traversed. For this reason, geometric
gates are believed to be more robust than their dynamical
counterpart in certain scenarios. The validity and extent of
the robustness claim remains an active area of research with
many showing support for the claim [56,81-95]. However,
there are also studies that report situations in which geometric
gates are not intrinsically more robust than dynamical gates
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[56,96-99] and, in certain scenarios, their sensitivity to noise
deteriorates [84,100—103]. It was recently shown in Ref. [104]
that the noise sensitivities of geometric and dynamical gates
in some commonly encountered error models are generically
equal in one-qubit systems with freely tunable three-axis
control. However, when control constraints are present (e.g.,
strict two-axis or piecewise constant control), it is possible
for a particular phase type to become preferable and naturally
robust.

We demonstrate in this section that a preferred phase type
emerges in the case of nonadiabatic Abelian one-qubit ge-
ometric gates as a consequence of control constraints. We
reiterate that a quantum gate is robust against a noise pro-
cess ¢ at a particular frequency w if Fj(w) = 0. Our reverse
engineering framework is ideal for this task because it allows
us to analytically compute geometric and dynamical phases
in terms of the dynamical invariant parameters. Using our
definition of geometric and dynamical phases in Egs. (39) and
(40), the eigenvectors in Egs. (5) and (6), and the auxiliary
equations (8) and (9), we can express the geometric and dy-
namical phases as

.
ozmg(T)::i:a(T):F/O H}%dn (41)

o
tna(T) = £ / Cﬂ%dn 42)
0

Suppose we consider the special case of a constant de-
tuning A, which is a fairly common constraint in works
considering geometric gates [84,105-107]. We prove the fol-
lowing theorem for that special case by analyzing the filter
function expressions that we derived.

Theorem. Consider the one-qubit control Hamiltonian in
Eq. (1) under the constraint that A is constant. Any one-qubit
gate that is robust against static multiplicative amplitude noise
8¢ as well as static additive or multiplicative detuning noise
8 is necessarily geometric.

Proof. Using Eq. (28), we can rewrite the dynamical phase
integral in Eq. (40) as

.
tna(T) = + / {'B#dt 43)
0

dt

—:I:/T —Acosy + sin’y
=+ >

AT 1 (7.
=:F—f Cosydt:I:—/ Csin® ydt. (44)
2 Jo 2 Jo

We begin by considering the case where there is additive
detuning and multiplicative pulse amplitude noise. Imposing
simultaneous robustness against these noise sources would
require Fa(0) = Fo(0) = 0. However, we see in Egs. (24) and
(25) that the filter function is strictly non-negative and the
only way to achieve robustness against static noise is if every
integral vanishes. Specifically, robustness against static addi-
tive detuning noise requires fOT cos y dt = 0, while robustness
against static amplitude noise requires fOT ¢sin?ydt = 0.
Notice, however, that these are precisely the integral expres-
sions in Eq. (44). Thus, simultaneous robustness against static

detuning and pulse amplitude error necessarily requires the
dynamical phase to vanish, i.e., the gate must be geometric.
Next we consider the case where there is multiplicative de-
tuning and pulse amplitude noise. The multiplicative detuning
filter function can be found using Eq. (28) and is given by

2

T A cos y
F ( — = : [wtd
Ax (@) > siny cos ¢ (e dt
0 siny sin ¢
cos y ?
I A
= / p=tcosy siny cos¢ |e“dt|| . (45)
0 2 siny sin¢

Robustness to static noise would require Fa x(0) =0. We
focus in particular on the first integral, which can be
rewritten as

17, . .
5/ Bcosy — ¢ + ¢ sin® y dr. (46)
0

Just like before, we note that imposing robustness against
static pulse amplitude noise requires fOT ¢sin’ydr =0,
which eliminates the last term in the expression above. Setting
the remaining terms to zero is equivalent to setting Eq. (43)
to zero. Therefore, imposing simultaneous robustness against
static multiplicative detuning and pulse amplitude noise ne-
cessitates a geometric gate. ]

