

1 Full field-of-view virtual reality goggles for mice

2
3 Domonkos Pinke^{1,3}, John B. Issa^{1,3}, Gabriel A. Dara¹, Gergely Dobos², Daniel A. Dombeck^{1,4,*}

4
5 ¹ Department of Neurobiology, Northwestern University, Evanston, IL, 60208, USA

6 ²360world Ltd, Budapest, Sümegvár köz 9. 1118, Hungary

7 ³These authors contributed equally.

8 ⁴Lead contact

9 * Correspondence: d-dombeck@northwestern.edu

11 **Summary**

12 Visual virtual reality (VR) systems for head-fixed mice offer advantages over real-world studies for investigating
13 the neural circuitry underlying behavior. However, current VR approaches do not fully cover the visual field-of-
14 view of mice, do not stereoscopically illuminate the binocular zone, and leave the lab-frame visible. To overcome
15 these limitations, we developed iMRSIV (Miniature Rodent Stereo Illumination VR)—virtual reality goggles for
16 mice. Our system is compact, separately illuminates each eye for stereo vision and provides each eye with an
17 ~180-degree field-of-view, thus excluding the lab frame while accommodating saccades. Mice navigating using
18 iMRSIV engaged in virtual behaviors more quickly than in a current monitor-based system and displayed freezing
19 and fleeing reactions to overhead looming stimulation. Using iMRSIV with two-photon functional imaging, we
20 found large populations of hippocampal place cells during virtual navigation, global remapping during
21 environment changes, and unique responses of place cell ensembles to overhead looming stimulation.

22 **Introduction**

23 The mechanical stability provided by mouse head-fixation has facilitated the use of high-resolution functional
24 microscopy¹⁻⁴, intracellular patch clamp recording⁵⁻⁸ and large-scale single unit recording in behaving mice^{9,10}
25 that are either stationary or running on treadmills. The addition of visual virtual reality (VR) simulations, driven
26 in closed loop by treadmill movements, has provided the ability to study spatial behaviors in head-fixed mice¹¹⁻¹³.
27 These systems have been used to investigate neural circuits underlying behaviors such as goal-directed
28 navigation, decision making, accumulation of evidence and path integration¹⁴⁻¹⁷. However, despite these
29 advantages, current VR approaches have limitations that potentially reduce rodent immersion in the virtual
30 environment.

31 Proper illumination of the mouse visual system is particularly challenging due to the wide field of view
32 (FOV) of the mouse eye. Each mouse eye accepts a FOV of ~140-degrees (both in the azimuthal and vertical
33 elevation directions), with ~40 degrees of binocular overlap in the azimuthal plane and more at larger vertical
34 elevations at the resting eye position, leading to a full azimuthal FOV of ~240 degrees and vertical elevation FOV
35 >~200 degrees¹⁸⁻²⁰ (Figure 1A-B). Current VR (VR) systems typically consist of a head-fixed mouse running on
36 a treadmill with a surrounding visual display consisting of either a large, curved screen illuminated by a projector
37 or multiple computer monitors assembled side-by-side. Projection systems typically illuminate ~270 and 160
38 degrees of the azimuthal and vertical elevation¹³, and monitor based systems ~220 and 140 degrees²¹, leaving
39 portions of the mouse FOV un-illuminated, particularly in the vertical elevation direction in the critical overhead
40 region^{22,23} (Figure 1C). Additionally, in the distance between the mouse and VR screens in current systems (0.5-
41 1m), objects in the lab frame are visible (head-fixation bars, optical table-top, lick tube, screen bezels, cameras,
42 etc.). Importantly, the microscope itself is within (and blocking) the overhead field-of-view of the mouse. These
43 immobile objects do not move with the virtual simulation and therefore provide cue-conflicts between the virtual
44 and lab reference frames while also partially blocking views of the virtual world.

45 Another important and unique feature of the mouse visual system is the large binocular region that mice
46 maintain both to the front and, even more prominently, above their head (Figure 1A). Because of the separation
47 of the eyes on the animal's head, real-world objects in the binocular FOV region are viewed by each eye at
48 different angles (binocular disparity). The overhead visual region is particularly important for rodent behavior
49 and survival, as mice continually monitor binocular overlap for threats coming from above²² (Figure 1B). Current
50 VR systems generate a single rendering of the virtual world so that each eye sees the same view of objects in the
51 binocular region, eliminating stereo depth information that may be present (Figure 1C). Furthermore, as
52 mentioned, recording components (such as an upright microscope) and head fixation bars occlude the overhead
53 visual region. Overall, the above limitations lead to deviations in how the visual system is illuminated between
54 real and virtual environments^{24,25} and may reduce the overall immersion of current rodent VR systems.

55 Lastly, current VR systems are relatively large and often require significant engineering for the inclusion
56 of microscopy or electrophysiology components. Their large size may also be prohibitive for building large scale
57 behavior training arrays, where dozens of mice can be trained on relatively complicated tasks at the same time^{26,27}.

58 We therefore developed a mouse VR goggle system (Figure 1D) where the lab frame is not visible and
59 each mouse eye is separately illuminated, providing a full FOV (with additional FOV for saccades, Figure S1)

and stereo illumination to the binocular visual zone, including the critical overhead region. We validate our optical design using optics simulations and real-world measures of retina illumination. We then demonstrate the usefulness of our small footprint iMRSIV (Miniature Rodent Stereo Illumination VR) system by training mice in a virtual navigation task and compare their task engagement to a conventional VR system. We demonstrate that mice displayed dramatic freezing and fleeing reactions to looming stimulation of the overhead binocular zone, a behavioral response that was not observed in the conventional VR system. Additionally, we performed two-photon functional imaging of CA1 populations during these tasks and demonstrate that our system activates large populations of place cells during linear track navigation and global remapping during a track switch paradigm. Finally, in an experiment made uniquely possible with our system, we recorded place cell firing patterns before, during and after overhead looming stimulation and discover previously unknown place cell remapping and remote encoding patterns.

Results

iMRSIV goggle device design and validation

To facilitate the design and testing of the optics of our iMRSIV system, we began with existing Zemax models of the mouse eye^{28,29} and examined the image generated on the simulated eye retina by a 482x261mm checkerboard object at a distance of 200mm (Figure 2A,B,D). We reproduced this arrangement in the real-world by generating the same size and distance checkerboard pattern on a computer monitor and examined the resulting image of the object on the retina of an extracted mouse eye (Figure 2C,E). We then made minor modifications to the Zemax mouse eye model to obtain highly similar retinal illumination patterns between the real-world experiments and simulations (Figure 2D,E; Figure S2A,F-H), thus obtaining a simulation environment to design and test our iMRSIV system.

We were able to test many optical designs to achieve our goal of illuminating each mouse eye with a ~180-degree FOV in all directions (140 degrees for each eye FOV +/-20 degrees for saccades), which we aimed to achieve with a single screen and single lens per eye (Figure 2F). It was not possible to realize a 180-degree FOV with a plano-convex or bi-convex lens. Instead, a positive-meniscus lens was required so that each mouse eye could be fully enveloped. We arrived at a unique optical system that achieved a ~180-degree FOV by using a custom designed positive-meniscus lens paired with a small curved illumination display (Figure 2G,H).

We then asked whether, in a Zemax simulation, we could reproduce the above checkerboard illumination of the mouse retina using our small display and lens combination. We first needed to compensate for distortions introduced by our optical element, so we used Unity3D to recreate the checkerboard arrangement in a virtual world simulation (482x261mm checkerboard object at a 200mm distance) and generated a 180-degree FOV of this scene using a single Unity3D camera and a custom fish-eye shader (Figure 2I). Not only did the fish-eye shader provide for a 180-degree FOV, but it also compensated well for the distortions of our custom lens (Figure S3A). This 180-degree FOV was displayed on the small, curved display in Zemax and used as the object so we could examine the resulting image (through the positive-meniscus lens) on the simulated mouse eye retina, which was centered at a 1mm distance from the inner surface of the lens. We found that the resulting simulated retina image of the checkerboard pattern (Figure 2L; 140 of the available 180-degree FOV) was highly similar to both the Zemax model of the checkerboard object (Figure 2D) and the real-world arrangement of this scene using a computer monitor and extracted mouse eye (Figure 2E; Figure S2A-E).

We then fabricated our optical system for real-world use and validation. The lens was custom ground (Shanghai-Optics) and a small, flexible, round OLED screen (1.39 in diameter, 400x400 pixel, Innolux) was used for the display. The final assembly consisted of two separate 3D printed parts held together with magnets: first, a screen-holder with a curvature matching that of our simulations, to which the OLED screen was affixed; second, a cone-shaped lens-holder with the lens glued to one end and the other end mated to the screen-holder with magnets such that the lens was centered at the desired distance from the screen (6.3mm; Figure 2K). Across a 180-degree FOV, our system provided a mean resolution of 2.2 pixels/degree, higher than the 0.375 cycles/degree visual acuity estimated for the C57BL6 mouse strain used for behavior and imaging experiments here³⁰.

We then asked whether, using our real optical system, we could reproduce the above checkerboard illumination of the mouse retina. We used the Unity3D virtual checkerboard arrangement (482x261mm

111 checkerboard object at a 200mm distance) and fisheye shader to generate a 180-degree view of this scene (from
112 Figure 2I) and illuminated the real OLED screen with this view. We then examined the resulting image of the
113 checkerboard object on the retina of an extracted mouse eye, centered at a 1mm distance from the inner surface
114 of the positive-meniscus lens (Figure 2M). We found that the resulting retina image of the checkerboard pattern
115 (Figure 2M; 140 of the available 180-degree FOV) was highly similar to both the Zemax models of the
116 checkerboard object (Figure 2L; Figure S2I-K) and the real-world arrangement of this scene using a computer
117 monitor (Figure 2E; Figure S2F-K). Finally, we simulated a 20-degree saccade using both Zemax simulations and
118 real-world extracted mouse eye experiments (Figure 2J,N,O). We found highly similar retina images of the
119 checkerboard pattern in both cases (Figure 2N,O; Figure S2L-Q and Videos S1-2). Thus, we established and
120 validated an optical system able to illuminate a ~180-degree FOV for the mouse eye—140-degree FOV +/-20-
121 degrees in each direction for saccades.

122 The small OLED screen, custom positive-meniscus lens and 3D printed parts make up one half (one eye)
123 of our mouse VR goggle system; a duplicate assembly was therefore made for the other eye. Unity3D cameras
124 were used to generate the ~180-degree FOV for each display for each eye. For proper placement of the Unity3D
125 cameras, we used a virtual mouse and placed one camera at each eye, with the camera angles with respect to the
126 mouse set at the resting eye position (22-degrees vertical elevation from the lambda-bregma plane and 64-degrees
127 azimuth from the midline)³¹. This arrangement ensured proper views of the virtual world for each eye and, because
128 of the different position of the cameras in Unity 3D, each one created a different view of objects in the binocular
129 region, thus providing stereoscopic information to the mouse. Together, these components, the renderings of the
130 virtual world for each eye and the custom Unity3D shader complete our goggle system, which we refer to as the
131 iMRSIV (Miniature Rodent Stereo Illumination VR) system.

132 ***iMRSIV behavior apparatus and device-eye alignment procedures***

133 To use the iMRSIV system with head-fixed mice running on a treadmill, we added a cylindrical treadmill, water
134 reward delivery system, capacitive lick sensor, fixed head-plate mounting posts to hold the head-plate at the same
135 location for each mouse in each session, structural components to hold each half of the iMRSIV system in place
136 and two 3D micromanipulators for alignment of the iMRSIV system (Figure 3A,B). We modified Unity3D to
137 communicate with a National Instruments DAQ card (PCIe-6323) and used a digital output signal from this card
138 to control a solenoid for water rewards, a digital input for lick sensor monitoring, and a quadrature encoder input
139 to read treadmill velocity from a rotary encoder (Figure 3C).

140 Our Zemax simulations and extracted eye experiments highlighted the need for precise alignment and
141 positioning of the iMRSIV system lenses relative to the eyes of the mouse (Figure S4). For angular alignment,
142 the manipulators and structural components were designed to align the iMRSIV system optical axis with the
143 optical axis of the mouse eye at its resting position (22-degrees vertical elevation from the lambda-bregma plane
144 and 64-degrees azimuth from the midline)³¹, which matched the angles used for the virtual cameras in Unity3D.
145 With the angle set, proper positioning then required each eye to be centered 1mm from the inner surface of each
146 positive-meniscus lens. To achieve this position, we used two steps. First, during the surgery, we used a 3D-
147 printed frame to implant a head-plate at the same location with respect to the eyes across different mice (Figure
148 3D, Methods). This frame included indicator targets, which, when aligned to the center of the mouse eyes,
149 specified the correct head-plate implantation location. These surgical methods greatly reduced mouse-to-mouse
150 and session-to-session variability in the location of the eyes with respect to the head-plate, and therefore with
151 respect to the iMRSIV system (further details on the procedure and quantification of expected variability are
152 provided under “iMRSIV alignment procedures” in Methods). Second, for final positioning of each mouse at the
153 start of each behavioral session, mice were head-fixed using the mounting posts and then a 3D printed frame was
154 used to position each half of the iMRSIV system with respect to each eye (Figure 3E). The conical lens-holder
155 was removed from each half (pulled off from magnetic attachment) and replaced with a frame with an eye target,
156 which was aligned to each eye using the micropositioners. Once aligned, the target was again replaced with the
157 conical lens-holder, which was now in the correct position with the eye centered at a 1mm distance from the lens
158 (Figure 3F).

161 **iMRSIV spatial behaviors: linear track and looming stimulation**

162 We next sought to determine whether mice could learn to perform a virtual linear track task^{1,13,32} where mice
163 navigated a linear track to a fixed reward location; trained mice in such tasks develop behaviors indicative of
164 anticipation of the reward location. We trained 7 water-scheduled mice to run along a 3-meter virtual linear track
165 (Figure 4A). The mice started in a tunnel, ran across an open field, received a 3 μ L water reward near the end of
166 the field, entered a tunnel and were then teleported back to the track start for another trial. For comparison, we
167 also trained 13 separate water-scheduled mice on the same task but using a conventional VR system consisting
168 of 5 computer monitors mounted side-by-side. All aspects of the environments, training and mice were the same
169 between the groups, with the only difference being the type of visual display rendering the simulations (iMRSIV
170 vs 5 panel). We found that three mice in the iMRSIV group ran more than 0.5 trials per minute over the first ~45-
171 minute sessions (iMRSIV group mean of 0.79+/-1.40 trial/minute in first session), and on average mice in this
172 group reached expert levels (3.21+/-1.80 trials/minute) after ~6 days of training (Figure 4B). Only 1 mouse in the
173 5-panel group ran more than 0.5 trials per minute in the first session, and on average mice in this group reached
174 expert levels at a similar number of days of training as the iMRSIV group (5-panel group mean of 0.13+/-0.16
175 trials/minute on day 1 and 2.75+/-1.88 trials/minute on day 6; no significant difference in trials/minute between
176 groups, $p > 0.05$, 2-sample t-test).

177 We then examined anticipatory licking behavior in the different groups across days (Figure 4C), since this
178 measure has previously been used to assess behavioral learning and task engagement³³⁻³⁵ in linear tracks.
179 Importantly, we found that on the first day of training the iMRSIV group displayed significantly more anticipatory
180 licking than the 5-panel group. This was quantified by calculating a pre-licking index to determine the fraction of
181 licking (excluding consumptive licking) that occurred just before the reward compared to other track locations
182 (day 1: iMRSIV group pre-lick index = 0.64+/-0.24, 5-panel group pre-lick index 0.06+/-0.11; 2-sample t-test,
183 $p=0.0004$). Over 4-6 days, mice in both groups displayed similar pre-licking indices, with most non-consumptive
184 licking occurring just before the reward location. Therefore, mice engaged in a virtual navigation behavior more
185 quickly using the iMRSIV system compared to the existing monitor-based VR system and refined their licking
186 behavior to become highly precise and location specific after several days of training.

