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Abstract— In an attempt to understand human physiological signals when an individual is subjected to pain,
we set up a tonic pain experiment in a laboratory setting. The subjects’ physiological signals were recorded,
timestamped, and compared to an initial 30 second baseline measurement. Subjects were also asked to ver-
bally state their level of pain based on a visual analog scale in order to compare reported pain levels with
physiological signals. The physiological signals measured were: Electroencephalography (EEG), Pupillary
Unrest Under Ambient Light (PUAL), Skin Conductance (SC), Electromyography (EMG), Respiration Rate
(RR), Blood Volume Pulse (BVP), Skin Temperature (ST), Blood Pressure (BP), and Facial Expression
(FE). ANOVA and frequency domain analyses were conducted on the data in order to determine whether
there was a significant difference between the ‘pain’ and ‘no pain’ (baseline) states of an individual. Based
on our results, skin conductance, PUAL, facial expression, and EEG signals were theorized to be good sig-
nals for the classification of tonic pain, or any pain applied directly to an individual.

Keywords - Objective Pain Measurement, Physiological Signals, Electroencephalography, Skin Conduct-

ance, Facial Expression.

BACKGROUND

In the medical field, pain is an important factor in the treat-
ment of patients, particularly in regard to patients in a critical
state before and after surgery. Therefore, an accurate meas-
urement of a patient’s pain intensity level is an essential ele-
ment for clinical care. Currently, the most common measure-
ments for pain intensity in clinical settings are the faces rate
scale, numerical rating scale (NRS, shown in Fig. 1), visual
analog scale (VAS), and verbal rating scale (VRS). Over the
past 20 years, more than 50 studies have been published com-
paring their use in multiple contexts using different analyses
(Ferreira-Valente, Pais-Ribeiro, & Jensen, 2011; Hjermstad et
al., 2011). Despite this, each study has had differing recom-
mendations as to which scale is the most effective. Further-
more, these methods are subjective, which can lead to incon-
sistent data and conclusions (Chanques et al., 2010; Lund et
al., 2005; Williamson & Hoggart, 2005).
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Fig. 1. A typical faces rating scale and numerical rating scale
(NRS) used in medical institutions.

There are various pain scales and tests being utilized in the
medical field such as the Brief Pain Inventory, the Checklist of

Nonverbal Pain Indicators, the Critical Care Patient Observa-
tion Tool (CPOT), and the McGill Pain Questionnaire. All
these tests, however, involve a medical professional examin-
ing or specifically questioning the patient on their condition
(Cleland, 2005). All of the results of these tests are based on
the examiner’s judgement regarding the patient’s situation.
Thus, these scales may: (1) Not take all factors regarding the
patient’s situation into consideration; (2) Introduce an examin-
er bias that may affect the final result of the test (Jensen,
2003); and (3) Introduce a patient bias, where one patient’s
understanding of pain may differ from another’s (Jensen,
2003). The CPOT achieved the most non-subjective pain test,
however, this is also dependent on observations of patient ex-
pression and concentration (Gelinas, Fillion, Puntillo, Viens,
& Fortier, 2006).

MOTIVATION

Subjective evaluations are the pervading theme within mod-
ern pain scales and assessments. Our proposition attempts to
minimize any subjective evaluations or biases introduced by
assessors who are not the patient (Hsieh, Tripp, Ji, & Sullivan,
2010). The goal is to keep the factors that determine the re-
sults of the pain scale directly correlated to the patient only; in
other words, keep the results of the test as objective as possi-
ble.

The primary area of concern regarding the subjectivity of
pain is the way clinicians use subjective scales as a factor in
determining treatment plans for patients. Patients reporting
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intense feelings of pain may be administered strong pain re-
lievers and antibiotics. While those exhibiting minimal pain
may be administered a more moderate dosage (Turk et al.,
2003). This creates the possibility of misdiagnosis of a pa-
tient's illness, leading to problems for both patient and clini-
cian.

Furthermore, a patient could potentially lie to their doctor
regarding their pain intensity to obtain certain pain relievers
for recreational use. This is an issue that the study of sub-
stance abuse attempts to tackle by introducing screening tools.
However, developing an all-in-one solution that utilizes a pa-
tient’s physiological signals could minimize the need to con-
duct time consuming screening evaluations. It would expose
patients who would lie about their conditions.

