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Abstract— In an attempt to understand human physiological signals when an individual is subjected to pain, 
we set up a tonic pain experiment in a laboratory setting. The subjects’ physiological signals were recorded, 
timestamped, and compared to an initial 30 second baseline measurement. Subjects were also asked to ver-
bally state their level of pain based on a visual analog scale in order to compare reported pain levels with 
physiological signals. The physiological signals measured were: Electroencephalography (EEG), Pupillary 
Unrest Under Ambient Light (PUAL), Skin Conductance (SC), Electromyography (EMG), Respiration Rate 
(RR), Blood Volume Pulse (BVP), Skin Temperature (ST), Blood Pressure (BP), and Facial Expression 
(FE). ANOVA and frequency domain analyses were conducted on the data in order to determine whether 
there was a significant difference between the ‘pain’ and ‘no pain’ (baseline) states of an individual. Based 
on our results, skin conductance, PUAL, facial expression, and EEG signals were theorized to be good sig-
nals for the classification of tonic pain, or any pain applied directly to an individual. 

Keywords - Objective Pain Measurement, Physiological Signals, Electroencephalography, Skin Conduct-
ance, Facial Expression.  
 

BACKGROUND 
 
   In the medical field, pain is an important factor in the treat-
ment of patients, particularly in regard to patients in a critical 
state before and after surgery. Therefore, an accurate meas-
urement of a patient’s pain intensity level is an essential ele-
ment for clinical care. Currently, the most common measure-
ments for pain intensity in clinical settings are the faces rate 
scale, numerical rating scale (NRS, shown in Fig. 1), visual 
analog scale (VAS), and verbal rating scale (VRS). Over the 
past 20 years, more than 50 studies have been published com-
paring their use in multiple contexts using different analyses 
(Ferreira-Valente, Pais-Ribeiro, & Jensen, 2011; Hjermstad et 
al., 2011). Despite this, each study has had differing recom-
mendations as to which scale is the most effective. Further-
more, these methods are subjective, which can lead to incon-
sistent data and conclusions (Chanques et al., 2010; Lund et 
al., 2005; Williamson & Hoggart, 2005).  
 

 
Fig. 1. A typical faces rating scale and numerical rating scale 
(NRS) used in medical institutions.  

There are various pain scales and tests being utilized in the 
medical field such as the Brief Pain Inventory, the Checklist of 

Nonverbal Pain Indicators, the Critical Care Patient Observa-
tion Tool (CPOT), and the McGill Pain Questionnaire. All 
these tests, however, involve a medical professional examin-
ing or specifically questioning the patient on their condition 
(Cleland, 2005). All of the results of these tests are based on 
the examiner’s judgement regarding the patient’s situation. 
Thus, these scales may: (1) Not take all factors regarding the 
patient’s situation into consideration; (2) Introduce an examin-
er bias that may affect the final result of the test (Jensen, 
2003); and (3) Introduce a patient bias, where one patient’s 
understanding of pain may differ from another’s (Jensen, 
2003). The CPOT achieved the most non-subjective pain test, 
however, this is also dependent on observations of patient ex-
pression and concentration (Gelinas, Fillion, Puntillo, Viens, 
& Fortier, 2006). 
 

MOTIVATION 
 
    Subjective evaluations are the pervading theme within mod-
ern pain scales and assessments. Our proposition attempts to 
minimize any subjective evaluations or biases introduced by 
assessors who are not the patient (Hsieh, Tripp, Ji, & Sullivan, 
2010). The goal is to keep the factors that determine the re-
sults of the pain scale directly correlated to the patient only; in 
other words, keep the results of the test as objective as possi-
ble.  
    The primary area of concern regarding the subjectivity of 
pain is the way clinicians use subjective scales as a factor in 
determining treatment plans for patients. Patients reporting 
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intense feelings of pain may be administered strong pain re-
lievers and antibiotics. While those exhibiting minimal pain 
may be administered a more moderate dosage (Turk et al., 
2003). This creates the possibility of misdiagnosis of a pa-
tient's illness, leading to problems for both patient and clini-
cian. 
    Furthermore, a patient could potentially lie to their doctor 
regarding their pain intensity to obtain certain pain relievers 
for recreational use. This is an issue that the study of sub-
stance abuse attempts to tackle by introducing screening tools. 
However, developing an all-in-one solution that utilizes a pa-
tient’s physiological signals could minimize the need to con-
duct time consuming screening evaluations. It would expose 
patients who would lie about their conditions. 

Lastly, the development of a pain assessment tool based on 
physiological signals would minimize the time a patient 
spends in triage (Krebs, Carey, & Weinberger, 2007). Since 
patients’ vitals are also taken during this time, the vitals data 
could also be extracted from the assessment tool. In addition, 
by providing a more accurate indicator of the patient’s condi-
tion, the medical staff could use it to determine the degree of 
urgency for patients awaiting hospital admission.  

 
Objectives 

It has been suggested that the core domains that pain 
measures should be intensity, physical symptoms, and certain 
aspects and qualities (Dworkin et al., 2005; Turk et al., 2003). 
In order to solve the aforementioned issue regarding subjec-
tive pain testing, we propose the development and design of an 
objective multi-modal pain classifier. This would eliminate the 
need for subjective scales and potential misdiagnosis from 
pain measurement by using Electroencephalography (EEG), 
Pupillary Unrest Under Ambient Light (PUAL), and Skin 
Conductance (SC), Electromyography (EMG), Respiration 
Rate (RR), Blood Volume Pulse (BVP), Skin Temperature 
(ST), Blood Pressure (BP), Facial Expression (FE) (Evans, 
Hodgkinson, & Berry, 2001; Neice, 2017; Tejman-Yarden et 
al., 2016). Then, sensor fusion algorithms will be performed to 
classify the pain levels based on the above. 
 