187 To take advantage of the unique access the iMRSIV system provides to illuminate the overhead visual
188 scene, we sought to reproduce freezing and fleeing behaviors observed during real-world open field looming
189 stimulation of the overhead region^{23,36,37}. After mice were trained on the first linear track (Figure 4A) for at least
190 6 days (~2-3 rewards/minute), they were switched to a new linear track with the same tunnels at the ends, but an
191 open field in the middle with few cues (Figure 4D). Once this track became familiar (2-3 sessions), we introduced
192 a single, sudden overhead looming stimulus (overhead increasing size sphere, with shadow over the mouse) in
193 the middle of a behavior session when the mice were in the center of the open field (Figure 4D). The iMRSIV
194 group mice displayed a dramatic reaction (Figure 4E; Figure S5A-C). All mice froze after the stimulus (mean
195 freezing time until first detected movement after the first looming stimulus in each mouse: 3.95+/-4.4 minutes):
196 3 of 7 mice froze immediately at the start of the looming stimulus, while 4 of 7 mice rapidly accelerated for
197 several seconds (fleeing behavior) before freezing. When mice began running down the track again after freezing,
198 their running velocity was slower than before (26.7+/-11.4 cm/s in the minute before loom vs 11.6+/-6.6 cm/s in
199 the minute after freezing; paired t-test, $p=0.043$). The same stimulus was applied to a subset of the 5-panel group
200 mice but, due to the lack of overhead illumination, the mice were unable to see the looming sphere and could only
201 see its shadow. This lack of overhead illumination is typical for current VR systems, and even though an overhead
202 monitor could be added any current VR system, it would be occluded by overhead recording equipment (Figure
203 1C) and, further, would not generate a stereoscopic view. We therefore used the 5-panel group mice as a control
204 for a reaction to the shadow. The 5-panel mice did not respond to the shadow (or stimulus), they displayed no
205 acute freezing or acceleration/deceleration and their running speed before and after the stimulus was not different
206 (21.4+/-10.8 cm/s in the minute before loom vs 22.5+/-9.0 cm/s in the minute after loom; paired t-test, $p=0.53$).
207 Therefore, the iMRSIV system provides experimental control of the overhead visual scene, which can be used to
208 provide looming stimulation to head-fixed mice, leading to dramatic freezing responses that last for minutes.
209

210 **Two-photon calcium imaging during iMRSIV spatial behaviors**

211 Typically, microscopy systems occlude the overhead space above head-fixed mice (Figure 1C). However, the
212 design of the iMRSIV system allowed us to place it under an upright two-photon microscope, providing a full
213 FOV, including the overhead region, while imaging (Figure S5D-F and Video S3). To block light from the
214 illuminated screens from being detected by the microscope's photodetectors, we designed custom shielding that
215 fit around the objective and connected to a ring on the head of the mouse. Four out of the seven iMRSIV behavior
216 group mice were injected with a virus to induce expression of jGCaMP8m in CA1 of the dorsal hippocampus and
217 were implanted with a chronic hippocampal imaging window¹² (Figure 5A); these four mice were used for the
218 subsequent imaging experiments.

219 After at least 6 days of training, two-photon imaging was performed to record CA1 neural activity while
220 mice performed the linear track task (8 imaging sessions from 4 mice, 4 familiar track sessions, 4 environment
221 switch sessions; 450x450 μ m field size, 30.28 frames/sec, 28.7 minutes/imaging session, 297+-95 neurons
222 segmented/field). In a familiar linear track, we identified many place cells (204+-61 place cells per field, 69.4+-
223 8.8% of active cells had significant place fields), and these place cells were highly reliable, with most cells active
224 on the majority of trials (mean reliability: 0.51+-0.14; Figure S5G). These cells tiled the linear track on single
225 trials but with a significantly larger number of place fields near the reward zone^{11,32,38-40} (Figure 5B). We also
226 performed imaging of CA1 neural activity in mice trained using the 5-panel displays instead of iMRSIV. Results
227 were similar for CA1 place cells in the 5-panel group (Figure S5H-I).

228 Next, in the middle of a familiar track session, we suddenly switched mice into a novel environment that
229 they had not seen before. We found that many familiar place cells did not have place fields in the novel
230 environment (44+-12%). The cells that did have fields across both environments were not spatially correlated
231 (spatial correlation familiar to novel: 0.15+-0.05). A new population of cells and fields was recruited to encode
232 the novel environment, indicative of global remapping^{32,38-40} (Figure 5C).

233 Lastly, we recorded the firing patterns of the CA1 populations before during and after the looming
234 stimulation (Figure 5D). In addition to imaging during the first looming session (as described in Figure 4), we
235 also applied a single looming stimulus on several subsequent sessions and imaged during these sessions as well
236 (total of 11 looming sessions across 4 imaged mice, 2-3 sessions/mouse). As on the first looming session, mice
237 displayed dramatic freezing and fleeing on subsequent days (immediate freezing in 4 of 11 sessions, fleeing
238 followed by freezing in 7 of 11 sessions, mean freezing time to first movement 3.6+-3.8 min; running speed of
239 22.9+-8.7 cm/s in the minute before loom vs 9.8+-4.9 cm/s in the minute after freezing, paired t-test, p=0.0016;
240 including all time periods, average running speed after loom was 79% of speed before loom), with sustained CA1
241 activity for several seconds after the loom (Figure S5J). Interestingly, we found that many place cells with place
242 fields in the middle of the track (around the loom location) before looming stimulation either lost their place fields
243 or had their place fields move to a new track location in the trials after freezing. In contrast, place cells with place
244 fields at the beginning and end of the track (first and last 50 cm of track) displayed less change in their place
245 firing patterns (0.54 vs 0.67 spatial correlation values middle vs ends of track for before vs after looming; paired
246 t-test, p=0.039). This difference was also seen using Bayesian decoding analysis (Figure 5E). The encoding model
247 was built from (a subset of) trials before the looming stimulus and then used to decode mouse position either in
248 (the remaining) trials before the stimulus or in the trials after the stimulus. While the decoding error before the
249 looming stimulus was relatively low (23.6+-12.7 cm), the error was significantly larger for trials after freezing
250 (45.9+-23.9 cm, p=0.02, paired t-test), with particularly larger decoding error in the middle compared to the ends
251 of the track (53.3+-24.9 cm vs 26.5+-23.1 cm, p=0.0003, paired t-test). Interestingly, when we decoded mouse
252 position during the freezing period, we found in several cases that the decoded position was persistently remote
253 from the mouse's actual position (Figure 5F). For example, in one mouse that froze near the exit of the tunnel
254 near the beginning of the track, the decoded position was further down the track at the location of the loom that
255 had just occurred (mean of 112.3 cm away). In a different mouse, which froze in the open field, the decoded
256 position was at the end of the track in the tunnel (mean of 79.8 cm away).

257 Discussion

258 Here, we developed VR goggles for mice in a system we refer to as iMRSIV. We show that mice engaged
259 (performed anticipatory licking) more quickly in a virtual linear track task in the iMRSIV system compared to a

conventional monitor-based VR system. We hypothesize that this is because their full FOV was illuminated and the conflicting lab frame was not visible. This advantage, combined with the potential depth information provided by the stereoscopic illumination of the binocular region, may provide a more immersive experience, facilitating increased task engagement and spatial awareness. Alternatively, minor differences in screen brightness or the additional handling time needed at the start of iMRSIV sessions to align the system may play a role; further work will be needed to isolate the exact benefits of the iMRSIV system. By combining the iMRSIV system with functional two-photon microscopy, we established the existence of large populations of place cells during virtual linear track navigation and global remapping during a track change paradigm, all of which were highly similar to place cell recordings from previous VR and real-world experiments^{12,32,41-44}. For a familiar linear track, properties of CA1 place cells were highly similar between our iMRSIV and 5-monitor cohorts (Figure S5), perhaps reflecting the capacity of the hippocampus to encode space across a wide range of contexts to produce stable internal maps.

Previous research has found different behavioral responses to side or front looming stimuli compared to overhead looming stimuli³⁶, emphasizing the importance of being able to access and visually stimulate the overhead region. We took advantage of the ability of the iMRSIV system to illuminate this region—a region difficult to illuminate with current VR systems. Similar to real-world looming stimulus paradigms^{23,36,37}, mice in iMRSIV displayed dramatic and long lasting freezing reactions, either immediately or after a short fleeing response. We were also able to provide the first descriptions of the response of place cell ensembles to overhead looming stimulation. We found that place fields around the looming location became unstable and significantly changed their firing patterns, while place fields farther away were more stable. Further, we found several examples during the freezing period itself where the decoded position differed significantly and persistently from the actual mouse location. The decoded position in these examples was either in the tunnel or around the loom location. Perhaps the mouse was thinking of a remote, safe location rather than the current, open field actual location, for planning purposes. Or perhaps the mouse was rehashing the location of the loom that had just occurred for memory consolidation. Future work will be required to establish the details and behavioral roles of these phenomena. While it might be possible to perform hippocampal recordings from freely moving mice with head-mounted microscopes or electrodes during overhead looming stimulation, there could be complications due to the head-mounted recording components^{41,45-47} partially occluding the overhead binocular region (Figure 1C). iMRSIV does not suffer from these issues because the real-world overhead region is not seen by the mice.

An advantage of our iMRSIV system is the significant size reduction compared to existing rodent VR systems (~10x smaller). This miniaturization allows for the iMRSIV system to be more easily combined with a microscope or other recording systems that require significant space or are of an unusual geometry, and thus are not compatible with larger current VR systems. Further, the smaller footprint of iMRSIV is likely to facilitate the building and use of large scale training arrays where dozens of mice can be trained in parallel^{26,27}.

The following future experiments may be enabled by iMRSIV: 1) use of stereo depth for studies of object localization and predation^{20,48}; 2) elimination of static lab frame visual inputs allowing for studies of visual flow, which may drive head direction signals in head-fixed mice⁴⁹; 3) looming paradigms²³; 4) improved depth perception may result in avoidance of perceived virtual cliffs, allowing for elevated maze tasks and measures of anxiety in VR. As more improvements to the immersiveness of VR are made, the gap between VR and freely moving experiments may continue to close. In parallel, technological improvements are enabling new studies such as multi-photon imaging in freely moving mice^{46,50} or rotational head-fixed systems to add vestibular inputs to VR^{51,52}. Each approach carries distinct advantages. VR offers the ability to dissect neural circuitry underlying behaviors using recording techniques that require physically large platforms that have yet to be miniaturized for use in freely moving rodents. Further, VR allows for manipulations that are impractical or impossible in physical environments. On the other hand, neural circuitry evolved to drive behavior in the freely moving case, and replicating the natural profiles of every sensory modality from freely moving rodents is a technically difficult endeavor for VR.

A limitation of our current iMRSIV system compared to conventional VR is the difficulty in tracking eye position and pupil size^{53,54}. These measurements are relatively easy in a conventional system, but in the iMRSIV system there is little or no space for camera access. Thus, even though we provided a full 140-degree FOV with +/-20 degrees for saccades in each eye, we were not able to determine how much of this extra FOV the mice used

311 and how often they performed saccades. Thus, it will be important for future versions of the iMRSIV system to
312 incorporate eye monitoring capabilities.

313 Due to steric hindrances between the iMRSIV display screens and the microscope objective, not all brain
314 regions can be readily accessed (e.g. far rostral or lateral; Figure S5E-F). Further, some microscope objectives
315 will have more severe steric hindrances. These issues may be physically impossible to avoid due to the large view
316 angles of the mouse eye and its proximity to rostral and lateral brain regions. Indeed, most microscope objectives
317 are probably within the mouse's visual fields when imaging rostral and lateral brain regions in a conventional
318 setup. Long working distance objectives (as used here, along with its outer casing removed), thin GRIN lenses or
319 tilting the head could be used for additional clearance. Also, Neuropixels are compatible with iMRSIV and could
320 provide access to more brain regions (but with accommodations needed for the ~6x7x2mm headstage). In future
321 versions, the iMRSIV system could be reduced in physical size by using a different lens design combined with a
322 smaller screen, which would make it easier to access rostral and lateral brain region.

323 Another limitation of our system is the contact between the screens and mouse facial vibrissae (whiskers).
324 This limits access to experimenters studying the whisker system and may reduce immersiveness of the system.
325 While whisker trimming or future reductions in the size of iMRSIV may help, these are important limitations to
326 consider when planning iMRSIV experiments.

327 Future improvements to the iMRSIV system could further increase immersiveness, such as higher
328 resolution screens to further exceed mouse visual acuity or incorporating other sensory modalities such as
329 olfactory³³, auditory^{55,56} and tactile⁵⁷. Further, here we used a cylindrical treadmill and linear track tasks, but 2D
330 open field tasks are possible in head-fixed mice using the iMRSIV system with a spherical treadmill¹. Though
331 vestibular cues will be missing in rigid head-fixed systems, which might preclude proper activation of 2D spatial
332 firing patters in place and grid cells, the iMRSIV system should be compatible with VR approaches that rotate
333 the animal in conjunction with movements through the virtual space to activate the vestibular system^{51,52}. Such a
334 combination of techniques might lead to methods to study 2D navigation neural circuitry in head-fixed mice^{58,59}.
335 Finally, with future miniaturization, goggles small and light enough to be carried by a freely moving mouse might
336 be achievable. Such a system could be used for augmented visual reality paradigms in which the other senses,
337 including self-motion cues, are preserved.

339 Acknowledgments

340 We thank members of the Dombeck lab for comments on the manuscript. This work was supported by the
341 National Institute of Health (R01-MH101297 to DAD), the National Science Foundation (NSF/ECCS-1835389
342 to DAD), the Hartwell Foundation (to JBI) and the Brain and Behavior Research Foundation (to JBI).

344 Author Contributions

345 DP, GD and DAD developed the iMRSIV concept. JBI, DP, GAD and DAD designed and built the system. DP,
346 GD, JBI and GAD programmed the software. JBI, DP and DAD conceived and designed the experiments,
347 analyzed the data, interpreted the data, and wrote the paper. DAD supervised all aspects of the project.

349 Declaration of Interests

350 D. Pinke and G. Dobos are on a patent related to this work: "Virtual reality simulator and method for small
351 experimental animals" HU1900400A1.

353 Inclusion and Diversity

354 We support inclusive, diverse, and equitable conduct of research.

357 Main Figures

358 **Figure 1: The mouse visual system and proposed concept for mouse VR goggles**

360 A. Mouse FOV with monocular (green) and binocular (red) regions shown at resting eye gaze position from top-
 361 down and front perspectives.
 362 B. Simulated mouse in a cue rich environment, including overhead owl (left), with simulated 140-degree FOV
 363 from the two eyes (right). Note the different perspective from each eye of the cheese and owl objects in the
 364 binocular overlap region (highlighted in red).
 365 C. Simulation of mouse FOV in a computer monitor based VR system (left), with simulated 140-degree FOV
 366 from the two eyes (right), binocular overlap region highlighted in red, and representation of overhead microscope
 367 (black rectangle above mouse). Note the large (black) region of the visual FOV that is not illuminated by the VR
 368 screens, no owl present since the overhead region is not rendered on the screens, and the same perspective from
 369 each eye of the cheese in the binocular region.
 370 D. Simulation of the mouse FOV using the concept presented here using goggles (left), with simulated 140-degree
 371 FOV from the two eyes (right), and binocular overlap region highlighted in red. Note the different perspective
 372 from each eye of the cheese and owl objects in this region. Further, the full visual FOV is illuminated in each eye
 373 and the overhead microscope from C is not visible to the mouse in this setup. See also Figure S1.
 374

375 ***Figure 2: iMRSIV goggle device design and validation***

376 A-E. Design and validation of Zemax simulation and mouse eye experiment for traditional monitor setup.
 377 A. Zemax simulated mouse eye retina at a distance of 200mm from the checkerboard in B. Rays for 3 different
 378 object points are shown.
 379 B. Checkerboard pattern used as the object in Zemax simulations.
 380 C. Real-world reproduction of simulated arrangement, from side and top views. 482x261mm checkerboard shown
 381 on computer monitor 200 mm from an extracted mouse eye. Camera is used to view the back of the retina.
 382 D. Resulting image of the checkerboard object on the Zemax simulated eye retina, view from the back of the
 383 retina.
 384 E. Image of computer monitor checkerboard object on the retina of an extracted mouse eye, as viewed with the
 385 camera.
 386 F-O. Design and validation of Zemax simulation and mouse eye experiment for iMRSIV (lens + display) concept.
 387 F. Our optical system to achieve a 180-degree FOV using a custom designed positive-meniscus lens and a small
 388 curved illumination display, shown with mouse eye at the optimal location.
 389 G. Zemax simulation of rays from different screen points traveling through mouse eye to the retina; blue, center
 390 of optical axis; red and green, edges of 140-degree eye FOV imaged onto retina; pink and yellow, edges of 180-
 391 degree FOV not imaged onto retina, but illuminated on screen for additional FOV for eye saccades.
 392 H. Same as I, but zoomed in on eye.
 393 I. Recreation of the checkerboard arrangement from B, C, but in a virtual world using Unity3D. 180-degree FOV
 394 of this scene was generated using a single Unity3D camera and a custom fish-eye shader. 140-degree FOV
 395 highlighted in red. Schematic shows 140-degree FOV and full 180-degree FOV to accommodate 20-degree
 396 saccades.
 397 J. Eye model (as in H) and simulated recreation of checkerboard using custom fish-eye shader (as in I) after 20-
 398 degree saccade (gaze rotation).
 399 K. Real optical iMRSIV system composed of curved screen and custom lens, along with experimental setup
 400 shown underneath.
 401 L. The 180-degree FOV from I was shown on the small, curved display in Zemax as the object, which was imaged
 402 onto the mouse eye retina through the positive-meniscus lens; the resulting image of the checkerboard object on
 403 the Zemax simulated eye retina is shown here (140-degree eye FOV). View is from the back of the retina.
 404 M. Checkerboard scene from I was used to illuminate the real OLED screen; the resulting image (through the
 405 real positive-meniscus lens) on the retina of an extracted mouse eye is shown, as viewed from a camera at the
 406 back of the retina.
 407 N-O. Same as L, M, but with eye rotated 20-degrees with respect to screen center (as in ray diagram in J, left) to
 408 simulate 20-degree saccade. See also Figures S2-3 and Videos S1-2.
 409

410 **Figure 3: iMRSIV behavior apparatus and device-eye alignment procedures**

411 A. Left, iMRSIV system connected to 3D micro-positioners with metal bars, incorporated into a head-fixed
412 behavior apparatus with treadmill and reward delivery system. Right, photo of mouse in iMRSIV system.
413 B. Zoom view from A showing iMRSIV system and head-plate positions with respect to mouse.
414 C. Schematic of electronics connections for control and reading from iMRSIV system, treadmill and reward
415 delivery systems.
416 D. Left, 3D printed frame used during surgery to position the head-plate at the same location with respect to the
417 eyes across different mice. Middle, view of frame on mouse and aligned to eyes. Right, zoomed in view.
418 E. Left, 3D printed frame with pointed target used to position each half of the iMRSIV system with respect to
419 each eye before each session. Middle, view of frame on mount and target aligned to mouse eye. Right, back view.
420 F. Left, separated iMRSIV system components. Middle, iMRSIV system aligned to correct location with respect
421 to mouse eyes (only one side is shown for clarity). Right, back view. See also Figure S4 and Video S3.

