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Augmenting an electronic Ising
machine to effectively solve
boolean satisfiability

Anshujit Sharma®’, Matthew Burns, Andrew Hahn & Michael Huang

With the slowdown of improvement in conventional von Neumann systems, increasing attention

is paid to novel paradigms such as Ising machines. They have very different approach to solving
combinatorial optimization problems. Ising machines have shown great potential in solving binary
optimization problems like MaxCut. In this paper, we present an analysis of these systems in boolean
satisfiability (SAT) problems. We demonstrate that, in the case of 3-SAT, a basic architecture fails

to produce meaningful acceleration, largely due to the relentless progress made in conventional

SAT solvers. Nevertheless, careful analysis attributes part of the failure to the lack of two important
components: cubic interactions and efficient randomization heuristics. To overcome these limitations,
we add proper architectural support for cubic interaction on a state-of-the-art Ising machine. More
importantly, we propose a novel semantic-aware annealing schedule that makes the search-space
navigation much more efficient than existing annealing heuristics. Using numerical simulations, we
show that such an “Augmented” Ising Machine for SAT is projected to outperform state-of-the-art
software-based, GPU-based and conventional hardware SAT solvers by orders of magnitude.

Semiconductor fabrication technology and advanced von Neumann computer architecture have been two key
drivers for the explosive increase in computing system performance in the past 50 years or so. As both drivers
are reaching a phase of diminishing returns, interest in non-von Neumann systems is increasing. One obvious
example is quantum computing (QC). QC has become more widely discussed ever since Peter Shor proposed
an exponentially faster quantum algorithm for factorization'. However, we have yet to discover a wide array of
applications where QC can change the complexity class of the solution algorithm. Grover’s algorithm is another
popular quantum algorithm that theoretically provides a quadratic speedup for unstructured search® In practice,
however, realities of error sensitivity in the “Noisy-Intermediate Scale Quantum” (NISQ) era devices limit such
algorithms’ immediate usefulness®. More noise-resilient, “shallow-depth” algorithms have been proposed*=°. So
far, there is no indication that they can overcome NISQ era hurdles.

If we recall Feynman’s motivation of building quantum mechanical systems as computers’, we see that the
argument applies to classical dynamical systems as well. Large-scale natural or artificial systems (e.g., weather
or electronic circuits) can be modeled by ordinary or stochastic differential equations (ODE/SDE), but the
modeling can be computationally very expensive. Yet nature seems to have little trouble “solving” these ODEs/
SDEs effortlessly and often much more quickly than von Neumann systems. Hence building a physical dynamical
system is in some sense building a “nature-based” computing system. One such type of dynamical systems that
are gaining attention lately are often called Ising machines.

The Ising model is a physics-oriented model that describes the energy of a system of N coupled spins (See
Methods section for more details). Finding the ground state of the Ising model is a classical example of combina-
torial optimization problems (COP). Although early study focused on spins on 1D?* lattice, the prevailing notion
of Ising model is not restricted to any graph topology, and is thus equivalent to the quadratic unconstrained
binary optimization (QUBO) model. A generic QUBO problem is NP-complete and usually solved by physics-
inspired Simulated Annealing (SA) algorithm. When an Ising machine maps such a problem, its dynamics can be
extremely fast and much more efficient than SA on a von Neumann system. Quantum annealers (QA) marketed
by D-Wave Systems’ are but early examples. The Coherent Ising machine (CIM) is another prominent exam-
ple. CIM uses modulated optical pulses to represent spins'’. In a recent work, NTT developed a 100,000-node
CIM!}, thus demonstrating a scalable implementation. Since the working principle of CIM can be attributed to
the Kuramoto model'?, researchers have proposed other electronic Oscillator-based Ising machines (OIM)".
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Other emerging technologies have also been proposed to build Ising machines like memristors'* and p-bits'. A
more thorough survey of Ising machines can be found in'®.