Lastly, the development of a pain assessment tool based on
physiological signals would minimize the time a patient
spends in triage (Krebs, Carey, & Weinberger, 2007). Since
patients’ vitals are also taken during this time, the vitals data
could also be extracted from the assessment tool. In addition,
by providing a more accurate indicator of the patient’s condi-
tion, the medical staff could use it to determine the degree of
urgency for patients awaiting hospital admission.

Objectives

It has been suggested that the core domains that pain
measures should be intensity, physical symptoms, and certain
aspects and qualities (Dworkin et al., 2005; Turk et al., 2003).
In order to solve the aforementioned issue regarding subjec-
tive pain testing, we propose the development and design of an
objective multi-modal pain classifier. This would eliminate the
need for subjective scales and potential misdiagnosis from
pain measurement by using Electroencephalography (EEG),
Pupillary Unrest Under Ambient Light (PUAL), and Skin
Conductance (SC), Electromyography (EMG), Respiration
Rate (RR), Blood Volume Pulse (BVP), Skin Temperature
(ST), Blood Pressure (BP), Facial Expression (FE) (Evans,
Hodgkinson, & Berry, 2001; Neice, 2017; Tejman-Yarden et
al., 2016). Then, sensor fusion algorithms will be performed to
classify the pain levels based on the above.

EXPERIMENTAL PROCEDURE

This study was approved by Northeastern University IRB
(IRB#: 17-01-25). Consent to partake in the experiment was
obtained from all subjects involved. The Thought Technology
Data Acquisition system was used to collect physiological
signals. The Enobio 32-Channel was used to collect EEG data.
The Tobii Glasses pro was used to collect pupil diameter data.
An Omron blood pressure device was used to measure blood
pressure. A built-in web camera was used to record facial ex-
pression. The experimental procedure went as follows:

1) Timestamps were collected from a screen recorder to en-
sure proper timestamps on trial sets.

2) Sensors were attached to the subject at their respective
locations. These locations are:
a) Skin Conductance (SC): Ring and Index finger
b) Blood Volume Pulse (BVP): Middle finger
¢) Electromyograghy (EMGQG): Left forearm

d) Respiration Rate (RR): The circumference of the
subject’s upper stomach.

e) Skin Temperature (ST): The back of subject’s non-
donminant hand

f) Blood Pressure (BP) : Upper arm

g) Facial Expression (FE): In front of subject’s face

h) Electroencephalography (EEG): On subject’s scalp
(using 10-20 system to place the electrodes)

1)  Pupil diameter: in front of subject’s eyes

3) The subject was asked to relax and a 30 second recording
of all sensors was taken as a baseline measurement.

4) Simultaneously, the subject was asked to maintain focus
on a green dot displayed on a monitor in front of them.

5) After 30 seconds, the subject was asked to place their
dominant hand into a bucket containing water and ice.
Every 30 seconds, the subjects were asked for their:

a) Pain threshold

b) Discomfort

¢) VAS pain experience

d) Psychological preparedness (This included questions
pertaining to whether the subject expected the
sensation of pain to be as intense as it was).

DATA ANALYSIS

Subjective rating of pain level

During the experiment, subjects were asked to indicate
their level of pain based on the VAS. This was done in order
to determine whether there would be a difference in reported
pain versus the response in physiological signals. It showed
that there was a general increasing trend in the reported pain
level of the subjects, despite no change in the temperature of
the ice water or any other variables.

Physiological Signal Analysis

After acquiring the data from the Thought Technology sys-
tem. It was exported into a CSV file for review in Excel. Since
time synchronization between EEG and physiological signals
was not present, baseline and trial measurements were manu-
ally extracted and categorized by timestamping a screen cap-
ture video of the data.

The platform used for analysis was MATLAB. For all the
physiological signals, an analysis of variance (ANOVA) was
used to test the null hypothesis (p < 0.05) for each trial includ-
ing the baseline. This will determine whether there were any
significant differences between each 20 second trial and the
baseline recordings. EMG, Respiration Rate, Skin Tempera-
ture, and Blood Pressure did not show significant differences.

