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Augmenting an electronic Ising 
machine to effectively solve 
boolean satisfiability
Anshujit Sharma *, Matthew Burns , Andrew Hahn  & Michael Huang 

With the slowdown of improvement in conventional von Neumann systems, increasing attention 
is paid to novel paradigms such as Ising machines. They have very different approach to solving 
combinatorial optimization problems. Ising machines have shown great potential in solving binary 
optimization problems like MaxCut. In this paper, we present an analysis of these systems in boolean 
satisfiability (SAT) problems. We demonstrate that, in the case of 3-SAT, a basic architecture fails 
to produce meaningful acceleration, largely due to the relentless progress made in conventional 
SAT solvers. Nevertheless, careful analysis attributes part of the failure to the lack of two important 
components: cubic interactions and efficient randomization heuristics. To overcome these limitations, 
we add proper architectural support for cubic interaction on a state-of-the-art Ising machine. More 
importantly, we propose a novel semantic-aware annealing schedule that makes the search-space 
navigation much more efficient than existing annealing heuristics. Using numerical simulations, we 
show that such an “Augmented” Ising Machine for SAT is projected to outperform state-of-the-art 
software-based, GPU-based and conventional hardware SAT solvers by orders of magnitude.

Semiconductor fabrication technology and advanced von Neumann computer architecture have been two key 
drivers for the explosive increase in computing system performance in the past 50 years or so. As both drivers 
are reaching a phase of diminishing returns, interest in non-von Neumann systems is increasing. One obvious 
example is quantum computing (QC). QC has become more widely discussed ever since Peter Shor proposed 
an exponentially faster quantum algorithm for factorization1. However, we have yet to discover a wide array of 
applications where QC can change the complexity class of the solution algorithm. Grover’s algorithm is another 
popular quantum algorithm that theoretically provides a quadratic speedup for unstructured search2. In practice, 
however, realities of error sensitivity in the “Noisy-Intermediate Scale Quantum” (NISQ) era devices limit such 
algorithms’ immediate usefulness3. More noise-resilient, “shallow-depth” algorithms have been proposed4–6. So 
far, there is no indication that they can overcome NISQ era hurdles.

If we recall Feynman’s motivation of building quantum mechanical systems as computers7, we see that the 
argument applies to classical dynamical systems as well. Large-scale natural or artificial systems (e.g., weather 
or electronic circuits) can be modeled by ordinary or stochastic differential equations (ODE/SDE), but the 
modeling can be computationally very expensive. Yet nature seems to have little trouble “solving” these ODEs/
SDEs effortlessly and often much more quickly than von Neumann systems. Hence building a physical dynamical 
system is in some sense building a “nature-based” computing system. One such type of dynamical systems that 
are gaining attention lately are often called Ising machines.

The Ising model is a physics-oriented model that describes the energy of a system of N coupled spins (See 
Methods section for more details). Finding the ground state of the Ising model is a classical example of combina-
torial optimization problems (COP). Although early study focused on spins on 1D8 lattice, the prevailing notion 
of Ising model is not restricted to any graph topology, and is thus equivalent to the quadratic unconstrained 
binary optimization (QUBO) model. A generic QUBO problem is NP-complete and usually solved by physics-
inspired Simulated Annealing (SA) algorithm. When an Ising machine maps such a problem, its dynamics can be 
extremely fast and much more efficient than SA on a von Neumann system. Quantum annealers (QA) marketed 
by D-Wave Systems9 are but early examples. The Coherent Ising machine (CIM) is another prominent exam-
ple. CIM uses modulated optical pulses to represent spins10. In a recent work, NTT developed a 100,000-node 
CIM11, thus demonstrating a scalable implementation. Since the working principle of CIM can be attributed to 
the Kuramoto model12, researchers have proposed other electronic Oscillator-based Ising machines (OIM)13. 
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Other emerging technologies have also been proposed to build Ising machines like memristors14 and p-bits15. A 
more thorough survey of Ising machines can be found in16.