In this paper, we will take an application-centric approach to analysing Ising machines with boolean satisfi-
ability (SAT) as a case study'” (See Methods section for more details). SAT is an excellent benchmark: While many
applications can be mapped into the Ising formula, there are nuances in the case of SAT problems: high-degree
interaction and efficient searching heuristic. High-degree Ising machines have been proposed in the past'®-2!, but
these completely ignored the second point. As we shall see, this has a serious implication on the machine’s capa-
bilities to achieve state-of-the-art performance. For concreteness, our experiments will focus on an electronics-
based CMOS-compatible Bistable Resistively-coupled Ising machine (BRIM)**-**. It has several key advantages
compared to previous works. First, it uses the signs of the voltage across capacitors to represent Ising spins, thus
making it easily realizable. Second, it uses programmable resistive coupling units, thus making it easy to imple-
ment all-to-all couplings. Third, it relies on natural dynamics of the system based on nano-scale capacitive spins,
thus making it fundamentally more efficient than von Neumann accelerators.

The main contributions of this paper can be summarized as follows. First, we demonstrate that standard Ising
machines are not competitive in solving SAT compared to state-of-the-art SAT solvers. Our analysis show that
the main causes are lack of support for high-degree interaction and efficient search-space navigation. Second,
motivated by these limitations, we extend a baseline Ising machine to support high-degree terms. Third, more
importantly, we propose a new semantic-aware annealing heuristic to significantly improve Ising machines’
navigational efficiency. Finally, using numerical simulation, we demonstrate that our proposed “augmented”
Ising machine is projected to be orders of magnitude faster than existing state-of-the-art SAT solvers.

Results

Solving 3-SAT using Ising machines

While Ising machines have been shown to be competitive in solving generic QUBO (general MaxCut)
problems?*?*%, their application to SAT has not been as successful. This is partly due to the fundamental struc-
ture of k-SAT for k > 3: Given an N-variable, M-clause 3-SAT formula F, we can construct a minimization
energy function (H) as follows:
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where, Ljjis the j th literal in the i th clause and n € {1,2,...,N}. Some state vector x* satisfies F if and only if
H(x*) = 0. Here, x* is called the ground state of H (it is assumed that x, = 1 means True and x,, = 0 means
False). Any unsatisfying state x will have H(x) > 0.

It is not difficult to see that after expanding the summation, H will have cubic terms, xixjxy. However, the
Ising/QUBO formula only supports upto quadratic (2nd-degree) terms. To get around this problem, the standard
approach is to quadratize these high-degree terms? % to get a QUBO problem.

Figure 1 shows the Time-To-Solution (TTS) of BRIM and D-Wave’s QA after quadratization, compared
against a state-of-the-art SAT solver, KISSAT?’. TTS*! is defined as the expected time to find a solution with
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Figure 1. Time-To-Solution (TTS) of BRIM and D-Wave annealer compared against a state-of-the-art SAT
solver, KISSAT?® for uniform random problems with varying number of variables, N and clauses, M = 4.25N.
The yellow and blue horizontal dashed line depicts how big of a problem KISSAT can solve for the same TTS
taken by D-Wave and BRIM respectively while solving 40-variable problems.

Scientific Reports |

(2023) 13:22858 | https://doi.org/10.1038/s41598-023-49966-6 nature portfolio



www.nature.com/scientificreports/

99% probability. Over multiple instances each with runtime of T}, and a success probability of P, TTS can be
calculated using the following formula:

log,,(0.01)
T, ——— P <099
TS =1 " “logy(1—P) )

Trun otherwise

For SAT, success probability P is the proportion of runs that found satisfying states out of all the runs for a given
problem. Each data point in the figure is the geometric mean TTS of 10 different problem instances. We can
observe that while BRIM’s trend is much better than that of D-Wave, compared to KISSAT, the initial speed
advantage of both the Ising machines is quickly lost with only a small increase in problem size. The horizontal
dashed lines show that for the same TTS that D-Wave and BRIM takes to solve a 40-variable problem, KISSAT
can solve ~700 and ~150-variable problems respectively. There are two reasons for this disappointing perfor-
mance of Ising machines:

1. Lack of support for high-degree interactions: Fig. 2a shows the resultant number of nodes after using Kol-
mogorov-Zabin-Freedman-Drineas (KZFD)*?*’ and Rosenberg?” quadratization for increasing number of
variables. We can observe that roughly, there is a 4-5x increase in the number of nodes compared to the
number of variables, resulting in an increased number of phase points from 2 to ~ 2°N. This is because
both quadratization techniques introduce roughly 1 extra variable per clause. Therefore, the resultant num-
ber of nodes is ~ (N + M), where M ~ 4.25N for hard uniform random 3-SAT instances. Such a massive
disadvantage has been demonstrated in earlier works which motivated many researchers to propose Ising
machines with high-degree interactions'®-?!. Figure 2b shows the TTS of SA* on the QUBO formulations
(SAq) and with cubic interaction support (SAc) compared against KISSAT. We can observe that SAc signifi-
cantly outperforms SAq, thus showing the importance of high-degree interactions. However, it still scales
poorly when compared to KISSAT, which brings us to the next point.

2. Lack of efficient searching heuristics: After converting to the Ising/QUBO formulation, insights from the
original problem formulation may not be obvious. However, such insights are exploited by software SAT
solvers like KISSAT to effectively search the landscape®. This gap between SAc and KISSAT is the result of
efficient searching heuristics. Previous works on high-degree Ising machines completely ignored the vast
amount of insights from SAT competitions* and literature®>>>%.

These two shortcomings motivate us to propose hardware support for cubic interaction and a semantic-aware
heuristic to effectively guide the Ising machine towards a solution as we will discuss in the next section.

Apart from these limitations, D-Wave QA also suffers from an additional drawback: lack of support for
all-to-all coupling. The limited connectivity of the hardware topology necessitates a costly graph embedding
process (which is itself NP-hard) that greatly increases the final graph size®’. This is the major reason for its worse
performance scaling compared to BRIM (which supports all-to-all couplings) in Fig. 1. Any Ising machine only
supporting near-neighbor couplings will suffer from this fundamental limitation®*.

BRIM with support for cubic interaction
Let us rewrite the 3-SAT objective function (Eq. 1) by collecting linear, quadratic, and cubic terms:
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Figure 2. Illustration of drawbacks of Ising machines. (a) The average number of nodes after quadratization for
increasing number of variables. (b) Performance of SA on the QUBO formulations (SAq) and on the original
hypergraph with support for cubic interaction (SAc) compared against KISSAT.
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In BRIM, each variable x, is represented by a continuous capacitive voltage v, € [0, 1]. Moreover, the output
nodal voltage is quantized to {0,1} V with 0.5 V being the threshold. A real quantizer can be represented as a
scaled and shifted-tanh function Q(v,) with a steep slope, S > 0. Hence, we get a continuous variable energy
function H from Eq. (4):

H = const =Y  1,Qn) = > qyjQm)Q) — > Q) Q) Qi)
n n<j n<j<k (5)
where, Q(v,,) = 0.5 - tanh{S - (v, — 0.5)} + 0.5; x, = Slirn Qvy)