Blood Volume Pulse

Blood Volume Pulse (BVP) device bounces infrared light
against a skin surface and measures the amount of light re-
flected. The amount of light reflected varies with the amount
of blood that is present in the skin — vasomotor activity and
sympathetic arousal. The peak-to-peak amplitude of the signal
will vary with respect to the changes in sympathetic arousal.
BVP was used to calculate heart rate and heart rate variability
(HRV). It is shown in (Faye et al., 2010) that the decrease of
high frequency HRV can indicate post-operative pain. The
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heart rate of one subject in painful and non-painful state is
shown in Fig. 2.
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Fig. 2. An exemplary plot showing heart rate under pain and
no pain state.

The time-domain method was used to calculate the heart
rate variability. The Root Mean Square of Successive Differ-
ences (RMSSD) between each heartbeat were calculated. The
HRYV of each subject in non-painful and painful state was
shown in Fig. 3.
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Fig. 3. Subjects’ mean HRV in non-painful and painful state.

Electromyography

Electromyography (EMG) is the measurement of muscle
activities by detecting and amplifying the tiny electrical im-
pulses that are generated as the muscle fibers contract. The
electromyography is the measurement used to measure the
activation signal of muscles. This sensor is required to be
placed on the muscle belly and its positive and negative elec-
trodes are to be parallel to the muscle fibers. Depending on the
muscles under observation, the measured EMG potentials can
range between less than 50 microvolts to within 20-30 milli-
volts. Surface EMG was proved a useful indicator for pain
assessment in (Ambroz, 2000). Fig. 4 shows the EMG of one
subject in painful and non-painful state.
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Fig. 4. EMG data in painful and non-painful state.

Skin Temperature

The body’s peripheral temperature, as measured on its ex-
tremities, will vary according to the amount of blood perfusing
the skin. This, in turn, is dependent on the subject’s state of
sympathetic arousal. A study by (Sadler, Stratton, DeBerry, &
Kolber, 2013) shows that pain intensity can affect skin tem-
perature. One subject’s skin temperature is shown in Fig 5.
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Fig. 5. The skin temperature of one subject in painful and
non-painful state.

Respiration Rate

The respiration sensor is an elastic medium that is sensitive
to stretch. This sensor is strapped around the subject’s chest or
abdomen, and converts contraction and expansion of the rib
cage of abdominal region — rise and fall of the signal. Respira-
tion rate is number of breaths that a person takes per minute. It
was found to be associated with acute pain in (Stevens,
Johnston, Petryshen, & Taddio, 1996). The respiration rate of
one subject is shown in Fig. 6.
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Fig. 6. The respiration rate of a subject in painful and non-
painful state.
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Blood Pressure

Blood pressure also plays a key role when responding to
pain. Blood pressure sensors are typically non-invasive as they
are designed to measure systolic, diastolic, and mean arterial
pressure via the subject’s oscillating blood pressure responses.
One study (Fillingim & Maixner, 1996) showed higher blood
pressure indicated a lower pain sensitivity. Fig. 7 shows the
blood pressure of a subject in non-painful and painful state.



Proceedings of the 2018 International Symposium on Human Factors and Ergonomics in Health Care 243

Blood Pressure
115

=120 110

m

€ 100 1

[or]
o

Blood pressure (
(2]
(= ]

40 ' '
Painful state Non-painful state

Fig. 7. An exemplary blood pressure in non-painful and pain-
ful state (upper: systolic pressure, lower: diastolic pressure).