422 **Figure 4: iMRSIV spatial behaviors: linear track and looming stimulation**

423 A. Linear track used for behavior, with tunnels (brown) and reward (blue) locations shown.
424 B. Trials/min over training days (sessions) for the conventional 5-panel VR group (left) and the iMRSIV group
425 (right). Light grey lines show data for individual mice. Thick line and shading represent mean+/-SEM across
426 mice. Dashed line reproduces mean for 5-panel group.
427 C. Top, prelicking index over training days for the 5-panel VR group (left) and the iMRSIV group (right). Bottom,
428 mean licking rate vs. position (reward position, blue) over all mice in each group for days 1, 2 and 3 of training.
429 Note the anticipatory licking in the iMRSIV group on day 1 is not present in the 5-panel group. * p < 0.05 between
430 groups on day 1 using 2-sample t-test.
431 D. Linear track used for looming behavior, with tunnels (brown), reward (blue) and looming stimulation (black
432 discs) locations shown.
433 E. Top, three examples of behavioral responses to the looming stimulus (dashed line) showing no change in
434 running velocity for a 5-panel group mouse (left) and rapid freezing for one (middle) and fleeing followed by
435 freezing in the other (right) iMRSIV group mice. Bottom, plots of mean velocity vs. time at looming onset (dashed
436 lines) over all mice in each group. Quantification of freeze durations for each mouse across groups also shown,
437 parsed by time to first movement and time to first run. Note the long-lasting freezing in the iMRSIV group that
438 is not present in the 5-panel group. * p < 0.05 between groups on day 1 using 2-sample t-test. See also Figure S5.

440 **Figure 5: Two-photon calcium imaging during iMRSIV spatial behaviors**

441 A. iMRSIV+2P. Example two-photon imaging field of CA1 neurons labeled with jGCaMP8m and regions of
442 interest (ROIs). Imaging during familiar linear track navigation using iMRSIV.
443 B. Left, recording of 253 place cells in a single field. $\Delta F/F_0$ vs. time for each neuron over several trials along with
444 track position, running velocity and licking. Right, mean transient rate vs. track position for all place cells from
445 4 familiar environment sessions (n=4 mice; cross-validated even-odd laps) and histogram of place field peak
446 locations.
447 C. Mean transient rate vs. track position for all place cells with fields in both environments during environment
448 switch sessions (n=4 mice). Left, place fields in familiar track (cross-validated), scatter plot of place field peak
449 locations (familiar even laps vs familiar odd laps), and histogram of place field peak locations; middle, place
450 fields in novel track (cross-validated), scatter plot of place field peak locations (familiar laps vs novel laps), and
451 spatial correlations between place fields—familiar odd vs familiar even, familiar vs novel, and novel odd vs novel
452 even; right, place fields in novel track (cross-validated), scatter plot of place field peak locations (novel even laps
453 vs novel odd laps), and histogram of place field peak locations. * p < 0.05 using 1-sample t-test.
454 D. Mean transient rate vs. track position for all place cells during looming sessions (n=4 mice, 11 imaging
455 sessions). Left, place fields from pre-loom trials (cross-validated), scatter plot of place field peak locations (pre-
456 loom even laps vs pre-loom odd laps); middle, place fields from post-loom trials, sorted based on pre-loom peak
457 track locations, scatter plot of place field peak locations (pre-loom laps vs post-loom laps); right, place fields from
458 post-loom trials (cross-validated), scatter plot of place field peak locations (post-loom even laps vs post-loom odd
459 laps).

460 laps); bottom, spatial correlations between place fields—pre-loom odd vs pre-loom even, pre-loom vs post-loom,
461 and post-loom odd vs post-loom even, along with spatial correlations vs track position for the three comparisons.
462 * $p < 0.05$ using 1-sample t-test.

463 E. Bayesian decoding of mouse location based on CA1 firing patterns. Top, example session showing actual
464 mouse track location vs decoded position; encoding model built with some pre-loom trials and decoding applied
465 to remaining pre-loom trials (left) or applied to post-loom trials (right). Bottom, decoding position error vs track
466 position for pre-encoding/pre-decoding (left) and pre-encoding/post-decoding (right)—pre-pre reproduced in
467 grey for comparison.

468 F. Two examples of decoded position probability vs time (heat maps, top) during several pre-loom trials and
469 during the freezing periods, along with plots (bottom) of actual position (black) and decoded position (peak
470 probability, orange). Note high correspondence between actual and decoded positions during pre-loom trials, but
471 large difference between actual and decoded positions during the freezing periods. See also Figure S5.

472 473 **STAR Methods**

474 **Key resources table**

475 REAGENT or RESOURCE	476 SOURCE	477 IDENTIFIER
Bacterial and virus strains		
AAV9-syn-jGCaMP8m-WPRE	Addgene	RRID:Addgene_162375
Deposited data		
Processed behavior and 2p imaging data	This paper	10.5281/zenodo.8393062
Experimental models: Organisms/strains		
C57BL/6J	The Jackson Laboratory	RRID:IMSR_JAX:000664
BALB/C	Charles River	RRID:IMSR_CRL:028
Software and algorithms		
Unity 2021.2.9f1	Unity Technologies	https://unity.com
MATLAB R2022b	MathWorks	https://www.mathworks.com
OpticStudio 23.1.1	Zemax, LLC	https://www.zemax.com
Blender 3.5	The Blender Foundation	https://www.blender.org
Custom Unity scripts and VR environments	This paper	github.com/DombeckLab/IMRSIV and 10.5281/zenodo.10127394
Other		
Lens design in Zemax	This paper	github.com/DombeckLab/IMRSIV
STL files for custom-printed parts	This paper	github.com/DombeckLab/IMRSIV

478 **Resource availability**

481 **Lead contact**

482 Further information may be requested from and will be provided by the corresponding author, Daniel A. Dombeck
483 (d-dombeck@northwestern.edu).

485 **Materials availability**

486 This study did not generate new unique reagents.

487 488 **Data and code availability**

- Lens design (in Zemax), 3D models of custom equipment used, and VR environments (in Unity) are available at an online repository (<https://github.com/DombeckLab/IMRSIV>). Data is available online as well (10.5281/zenodo.8393062).
- All original code has been deposited at 10.5281/zenodo.10127394 and is publicly available as of the date of publication. DOIs are listed in the key resources table.
- Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

Experimental model and study participant details

Animals

All animal procedures were approved by the Northwestern University Institutional Animal Care and Use Committee. Mice were housed in a vivarium with a reversed light/dark cycle (12 hours light during the night) and all experiments were performed during the day (during their dark cycle). For behavior and CA1 imaging experiments, ~12 week old adult C57BL/6J male mice (The Jackson Laboratory, strain #000664) were used. The use of only male mice for behavior is a potential limitation of this study. For extracted eye experiments, 10-14 week old adult BALB/c mice (Charles River) of both sexes were used. All mice were immunocompetent and were not used in any previous procedures and are thus otherwise naïve to any drug or test outside of the procedures described. Experiments were replicated using multiple cohorts of iMRSIV and control mice, with littermates randomly assigned to each group. Blinding was not possible, however, since it was clear to the experimenter which apparatus the mice were placed into. All mice implanted with headplates were included in analysis. No statistical methods were used to predetermine sample size. Sample sizes were calculated based on similar previously published studies.

Method details

Headplate and CA1 cannulation surgery

Headplates were aligned and attached to adult C57BL/6J male mice as detailed below. For a subset of 9 mice (4 iMRSIV and 5 control) mice, CA1 cannulation and virus injection was also performed to allow for imaging.

Anesthetized mice (1-2% isoflurane in 0.5 L/min O₂) were head-fixed to a stereotaxic apparatus (Model 1900, David Kopf Instruments). The skull was leveled and aligned to bregma. We then positioned the eyes relative to the headplate holder by using a custom 3D-printed alignment tool (Figure 3D). This tool has two prongs that approximate the position of the center of each eyeball. Once centered, the tool was replaced with a custom titanium headplate (1 mm thick, eMachineShop). This headplate is the same size and shape as the alignment tool but without the centering prongs. Further details on our alignment procedures are provided below under “iMRSIV alignment procedure”. Dental cement (Metabond, Parkell) was used to adhere the headplate to the skull. Mice were monitored closely for 24 hours and given 3-5 days to recover before water restriction and behavioral training were begun.

In mice used for CA1 imaging, before attaching the headplate we performed a small craniotomy (0.5 mm) and, using a beveled glass micropipette, injected ~60 nL of AAV1-syn-jGCaMP8m-WPRE⁶⁰ (Addgene catalog #162375, diluted ~8x from 2.5e13 GC/ml stock into phosphate buffered solution) into right CA1 (2.3 mm caudal, 1.8 mm lateral, 1.3 mm beneath dura). Then a stainless steel cannula with an attached 2.5 mm No. 1 coverslip (Potomac Photonics) was implanted over CA1¹².

Extracted eye experiment

To measure the image formed on the mouse retina, we used explanted eyes from BALB/c mice. We chose to use albino mice because the retinal epithelium is not pigmented and thus images formed on the retina using the visible spectrum can be observed by photographing the back of the explanted eye. We chose this particular strain

(BALB/c) because the size of the eye and the optical parameters are highly similar to the strain of mice used for our behavior and imaging experiments (C57BL/6J)⁶¹.

Mice were deeply anesthetized with isoflurane (2% in 0.5 L/min O₂). The eye was then removed, the optic nerve transected, and any connective tissue cleared. The eye was then placed on a custom 3D printed mount that centered the eye relative to the rest of the setup. For the setup, a camera (Basler acA5472 with a 25 mm f/1.4 lens, HR978NCNH1198) was mounted behind the eye while the display (either large flat-panel display or the iMRSIV lens and miniature display) were mounted in front of the eye. Using rotation and translation stages, we could control the distance from the displays to the eye and we could adjust the rotation of the eye relative to the display. We could also lock in the camera so that it rotated with the eye, or we could rotate it independently of the eye. The desired image was displayed on the screen and the image formed on the retina as observed from behind the eye (caudal view) or from the side (lateral view) was photographed using the camera.

550 Zemax simulations and updated eye model

551 Replicating the real-world full stereo vision of mice in virtual reality is optically challenging for a number of
552 reasons. First, the mouse eye has a large angle FOV that spans 140 degrees plus another +/-20 degrees for
553 saccades¹⁸⁻²⁰. Not only does this large angle occupy a large space, it also requires solutions that account for the
554 Petzval field curvature. Second, the binocular region requires a solution that can deliver different perspectives of
555 the same object to each eye (thus transmitting binocular disparity information). Because these views physically
556 overlap, either the two eyes need to receive different images from the same position (such as is accomplished
557 when viewing 3D televisions through polarized lenses) or the optical field needs to be separated so that the
558 physical space illuminating the medial portions of each eye are different.

559 To aid our testing, we used Zemax software to simulate the optics of our design solution. We began with a
560 published model of the mouse eye⁶ and modified the exact coverage of the retina. On the basis of published eye
561 parameters^{31,62}, we expanded the retinal periphery to cover the 140+ degrees FOV (with a 3 mm eye diameter).
562 For simulating retinal projections in Zemax, we used Image Simulation, Geometric Bitmap Analysis and
563 Geometric Image Analysis with 3 mm diameter retina parameter (300x300 pixel, 0.01 pixel size), Pupil size was
564 0.4 mm to 1.6 mm to simulate constricted and dilated pupils as well. We then validated our updated model by
565 comparing the results obtained from our extracted eye experiments (detailed above) using a fixed display with a
566 checkerboard pattern and compared them to the Zemax simulation using identical parameters and the same display
567 image (Figure 2).

568 Next, we sought to identify a lens design that, when placed between a miniature display and the mouse eye, could
569 accomplish our design goals. In particular, we wanted a solution that would project 180-degrees of the visual field
570 while also physically occupying a small footprint so that the displays for each eye would not intersect. We began
571 with off-the-shelf lenses but found that plano-convex or bi-convex lenses would not be adequate to cover the 180-
572 degree range. Instead, a positive-meniscus lens was used such that, across the curvature of the eye, we could
573 preserve an approximately fixed distance between the lens and the eye. The lens is a custom design (manufactured
574 by Shanghai Optics) with the following specifications: diameter = 12 mm, center thickness = 4 mm, front radius
575 curvature = 6 mm, back radius curvature = 10 mm, material: H-K9L glass. Further, the display itself (6.3 mm
576 from the front surface of the lens) needed to have some curvature as well to reduce distortions introduced when
577 the display-to-lens distance varies across different angles. We used a display radius of curvature of 60 mm along
578 the azimuthal axis. As the physical constraints of the display only allow for curvature along one axis, the display
579 remained flat (not curved) along the other (vertical) axis. The difference in curvature did not introduce any
580 substantially different distortions along the two axes (Figure S3B-E). Finally, the curved screens were both rotated
581 25-degrees, around the eye axis, vertically from the nose.