Now, the incoming current for each node is given the following equation:
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(6)
We modify the baseline BRIM as proposed by Afoakwa et al.? for bit-{0,1} representation as shown in the blue
block in Fig. 3a. This supports the first two terms (I, + Zj dnjQ(v})) in the parenthesis of Eq. (6). There are N
bi-stable capacitive nodes whose voltages range € [0, 1]. The bit value of each node is simply the quantized voltage
€ {0, 1}. Thus, each node represents a variable in the SAT formula. Every node is connected to its neighbors via
programmable resistive coupling units g. This resistance between node # and node j is given by R,;j = ﬁjl’ where
R is a constant resistance and g, is normalized to [—1, +1]. Thus, strong coupling means lower resistance. The
sign of gyj is implemented as follows: when g,; > 0, the nodes are coupled in a parallel fashion (output of one
node is connected to the positive input terminal of the other, via resistance Ryj: Outy — Inj+, Out; — In;);
when gpj < 0, they are coupled in an anti-parallel fashion (Out, — In;", Outj — In;); nodes are disconnected
ifgyj = 0. Each node 7 can also have a linear bias [;,.
To support the last term (Zj)k cnjkQ(v))Q(vk)), we require 3 steps: D ysea multiplier to produce a voltage
vik = Q(vj) x Q(vk), ¥ apply vjx across a resistor proportional to ﬁ, and @ feed the current to node . In

practice, we make 3 optimizations as we discuss next:

1. Multiplier: A “true” analog multiplier is a rather expensive circuit due to accuracy and linearity concerns.
Since the differential equation (Eq. 6) itself is a continuous approximation of discrete variables and the output
voltage of nodes is quantized, we use a simple AND gate as a multiplier.
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Figure 3. Illustration of cBRIM. (a) High-level cBRIM diagram extending the baseline BRIM with MUXs and
cubic coupling units. (b) Distribution of number of variables participating in cubic terms. (¢) Timing diagram of
using cBRIM. The greyed-out steps are not required for cBRIM (but may be required for other Ising machines).
(d) The evolution of the number of satisfied clauses (%) [top] and nodal voltages for all nodes in cBRIM
[bottom] while solving a 20-variable problem. The vertical dash line indicates that a solution is found when the
voltages have settled.
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2. Cubic terms fan-in: For a general support of cubic interaction, we need O(N?) couplers. However, for 3-SAT,
the number of cubic terms is determined by the number of clauses, M which, for difficult uniform random
problems, is typically about 4.2N%8. Therefore, on average, each variable is involved in about a dozen cubic
terms—regardless of the size of the problem. Figure 3b shows the distribution of variables occurring in
cubic terms for uniform random problems. As we can observe, the plot doesn’t have a long tail and a fixed
degree fan-in of d = 20 would work. Every multiplier (AND gate) is fed by two N:1 multiplexers to program
which voltages to multiply. This keeps the hardware complexity at O(N?). Given a fan-in limit chosen for a
particular system, users can pre-process excess clauses with quadratization techniques.

3. Coupler programmability: Finally, another problem-specific feature of 3-SAT is that the vast majority of cubic
term coeflicients are £1. For an M-clause 3-SAT problem, there are at most M cubic terms produced by
Eq. (1), one for each clause with 3 literals. On rare occasions, when the magnitude of a coefficient is greater
than 1, that cubic term is simply treated as multiple instances that take up multiple couplers (fan-in). So we
eliminate the programmability on the coupler strength—it will be fixed at 1. Instead, the programmability
is on which two inputs to multiply, and the polarity of the coupling.

The resulting architecture is shown in Fig. 3a. We name this design, cubic BRIM or ¢cBRIM in short. By minimiz-
ing H, cBRIM maximises the number of satisfied clauses and thus, solves Max-3-SAT. When there is no random
perturbation, using Eq. (5) and Eq. (6), we can show the Lyapunov stability analysis as follows:

dH 0H  dvy oH aQ(vy) dvy 1 dvp\2 3Q(vy) 1 dvy\2 2
22 — .= . R juddl I == 2N 05.8 - sech®(S - (vy — 0.5
ar Xn: v dt Xn: Qo At a zn:( at ) v p Xn:( at ) 058 seck(S - (v~ 0.5)

(7)
Now; v* is a solution to a 3-SAT problem if and only if H(®*) = 0. Otherwise, H > 0. Moreover, since o, S > 0
and v, € [0, 1], from Eq. (7), (% < 0)for all v # v*. Therefore, the system is Lyapunov stable: it naturally seeks
local minima of H and stays there when found. Figure 3d shows the evolution of the number of satisfied clauses
(%) [top] and nodal voltages in cBRIM [bottom] while solving a 20-variable problem. The voltages settle at about
25 ns and the quantized voltages indeed satisfies the 3-SAT formula.