Skin Conductance

Skin conductance is a measure of the electrical conductance
of skin based on the perspiratory gland activity. In this study,
skin conductance data was collected on two fingers: the ring
finger and index finger. For skin conductance, the following
parameters are calculated: (1) mean value; (2) standard devia-
tion; (3) skin conductance change, which is calculated as the
difference between pain state and non-pain state. Skin con-
ductance was found to increase as the pain level increased, as
shown in Fig. 8.
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Fig. 8. An exemplary skin conductance plot showing skin
conductance increasing as pain level increase

It was proved that fluctuations of skin conductance in unit
time was related to postoperative pain (Ledowski et al., 2007).
A lower fluctuations of skin conductance indicates a lower
postoperative pain level. Fig. 9 shows the number of fluctua-
tions of skin conductance in a second in non-painful and pain-
ful states.
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Fig. 9. The mean fluctuations of skin conductance of subjects
in non-painful and painful states

Pupillary Unrest Under Ambient Light

Pupil unrest is the fluctuation of people’s pupil diameter in
both dark and bright environments. PUAL is calculated by
computing the area under the curves (AUC) of the fast Fourier
transformation of pupil diameter. It’s proved in (Bokoch,
2015) that the relevant frequency range of the AUC is from
0.2 to 2.7 Hz. The fast Fourier Transformation plot of the pu-
pil diameter is shown in Fig. 10.
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Fig. 10. FFT of pupil diameter plot from an exemplary subject
(blue line shows the fft diagram of pain data, and orange line
shows the fft diagram of non-pain data)

One-way ANOVA was performed to test the difference be-
tween the pain state and non-pain state. The mean PUAL of
pain data set is 0.1345 and the mean PUAL of non-pain data
set is 0.1132. The p-value of t-test is 0.014, which means the
differences between two sets of data are significant at 0.05
level.

Facial Expression

Facial expressions analysis is used for predicting pain
intensity. This method is based on a set of facial landmarks
(Werner et al., 2013). For each image from a given video, we
first detect the region of the face using the Haar-like feature
cascade detector (Lienhart, Kuranov, & Pisarevsky, 2003).

After that, an ensemble of regression trees, which is based o
e T .'::. » R L)

Fig. 11. Face landmarks estimation on subjects who are under
pain
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gradient boosting, is applied to estimate the facial landmark
positions (Kazemi & Sullivan, 2014). This algorithm is of high
quality of accuracy and good real-time performance that suits
our scenario. The facial landmarks extracted include: chin, left
and right eyebrows, left and right eyes, nose bridge and tip,
top and bottom tip. The outcome is shown in Fig. 11.

The images were from the Shoulder-Pain dataset (Lucey et
al., 2012) which is widely used for pain intensity estimation.
The features of distances were extracted to capture the facial
responses during pain. The distances between the eyebrows
and eyes, eyes and mouth, eyebrows and mouth, as well as the
width and height of the mouth were calculated. They were
compared with those extracted from the images of which the
pain intensity was already known through multivariate
analysis of covariance and cluster analysis to figure out the
differences and similarities. The final prediction would belong
to the intensity that has the most similarities. Real time testing
results are shown in Fig. 12.
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Fig. 12. Real time tesing results showig the i);in level of a
subject

EEG Analysis

EEG is an electrophysiological monitoring method that
records the electrical activity of the brain. This paper focused
on a topography analysis of brain activity in order to deter-
mine which regions of the brain were stimulated when experi-
encing pain. Topographies allowed us to determine whether
brain activity was a viable physiological signal for the deter-
mination of the presence of pain.

In data preprocessing, we used a 2-40Hz bandpass filter,
common average reference (CAR), and independent compo-
nent analysis (ICA). ICA is a powerful technique and is able
to separate independent sources linearly mixed in several sen-
sors. In our experiment, we used ICA to remove eye blinking
and eye-movement artifacts from the raw EEG data.

EEG signals can be divided into the following frequency
band: delta (<4 Hz), theta (4-7 Hz), alpha (8-15 Hz), beta (16-
31 Hz), and gamma (>32 Hz). These frequency bands were
used to investigate the differences for a ‘Pain’ and ‘No Pain’
state of subjects. Frequency domain analysis for EEG signals

followed a few steps. We obtained the EEG power band to-
pography. In Fig. 13, the first (left) image shows the baseline
data topography. The second (middle) image shows the topog-
raphy for the median time of the subject. The third (right) im-
age shows the topography at the end of the procedure. In the
graph, a blue hue usually indicates a low power signal while
the red hue symbolizes a powerful signal. We analyzed the
EEG data in five different frequency ranges, finding that the
delta frequency band was ideal for analyzing the EEG data
(Chen & Rappelsberger, 1994).