In this paper, we will take an application-centric approach to analysing Ising machines with boolean satisfi-
ability (SAT) as a case study17 (See Methods section for more details). SAT is an excellent benchmark: While many 
applications can be mapped into the Ising formula, there are nuances in the case of SAT problems: high-degree 
interaction and efficient searching heuristic. High-degree Ising machines have been proposed in the past18–21, but 
these completely ignored the second point. As we shall see, this has a serious implication on the machine’s capa-
bilities to achieve state-of-the-art performance. For concreteness, our experiments will focus on an electronics-
based CMOS-compatible Bistable Resistively-coupled Ising machine (BRIM)22–25. It has several key advantages 
compared to previous works. First, it uses the signs of the voltage across capacitors to represent Ising spins, thus 
making it easily realizable. Second, it uses programmable resistive coupling units, thus making it easy to imple-
ment all-to-all couplings. Third, it relies on natural dynamics of the system based on nano-scale capacitive spins, 
thus making it fundamentally more efficient than von Neumann accelerators.

The main contributions of this paper can be summarized as follows. First, we demonstrate that standard Ising 
machines are not competitive in solving SAT compared to state-of-the-art SAT solvers. Our analysis show that 
the main causes are lack of support for high-degree interaction and efficient search-space navigation. Second, 
motivated by these limitations, we extend a baseline Ising machine to support high-degree terms. Third, more 
importantly, we propose a new semantic-aware annealing heuristic to significantly improve Ising machines’ 
navigational efficiency. Finally, using numerical simulation, we demonstrate that our proposed “augmented” 
Ising machine is projected to be orders of magnitude faster than existing state-of-the-art SAT solvers.

Results
Solving 3‑SAT using Ising machines
While Ising machines have been shown to be competitive in solving generic QUBO (general MaxCut) 
problems22,23,26, their application to SAT has not been as successful. This is partly due to the fundamental struc-
ture of k-SAT for k ≥ 3 : Given an N-variable, M-clause 3-SAT formula F, we can construct a minimization 
energy function (H) as follows:

where,

where, ℓij is the j th literal in the i th clause and n ∈ {1, 2, . . . ,N} . Some state vector x∗ satisfies F if and only if 
H(x∗) = 0 . Here, x∗ is called the ground state of H (it is assumed that xn = 1 means True and xn = 0 means 
False). Any unsatisfying state x will have H(x) > 0.

It is not difficult to see that after expanding the summation, H will have cubic terms, xixjxk . However, the 
Ising/QUBO formula only supports upto quadratic (2nd-degree) terms. To get around this problem, the standard 
approach is to quadratize these high-degree terms27–29 to get a QUBO problem.

Figure 1 shows the Time-To-Solution (TTS) of BRIM and D-Wave’s QA after quadratization, compared 
against a state-of-the-art SAT solver, KISSAT30. TTS31 is defined as the expected time to find a solution with 

(1)

F =

M
∧

i=1

(ℓi1 ∨ ℓi2 ∨ ℓi3)

H =

M
∑

i=1

g(ℓi1)g(ℓi2)g(ℓi3)

(2)g(ℓij) =

{

(1− xn) ℓij = xn
xn ℓij = ¬xn

Figure 1.   Time-To-Solution (TTS) of BRIM and D-Wave annealer compared against a state-of-the-art SAT 
solver, KISSAT30 for uniform random problems with varying number of variables, N and clauses, M = 4.25N . 
The yellow and blue horizontal dashed line depicts how big of a problem KISSAT can solve for the same TTS 
taken by D-Wave and BRIM respectively while solving 40-variable problems.
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99% probability. Over multiple instances each with runtime of Trun and a success probability of P, TTS can be 
calculated using the following formula:

For SAT, success probability P is the proportion of runs that found satisfying states out of all the runs for a given 
problem. Each data point in the figure is the geometric mean TTS of 10 different problem instances. We can 
observe that while BRIM’s trend is much better than that of D-Wave, compared to KISSAT, the initial speed 
advantage of both the Ising machines is quickly lost with only a small increase in problem size. The horizontal 
dashed lines show that for the same TTS that D-Wave and BRIM takes to solve a 40-variable problem, KISSAT 
can solve ∼700 and ∼150-variable problems respectively. There are two reasons for this disappointing perfor-
mance of Ising machines:

1.	 Lack of support for high-degree interactions: Fig. 2a shows the resultant number of nodes after using Kol-
mogorov-Zabin-Freedman-Drineas (KZFD)28,29 and Rosenberg27 quadratization for increasing number of 
variables. We can observe that roughly, there is a 4-5x increase in the number of nodes compared to the 
number of variables, resulting in an increased number of phase points from 2N to ∼ 25N . This is because 
both quadratization techniques introduce roughly 1 extra variable per clause. Therefore, the resultant num-
ber of nodes is ∼ (N +M) , where M ≈ 4.25N for hard uniform random 3-SAT instances. Such a massive 
disadvantage has been demonstrated in earlier works which motivated many researchers to propose Ising 
machines with high-degree interactions18–21. Figure 2b shows the TTS of SA32 on the QUBO formulations 
(SAq) and with cubic interaction support (SAc) compared against KISSAT. We can observe that SAc signifi-
cantly outperforms SAq, thus showing the importance of high-degree interactions. However, it still scales 
poorly when compared to KISSAT, which brings us to the next point.

2.	 Lack of efficient searching heuristics: After converting to the Ising/QUBO formulation, insights from the 
original problem formulation may not be obvious. However, such insights are exploited by software SAT 
solvers like KISSAT to effectively search the landscape33. This gap between SAc and KISSAT is the result of 
efficient searching heuristics. Previous works on high-degree Ising machines completely ignored the vast 
amount of insights from SAT competitions34 and literature33,35,36.

These two shortcomings motivate us to propose hardware support for cubic interaction and a semantic-aware 
heuristic to effectively guide the Ising machine towards a solution as we will discuss in the next section.

Apart from these limitations, D-Wave QA also suffers from an additional drawback: lack of support for 
all-to-all coupling. The limited connectivity of the hardware topology necessitates a costly graph embedding 
process (which is itself NP-hard) that greatly increases the final graph size37. This is the major reason for its worse 
performance scaling compared to BRIM (which supports all-to-all couplings) in Fig. 1. Any Ising machine only 
supporting near-neighbor couplings will suffer from this fundamental limitation22.

BRIM with support for cubic interaction
Let us rewrite the 3-SAT objective function (Eq. 1) by collecting linear, quadratic, and cubic terms:

(3)TTS =







Trun ×
log10(0.01)

log10(1− P)
P < 0.99

Trun otherwise

(4)H = const −
∑

n

lnxn −
∑

n<j

qnjxnxj −
∑

n<j<k

cnjkxnxjxk

Figure 2.   Illustration of drawbacks of Ising machines. (a) The average number of nodes after quadratization for 
increasing number of variables. (b) Performance of SA on the QUBO formulations (SAq) and on the original 
hypergraph with support for cubic interaction (SAc) compared against KISSAT.
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In BRIM, each variable xn is represented by a continuous capacitive voltage vn ∈ [0, 1] . Moreover, the output 
nodal voltage is quantized to {0,1} V with 0.5 V being the threshold. A real quantizer can be represented as a 
scaled and shifted-tanh function Q(vn) with a steep slope, S > 0 . Hence, we get a continuous variable energy 
function H̃ from Eq. (4):

Now, the incoming current for each node is given the following equation:

We modify the baseline BRIM as proposed by Afoakwa et al.22 for bit-{0,1} representation as shown in the blue 
block in Fig. 3a. This supports the first two terms ( ln +

∑

j qnjQ(vj) ) in the parenthesis of Eq. (6). There are N 
bi-stable capacitive nodes whose voltages range ∈ [0, 1] . The bit value of each node is simply the quantized voltage 
∈ {0, 1} . Thus, each node represents a variable in the SAT formula. Every node is connected to its neighbors via 
programmable resistive coupling units q. This resistance between node n and node j is given by Rnj = R

|qnj |
 , where 

R is a constant resistance and qnj is normalized to [−1,+1] . Thus, strong coupling means lower resistance. The 
sign of qnj is implemented as follows: when qnj > 0 , the nodes are coupled in a parallel fashion (output of one 
node is connected to the positive input terminal of the other, via resistance Rnj : Outn → In+j , Outj → In+n  ); 
when qnj < 0 , they are coupled in an anti-parallel fashion ( Outn → In−j , Outj → In−n  ); nodes are disconnected 
if qnj = 0 . Each node n can also have a linear bias ln.