Figure 3¢ shows the timing diagram of using cBRIM. All the blue boxes represent von Neumann computation.
Steps 2 and 3 are not required for cBRIM and hence, greyed out. In step 1, the given 3-SAT problem in Conjunc-
tive Normal Form (CNF) is pre-processed via O(3d,,qx - M + N) time von Neumann computation (where d,4y is
the maximum degree of the graph) to turn it into a binary formulation (Eq. 4). The formulation is organized as a
matrix, and programmed into the Ising machine hardware column by column in step 4a. For linear and quadratic
terms, the programmed values represent the coeflicient of terms. For cubic terms, it identifies the variables to
be multiplied together. The Ising machine is then annealed multiple times, each time storing the final state (step
4b). After the annealing process, the system returns all the binary state vectors to the von Neumann computer
(step 5) which then checks each state for satisfiability (step 6). The Ising machine can also store snapshots of the
spin vector in a run which can be used to get the evolution of number of satisfied clauses.

Semantic-aware randomization

A simple yet effective annealing schedule is to randomly flip a spin with a certain probability and gradually
reduce this probability??. Such a problem-agnostic heuristic works well to escape local minima for problems that
lack any structure. However, SAT is a well-studied problem whose structure is exploited by solver heuristics.
Conflict Driven Clause Learning (CDCL) solvers learn new clauses using Boolean resolution to actively store
information on the problem at hand, and Variable State Independent Decaying Sum (VSID) has been shown to
exploit large scale problem structures®. Stochastic Local Search (SLS) algorithms such as WalkSAT* include a
veritable buffet of different heuristics for variable selection based on various scoring and ranking mechanisms.
With this motivation, we propose a new heuristic.

Tanh-make-break (TMB) heuristic
The tanh-make-break (TMB) heuristic assigns probability, p, to flip each variable x,, as follows:

pn = tanh(c,, X A y) - [1 — tanh(cp, X %B,)] (8)

where, ¢,, > 0and ¢, > 0are parameters. Given an assignment of variables a, .# , represents the number of newly
satisfied clauses after flipping a variable x,, (make count), while newly unsatisfied clauses contribute to %, (break
count). Our main motivation to use the tanh function are: First, it is easily implementable in hardware. Second,
it directly resembles probability without any need for normalization. Third, it is non-linear as experimentally
we found it to work better. Finding the most optimal function is left as future work. The main intuition for TMB
is that, stochastically flipping nodes that satisfy more clauses makes the landscape navigation more efficient as
we shall see later. An illustrative example is shown in the supplemental. A key point to note here is that, unlike
SLS algorithms, TMB allows multiple nodes/variables to flip in parallel without any synchronization. This makes
the hardware design much simpler.

To compute p,, we need to compute .#, and Z4,,. It turns out, the incoming electric current for each node in
our system is related to its .#, and %, as follows:

dv
(T: =a(l —2x,) - (M — By) 9)
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The derivation is shown in the Supplemental material. With this relation, we opt to compute .#, since it is much
easier to obtain (refer to the supplemental for more details) and recover 4, from the incoming electric current
in Eq. (9).

Figure 4 shows how we integrate TMB into our dynamical system. For each node, after every TMB period time,
the heuristic gets the electric currents proportional to .#, and 4. This information is used to select the respective
node to flip determined by the probability p, as in Eq. (8). The selected nodes are then temporarily connected
to Vpp/ground to charge/discharge the capacitor respectively. Note that, while TMB is in the works, the system
dynamics keeps evolving. If the system found a satisfying solution before the cutoff time, then Vn (.#, = 0). In
this case, the system stops annealing and returns the spin vector (latching).