Fig. 13. Topographies of exemplary subject.

Four components’ features from a subject are shown in
Fig. 14. The first two components were useless, and the last
two components were useful. The first two components pro-
vided no value to our analysis because they were mixed with
eye artifacts, which produced noise and polluted the signal.
However, we removed said artifacts using ICA to obtain the
filtered data.

Fig. 14. Four components showing the component features

Multimodal fusion and model optimization for pain classi-
fication

The multimodal fusion system was indicated to be function-
al (Chang, Bowyer, & Flynn, 2003; Lahat, Adali, & Jutten,
2015; Yang, Lin, & Bhattacharya, 2008). With numerous sig-
nals to analyze pain level, a multimodal fusion classification
architecture scheme was designed, as shown in Fig. 15.

In this experimental setting, we utilized known physiologi-
cal patterns pertaining to pain perception and train algorithms
iteratively for data from multi-modal sources. With learning,
feature extraction was applied to physiological modalities to
generate pain classifications on a 0-10 scale (0 = No Pain; 10
= Breakthrough Pain). The main goal of the sensor fusion al-
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gorithms was to establish a self-improving model for accurate
and reliable estimation of pain.

After feature extraction, all features were combined by con-
catenating individual features to a higher dimensional vector
during feature fusion. Then we used the one-versus-the-rest
algorithm to perform multi-classification. Each classifier was
of two patterns and produces a real-valued confidence score
for its decision. All classifiers were trained first. After all the
trained classifiers performing classification, the 11 confidence
scores were multiplied by 11 weights. The updating process
found optimized weight parameters until predicted pain level
agrees with true pain level.

Multimodal fusion
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Fig. 15. A multimodal fusion classification architecture
scheme

The original testing procedure used all physiological sen-
sors. After performing feature selection, it was determined that
EMG, respiration rate, skin temperature, and blood pressure
did not show a significant impact on the model. Additionally,
only two of the nine original EEG channels considered (FP2
and C4) were not shown impactful. For future testing, these
sensors and/or features could be used as low priority sensor.
The remaining features include skin conductance, heart rate,
EEG, facial repression, and PUAL. This reduction would re-
duce setup time and cost, as well as the invasiveness of the
test, and hence improve overall efficiency.

The incremental value of different sensors was suggested to
be assessed in objective assessment. For example, under the
condition certain signals may be missing or could not be rec-
orded, e.g. eye movement signal, facial expression signal. An-
other example is that EEG could not be recorded due to certain
reasons (discomfort or bandage on the head). In these cases,
we assign a confidence score and weight to each sensor to
converge outcome in pain assessment

Extreme gradient boosting tree, K-nearest neighbors, Naive
Bayes, neural network, random forest, and support vector ma-
chine modeling methods were used. Of all regression models
tested, the random forest model and extreme gradient boosting
tree were the two bests with regards to error measures. The
random forest model was chosen as the final proof-of-concept
model over the best-performing classification model. The re-
gression model outputs a specific expected pain value. This
pain value will be more practical for doctors to use in a clini-

cal setting, and is less restrictive than the pre-defined pain
categories of the classification models. The root mean square
error (RMSE) of the random forest model is shown in Fig. 16.
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Fig. 16. Root Mean Square Error (RMSE) of the random for-
est model

To optimize the model, it is suggested that the effects of all the
above involved sensors would continue to be investigated to
study those with possible incremental values.

RESULTS

Based on this study, it was clear from the topographies that
the general trend in initial brain activity was low for the EEG
signals. However, brain activity began to gradually increase
over the course of the experiment. With regards to the EEG
frequency bands, the NIC program was used for signal analy-
sis. It was found that the delta frequency band (0 — 4.0 Hz)
exhibited the largest amount of fluctuation and activity across
all individuals. Since multiple measures were taken to mini-
mize the influence of noise on the signal, such as eye artifacts,
unnecessary motion, and speech, this suggests that the delta
frequency band is the ideal frequency range to be used for pain
indication.