To support the last term ( 
∑

j,k cnjkQ(vj)Q(vk) ), we require 3 steps: 1© use a multiplier to produce a voltage 
vjk = Q(vj)× Q(vk) , 2© apply vjk across a resistor proportional to 1

cnjk
 , and 3© feed the current to node n. In 

practice, we make 3 optimizations as we discuss next:

1.	 Multiplier: A “true” analog multiplier is a rather expensive circuit due to accuracy and linearity concerns. 
Since the differential equation (Eq. 6) itself is a continuous approximation of discrete variables and the output 
voltage of nodes is quantized, we use a simple AND gate as a multiplier.

(5)
H̃ = const −

∑

n

lnQ(vn)−
∑

n<j

qnjQ(vn)Q(vj)−
∑

n<j<k

cnjkQ(vn)Q(vj)Q(vk)

where, Q(vn) = 0.5 · tanh{S · (vn − 0.5)} + 0.5; xn = lim
S→∞

Q(vn)

(6)

dvn

dt
= α

(

ln +
∑

j

qnjQ(vj)+
∑

j,k

cnjkQ(vj)Q(vk)
)

= −α
∂H̃

∂Q(vn)
= −

α

0.5 · S · sech2{S · (vn − 0.5)}
·
∂H̃

∂vn
; α > 0

Figure 3.   Illustration of cBRIM. (a) High-level cBRIM diagram extending the baseline BRIM with MUXs and 
cubic coupling units. (b) Distribution of number of variables participating in cubic terms. (c) Timing diagram of 
using cBRIM. The greyed-out steps are not required for cBRIM (but may be required for other Ising machines). 
(d) The evolution of the number of satisfied clauses (%) [top] and nodal voltages for all nodes in cBRIM 
[bottom] while solving a 20-variable problem. The vertical dash line indicates that a solution is found when the 
voltages have settled.
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2.	 Cubic terms fan-in: For a general support of cubic interaction, we need O(N3) couplers. However, for 3-SAT, 
the number of cubic terms is determined by the number of clauses, M which, for difficult uniform random 
problems, is typically about 4.2N38. Therefore, on average, each variable is involved in about a dozen cubic 
terms—regardless of the size of the problem. Figure 3b shows the distribution of variables occurring in 
cubic terms for uniform random problems. As we can observe, the plot doesn’t have a long tail and a fixed 
degree fan-in of d = 20 would work. Every multiplier (AND gate) is fed by two N:1 multiplexers to program 
which voltages to multiply. This keeps the hardware complexity at O(N2) . Given a fan-in limit chosen for a 
particular system, users can pre-process excess clauses with quadratization techniques.

3.	 Coupler programmability: Finally, another problem-specific feature of 3-SAT is that the vast majority of cubic 
term coefficients are ±1 . For an M-clause 3-SAT problem, there are at most M cubic terms produced by 
Eq. (1), one for each clause with 3 literals. On rare occasions, when the magnitude of a coefficient is greater 
than 1, that cubic term is simply treated as multiple instances that take up multiple couplers (fan-in). So we 
eliminate the programmability on the coupler strength—it will be fixed at 1. Instead, the programmability 
is on which two inputs to multiply, and the polarity of the coupling.

The resulting architecture is shown in Fig. 3a. We name this design, cubic BRIM or cBRIM in short. By minimiz-
ing H̃ , cBRIM maximises the number of satisfied clauses and thus, solves Max-3-SAT. When there is no random 
perturbation, using Eq. (5) and Eq. (6), we can show the Lyapunov stability analysis as follows:

Now, v∗ is a solution to a 3-SAT problem if and only if H̃(v∗) = 0 . Otherwise, H̃ > 0 . Moreover, since α, S > 0 
and vn ∈ [0, 1] , from Eq. (7), ( dH̃dt ≤ 0) for all v  = v∗ . Therefore, the system is Lyapunov stable: it naturally seeks 
local minima of H̃ and stays there when found. Figure 3d shows the evolution of the number of satisfied clauses 
(%) [top] and nodal voltages in cBRIM [bottom] while solving a 20-variable problem. The voltages settle at about 
25 ns and the quantized voltages indeed satisfies the 3-SAT formula.