582 Once we had identified the exact parameters for the desired lens design in Zemax, we had the lens fabricated
583 (Shanghai Optics). The actual lens and our design was then validated using the explanted eye as detailed above

587 and as shown in Figure 2. Custom 3D parts to mount the lens and display were printed using tough PLA on a 3D
588 printer (UltiMaker S3).
589

590 Quantification of similarity between retina images

591 To compare a pair of retina images, our procedure involved choosing the individual vertices of the checkerboard
592 pattern in both images. Then we calculated the Cartesian distance between each pair of vertices. This distance
593 was then normalized by the size of the retina (3 mm). These distances were then averaged over columns or rows
594 of the checkerboard to attain deviation distance as a function of the x-axis or y-axis, respectively.
595

596 We compared the Zemax image of the checkerboard for the monitor with the Zemax image of the same scene
597 using iMRSIV. We found that the % deviation was small and much of the discrepancy was due to a difference in
598 magnification between the images. The images were practically identical when the iMRSIV retina image is scaled
599 up by 5% (Figure S2A-E).
600

601 Next, we compared the real mouse retina images to the various Zemax models (monitor, iMRSIV with the default
602 configuration, and iMRSIV or monitor with a 20-degree rotation). Here, we first registered the images (rotation,
603 translation, and scaling) and then calculated the % deviation. This was performed for several different experiments
604 (different eyes from two mice), allowing us to estimate the standard deviation of this measure (Figure S2F-Q).
605

606 Unity environment and hardware

607 Virtual reality environments were rendered in Unity3D (see also: <https://github.com/axolotlWorks/Moculus>). The
608 same computer was also used to synchronize behavior and two-photon imaging data during execution of VR
609 simulations.
610

611 In the Unity environment, a model mouse was used to approximate the position and orientation of the mouse eyes.
612 The angles were then replicated in the positions and orientations of the physical displays relative to the actual
613 mouse (22-degrees vertical elevation from the lambda-bregma plane and 64-degrees azimuth from the midline).⁸
614 We also needed to correct for the distortions of our custom lens. To accomplish this goal, we used a fisheye
615 shader. Each eye's display is covered by a shader. A 360-degree sphere camera in Unity is projected by seven 90-
616 degree cameras onto a sphere overlay. The sphere is captured by an 8th perspective (70-degree FOV) camera
617 which was placed at 267 mm from the sphere. This fisheye projection corresponds to ~180 degrees FOV, projected
618 onto one circular display. Our custom lens also provides a strong anti-fisheye effect (see
619 <https://www.mathworks.com/help/vision/ug/camera-calibration.html>); we compared the fish-eye vs. anti-fisheye
620 effect, and we found that they are approximately the opposite effect (inverse transforms), so there was no need to
621 further correct the lens distortion (Figure S3A).
622

623 Each lens was then paired with a small, flexible, round OLED screen (1.39 in diameter, 400x400 pixel, Innolux).
624

625 For our control experiments using a traditional 5-monitor display, we used five cameras in Unity, angled at
626 increments of 45°, to reproduce the physical locations of the monitors arranged as five sides of an octagon around
627 the mouse. Each monitor was run at a resolution of 1920x1080²¹.
628

629 Refresh rate for both systems (iMRSIV and 5 panel) was 60 Hz, which were driven by a video card (Nvidia
630 RT3070). Monitor brightness per unit area was higher for the round OLED screens of iMRSIV than for the large
631 monitors we used for the traditional 5-panel display. This brightness was measured by collecting light over a 5-
632 mm diameter region of the display using a fiber optic cable pressed against the screen and light collected on the
633 other side using a photodetector (DET-100A, Thorlabs). For a given uniform display (either 50% gray or 100%
634 white), the voltage measured from the photodetector was ~10 fold higher for the OLED screens. However, the
635 exact amount of light reaching the mouse retina in each system is difficult to approximate exactly and is further
636 complicated by differences in pupil diameter (which was not measured here). Overall brightness is a function

637 involving integration of light from all portions of the screens, and an inverse square law describing the reduction
638 in intensity as a function of distance from the source. Based on our estimates of these values, the overall brightness
639 received by the mouse eye was higher in the iMRSIV system. Thus, for particular future applications, the intensity
640 of the virtual environments could be reduced as needed.

641 Custom scripts were written in C# to enable communication with a data acquisition card (PCIe-6323, National
642 Instruments) from within the Unity runtime environment. We took advantage of the fixed update clock (set to 1
643 ms) within Unity to gain precise control of all timed events. The data acquisition card (DAQ) was used to output
644 timed digital output to control the opening of a water reward solenoid. The timing was calibrated to provide a
645 volume of 3 μ L of water. Inputs to the DAQ included a quadrature encoder and digital signals. The quadrature
646 encoder was used to read running velocity from an optical encoder (E2-5000, US Digital) attached to the axis of
647 the treadmill. These values were converted to a calibrated position along the treadmill in centimeters, which was
648 then used to move the position of the mouse in Unity. Digital inputs were used to read contact between the tongue
649 and the lick spout using a capacitive touch sensor (AT42QT1010, SparkFun) and also two-photon frame times.
650 These signals were all read by the DAQ at 1 kHz. All DAQ data along with environmental variables from Unity
651 (such as mouse position in the VR world, velocity, etc.) were continuously stored during each frame in a dat file.
652 Thus, we could precisely synchronize environmental variables with two-photon imaging frames when processing
653 the data. A 3-axis translation stage was used to position the lickport (DT12XYZ, Thorlabs).

655 iMRSIV alignment procedure

656 To position the iMSRIV displays relative to each mouse eye, we developed the following alignment procedure
657 that minimized mouse-to-mouse variability while also permitting adjustments to be made for each mouse. We
658 utilized a custom-designed headplate with a couple features that facilitated our experimental approach. First, the
659 grooves for mounting to the headbars were positioned further posteriorly, thus adding clearance from the head
660 mounting bars for the iMRSIV lens + display (and also remaining outside the field-of-view of each eye). Second,
661 the grooves were positioned exactly 30 mm apart, thus allowing precise and reliable mounting using off-the-shelf
662 parts (such as the Thorlabs 30 mm cage system). During surgical implantation, the headbar is aligned to the eyes
663 of each mouse. This alignment is accomplished by first using a custom 3D-printed alignment tool (Figure 3D).
664 This tool has two prongs situated for positioning to the center of each eyeball. Once the tool is aligned (prongs
665 centered on each eye), the stereotax micromanipulator is fixed while the tool is replaced with a headplate and
666 cemented in place. Thus, the relative position of the headplate mount to the eyes of the individual mouse is fixed
667 (within experimental measurement error).

668 We also measured the position of the eyes with respect to bregma and found some variability in the position of
669 the eyes relative to bregma. For example, across a cohort of 7 mice, our standard deviation in bregma-eye distance
670 is 0.11 mm medial-lateral, 0.34 mm anterior-posterior, and 0.21 mm dorsal-ventral. However, because we align
671 to the eyes themselves, this variability does not affect our alignment and only slightly affects the accessible brain
672 regions (Figure S5D-F). Note also that we placed the headplate with the skull leveled to 0 degrees (zero tilt
673 between bregma and lambda), but it is possible that the headplate could be angled without perturbing the visual
674 experience of the mouse.

675 During behavioral sessions, the headplate is attached to the headbars. To verify the placement of the mouse and
676 that the eyes are correctly positioned relative to the iMRSIV displays, we utilized the following alignment
677 procedure. The goal was to position the display assembly (consisting of the lens-holder attached to the display
678 holder) at the desired position relative to the mouse eye lens (Figure 2F,G, Figure 3). The lens-holder and display
679 holder are attached using a set of 3 magnets, allowing us to attach and detach the lens-holder in a reproducible
680 manner. The assembly is attached to a 3-axis stage (3x MS1S, Thorlabs), allowing precise control of x-y-z
681 position, along with a rotation stage (RP005, Thorlabs). To perform the alignment, first an alignment tool (Figure
682 3E) was attached in place of the lens-holder. This tool is similar to the lens-holder but instead of the lens has a
683 probe at the desired location of the center of the front of the mouse eye lens. Thus, we could position the probe at
684

687 the eye lens, retract the assembly using the micromanipulator, replace the alignment tool with the lens-holder,
688 and return the assembly back to the same position. Any final fine adjustments are then performed using
689 micromanipulators for each iMRSIV display. In practice, however, we found that little to no adjustments were
690 needed between mice.

691
692 To measure the precision of our alignment procedures, we replicated our alignment procedure using a replica eye
693 (3.1 mm diameter ball bearing) placed on an xyz translation stage with micrometers precise to <25 microns (PT3,
694 Thorlabs). Briefly, we aligned our target to the center of the ball bearing (Figure 3E), replaced the target with the
695 iMRSIV lens, and then measured how far the center of the ball bearing was from the center of the lens by using
696 the translation stage to align the ball bearing to the center of the lens (confirmed with a video camera, as in Figure
697 2C). We then read off the micropositioner distances needed to center the ball bearing. We repeated this procedure
698 5 separate times and found x,y errors were 0.31+-0.14 mm and 0.16+-0.05 mm. Meanwhile, our z-distance,
699 which measured the distance between the front edge of the bearing to the iMRSIV lens surface, was 1.10+-0.10
700 mm, which is within range of the desired 1.0 mm eye-lens distance. We simulated the effect of various
701 misalignments using Zemax and the results, as shown in Figure S4, indicate that minimal image distortions are
702 incurred (typically less than the visual acuity of mice) for the positioning errors expected during actual
703 experiments.

704
705 Behavior

706 Following recovery from surgery, mice were restricted to receiving 0.8-1.0 mL of water each day. Mice were
707 weighed daily and training was begun once weights fell to ~80% of baseline.

708 For iMRSIV mice, once the mouse was head-fixed, an alignment procedure was performed as detailed above
709 ("iMRSIV alignment procedure") and in Figure 3. Note that it was not possible to perform truly blinded
710 experiments when comparing iMRSIV mice to the 5-monitor control mice. We however matched training
711 conditions in every aspect that we could by using mice of the same age, water restricting for the same duration
712 with the same target weight, matching the duration of training sessions, etc. We also practiced the iMRSIV
713 alignment procedures beforehand so as to minimize the time and potential discomfort incurred while positioning
714 the screens around the mouse. Once proficient, we were able to perform this alignment within a couple minutes.

715
716 Once aligned, the training session was begun. Virtual environments were simulated in Unity. All environments
717 consisted of the same basic structure. Mice start in a tunnel, run to reach a fixed reward location where a water
718 reward is delivered to the lick spout, then continue running to the end of the track, which consists of a tunnel as
719 well. The mice then teleport back to the start tunnel and the task repeats. Track lengths are 3 to 3.5 m. The first
720 stage of training consisted of six sessions, one per day, each lasting ~40 minutes. These were performed in the
721 first linear track. On the next day, a remapping experiment was performed. After at least 10 minutes in the familiar
722 environment (typically 30-40 laps or more), mice were instantly teleported to a novel environment³².

723
724 Looming stimuli were then presented in the next two or three sessions. For these experiments, a single loom event
725 was simulated in Unity. The loom consisted of an overhead black disk²³, which also cast a dark shadow on the
726 ground. The loom sphere (d=37.8 mm) was placed at a height of 200 mm from the mouse, with no visibility
727 initially. After 10 minutes, whenever the mouse next entered into the trigger zone, the loom event was activated.
728 The sphere became visible and started following the mouse without initially descending. As soon as it caught up,
729 the loom sequence began. It descended from 200 mm to a height of 11 mm in 0.3 seconds, remained close for
730 0.25 seconds, and then returned to 200 mm. The loom descent repeated 3 times, following the animal's position.
731 Thus, the exact position at which the looming stimulus occurred varied slightly depending on the animal's exact
732 running behavior. The loom parameters (size, speed, position, and number of repeats) are parameters that can be
733 changed within Unity.

734
735 Imaging

737 In the subset of cannulated mice, we performed two-photon imaging of populations of neurons in CA1 of the
738 hippocampus during behavior sessions as described above, either with iMRSIV (4 mice) or with the traditional
739 5-panel display (5 mice). Imaging was performed using a customized upright microscope. A mode-locked
740 Ti:Sapphire laser (Chameleon Ultra II, Coherent) tuned to 920 nm was raster scanned using a resonant scanning
741 module (Sutter Instruments). Emission light was filtered (FF01-510/84, Semrock) before being collected by a
742 GaAsP PMT (H10770PA-40, Hamamatsu Photonics). ScanImage software (Vidrio) was used to control the
743 microscope and acquire images. A TTL frame sync signal was output to the DAQ of the VR computer to allow
744 for synchronization of two-photon imaging times to the behavior data acquired by Unity. All imaging was
745 performed at 512x512 pixels and 30 Hz using bidirectional scanning.

746 A 10X objective (UPLFLN, Olympus), with outer housing removed to fit within the geometric constraints, was
747 used for imaging. We removed the outer housing of the objective (unscrewing it) to increase clearance between
748 the objective and the iMRSIV lens-holder. In Figure S5D-F, we delineate regions of the cortex that are accessible
749 using this objective without physically colliding with the iMRSIV lens mounts. As the placement of our headplate
750 (and the iMRSIV system) is relative to the eyes of the animal, the exact relative location of bregma can vary
751 across mice (and correspondingly the position of brain structures relative to bregma will vary as well). For
752 example, across a cohort of 7 mice, our standard deviation in bregma-eye distance is 0.11 mm medial-lateral, 0.34
753 mm anterior-posterior, and 0.21 mm dorsal-ventral; thus, there is an uncertainty of ~0.25 mm in the boundary of
754 which cortical regions would be accessible with the 10X objective (with removed housing) as shown in Figure
755 S5D-F. Note that, in a traditional virtual reality system, the objective is within the overhead FOV of the mouse's
756 vision (Figure 1C). To prevent iMRSIV display light from reaching the optical path and contaminating the
757 emission PMT, we designed a custom shielding system that consisted of a 3D printed part that fit around the
758 objective and connected to a ring on the head of the mouse. All data was collected at a magnification of 2.0X,
759 which resulted in a field-of-view of 450 μ m x 450 μ m.

761 Image processing

762 Two-photon movies were first registered to correct for motion artifacts using rigid registration⁶³. Next, active
763 cells were detected using Suite2p. Fluorescence traces (brightness-over-time signals) for these cells and
764 associated neuropil were extracted. Then, we used an integrated iterative algorithm to decompose the signal into
765 an inferred summation of four signals: the true activity of the cell ($\Delta F/F_0$), the baseline (F_0), the neuropil
766 contamination, and noise. We assume $\Delta F/F_0$ is the result of convolution of voltage action potentials with a kernel
767 that reflects the kinetics of intracellular Ca^{2+} and the Ca^{2+} sensor jGCaMP8m. Thus, deconvolution is performed
768 to infer firing events⁶⁴. For further analysis, we use these firing events after smoothing with a 170-ms Gaussian
769 filter. The “transient rate” refers to the amplitude and frequency of these detected events in a given time window
770 or spatial bin.

772 Analysis

773 Prelicking index: This measure quantified whether mice were licking near to the reward during reward approach,
774 indicative of learning of the reward location and anticipation of the reward. We took lick1 as the mean number of
775 licks over the 50 cm leading up to the reward location (pre-reward zone: -50 to 0 cm relative to reward location)
776 and lick2 as the mean number of licks in the preceding 150 cm (-200 to -50 cm relative to reward location). The
777 prelicking ratio was then calculated as lick1/(lick1+lick2). Thus, the minimum possible value of 0 indicates no
778 licks in the pre-reward zone while the maximum possible value of 1 indicates all the licks were in the pre-reward
779 zone. We excluded laps if no licks occurred in the defined windows (both lick1 and lick2 equal to zero). In rare
780 cases, the lick sensor did not function properly and registered contact throughout. Such laps were detected when
781 the mean contact time across an entire lap was over 40% and were also excluded.

782 Loom reaction: We qualitatively assessed the initial reaction of mice to the looming stimulus by looking at the
783 running velocity in the 10 seconds around the loom initiation time. Freeze: running velocity immediately
784 decreases and is held at 0 cm/s for an extended period (often for minutes). Flee: running velocity immediately
785

787 increases, followed after a few seconds by an extended period of freezing. No reaction: no change in velocity
788 from the prior moments and no extended period of stationarity.
789

790 Loom freezing period: For mice that did freeze, we measured the time when mice resumed running. Such running
791 was found by looking for the first moment the running velocity reached half of the maximum running velocity,
792 which was calculated for each mouse as the 98th percentile of running velocity over the entire session. We ignored
793 the first 10 seconds immediately after the loom since some mice initially and transiently increased their running
794 velocity (fleeing) before freezing. We also measured the freezing time until first detected movement since it was
795 possible the mouse resumed movement but without running. To ensure that the treadmill velocity faithfully
796 reported any movements (and not just running), we recorded video of the mouse's body during the loom sessions.
797 We quantified the energy in a region-of-interest around the body of the mouse (mean across pixels of the square
798 of the time derivative of individual pixels in the region) and found a high correspondence to the treadmill velocity
799 (Figure S5A-C).
800

801 Criteria for place cells: For each neuron, spatial information was calculated using binned position (5 mm bins,
802 periods of immobility and reward consumption excluded)⁶⁵. The calculation was repeated using shuffled data.
803 Neurons with spatial information of at least 0.75 bits/event and that was also larger than 98% or more of shuffles
804 were categorized as place cells.
805

806 Calculation of peak location: For each place cell, mean transient rate at each position (1 cm bins) was calculated
807 across laps. The peak location was calculated as the position with the maximal mean transient rate.
808

809 Reliability score: For each place cells, we calculated the fraction of laps at which significant firing occurred within
810 the dominant place field of that neuron¹².
811

812 Cross-validation procedure: Spatial firing maps and other within-environment calculations used cross-validated
813 data. In these cases, data was separated by even and odd laps.
814

815 Calculation of correlations: At each position, the Pearson correlation was measured between the vector of
816 population firing under two conditions, thus quantifying similarity of individual neural firing. The two conditions
817 were either taken as the comparison of odd and even laps (for example, with familiar-familiar measures) or all
818 laps across conditions (for example, for familiar-novel measures). The values were then averaged across all
819 positions. For comparison of correlations across positions, we compared the mean correlations on the ends of the
820 track (first and last 50 cm) against the mean correlations in the middle of the track (entire track excluding the first
821 and last 50 cm).
822