We make the following observations. First, this theorem is
consistent with other results in the literature. It was previously
noted in Refs. [77,108] that composite pulse sequences with
detuning fixed to zero that are designed to be robust against
multiplicative pulse amplitude noise (and are trivially robust
against multiplicative detuning noise since A = 0) are indeed
geometric quantum gates. Second, we note that in that special
case of A =0, the first term in Eq. (44) vanishes regardless
of the value of the integral. In other words, if we do not
require robustness to pulse amplitude noise, it is possible to
obtain dynamical gates that are robust to static detuning noise.
A well-known example is the CORPSE family of composite
pulses, which are designed to be robust against additive de-
tuning noise [73-75]. Third, gates that are robust against static
multiplicative pulse amplitude noise are necessarily geometric
but the converse is not true. One specific example of this is the
orange-slice geometric gate presented in Ref. [106]. It was
shown in Ref. [104] that the pulse amplitude filter function
in this particular case does not vanish at w = 0 despite being
a geometric gate. Fourth, we note that the parallel transport
condition (¢4 (#)|H (t)|¢+(t)) = 0 is not necessary to achieve
a robust geometric gate; the dynamical phase integral simply
has to vanish at the gate time. Finally, this theorem is consis-
tent with the results of Ref. [104]. It is argued there that in
the absence of control constraints, geometric and dynamical
gates are generically equivalent when it comes to noise sen-
sitivity, and preferential phase robustness can only emerge in
the presence of control constraints. In this case, the constraint
is considering a strictly constant A. Removing the constraint
on A turns B into a free parameter. According to Egs. (41)
and (42), the geometric and dynamical components of the
total phase are directly dependent on our choice of 8. Thus, in
the absence of constraints, we can freely tune the phase type
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from dynamical to geometric. Moreover, the filter functions
in Egs. (24) and (25) are independent of 8. This indicates that
noise sensitivity, as quantified by the filter function, is inde-
pendent of the phase type in the absence of control constraints,
as was also shown more generally in Ref. [104].

V. CONCLUSION

We make use of dynamical invariant theory in order to
analytically reverse engineer a qubit’s control Hamiltonian
and calculate its corresponding filter function. This allows us
to define a cost function strictly in terms of the dynamical
invariant parameters which can be optimized to create filter
functions with desirable properties. The primary limitation of
our theory is its currently limited applicability to two-level
systems, with no provision for operations on more than one
qubit or correction of population leakage to higher-energy
levels. (The effects of virfual transitions to higher-energy
levels do not pose a problem, since they can be incorpo-
rated in an effective one-qubit Hamiltonian [109].) In those
cases a generalized approach such as that in Ref. [36] is
preferable. However, for the specific task of constructing local
rotations with robustness against high-frequency noise bands,
our method is a useful and efficient tool.

We demonstrate the utility of our theory by generating
control pulses that are optimized to operate in the presence
of broadband noise. One example we considered is creating a
stop-band filter for both detuning and pulse amplitude noise.
We report at least an order of magnitude improvement in
infidelity when our optimized pulse is compared with known
composite pulse sequences that are designed to address one
or both noise types. Although filter function engineering it-
self is not a novel concept [36], our approach is efficient
since the reverse engineering process circumvents the need
to compute the evolution operator during the optimization
process. The optimizer only requires that we calculate a sim-
ple integral expression with the engineered parameters as
its input. Furthermore, the engineered parameters offer ade-
quate flexibility to simultaneously target arbitrary qubit gates
while considering control parameter constraints. In principle,
more complicated constraints, such as using different basis
functions (Chebyshev, Walsh, Slepian, etc.), time-symmetric
or antisymmetric control [27,29,110], or spectral-phase-only
optimization [26], to name a few, can also be incorporated into
our theory. Our results can also be applied to quantum sensing
where instead the goal is to maximize the filter function in a
limited noise spectral bandwidth [60,111].

More broadly, we used our theoretical framework to ana-
lyze the robustness of geometric gates to detuning and pulse
amplitude errors. We proved a theorem for the special case of
a control constraint under which one-qubit geometric gates
are necessarily superior to dynamical gates. We emphasize
that the robustness we report is not a generic property of
geometric gates but rather a consequence of imposing control
constraints.
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APPENDIX A: ESTIMATING GATE FIDELITY USING
FILTER FUNCTIONS

We now provide a more detailed derivation of the average
gate infidelity provided in Eq. (14), which was reported in
Ref. [33]. We begin by writing the noisy Hamiltonian as

H(t) = Hc(t) + H(7), (A1)

where H_.(t) is the deterministic control Hamiltonian and
H,(t) is the stochastic error Hamiltonian, which can generally
expressed as in Eq. (13). By moving to the interaction frame,
we can write the noisy time evolution as U (¢) = U.(t)U,(¢),
where U, and U, are solutions to the following Schrodinger
equations:

iU:(t) = H.()U,(2), (A2)

iU,(t) = [U] (t)HU()]U,(t). (A3)