Figure 3c shows the timing diagram of using cBRIM. All the blue boxes represent von Neumann computation. 
Steps 2 and 3 are not required for cBRIM and hence, greyed out. In step 1, the given 3-SAT problem in Conjunc-
tive Normal Form (CNF) is pre-processed via O(3dmax ·M + N) time von Neumann computation (where dmax is 
the maximum degree of the graph) to turn it into a binary formulation (Eq. 4). The formulation is organized as a 
matrix, and programmed into the Ising machine hardware column by column in step 4a. For linear and quadratic 
terms, the programmed values represent the coefficient of terms. For cubic terms, it identifies the variables to 
be multiplied together. The Ising machine is then annealed multiple times, each time storing the final state (step 
4b). After the annealing process, the system returns all the binary state vectors to the von Neumann computer 
(step 5) which then checks each state for satisfiability (step 6). The Ising machine can also store snapshots of the 
spin vector in a run which can be used to get the evolution of number of satisfied clauses.

Semantic‑aware randomization
A simple yet effective annealing schedule is to randomly flip a spin with a certain probability and gradually 
reduce this probability22. Such a problem-agnostic heuristic works well to escape local minima for problems that 
lack any structure. However, SAT is a well-studied problem whose structure is exploited by solver heuristics. 
Conflict Driven Clause Learning (CDCL) solvers learn new clauses using Boolean resolution to actively store 
information on the problem at hand, and Variable State Independent Decaying Sum (VSID) has been shown to 
exploit large scale problem structures39. Stochastic Local Search (SLS) algorithms such as WalkSAT40 include a 
veritable buffet of different heuristics for variable selection based on various scoring and ranking mechanisms. 
With this motivation, we propose a new heuristic.

Tanh‑make‑break (TMB) heuristic
 The tanh-make-break (TMB) heuristic assigns probability, pn to flip each variable xn as follows:

where, cm > 0 and cb > 0 are parameters. Given an assignment of variables a , Mn represents the number of newly 
satisfied clauses after flipping a variable xn (make count), while newly unsatisfied clauses contribute to Bn (break 
count). Our main motivation to use the tanh function are: First, it is easily implementable in hardware. Second, 
it directly resembles probability without any need for normalization. Third, it is non-linear as experimentally 
we found it to work better. Finding the most optimal function is left as future work. The main intuition for TMB 
is that, stochastically flipping nodes that satisfy more clauses makes the landscape navigation more efficient as 
we shall see later. An illustrative example is shown in the supplemental. A key point to note here is that, unlike 
SLS algorithms, TMB allows multiple nodes/variables to flip in parallel without any synchronization. This makes 
the hardware design much simpler.

To compute pn , we need to compute Mn and Bn . It turns out, the incoming electric current for each node in 
our system is related to its Mn and Bn as follows:

(7)

dH̃

dt
=

∑

n

∂H̃

∂vn
·
dvn

dt
=

∑

n

∂H̃

∂Q(vn)
·
∂Q(vn)

∂vn
·
dvn

dt
= −

1

α

∑

n

( dvn

dt

)2

·
∂Q(vn)

∂vn
= −

1

α

∑

n

( dvn

dt

)2

· 0.5 · S · sech2{S · (vn − 0.5)}

(8)pn = tanh(cm ×Mn) · [1− tanh(cb ×Bn)]

(9)
dvn

dt
= α(1− 2xn) · (Mn −Bn)
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The derivation is shown in the Supplemental material. With this relation, we opt to compute Mn since it is much 
easier to obtain (refer to the supplemental for more details) and recover Bn from the incoming electric current 
in Eq. (9).