A one-way analysis of variance was conducted on skin
conductance and PUAL. The null hypothesis was tested
against p < 0.05. The analysis was conducted at a 256Hz sam-
pling rate for all signals. Two male subjects were removed
from the analysis due to the limited number of trials (< 2).
Skin conductance initially increased in magnitude, then began
to decrease over time. Facial expression was shown feasible
for pain level assessment. For the Multimodal Sensor model-
ing, random forest models were the best performing model
with an accuracy of 73.67% and extreme gradient boosting
tree was close behind with accuracy of 72.98%

DISCUSSION

The experimental results supported the hypothesis that cer-
tain physiological signals are reliable indicators for the pres-
ence or absence of pain. Specifically, skin conductance,
PUAL, heart rate, facial expression, and EEG were found to
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provide meaningful results. Given certain scales and calibra-
tion schemes, a pain intensity scale that was based on physio-
logical signals could be developed. EEG data could then be
used to support the pain intensity measurement based on the
magnitude of brain activity.

It is proposed to use a multi-modal physiological signal
method for determining the presence of pain in an individual.
First, skin conductance would be used as an initial short term
indicator for when a subject experiences pain. The increase in
skin conductance in the experiment was likely caused by the
initial ‘shock’ subjects felt when they placed their hand in the
ice bucket. Thus, it is suggested that skin conductance should
be used for short-term (1-2 min) measurements of pain. EEG
should be used for determining pain over a period of time
greater than 2 minutes, primarily due to the behavior of the
signals where increases in activity are only noticeable after a
certain period of time, as shown in Fig. 13.

EEG signals can be used more specifically for determining
chronic pain, as it is a form of pain that is experienced contin-
uously over an extended period of time. Skin conductance
would also play a factor in determining pain intensity in a sub-
ject experiencing chronic pain; however, these signals are
more suitable in a time-restricted environment. Examples of
these environments would be initial triage to a hospital ER or
an outpatient clinic.

Baseline measurements as comparison to collected meas-
urements would have to be standardized. Thus, we propose the
collection of a large database of human physiological signals
that are based on certain age ranges, genders, and ethnic back-
ground.

The algorithm for detecting pain should involve the usage
of weighting factors assigned to each physiological signal,
depending on the environment the subject is being tested in
and the duration of the measurement. These weights would
influence the final output of the algorithm and output either a
‘Pain’ or ‘No Pain’ indicator. Skin conductance results would
be given a greater weight on the final outcome of the algo-
rithm in shorter measurements, for example. While the results
of EEG would have an increased weight for measurements
over 2 minutes. The purpose behind this weighting scheme is
to make the algorithm’s application robust and applicable to
all medical environments, including triage intake, ER, ICU,
and outpatient clinics.

Further experimentation is necessary to prove the efficien-
cy of this method; thus, further clinical trials will be conducted
within outpatient clinics and hospital settings on both patients
experiencing chronic and acute pain. Setting and each type of
pain experienced would be tested separately in order to deter-
mine proper configurations and the ideal environment for the
algorithm. Patient data will be used for the aforementioned
algorithm to determine if it is a suitable method for the devel-
opment of a pain indicator and pain scale.

CONCLUSION

Based on our current data analysis, EEG, skin conduct-
ance, Pupillary Unrest under Ambient Light (PUAL) and faci-
al expression were determined to be good indicators of cold,
tonic pain measurement because they exhibited the greatest

difference from the baseline measurements. Furthermore, EEG
delta band activity increased throughout the course of the ex-
periment. It is predicted that the power of delta bands increas-
es with an increase in pain level. This frequency range should
be further investigated under various pain stimuli. It was rec-
ommended that these two signals be used to determine pro-
longed pain experiences such as patients exhibiting pain dur-
ing ICU or post-operation visits. For short pain experiences or
when a quick evaluation of pain intensity is needed, such as
during an initial patient assessment, skin conductance are ideal
indicators for pain intensity. Due to the small sample size of
the population, it is recommended to obtain a larger, homoge-
nous sample in order to minimize outliers and confirm our
conclusions. We recommend further study of physiological
signals during pressure pain stimulus, as this is also a determi-
nant for short-interval pain.
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