823 Bayesian decoding: For a given imaging session, population neural activity was used to decode the position of
824 the track. This procedure was performed in two ways. First, for assessing the ability of pre-loom activity to decode
825 post-loom position, we trained the Bayesian decoder⁶⁶ using the pre-loom data after binning the data using
826 position along the track. This information was then used to decode the post-loom data, again after already binning
827 for position along the track. For comparison, we also decoded pre-loom position using pre-loom data by splitting
828 the data into odd laps (training set) and even laps (test set). Second, we assessed the decoded position during the
829 freezing period in response to the loom stimulus. To perform this calculation, we trained the Bayesian decoder
830 using all the pre-loom data. This decoder was then applied to the neural activity during the time that the mouse
831 froze in response to the loom stimulus.
832

833 **Quantification and statistical analysis**

834 Statistical tests used in the paper are indicated where appropriate. Results are reported as mean+/-standard
835 deviation unless otherwise indicated. MATLAB built-in functions were used to perform the statistical tests. The
836 number of animals used is indicated in the figure or in the text, as appropriate. In some cases, we instead report

837 the number of imaging sessions ('FOVs'); in these cases, the figure legend indicates how many mice were used.
838 Significance was set at $p < 0.05$. To determine whether data met assumptions for the statistical approach, the
839 distribution of the data was visualized to decide between using parametric or non-parametric tests as indicated.
840
841
842

843 **Supplemental Videos**

844 **Video S1. Image formed on real eye retina by iMRSIV checkerboard. Movie shows view of back of retina**
845 **from different angles, related to Figure 2.**

846 **Video S2. Image formed on real eye retina by iMRSIV of 3D VR scene. Movie shows view of back of**
847 **retina from different angles, related to Figure 2.**

848 **Video S3. 3-D model of head-fixed mouse in iMSRIV system with concurrent 2-photon imaging, related**
849 **to Figure 3.**

850 **References**

1. Dombeck, D.A., Khabbaz, A.N., Collman, F., Adelman, T.L., and Tank, D.W. (2007). Imaging large-scale neural activity with cellular resolution in awake, mobile mice. *Neuron* **56**, 43-57.
2. Sofroniew, N.J., Flickinger, D., King, J., and Svoboda, K. (2016). A large field of view two-photon mesoscope with subcellular resolution for *in vivo* imaging. *Elife* **5**. 10.7554/eLife.14472.
3. Stringer, C., Pachitariu, M., Steinmetz, N., Carandini, M., and Harris, K.D. (2019). High-dimensional geometry of population responses in visual cortex. *Nature* **571**, 361-365. 10.1038/s41586-019-1346-5.
4. Yu, C.H., Stirman, J.N., Yu, Y., Hira, R., and Smith, S.L. (2021). Diesel2p mesoscope with dual independent scan engines for flexible capture of dynamics in distributed neural circuitry. *Nat Commun* **12**, 6639. 10.1038/s41467-021-26736-4.
5. Petersen, C.C., Hahn, T.T., Mehta, M., Grinvald, A., and Sakmann, B. (2003). Interaction of sensory responses with spontaneous depolarization in layer 2/3 barrel cortex. *Proc Natl Acad Sci U S A* **100**, 13638-13643. 10.1073/pnas.2235811100.
6. Margrie, T.W., Brecht, M., and Sakmann, B. (2002). *In vivo*, low-resistance, whole-cell recordings from neurons in the anaesthetized and awake mammalian brain. *Pflugers Arch* **444**, 491-498. 10.1007/s00424-002-0831-z.
7. Yu, J., Gutnisky, D.A., Hires, S.A., and Svoboda, K. (2016). Layer 4 fast-spiking interneurons filter thalamocortical signals during active somatosensation. *Nat Neurosci* **19**, 1647-1657. 10.1038/nn.4412.
8. Smith, S.L., Smith, I.T., Branco, T., and Häusser, M. (2013). Dendritic spikes enhance stimulus selectivity in cortical neurons *in vivo*. *Nature* **503**, 115-120. 10.1038/nature12600.
9. Jia, X., Siegle, J.H., Durand, S., Heller, G., Ramirez, T.K., Koch, C., and Olsen, S.R. (2022). Multi-regional module-based signal transmission in mouse visual cortex. *Neuron* **110**, 1585-1598 e1589. 10.1016/j.neuron.2022.01.027.
10. Jun, J.J., Steinmetz, N.A., Siegle, J.H., Denman, D.J., Bauza, M., Barbarits, B., Lee, A.K., Anastassiou, C.A., Andrei, A., Aydin, C., et al. (2017). Fully integrated silicon probes for high-density recording of neural activity. *Nature* **551**, 232-236. 10.1038/nature24636.
11. Cohen, J.D., Bolstad, M., and Lee, A.K. (2017). Experience-dependent shaping of hippocampal CA1 intracellular activity in novel and familiar environments. *Elife* **6**. 10.7554/eLife.23040.
12. Dombeck, D.A., Harvey, C.D., Tian, L., Looger, L.L., and Tank, D.W. (2010). Functional imaging of hippocampal place cells at cellular resolution during virtual navigation. *Nature neuroscience* **13**, 1433-1440.
13. Harvey, C.D., Collman, F., Dombeck, D.A., and Tank, D.W. (2009). Intracellular dynamics of hippocampal place cells during virtual navigation. *Nature* **461**, 941-946. 10.1038/nature08499.

886 14. Campbell, M.G., Ocko, S.A., Mallory, C.S., Low, I.I.C., Ganguli, S., and Giocomo, L.M. (2018). Principles governing
887 the integration of landmark and self-motion cues in entorhinal cortical codes for navigation. *Nat Neurosci* 21,
888 1096-1106. 10.1038/s41593-018-0189-y.

889 15. Gauthier, J.L., and Tank, D.W. (2018). A Dedicated Population for Reward Coding in the Hippocampus. *Neuron*
890 99, 179-193 e177. 10.1016/j.neuron.2018.06.008.

891 16. Harvey, C.D., Coen, P., and Tank, D.W. (2012). Choice-specific sequences in parietal cortex during a virtual-
892 navigation decision task. *Nature* 484, 62-68. 10.1038/nature10918.

893 17. Pinto, L., Rajan, K., DePasquale, B., Thibierge, S.Y., Tank, D.W., and Brody, C.D. (2019). Task-Dependent Changes
894 in the Large-Scale Dynamics and Necessity of Cortical Regions. *Neuron* 104, 810-824 e819.
895 10.1016/j.neuron.2019.08.025.

896 18. Scholl, B., Burge, J., and Priebe, N.J. (2013). Binocular integration and disparity selectivity in mouse primary
897 visual cortex. *J Neurophysiol* 109, 3013-3024. 10.1152/jn.01021.2012.

898 19. Boone, H.C., Samonds, J.M., Crouse, E.C., Barr, C., Priebe, N.J., and McGee, A.W. (2021). Natural binocular depth
899 discrimination behavior in mice explained by visual cortical activity. *Curr Biol* 31, 2191-2198 e2193.
900 10.1016/j.cub.2021.02.031.

901 20. Holmgren, C.D., Stahr, P., Wallace, D.J., Voit, K.M., Matheson, E.J., Sawinski, J., Bassetto, G., and Kerr, J.N.
902 (2021). Visual pursuit behavior in mice maintains the pursued prey on the retinal region with least optic flow.
903 *eLife* 10. 10.7554/eLife.70838.

904 21. Heys, J.G., Rangarajan, K.V., and Dombeck, D.A. (2014). The functional micro-organization of grid cells revealed
905 by cellular-resolution imaging. *Neuron* 84, 1079-1090. 10.1016/j.neuron.2014.10.048.

906 22. Wallace, D.J., Greenberg, D.S., Sawinski, J., Rulla, S., Notaro, G., and Kerr, J.N. (2013). Rats maintain an overhead
907 binocular field at the expense of constant fusion. *Nature* 498, 65-69. 10.1038/nature12153.

908 23. Yilmaz, M., and Meister, M. (2013). Rapid innate defensive responses of mice to looming visual stimuli. *Curr Biol*
909 23, 2011-2015. 10.1016/j.cub.2013.08.015.

910 24. Ravassard, P., Kees, A., Willers, B., Ho, D., Aharoni, D.A., Cushman, J., Aghajan, Z.M., and Mehta, M.R. (2013).
911 Multisensory control of hippocampal spatiotemporal selectivity. *Science (New York, N.Y.)* 340, 1342-1346.
912 10.1126/science.1232655.

913 25. Minderer, M., Harvey, C.D., Donato, F., and Moser, E.I. (2016). Neuroscience: Virtual reality explored. *Nature*
914 533, 324-325. 10.1038/nature17899.

915 26. Bollu, T., Whitehead, S.C., Prasad, N., Walker, J., Shyamkumar, N., Subramaniam, R., Kardon, B., Cohen, I., and
916 Goldberg, J.H. (2019). Automated home cage training of mice in a hold-still center-out reach task. *J Neurophysiol*
917 121, 500-512. 10.1152/jn.00667.2018.

918 27. Poddar, R., Kawai, R., and Olveczky, B.P. (2013). A fully automated high-throughput training system for rodents.
919 *PLoS One* 8, e83171. 10.1371/journal.pone.0083171.

920 28. Ding, X.Q., Tan, J.Z., Meng, J., Shao, Y.L., Shen, M.X., and Dai, C.X. (2023). Time-Serial Evaluation of the
921 Development and Treatment of Myopia in Mice Eyes Using OCT and ZEMAX. *Diagnostics* 13. ARTN 379
922 10.3390/diagnostics13030379.

923 29. Gardner, M.R., Katta, N., Rahman, A.S., Rylander, H.G., and Milner, T.E. (2018). Design Considerations for Murine
924 Retinal Imaging Using Scattering Angle Resolved Optical Coherence Tomography. *Appl Sci-Basel* 8. ARTN 2159
925 10.3390/app8112159.

926 30. Wong, A.A., and Brown, R.E. (2006). Visual detection, pattern discrimination and visual acuity in 14 strains of
927 mice. *Genes Brain Behav* 5, 389-403. 10.1111/j.1601-183X.2005.00173.x.

928 31. Sterratt, D.C., Lyngholm, D., Willshaw, D.J., and Thompson, I.D. (2013). Standard anatomical and visual space for
929 the mouse retina: computational reconstruction and transformation of flattened retinae with the Retistruct
930 package. *PLoS Comput Biol* 9, e1002921. 10.1371/journal.pcbi.1002921.

931 32. Sheffield, M.E.J., Adoff, M.D., and Dombeck, D.A. (2017). Increased Prevalence of Calcium Transients across the
932 Dendritic Arbor during Place Field Formation. *Neuron* 96, 490-504 e495. 10.1016/j.neuron.2017.09.029.

933 33. Radvansky, B.A., and Dombeck, D.A. (2018). An olfactory virtual reality system for mice. *Nat Commun* 9, 839.
934 10.1038/s41467-018-03262-4.

935 34. Pettit, N.L., Yuan, X.C., and Harvey, C.D. (2022). Hippocampal place codes are gated by behavioral engagement. Nat Neurosci 25, 561-566. 10.1038/s41593-022-01050-4.

936 35. Radvansky, B.A., Oh, J.Y., Climer, J.R., and Dombeck, D.A. (2021). Behavior determines the hippocampal spatial mapping of a multisensory environment. Cell Rep 36, 109444. 10.1016/j.celrep.2021.109444.

937 36. Solomon, S.G., Janbon, H., Bimson, A., and Wheatcroft, T. (2023). Visual spatial location influences selection of instinctive behaviours in mouse. R Soc Open Sci 10, 230034. 10.1098/rsos.230034.

938 37. Shang, C., Chen, Z., Liu, A., Li, Y., Zhang, J., Qu, B., Yan, F., Zhang, Y., Liu, W., Liu, Z., et al. (2018). Divergent midbrain circuits orchestrate escape and freezing responses to looming stimuli in mice. Nat Commun 9, 1232. 10.1038/s41467-018-03580-7.

939 38. Muller, R.U., and Kubie, J.L. (1987). The effects of changes in the environment on the spatial firing of hippocampal complex-spike cells. J Neurosci 7, 1951-1968. 10.1523/JNEUROSCI.07-07-01951.1987.

940 39. Leutgeb, S., Leutgeb, J.K., Barnes, C.A., Moser, E.I., McNaughton, B.L., and Moser, M.B. (2005). Independent codes for spatial and episodic memory in hippocampal neuronal ensembles. Science (New York, N.Y.) 309, 619-623. 10.1126/science.1114037.

941 40. Dong, C., Madar, A.D., and Sheffield, M.E.J. (2021). Distinct place cell dynamics in CA1 and CA3 encode experience in new environments. Nat Commun 12, 2977. 10.1038/s41467-021-23260-3.

942 41. Ziv, Y., Burns, L.D., Cocker, E.D., Hamel, E.O., Ghosh, K.K., Kitch, L.J., El Gamal, A., and Schnitzer, M.J. (2013). Long-term dynamics of CA1 hippocampal place codes. Nat Neurosci 16, 264-266. 10.1038/nn.3329.

943 42. Kaufman, A.M., Geiller, T., and Losonczy, A. (2020). A Role for the Locus Coeruleus in Hippocampal CA1 Place Cell Reorganization during Spatial Reward Learning. Neuron 105, 1018-1026 e1014. 10.1016/j.neuron.2019.12.029.

944 43. McNaughton, B.L., Barnes, C.A., and O'Keefe, J. (1983). The contributions of position, direction, and velocity to single unit activity in the hippocampus of freely-moving rats. Exp Brain Res 52, 41-49. 10.1007/BF00237147.

945 44. Nakazawa, K., Sun, L.D., Quirk, M.C., Rondi-Reig, L., Wilson, M.A., and Tonegawa, S. (2003). Hippocampal CA3 NMDA receptors are crucial for memory acquisition of one-time experience. Neuron 38, 305-315. 10.1016/s0896-6273(03)00165-x.

946 45. Juavinett, A.L., Bekheet, G., and Churchland, A.K. (2019). Chronically implanted Neuropixels probes enable high-yield recordings in freely moving mice. eLife 8. 10.7554/eLife.47188.

947 46. Zong, W., Obenhaus, H.A., Skytoen, E.R., Eneqvist, H., de Jong, N.L., Vale, R., Jorge, M.R., Moser, M.B., and Moser, E.I. (2022). Large-scale two-photon calcium imaging in freely moving mice. Cell 185, 1240-1256 e1230. 10.1016/j.cell.2022.02.017.

948 47. Voigts, J., Newman, J.P., Wilson, M.A., and Harnett, M.T. (2020). An easy-to-assemble, robust, and lightweight drive implant for chronic tetrode recordings in freely moving animals. J Neural Eng 17, 026044. 10.1088/1741-2552/ab77f9.

949 48. Johnson, K.P., Fitzpatrick, M.J., Zhao, L., Wang, B., McCracken, S., Williams, P.R., and Kerschensteiner, D. (2021). Cell-type-specific binocular vision guides predation in mice. Neuron 109, 1527-1539 e1524. 10.1016/j.neuron.2021.03.010.

950 49. Sit, K.K., and Goard, M.J. (2023). Coregistration of heading to visual cues in retrosplenial cortex. Nat Commun 14, 1992. 10.1038/s41467-023-37704-5.

951 50. Klioutchnikov, A., Wallace, D.J., Sawinski, J., Voit, K.M., Groemping, Y., and Kerr, J.N.D. (2023). A three-photon head-mounted microscope for imaging all layers of visual cortex in freely moving mice. Nat Methods 20, 610-616. 10.1038/s41592-022-01688-9.

952 51. Chen, G., King, J.A., Lu, Y., Cacucci, F., and Burgess, N. (2018). Spatial cell firing during virtual navigation of open arenas by head-restrained mice. eLife 7. 10.7554/eLife.34789.

953 52. Voigts, J., and Harnett, M.T. (2020). Somatic and Dendritic Encoding of Spatial Variables in Retrosplenial Cortex Differs during 2D Navigation. Neuron 105, 237-245 e234. 10.1016/j.neuron.2019.10.016.

954 53. McGinley, M.J., David, S.V., and McCormick, D.A. (2015). Cortical Membrane Potential Signature of Optimal States for Sensory Signal Detection. Neuron 87, 179-192. 10.1016/j.neuron.2015.05.038.

955 54. Meyer, A.F., O'Keefe, J., and Poort, J. (2020). Two Distinct Types of Eye-Head Coupling in Freely Moving Mice. Curr Biol 30, 2116-2130 e2116. 10.1016/j.cub.2020.04.042.

985 55. Runyan, C.A., Piasini, E., Panzeri, S., and Harvey, C.D. (2017). Distinct timescales of population coding across
986 cortex. *Nature* **548**, 92-96. 10.1038/nature23020.

987 56. Gao, S., Webb, J., Mridha, Z., Banta, A., Kemere, C., and McGinley, M. (2020). Novel Virtual Reality System for
988 Auditory Tasks in Head-fixed Mice. *Annu Int Conf IEEE Eng Med Biol Soc* **2020**, 2925-2928.
989 57. 10.1109/EMBC44109.2020.9176536.