Figure 4 shows how we integrate TMB into our dynamical system. For each node, after every TMB period time, 
the heuristic gets the electric currents proportional to Mn and Bn . This information is used to select the respective 
node to flip determined by the probability pn as in Eq. (8). The selected nodes are then temporarily connected 
to VDD/ground to charge/discharge the capacitor respectively. Note that, while TMB is in the works, the system 
dynamics keeps evolving. If the system found a satisfying solution before the cutoff time, then ∀n (Mn = 0) . In 
this case, the system stops annealing and returns the spin vector (latching).

High‑level analyses of Augmented Ising Machine for SAT (AIMS)
With the discussed architectural innovations: cubic interaction and TMB heuristic, we propose Augmented 
Ising Machine for SAT (AIMS). We tuned the parameters cm and cb in our TMB heuristic that works the best, in 
general, for all problems. Sensitivity analysis is discussed in the supplemental. All the results are obtained using 
numerical simulations with realistic device parameters, assuming a 45nm technology. AIMS is first compared 
against state-of-the-art software solvers and cBRIM. Note that, existing high-degree Ising machines have been 
either evaluated with tiny problems19 or with poor solution quality and no direct report of the solver time18. In 
contrast, cBRIM is able to find solutions with higher success rates and hence, is compared here. Figure 5a shows 
the geometric mean TTS for each benchmark suite with error bars and also the overall TTS for various solvers.

As we can observe, for these benchmarks, AIMS is consistently faster with a geometric mean speedup of about 
2 and 3 orders of magnitude over software solvers WalkSAT40 and KISSAT30 respectively. The performance of 
the GPU-based SAT solver, ParaFrost42 lies between WalkSAT and KISSAT, thus it is slower than AIMS by about 
517x. With contributions from our TMB heuristic, AIMS outperforms cBRIM by at least an order of magni-
tude. Some of the data for cBRIM are missing as it could not solve the problems in our tested annealing times. 
The horizontal dashed line shows the TTS of baseline BRIM solving the QUBO formulation of a 100-variable 
problem. The speed of AIMS compared to both cBRIM and BRIM emphasizes the importance of our proposed 
architectural innovations.

Now, we look at the execution times and success probabilities for various solvers on 500-variable uniform 
random and scale-free problems as shown in Fig. 5b. The results of WalkSAT and KISSAT are shown for refer-
ence. AnalogSAT 43 is a recently proposed GPU-based solver that accelerates a simulation of a dynamical system. 
We can observe that AIMS takes the least execution times of ∼ 100 μs on average while still maintaining high 

Figure 4.   The high-level flow of how TMB works with our dynamical system.

Figure 5.   Performance comparison of AIMS against existing SAT solvers. (a) Comparing TTS of various 
solvers for benchmark suites from SATLIB41 and SAT 2011 competition. Each benchmark suite is named in 
this format: 〈Benchmark〉–〈Vars〉–〈Clauses (if stated)〉 . (b) Plots showing the execution time [Left] and success 
probability [Right] for various solvers. All solvers run 20 problems each with uniform random and industrial-
like scale-free distribution of 500 variables.
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success probability of 0.75. For both the problem types, AnalogSAT performed the worst as it took the longest 
times with low success probability for uniform random problems. KISSAT slightly outperformed WalkSAT in 
scale-free problems which corroborates its success in industrial SAT instances. In terms of TTS, AIMS is faster 
than the better performing GPU-based solver, ParaFrost, by about 3 orders of magnitude for uniform random 
problems and by 27× for scale-free problems.

Apart from software solvers, we also compare AIMS with two other state-of-the-art hardware SAT solvers: 
FPGA-based HW AmoebaSAT44 and Magnetic Tunnel Junction (MTJ)-based BRWSAT45 as shown in Table 1. 
The benchmarks shown here are the only ones reported by the references and hence, can be directly compared. 
Based only on the overlapping benchmarks, AIMS has a geometric speedup of 7.4× and 10.3× over HW Amoe-
baSAT and BRWSAT, respectively. Note that HW AmoebaSAT scales rather poorly as TTS increases 3 orders 
from problem sizes of 50 variables to 225 variables.