High-level analyses of Augmented Ising Machine for SAT (AIMS)

With the discussed architectural innovations: cubic interaction and TMB heuristic, we propose Augmented
Ising Machine for SAT (AIMS). We tuned the parameters c,, and ¢; in our TMB heuristic that works the best, in
general, for all problems. Sensitivity analysis is discussed in the supplemental. All the results are obtained using
numerical simulations with realistic device parameters, assuming a 45nm technology. AIMS is first compared
against state-of-the-art software solvers and cBRIM. Note that, existing high-degree Ising machines have been
either evaluated with tiny problems' or with poor solution quality and no direct report of the solver time'®. In
contrast, cBRIM is able to find solutions with higher success rates and hence, is compared here. Figure 5a shows
the geometric mean TTS for each benchmark suite with error bars and also the overall TTS for various solvers.

As we can observe, for these benchmarks, AIMS is consistently faster with a geometric mean speedup of about
2 and 3 orders of magnitude over software solvers WalkSAT*® and KISSAT? respectively. The performance of
the GPU-based SAT solver, ParaFrost*? lies between WalkSAT and KISSAT, thus it is slower than AIMS by about
517x. With contributions from our TMB heuristic, AIMS outperforms cBRIM by at least an order of magni-
tude. Some of the data for cBRIM are missing as it could not solve the problems in our tested annealing times.
The horizontal dashed line shows the TTS of baseline BRIM solving the QUBO formulation of a 100-variable
problem. The speed of AIMS compared to both cBRIM and BRIM emphasizes the importance of our proposed
architectural innovations.

Now, we look at the execution times and success probabilities for various solvers on 500-variable uniform
random and scale-free problems as shown in Fig. 5b. The results of WalkSAT and KISSAT are shown for refer-
ence. AnalogSAT * is a recently proposed GPU-based solver that accelerates a simulation of a dynamical system.
We can observe that AIMS takes the least execution times of ~ 100 us on average while still maintaining high
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Figure 4. The high-level flow of how TMB works with our dynamical system.
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Figure 5. Performance comparison of AIMS against existing SAT solvers. (a) Comparing TTS of various
solvers for benchmark suites from SATLIB* and SAT 2011 competition. Each benchmark suite is named in
this format: (Benchmark)—(Vars)-(Clauses (if stated)). (b) Plots showing the execution time [Left] and success
probability [Right] for various solvers. All solvers run 20 problems each with uniform random and industrial-
like scale-free distribution of 500 variables.
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success probability of 0.75. For both the problem types, AnalogSAT performed the worst as it took the longest
times with low success probability for uniform random problems. KISSAT slightly outperformed WalkSAT in
scale-free problems which corroborates its success in industrial SAT instances. In terms of TTS, AIMS is faster
than the better performing GPU-based solver, ParaFrost, by about 3 orders of magnitude for uniform random
problems and by 27x for scale-free problems.

Apart from software solvers, we also compare AIMS with two other state-of-the-art hardware SAT solvers:
FPGA-based HW AmoebaSAT* and Magnetic Tunnel Junction (MT])-based BRWSAT*® as shown in Table 1.
The benchmarks shown here are the only ones reported by the references and hence, can be directly compared.
Based only on the overlapping benchmarks, AIMS has a geometric speedup of 7.4x and 10.3x over HW Amoe-
baSAT and BRWSAT, respectively. Note that HW AmoebaSAT scales rather poorly as TTS increases 3 orders
from problem sizes of 50 variables to 225 variables.

Finally, using Cadence simulations, we estimate that a 500-variable AIMS chip will consume ~ 300 mW
power and require ~ 13 x 13 mm? area. A detailed table of hardware parameters is shown in the supplemental.
We believe that there is room for significant improvement for the various circuits used in this study.