990 58. Sofroniew, N.J., Cohen, J.D., Lee, A.K., and Svoboda, K. (2014). Natural whisker-guided behavior by head-fixed
991 mice in tactile virtual reality. *J Neurosci* **34**, 9537-9550. 10.1523/JNEUROSCI.0712-14.2014.

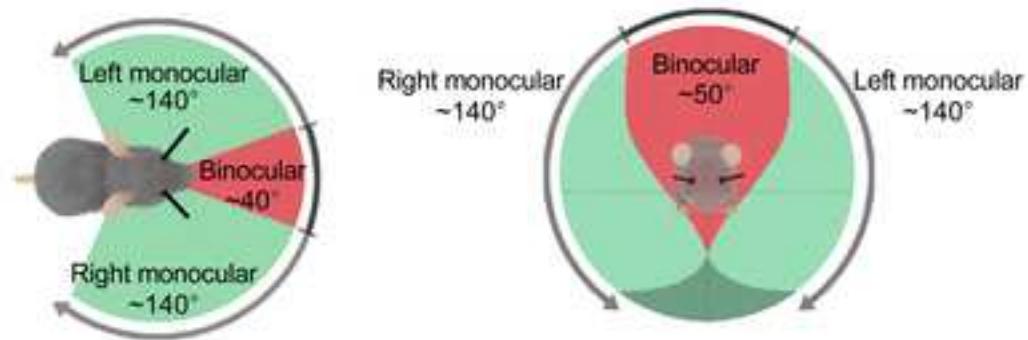
992 59. Hafting, T., Fyhn, M., Molden, S., Moser, M.B., and Moser, E.I. (2005). Microstructure of a spatial map in the
993 entorhinal cortex. *Nature* **436**, 801-806. 10.1038/nature03721.

994 60. O'Keefe, J., and Dostrovsky, J. (1971). The hippocampus as a spatial map. Preliminary evidence from unit activity
995 in the freely-moving rat. *Brain research* **34**, 171-175.

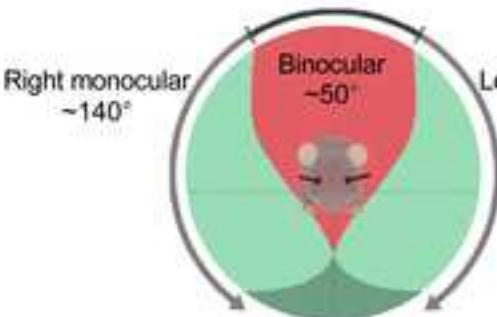
996 61. Zhang, Y., Rozsa, M., Liang, Y., Bushey, D., Wei, Z., Zheng, J., Reep, D., Broussard, G.J., Tsang, A., Tsegaye, G., et
997 al. (2023). Fast and sensitive GCaMP calcium indicators for imaging neural populations. *Nature* **615**, 884-891.
998 10.1038/s41586-023-05828-9.

999 62. 000 Puk, O., Dalke, C., Favor, J., de Angelis, M.H., and Graw, J. (2006). Variations of eye size parameters among
001 different strains of mice. *Mamm Genome* **17**, 851-857. 10.1007/s00335-006-0019-5.

002 63. Zhang, P., Mocci, J., Wahl, D.J., Meleppat, R.K., Manna, S.K., Quintavalla, M., Muradore, R., Sarunic, M.V.,
003 Bonora, S., Pugh, E.N., Jr., and Zawadzki, R.J. (2018). Effect of a contact lens on mouse retinal *in vivo* imaging:
004 Effective focal length changes and monochromatic aberrations. *Exp Eye Res* **172**, 86-93.
10.1016/j.exer.2018.03.027.


005 64. 006 Guizar-Sicairos, M., Thurman, S.T., and Fienup, J.R. (2008). Efficient subpixel image registration algorithms. *Opt
007 Lett* **33**, 156-158. 10.1364/ol.33.000156.

008 65. Friedrich, J., Zhou, P., and Paninski, L. (2017). Fast online deconvolution of calcium imaging data. *PLoS Comput
009 Biol* **13**, e1005423. 10.1371/journal.pcbi.1005423.


010 66. Climer, J.R., and Dombbeck, D.A. (2021). Information Theoretic Approaches to Deciphering the Neural Code with
011 Functional Fluorescence Imaging. *eNeuro* **8**. 10.1523/ENEURO.0266-21.2021.

012 67. Etter, G., Manseau, F., and Williams, S. (2020). A Probabilistic Framework for Decoding Behavior From *in vivo*
013 Calcium Imaging Data. *Front Neural Circuits* **14**, 19. 10.3389/fncir.2020.00019.

A

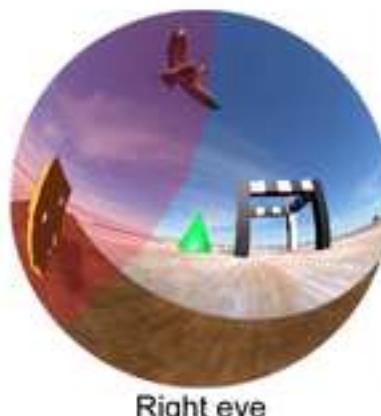
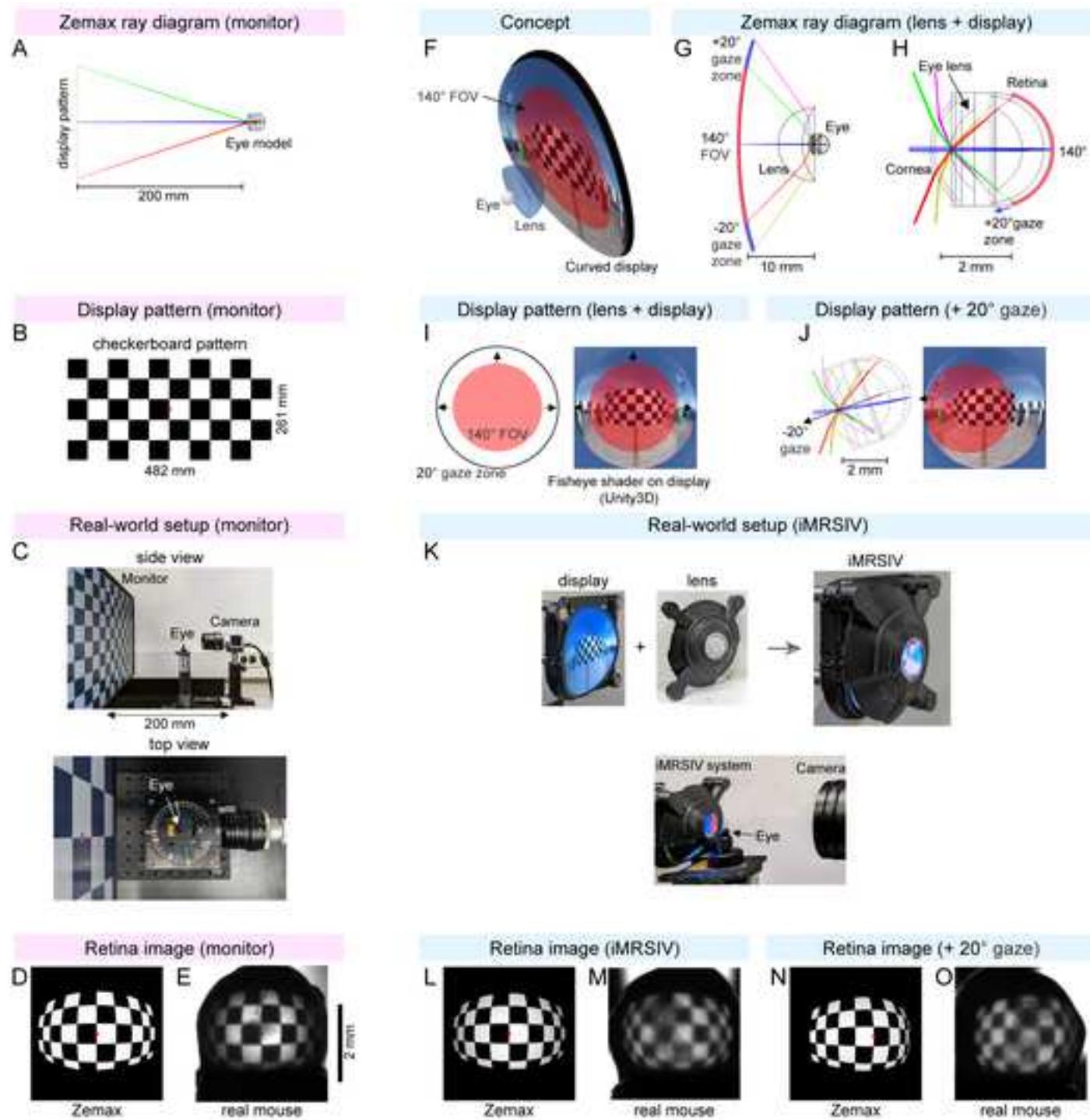
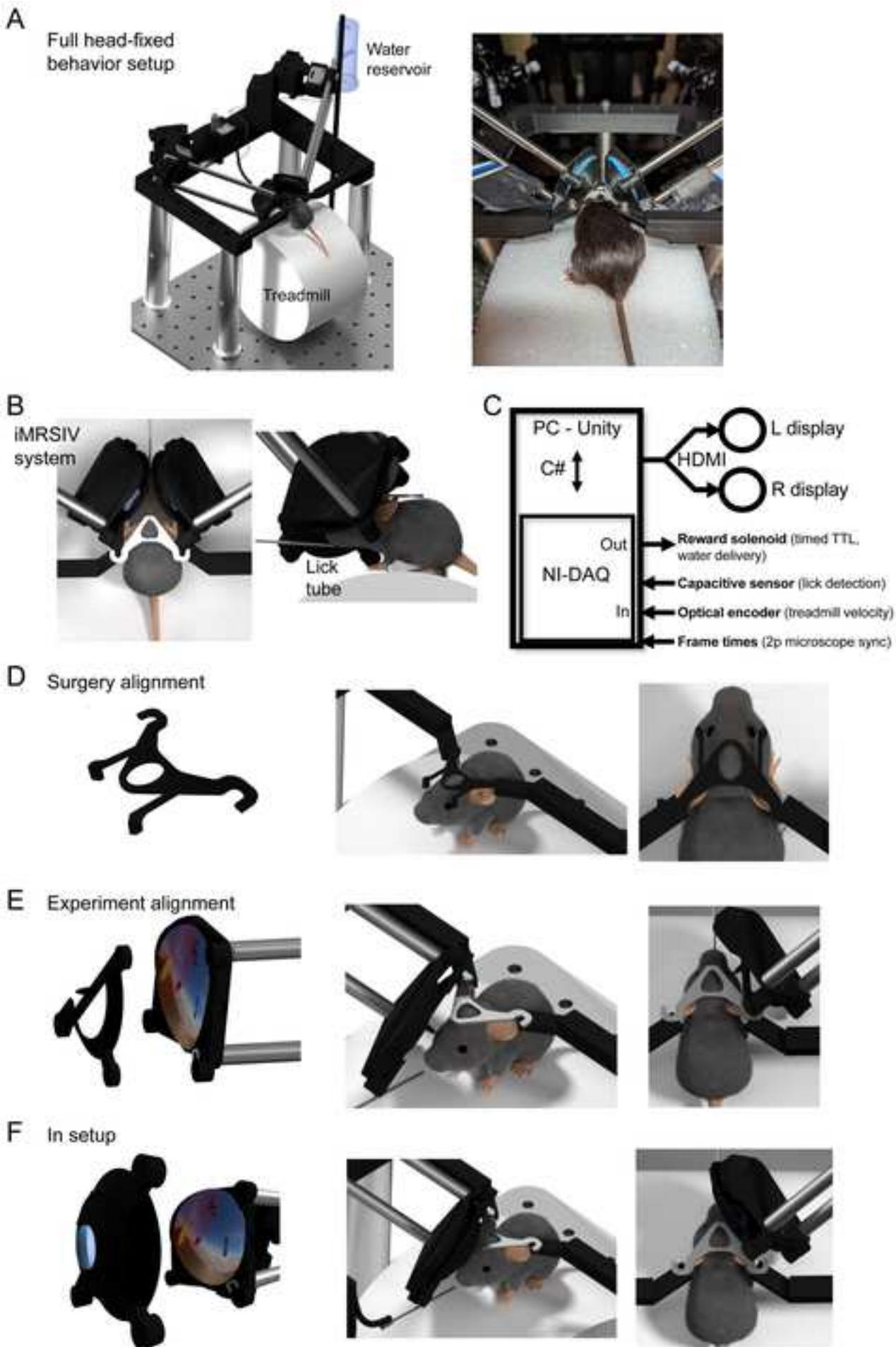
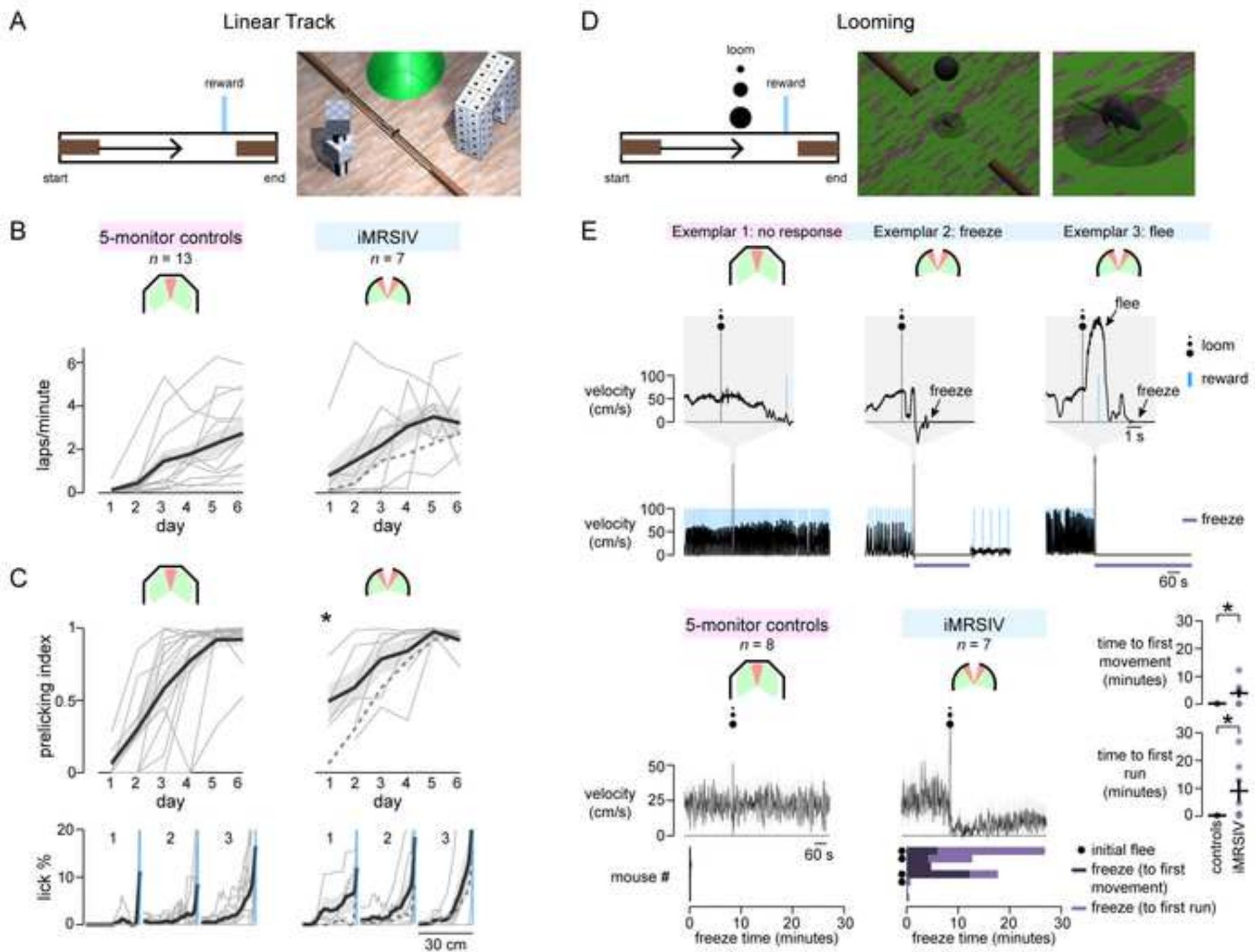
B