Finally, using Cadence simulations, we estimate that a 500-variable AIMS chip will consume ∼ 300 mW 
power and require ∼ 13× 13mm2 area. A detailed table of hardware parameters is shown in the supplemental. 
We believe that there is room for significant improvement for the various circuits used in this study.

Navigational efficiency
With such promising results demonstrated in the previous section, it is important to also look at how efficiently 
AIMS finds a solution. Figure 6 shows the geometric mean phase points visited to arrive at a solution by AIMS, 
cBRIM and WalkSAT. A phase point denotes a specific state of the quantized spin vector ∈ {0, 1}N . Each such 
state traversed by AIMS in a run is counted as a phase point “visit”. Since KISSAT is a CDCL solver, the notion 
of a phase point is not well defined and hence is not shown. Note here that the number of phase points visited 
is also adjusted by solution probability as in TTS. AIMS is consistently more efficient than cBRIM as it could 
achieve a satisfying solution by visiting about 134× fewer phase points in general. Note that some of the bench-
marks are not shown since cBRIM fails to find a solution for these, suggesting that it may require searching 
through many more phase points. WalkSAT still requires slightly fewer phase point visits than AIMS in general. 
However, the extremely fast dynamics of AIMS more than compensates for the larger phase point visits with 

Table 1.   Comparison of TTS for various hardware solvers in units of µs.

Benchmark N M HW AmoebaSAT44 BRWSAT45 AIMS (projected)

uf50-0100 50 218 4.126 − 5.829

uf50-0410 50 218 4.360 − 1.329

uf50-0767 50 218 8.300 − 4.059

uf100-0285 100 430 356 − 73.81

uf150-0100 150 645 1832 − 73.16

uf225-028 225 960 3078 − 10.41

sat11-350-p11 350 1491 − 200 39.54

sat11-350-p23 350 1491 − 1289 44.56

sat11-350-p75 350 1491 − 280 22.81

sat11-350-p98 350 1491 − 50 7.389

sat11-450-p1 450 1917 − 80 6.448

sat11-450-p11 450 1917 − 1912 577.1

sat11-450-p14 450 1917 − 4650 786.2

sat11-450-p78 450 1917 − 353.1 8.082

Figure 6.   Geometric mean phase points visited by AIMS, cBRIM and WalkSAT for various benchmark suites 
from SATLIB and 2011 SAT competition. The labels show the improvement of AIMS over cBRIM.
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an average flip-rate of 4250 flips/µs compared to 6 flips/µs for WalkSAT. This explains the observed speedup of 
AIMS over WalkSAT in Fig. 5.

Discussion
With diminishing speed of improvements for conventional computing systems, non-von Neumann systems 
such as Ising machines are receiving increased attention. While all COPs can be targeted by an Ising machine 
in theory, we have shown in this paper, using SAT as a case study, that there are still practical hurdles with such 
systems: high-degree interactions and efficient navigational heuristics.

Fortunately, these issues can be overcome with additional architectural support, at least for electronic Ising 
machines such as BRIM22. We have presented the design details to support cubic interaction natively in BRIM 
with 3 optimizations: 1© using AND gate as a multiplier, 2© exploiting SAT structure to still use O(N2) couplers 
and 3© using fixed resistors for the cubic couplers without much loss of generality.

More importantly, we have proposed a novel, semantic-aware annealing heuristic called TMB. To efficiently 
incorporate TMB into our dynamical system, we showed a relation between the difference (Mn −Bn) for each 
variable and its total incoming current. Then we derived an expression to easily compute Mn using analog cir-
cuits and extract Bn from the above mentioned relation. This reduced the extra circuit complexity and made the 
design more feasible. With the proposed architectural support, the resulting augmented Ising machine for SAT 
(AIMS) can achieve orders of magnitude speedup over state-of-the-art SAT solvers. Moreover, we also demon-
strated that AIMS can find a solution by visiting significantly fewer phase points than cBRIM, thus emphasizing 
the importance of TMB.

Although we conducted some non-ideal simulations verified partly with Cadence, a real hardware-based study 
is required in the future. Overall, our study suggests that Ising machines offer a powerful substrate to explore 
novel non-von Neumann computing. At the same time, additional architectural support may be crucial to truly 
unlock their performance potential.