Navigational efficiency

With such promising results demonstrated in the previous section, it is important to also look at how efficiently
AIMS finds a solution. Figure 6 shows the geometric mean phase points visited to arrive at a solution by AIMS,
cBRIM and WalkSAT. A phase point denotes a specific state of the quantized spin vector € {0, 1}V. Each such
state traversed by AIMS in a run is counted as a phase point “visit”. Since KISSAT is a CDCL solver, the notion
of a phase point is not well defined and hence is not shown. Note here that the number of phase points visited
is also adjusted by solution probability as in TTS. AIMS is consistently more efficient than ¢cBRIM as it could
achieve a satisfying solution by visiting about 134x fewer phase points in general. Note that some of the bench-
marks are not shown since cBRIM fails to find a solution for these, suggesting that it may require searching
through many more phase points. WalkSAT still requires slightly fewer phase point visits than AIMS in general.
However, the extremely fast dynamics of AIMS more than compensates for the larger phase point visits with

Benchmark N |M HW AmoebaSAT* | BRWSAT* | AIMS (projected)
uf50-0100 50 218 4.126 - 5.829
uf50-0410 50 218 4.360 - 1.329
uf50-0767 50 218 8.300 - 4.059
uf100-0285 100 | 430 356 - 73.81
uf150-0100 150 | 645 1832 - 73.16
uf225-028 225 | 960 3078 - 10.41
sat11-350-p11 350 | 1491 |- 200 39.54
sat11-350-p23 350 | 1491 |- 1289 44.56
satl11-350-p75 350 | 1491 | - 280 22.81
sat11-350-p98 350 | 1491 |- 50 7.389
sat11-450-pl 450 | 1917 |- 80 6.448
satl11-450-p11 450 | 1917 |- 1912 577.1
satl1-450-p14 450 | 1917 |- 4650 786.2
sat11-450-p78 450 | 1917 |- 353.1 8.082

Table 1. Comparison of TTS for various hardware solvers in units of ps.
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Figure 6. Geometric mean phase points visited by AIMS, cBRIM and WalkSAT for various benchmark suites
from SATLIB and 2011 SAT competition. The labels show the improvement of AIMS over cBRIM.
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an average flip-rate of 4250 flips/us compared to 6 flips/us for WalkSAT. This explains the observed speedup of
AIMS over WalkSAT in Fig. 5.

Discussion

With diminishing speed of improvements for conventional computing systems, non-von Neumann systems
such as Ising machines are receiving increased attention. While all COPs can be targeted by an Ising machine
in theory, we have shown in this paper, using SAT as a case study, that there are still practical hurdles with such
systems: high-degree interactions and efficient navigational heuristics.

Fortunately, these issues can be overcome with additional architectural support, at least for electronic Ising
machines such as BRIM?2. We have presented the design details to support cubic interaction natively in BRIM
with 3 optimizations: @) using AND gate as a multiplier, @) exploiting SAT structure to still use O(N*) couplers
and ) using fixed resistors for the cubic couplers without much loss of generality.

More importantly, we have proposed a novel, semantic-aware annealing heuristic called TMB. To efficiently
incorporate TMB into our dynamical system, we showed a relation between the difference (.#,, — 4,,) for each
variable and its total incoming current. Then we derived an expression to easily compute .#, using analog cir-
cuits and extract 4, from the above mentioned relation. This reduced the extra circuit complexity and made the
design more feasible. With the proposed architectural support, the resulting augmented Ising machine for SAT
(AIMS) can achieve orders of magnitude speedup over state-of-the-art SAT solvers. Moreover, we also demon-
strated that AIMS can find a solution by visiting significantly fewer phase points than cBRIM, thus emphasizing
the importance of TMB.