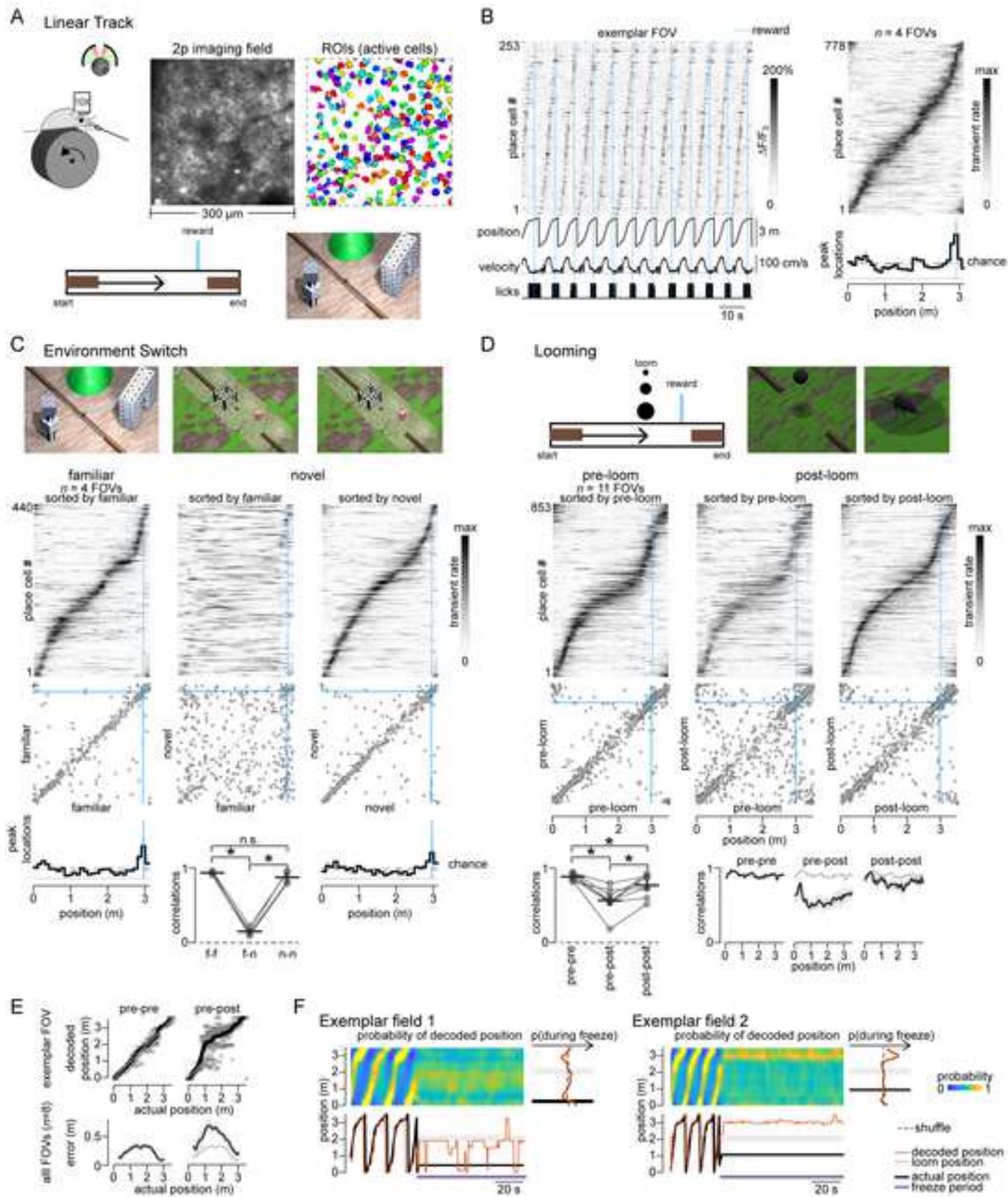
C

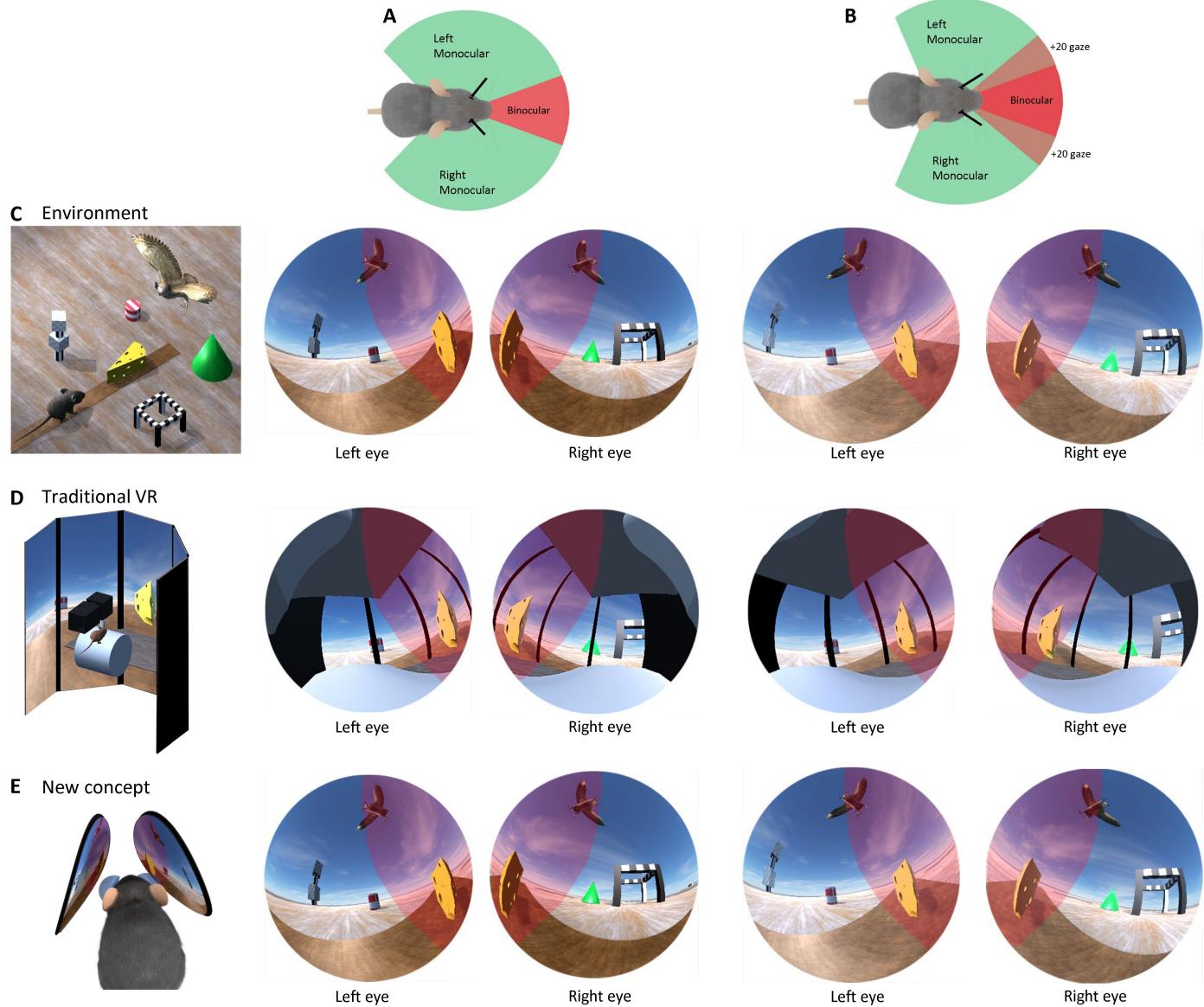
Conventional VR

D

New concept


Figure 2


Click here to access/download;Figure;Fig_2.tif

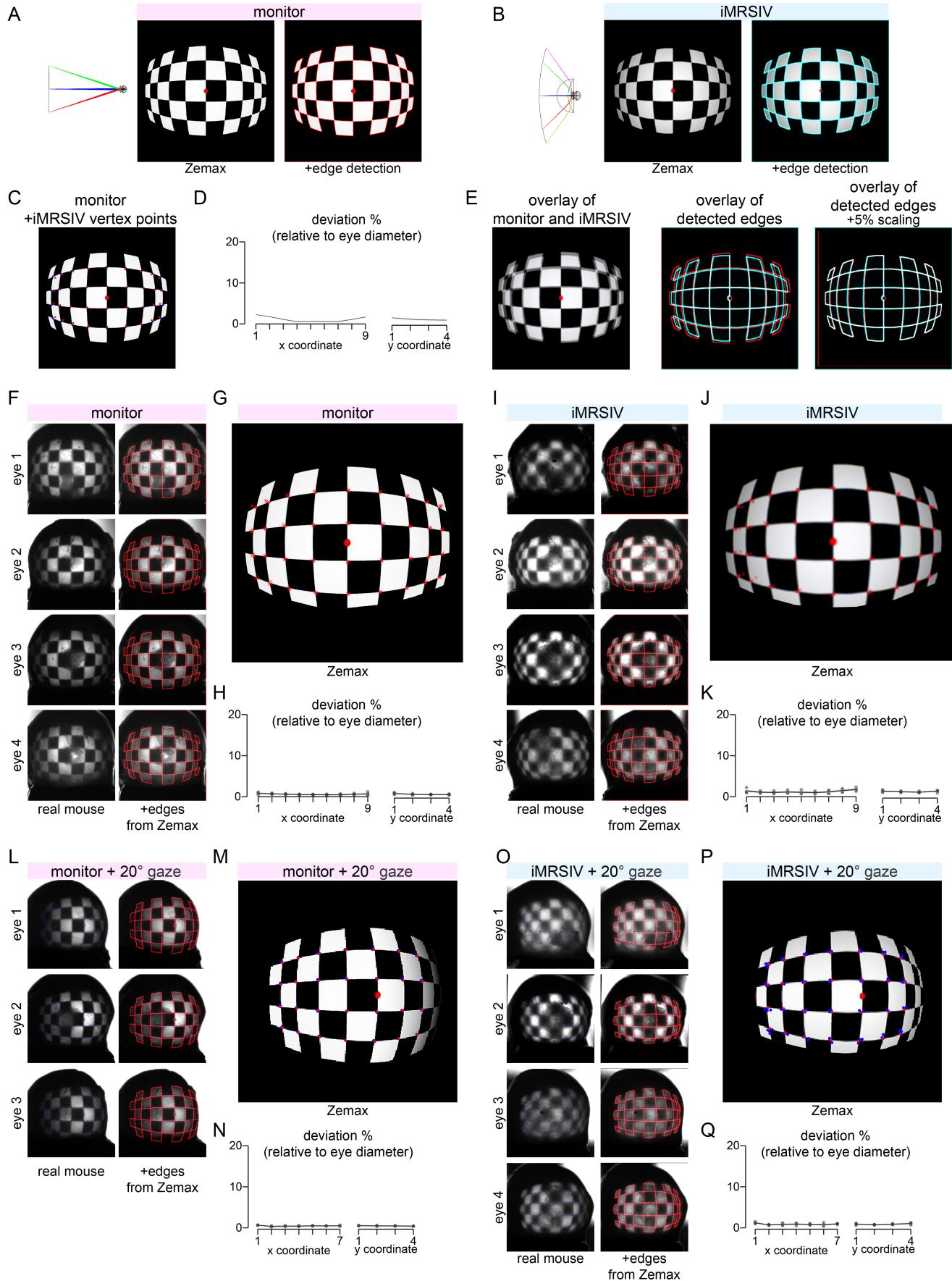


Figure S1. The mouse visual system and a new concept for mouse virtual reality goggles (20-degree saccade), related to Figure 1.

(A) Mouse visual field of view with monocular (green) and binocular (red) regions shown at resting eye gaze position from top-down and angled perspectives.

(B) Same as **(A)**, but with 20-degree forward saccade in both eyes; note expanded binocular zone.

(C-E) Columns 1, 2, 3 reproduced from Figure 1B-D. Columns 4,5 same as 2,3, but with 20-degree forward saccade in both eyes.

Figure S2. Quantification of similarity between Zemax and real mouse retinal projections for monitor and iMRSIV displays, related to Figure 2.

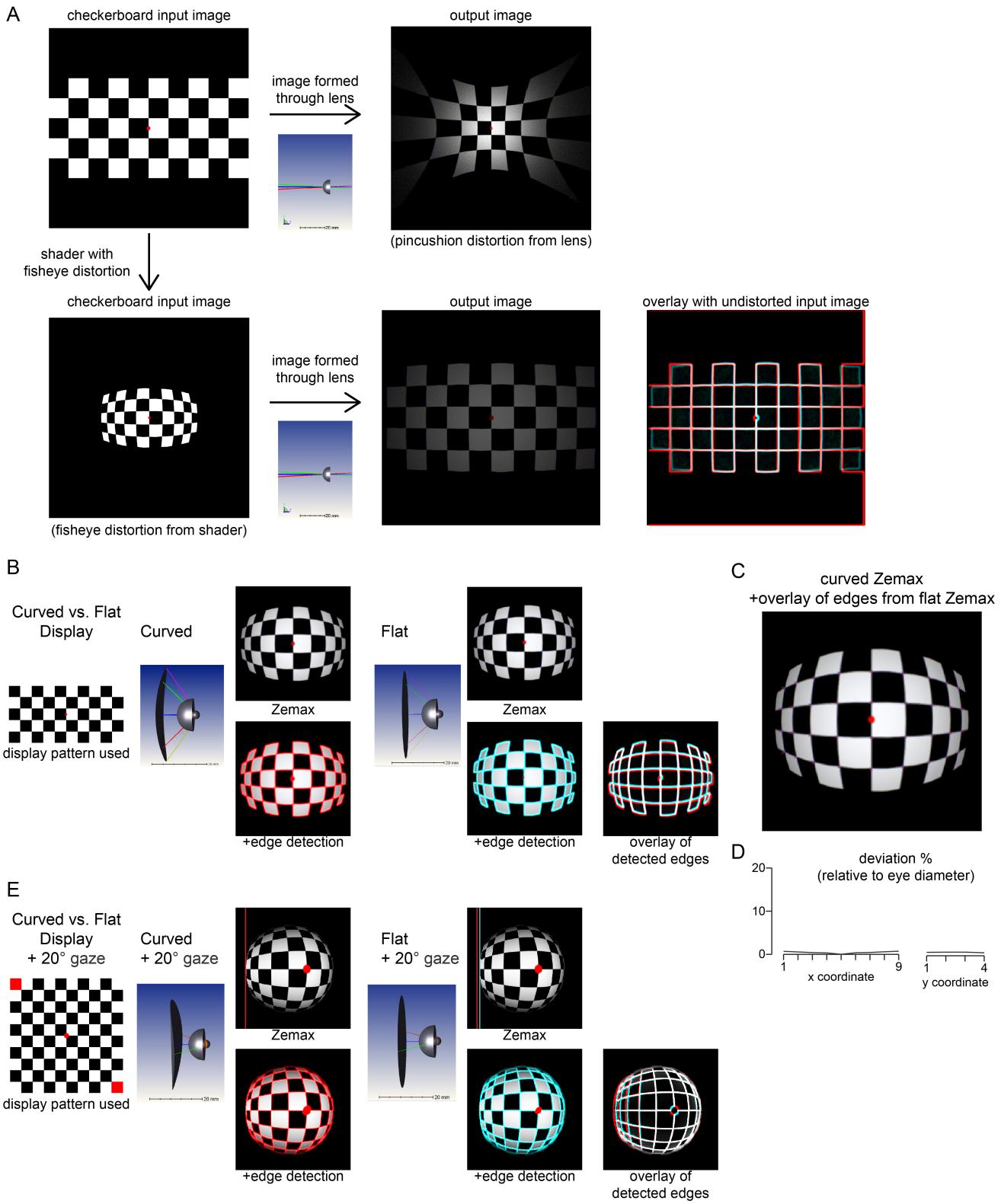
(A) Resulting image of the checkerboard object on the Zemax simulated eye retina with monitor at a distance of 200 mm, view from the back of the retina (same as Figure 2D). Edges of the checkerboard were detected and overlaid in red ('edge detection').

(B) Resulting image of the checkerboard object on the Zemax simulated eye retina with iMRSIV, view from the back of the retina (same as Figure 2L). Edges of the checkerboard were detected and overlaid in cyan ('edge detection').

(C) Vertex points were selected from the checkerboard on the Zemax-simulated retina images (monitor from panel **A**, red dots; iMRSIV from panel **B**, blue dots) and superimposed on the Zemax-simulated retina image with the monitor (from panel **A**).

(D) Deviation between vertices shown in **C**. The Cartesian distance between pairs of points is calculated and then normalized to the total diameter of the eye used in the model. These distances are then averaged over columns or rows of the checkerboard to attain deviation distance as a function of the x-axis or y-axis, respectively. As a coarse estimate, a 1% deviation corresponds to ~0.03 mm (eye diameter ~3 mm) or to ~1.4 degrees (eye diameter ~140 degrees), which is less than the mouse visual acuity of 0.375 cycles/degree (or 2.6 degrees/cycle).