Methods
Ising model
The Ising model was originally used to describe the Hamiltonian (H) for a state of spins ( σi ) on some lattice. A 
modified version (Eq. 10) of the formula is more useful in the discussion of optimization problems.

It turns out, this optimization problem is NP-complete and all the Karp’s original set of NP-complete prob-
lems have been transformed into the Ising model46. A loose physical analogy is as follows. A system of spins 
( σi ∈ {−1,+1} ) are subject to the influence of a set of parameters Jij and hi . Jij describes the coupling between 
two spins ( σi and σj ), while hi describes the influence of an external magnetic field on spin σi . Given this setup, 
the spins will naturally gravitate towards the lowest energy state (ground state). Technically, the probability of 
each state follows the Boltzmann distribution:

Boolean satisfiability (SAT)
A generic SAT problem is about determining whether a propositional logical formula F is satisfiable for some 
mapping of variables to truth values17. F consists of boolean-valued variables acted on by unary logical operator 
(negation: ¬ ) or binary ones (and: ∧ ; or: ∨ ; and implications: → , ⇐⇒ ). For example, F = x1 ∨ (¬x2) ∧ (x3 → x4) 
would be a formula in propositional logic. The statement is typically expressed in Conjunctive Normal Form 
(CNF)17, i.e. a logical conjunction of separate clauses (e.g. F = C1 ∧ C2 ∧ C3 ). Each clause is a logical disjunction 
of a number of literals. Literals are boolean variables or their negations (e.g. C = x1 ∨ ¬x2 ∨ x3 ). Any formula 
in propositional logic can be converted to CNF in linear time by introducing new variables and clauses47. When 
the number of literals in any clause is no more than k, the problem is called k-SAT. When k ≥ 3 , the problem is 
NP-complete. 3-SAT can be used to formulate any NP-complete problem in standard CNF, with SAT solvers as 
an efficient means of solution48.

D‑Wave QA results
We report the results on D-Wave’s 2000Q system with optimized annealing times of 2 µs, 20 µs and 2000 µs for 
5–7, 8–20, and 30–40 variable problems respectively. The results of the newer D-Wave Advantage system (5000 
qubits) were worse for our experiments although it could map larger 3-SAT problems. This is consistent with 
previous studies which conjectured that for sparse problems like SAT, the large number of unused couplers in 
the Pegasus topology of D-Wave Advantage might lead to more noise49,50.

Software‑based solver results
In all the experiments, CPU software solvers like WalkSAT40, KISSAT30 and SA32 are natively executed on Intel 
Xeon Platinum 8268 CPU at 2.90 GHz. WalkSAT is run using the -best heuristic and cutoff flips of 500,000 
with 20 retries. KISSAT is allowed to run with no cutoff time. GPU-based solvers (ParaFrost42 and AnalogSAT43) 
are executed on a system with AMD Ryzen Threadripper PRO 3975WX CPU with 16 GB of 3200 MHz DDR4 
RAM and an NVIDIA GeForce RTX 3090 @ 1.70GHz GPU.

(10)H(σ ) = −
∑

(i,j)

Jijσiσj −
∑

i

hiσi = −σ⊤Jσ − h⊤σ

(11)P(σ ) ∝ e−
H(σ )
T
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Simulation of dynamical systems
The evolution of various dynamical systems like BRIM, cBRIM and AIMS is modeled by solving differential 
equations using 4th-order Runge-Kutta method in C++. The behavioral simulation is verified to be accurate 
upto 32 nodes when compared against detailed circuit simulations in Cadence.

Benchmarks
For SAT benchmarks, we use those publicly available from SATLIB41 and the 2011 SAT competition. Moreover, 
we generated “hard” uniform random instances of varying sizes with M/N = 4.25 . Since it has been established 
that industrial problems exhibit scale-free behaviour51, we generated some difficult industrial-like SAT instances 
with 500-variables using scale-free distribution with M/N = 3.29 and power-law exponent of 2.93551. All prob-
lems are verified as satisfiable.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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