For sufficiently weak noise, we can perturbatively expand

U,(t) using the Magnus expansion and write

T
U,(t) ~ exp (—i / U:(t)He(t)Uc(t)dt). (A4)
0

The average gate infidelity is given by
(T) = (1 = Fo) = (1 = |u(U/U)/u (U] Ue)P)
= (1 uU./2)

T T
m@/‘/ummmmwwm
0 0

u@mwmmmwmﬁ. (AS)
A sufficient condition for the convergence of the Magnus
expansion can be expressed as [33,112]

T

/ [€2() + E2(t) + &21)] Pt < =, (A6)
0

where (1) = Zq 84(t)xq,i(t), as described in Eq. (13). We

can use the adjoint representation of U,(¢) defined through

Ri;(t) = sulU} (1)oiU.(1)o;] (A7)
and Eq. (13) to rewrite Eq. (AS) as
T T
M%Zf/wmmwmwmm>
aigk’0 Jo
X Rix(t1)Rji(2)dt dts. (A8)

We can invoke the Wiener-Khinchin theorem for a wide-sense
stationary noise process to express the autocorrelation
function of 4,(t) as the Fourier transform of its PSD:
(8411, 8,(2)) = 5= [*2. Sq(@)e > dw. If we further
define

T
RMMEZAXMMNWWL (A9)

we can finally compactly write the gate infidelity as

1 oo
@)~ Zq: /_ N S,(0)F,(w)dw, (A10)
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where Fy(w) = Y, |Rq,k(w)|2. We emphasize that this expres-
sion assumes that the Magnus expansion converges, which
means that Eq. (A6) is satisfied. However, this does not guar-
antee that contributions of higher-order filter functions to the
infidelity are negligible. To this end, we can introduce the
“smallness” parameter

£ =) (£ o).

1

(Al1)

If £2 « 1, then it can be shown that the higher-order infidelity
terms can be safely neglected [33]. This consequently restricts
the value of the noise PSD amplitude A in Egs. (36)—(38) for
which a first-order approximation is sufficient.

APPENDIX B: NUMERICAL OPTIMIZATION METHOD

We describe here the details of our numerical optimization.
We used the JULIA DIFFEQFLUX package to create a feedfor-
ward deep neural network with one input neuron, two output
neurons, and two hidden layers with 32 neurons each. In
principle, one hidden layer is sufficient to approximate any
continuous function. However, we noticed an improvement in
the optimization’s convergence rate and final cost value when
we added a second hidden layer. Using even deeper networks
did not give any noticeable improvement and only slowed
down the optimization.

Our goal is to minimize the cost given in Eq. (33). The
infidelity integral of a noise process ¢ in the first two terms of
Eq. (33) can be expressed as

1 [ee) T T
(Zy) ~ = / / / [A@)XqEDITA(2) Xy (22)
T J_soJo Jo

x Sy(@)e " dt dtdw, (B1)

where X = [x4.x, Xq.v> Xg,z]7 is the error sensitivity vector.
In the main text, the noise PSD assumes one of two nontrivial

forms: % and Aw“;‘. We can evaluate the frequency integrals

analytically, which are given by

/ " A ot g Z 2[Ciut) — Citwut), (B2)

g @

* ch iwt :
—e dt = —mw.t + 2cos(wet) + 2wt Si(wet),
we @
(B3)

where Ci(¢) and Si(¢r) are the cosine and sine inte-
gral functions, respectively. Let us define g,(ty — ) =
5= [0, Sq(w)e™ =) dw. This allows us to express Eq. (B1)
as

T T
/ / 8q(t1 — A XgtDITA(t2) Xy (t2)dt1dt,.  (B4)
o Jo

We can approximate the integrals by converting them into a
series of matrix multiplications. In particular, we can treat
each time integral as an integral operator which has g, as its
kernel and takes in v, = A X, as input. Therefore, the average
infidelity can be rewritten in the bilinear form

(Z,) ~ v;Iqu, (BS)

where L is a matrix that approximates the double time
integral.

In our work the cost is completely vectorized by evaluating
the cost terms in evenly spaced intervals of time. The infidelity
integrals are evaluated using Eq. (B5) while derivatives, which
are used in evaluating quantities such as € in Eq. (26), are
implemented using finite differences. Thus, the speed and
accuracy of optimization can be controlled by choosing an
appropriate level of time discretization. Finally, the relative
weights are chosen to guarantee that the constraints are sat-
isfied. The infidelity terms are equally weighted, which sets
¢y = ¢, while the constraint terms (c3 — ¢7) are at least an
order of magnitude larger than c; 5.
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