(E) Superposition of Zemax-simulated retina images or detected edges from monitor (**A**) and from iMRSIV (**B**). Scaling the iMRSIV image by 5% (right) corrects for the slight magnification difference between the two optical systems.


(F) Image of the real world computer monitor checkerboard object on the retina of an extracted mouse eye (same as Figure 2E, but now shown across 4 separate eye experiments). After registering images to the Zemax simulated image (from **A**), vertex points were selected from the checkerboard images on the extracted eyes. Detected edges from Zemax simulated image superimposed as well to aid comparison.

(G) Vertex points (selected from real eye images in **F**) superimposed on the Zemax-simulated retina image with monitor.

(H) Deviations calculated for each of the 4 eye experiments. Each dot represents data from one eye; line and shading represent mean +/- SEM across the 4 eyes.

(I-K) Same as **F-H** but using iMRSIV (as in Figure 2L,M).

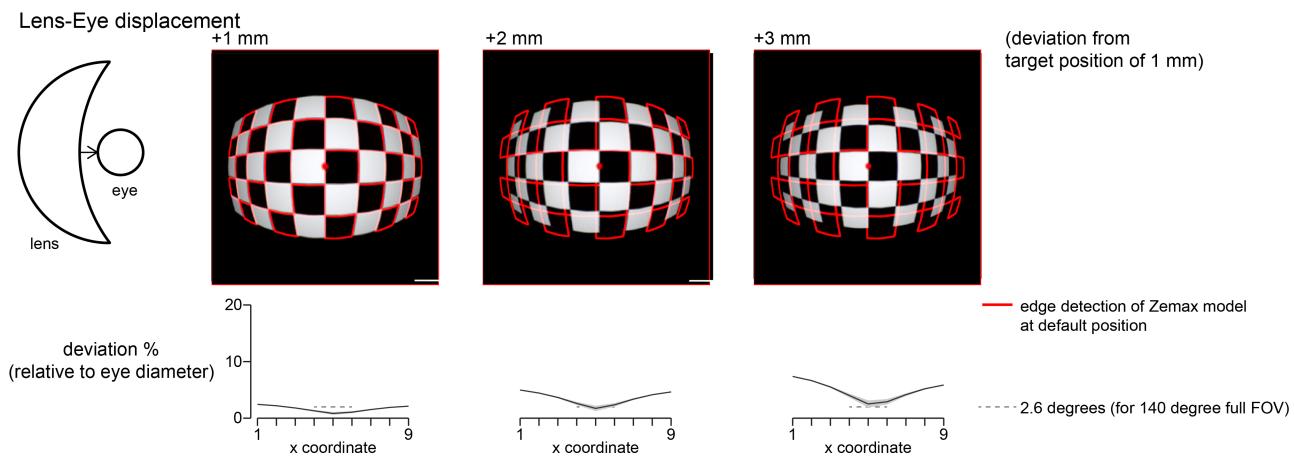
(L-Q) Same as **F-K** but with 20-degree gaze deviation (as in Figure 2J,N,O).

Figure S3. Optical details of the iMRSIV system, related to Figure 2 and STAR Methods.

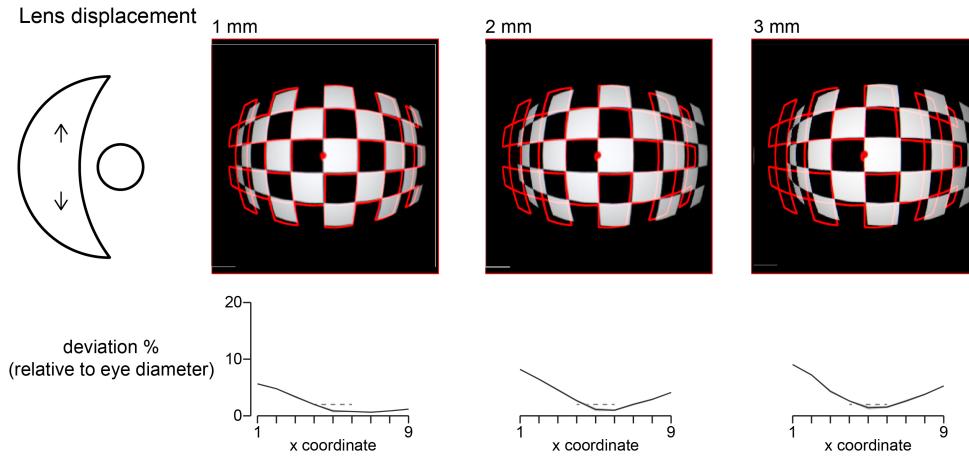
(A) Fisheye shader in Unity used to generate large FOV and compensate for distortions of the iMRSIV lens. The iMRSIV lens that we used introduced a pincushion distortion (top row), as simulated using Zemax. Thus we first applied a fisheye distortion to the input image (bottom left); when that image is passed through the lens, as simulated in Zemax, the output image (represented with red in the overlay image) is now largely

undistorted (bottom right) and highly similar to the original checkerboard input image (represented with cyan in the overlay image).

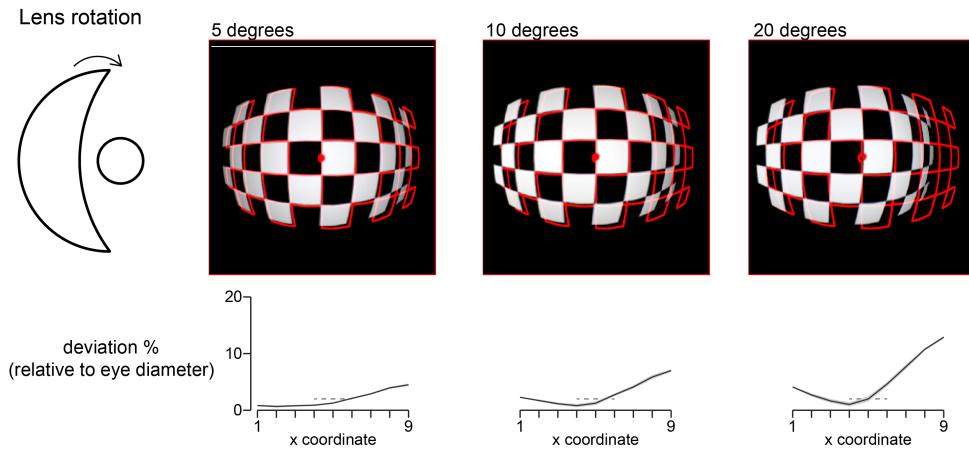
(B-E) Curved vs non-curved side comparison. Due to mechanical limitations, we could only curve the screen along one axis (azimuthal). Here we used Zemax to simulate the images formed on the retina with and without curvature of the screen. Optically, distortions between the two axes were practically identical. However, along the curved axis, we achieved a slightly larger FOV. We chose the azimuthal axis because the mouse makes more frequent and larger saccades along this axis, but the curvature could easily be switched to the vertical direction if desired.


(B) Resulting image of the checkerboard object on the Zemax simulated eye retina with iMRSIV (with and without curvature), view from the back of the retina. Edges of the checkerboard were detected and overlaid in red or cyan ('edge detection'), respectively, and superimposed ('overlay of detected edges').

(C) Vertex points (selected from 'Curved' and 'Flat' images in **B**) superimposed on the Zemax-simulated retina image with the curved iMRSIV ('Curved' from **B**).

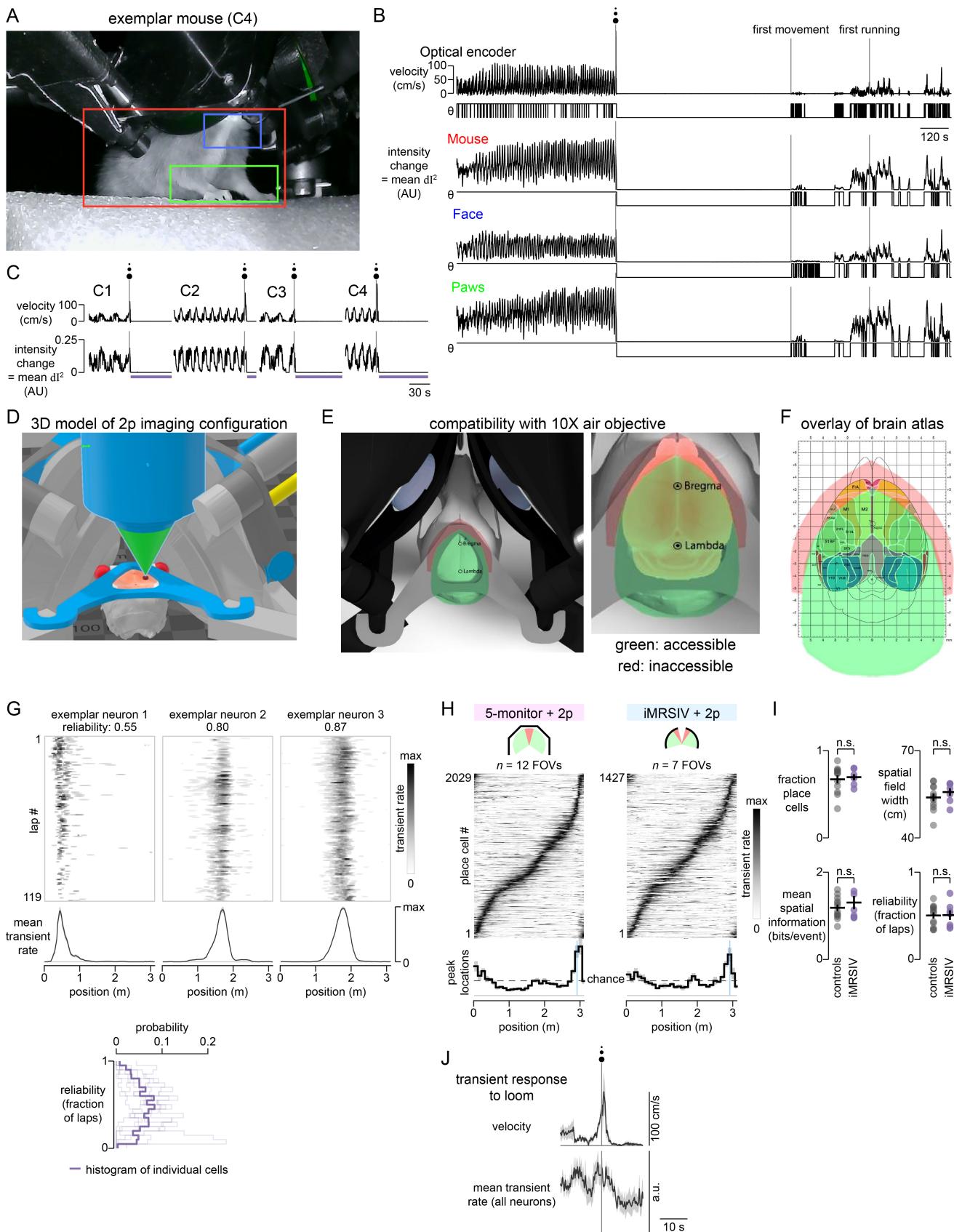

(D) Deviation between vertices shown in **C**. The Cartesian distance between pairs of points is calculated and then normalized to the total diameter of the eye used in the model. These distances are then averaged over columns or rows of the checkerboard to attain distance as a function of the x-axis or y-axis, respectively.

(E) Same as **B** but with 20-degree gaze deviation and a full square checkerboard as the display pattern. Edges detected from checkerboard are shown superimposed on the retina images and also each other ('overlay of detected edges'). The 'Curved' screen provides a slightly larger field of view; this is visualized by the vertical straight red and cyan lines, which delineate the edge of the image formed for the 'Curved' and 'Flat' configurations, respectively.


A

B

C


Figure S4. Optical distortions incurred by misalignment of iMRSIV system, related to Figure 3.

(A-C) We tested the distortions incurred by misalignment of the iMRSIV system relative to the eye using Zemax simulations. The default configuration is 1 mm of distance from the inner curve of the iMRSIV lens to the lens of the eye with no displacement or rotation. In each case, we altered the alignment along one dimension and acquired the Zemax-simulated retina image of the checkerboard pattern. We compared to (and superimposed) the retina image using the default configuration (as used in Figure 2L and Figure S2B) and quantified the deviations as a percentage of the eye diameter. As a coarse estimate, a 1% deviation corresponds to ~ 0.03 mm (eye diameter ~ 3 mm) or to ~ 1.4 degrees (eye diameter ~ 140 degrees), which is less than the mouse visual acuity of 0.375 cycles/degree (or 2.6 degrees/cycle).

(A) Lens-eye displacement (axial). The lens-eye distance was increased by +1 mm, +2 mm, or +3 mm from the default distance of 1 mm.

(B) Lens displacement (lateral). The iMRSIV lens was displaced relative to the eye position by 1 mm, 2 mm, or 3 mm.

(C) Lens rotation. The iMRSIV lens and display were together rotated relative to the axis of the eye and retina.

Figure S5. Additional detail on response to looming stimulus and two-photon imaging with iMRSIV, related to Figure 4 and Figure 5.

(A-C) Verification of freezing response to looming stimulus.

(A) Along with the treadmill velocity, we also took video of the mouse during presentation of a looming stimulus. We quantified any movement by measuring the energy averaged over pixels within an ROI (sum of the square of the time derivative at each pixel). This measure provided a sensitive means of detecting any motion of the mouse, even if the treadmill was not moved. Shown here is a single frame from the movie and three ROIs tested: ‘Mouse’ (red), which selected the whole body; ‘Face’ (blue), which selected the head/neck; and “Paws” (green), which selected the forelimbs.

(B) For the exemplar mouse (‘C4’) we plotted the treadmill velocity and the energy in each ROI over the course of the entire behavior session during which the loom was presented. Underneath each trace, we also plot a threshold indicator function that detects when the corresponding trace is different from zero. As can be appreciated from the plot, all measures are highly correlated. Importantly, in the time from the looming stimulus until the first movement, all channels show zero motion, verifying that the zero treadmill velocity reflects what is likely true freezing by the mouse (and not simply immobility).

(C) For four individual experiments, we show the treadmill velocity and the energy in the ‘Mouse’ whole-body ROI for a 2-minute span around the time of the loom.

(D-F) Cortical regions that are accessible with an overhead microscope and 10X objective.

(D) 3D model of the 2p imaging configuration, showing the mouse skull and eyes, head plate, iMRSIV lens and displays, and the position of the 10X objective and the cone of light centered above the position of CA1.

(E) Accessible (green) and inaccessible (red) regions of the dorsal surface of cortex using a standard overhead microscope and 10X objective with iMRSIV.

(F) Overlap of accessible-inaccessible regions along with a mouse brain atlas.


(G-J) Comparison of CA1 place cells in iMRSIV system to traditional 5-panel virtual reality.

(G) Lap-by-lap activity of three exemplar CA1 neurons during navigation in iMRSIV. Mean traces are shown underneath. Reliability score, defined as the fraction of laps with significant firing within the respective place field of each neuron, is indicated. Histogram (bottom inset) shows the distribution of reliability scores for all place cells across 7 imaging sessions using iMRSIV.

(H) Aggregate place cell data for all imaging sessions on the linear track (including familiar sessions and first part of track switch sessions when the track was familiar; the subset of these for only familiar sessions is shown in Figure 5B), for both traditional 5-monitor VR and iMRSIV. Mean transient rate vs. track position for all place cells from familiar environment imaging sessions (5-monitor controls: n=5 mice; iMRSIV: n=4 mice), even trial number firing patterns sorted based on place field location on odd trials, and histogram of place field peak locations underneath.

(I) Quantification of place cell characteristics using four different metrics. Fraction place cells: fraction of cells in a session that are place cells (see Methods). Spatial field width: length of track over which lap-averaged cell firing is greater than 30% of the max, applied to place cells only. Mean spatial information: spatial information score, applied to all cells. Reliability: fraction of laps with significant firing within the place field of that cell, applied to place cells only (see Methods). Each point represents the mean for all cells from one imaging session; black cross represents mean \pm SEM across sessions. Statistical tests performed between 5-monitor controls and iMRSIV data (2-sample t-test).

(J) Population response to looming stimulation. The mean transient rate for a given imaging session was triggered on the time of the onset of the looming stimulus.

Click here to access/download

Supplemental Videos and Spreadsheets
Supplementary Movie 1.mp4



Click here to access/download

Supplemental Videos and Spreadsheets
Supplementary Movie 2.mp4

Click here to access/download

Supplemental Videos and Spreadsheets
Supplementary Movie 3.mp4