Although we conducted some non-ideal simulations verified partly with Cadence, a real hardware-based study
is required in the future. Overall, our study suggests that Ising machines offer a powerful substrate to explore
novel non-von Neumann computing. At the same time, additional architectural support may be crucial to truly
unlock their performance potential.

Methods

Ising model

The Ising model was originally used to describe the Hamiltonian (H) for a state of spins (o;) on some lattice. A
modified version (Eq. 10) of the formula is more useful in the discussion of optimization problems.

H(o) = —Z]ijaiaj —Zhim =—0'Jo—h'o (10)
(@) i

It turns out, this optimization problem is NP-complete and all the Karp’s original set of NP-complete prob-
lems have been transformed into the Ising model*. A loose physical analogy is as follows. A system of spins
(0; € {—1,+1}) are subject to the influence of a set of parameters J;; and h;. J;; describes the coupling between
two spins (o; and 0;), while h; describes the influence of an external magnetic field on spin o;. Given this setup,
the spins will naturally gravitate towards the lowest energy state (ground state). Technically, the probability of
each state follows the Boltzmann distribution:

P(o) x efw (11)

Boolean satisfiability (SAT)

A generic SAT problem is about determining whether a propositional logical formula F is satisfiable for some
mapping of variables to truth values'’. F consists of boolean-valued variables acted on by unary logical operator
(negation: —) or binary ones (and: A; or: Vv; and implications: —, <=). For example, F = x V (—x3) A (x3 — x4)
would be a formula in propositional logic. The statement is typically expressed in Conjunctive Normal Form
(CNF)", i.e. alogical conjunction of separate clauses (e.g. F = C; A C; A Cs). Each clause is a logical disjunction
of a number of literals. Literals are boolean variables or their negations (e.g. C = x; V —x2 V x3). Any formula
in propositional logic can be converted to CNF in linear time by introducing new variables and clauses*”. When
the number of literals in any clause is no more than k, the problem is called k-SAT. When k > 3, the problem is
NP-complete. 3-SAT can be used to formulate any NP-complete problem in standard CNE, with SAT solvers as
an efficient means of solution®®.

D-Wave QA results

We report the results on D-Wave’s 2000Q system with optimized annealing times of 2 ps, 20 ps and 2000 us for
5-7, 8-20, and 30-40 variable problems respectively. The results of the newer D-Wave Advantage system (5000
qubits) were worse for our experiments although it could map larger 3-SAT problems. This is consistent with
previous studies which conjectured that for sparse problems like SAT, the large number of unused couplers in
the Pegasus topology of D-Wave Advantage might lead to more noise**™.

Software-based solver results

In all the experiments, CPU software solvers like WalkSAT*, KISSAT?® and SA* are natively executed on Intel
Xeon Platinum 8268 CPU at 2.90 GHz. WalkSAT is run using the ~best heuristic and cutoff flips of 500,000
with 20 retries. KISSAT is allowed to run with no cutoff time. GPU-based solvers (ParaFrost*> and AnalogSAT*)
are executed on a system with AMD Ryzen Threadripper PRO 3975WX CPU with 16 GB of 3200 MHz DDR4
RAM and an NVIDIA GeForce RTX 3090 @ 1.70GHz GPU.
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Simulation of dynamical systems

The evolution of various dynamical systems like BRIM, cBRIM and AIMS is modeled by solving differential
equations using 4th-order Runge-Kutta method in C++. The behavioral simulation is verified to be accurate
upto 32 nodes when compared against detailed circuit simulations in Cadence.

Benchmarks

For SAT benchmarks, we use those publicly available from SATLIB*! and the 2011 SAT competition. Moreover,
we generated “hard” uniform random instances of varying sizes with M /N = 4.25. Since it has been established
that industrial problems exhibit scale-free behaviour®', we generated some difficult industrial-like SAT instances
with 500-variables using scale-free distribution with M/N = 3.29 and power-law exponent of 2.935°!. All prob-
lems are verified as satisfiable.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable
request.
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