EXPERIMENTAL PROCEDURE 
 

This study was approved by Northeastern University IRB 
(IRB#: 17-01-25). Consent to partake in the experiment was 
obtained from all subjects involved. The Thought Technology 
Data Acquisition system was used to collect physiological 
signals. The Enobio 32-Channel was used to collect EEG data. 
The Tobii Glasses pro was used to collect pupil diameter data. 
An Omron blood pressure device was used to measure blood 
pressure. A built-in web camera was used to record facial ex-
pression. The experimental procedure went as follows: 
1) Timestamps were collected from a screen recorder to en-

sure proper timestamps on trial sets.  
2) Sensors were attached to the subject at their respective 

locations. These locations are: 
a) Skin Conductance (SC): Ring and Index finger 
b) Blood Volume Pulse (BVP): Middle finger 
c) Electromyograghy (EMG): Left forearm  

d) Respiration Rate (RR): The circumference of the 
subject’s upper stomach. 

e) Skin Temperature (ST): The back of subject’s non-
donminant hand 

f) Blood Pressure (BP) : Upper arm 
g) Facial Expression (FE): In front of subject’s face 
h) Electroencephalography (EEG): On subject’s scalp 

(using 10-20 system to place the electrodes) 
i) Pupil diameter: in front of subject’s eyes 

3) The subject was asked to relax and a 30 second recording 
of all sensors was taken as a baseline measurement. 

4) Simultaneously, the subject was asked to maintain focus 
on a green dot displayed on a monitor in front of them. 

5) After 30 seconds, the subject was asked to place their 
dominant hand into a bucket containing water and ice. 
Every 30 seconds, the subjects were asked for their: 
a) Pain threshold 
b) Discomfort 
c) VAS pain experience 
d) Psychological preparedness (This included questions 

pertaining to whether the subject expected the 
sensation of pain to be as intense as it was). 
 

DATA ANALYSIS 
 
Subjective rating of pain level 

During the experiment, subjects were asked to indicate 
their level of pain based on the VAS. This was done in order 
to determine whether there would be a difference in reported 
pain versus the response in physiological signals. It showed 
that there was a general increasing trend in the reported pain 
level of the subjects, despite no change in the temperature of 
the ice water or any other variables. 
 
Physiological Signal Analysis 

After acquiring the data from the Thought Technology sys-
tem. It was exported into a CSV file for review in Excel. Since 
time synchronization between EEG and physiological signals 
was not present, baseline and trial measurements were manu-
ally extracted and categorized by timestamping a screen cap-
ture video of the data.  

The platform used for analysis was MATLAB. For all the 
physiological signals, an analysis of variance (ANOVA) was 
used to test the null hypothesis (p < 0.05) for each trial includ-
ing the baseline. This will determine whether there were any 
significant differences between each 20 second trial and the 
baseline recordings. EMG, Respiration Rate, Skin Tempera-
ture, and Blood Pressure did not show significant differences. 
 
    Blood Volume Pulse 
    Blood Volume Pulse (BVP) device bounces infrared light 
against a skin surface and measures the amount of light re-
flected. The amount of light reflected varies with the amount 
of blood that is present in the skin – vasomotor activity and 
sympathetic arousal. The peak-to-peak amplitude of the signal 
will vary with respect to the changes in sympathetic arousal. 
BVP was used to calculate heart rate and heart rate variability 
(HRV). It is shown in (Faye et al., 2010) that the decrease of 
high frequency HRV can indicate post-operative pain. The 
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heart rate of one subject in painful and non-painful state is 
shown in Fig. 2.   

 
Fig. 2. An exemplary plot showing heart rate under pain and 
no pain state.  

The time-domain method was used to calculate the heart 
rate variability. The Root Mean Square of Successive Differ-
ences (RMSSD) between each heartbeat were calculated. The 
HRV of each subject in non-painful and painful state was 
shown in Fig. 3.  

 
Fig. 3. Subjects’ mean HRV in non-painful and painful state.  
 
    Electromyography  
    Electromyography (EMG) is the measurement of muscle 
activities by detecting and amplifying the tiny electrical im-
pulses that are generated as the muscle fibers contract. The 
electromyography is the measurement used to measure the 
activation signal of muscles. This sensor is required to be 
placed on the muscle belly and its positive and negative elec-
trodes are to be parallel to the muscle fibers. Depending on the 
muscles under observation, the measured EMG potentials can 
range between less than 50 microvolts to within 20-30 milli-
volts. Surface EMG was proved a useful indicator for pain 
assessment in (Ambroz, 2000).  Fig. 4 shows the EMG of one 
subject in painful and non-painful state.  

 
Fig. 4. EMG data in painful and non-painful state.  
 
    Skin Temperature 

The body’s peripheral temperature, as measured on its ex-
tremities, will vary according to the amount of blood perfusing 
the skin. This, in turn, is dependent on the subject’s state of 
sympathetic arousal. A study by (Sadler, Stratton, DeBerry, & 
Kolber, 2013) shows that pain intensity can affect skin tem-
perature. One subject’s skin temperature is shown in Fig 5.   

 
Fig. 5.  The skin temperature of one subject in painful and 
non-painful state.  
 
    Respiration Rate 
    The respiration sensor is an elastic medium that is sensitive 
to stretch. This sensor is strapped around the subject’s chest or 
abdomen, and converts contraction and expansion of the rib 
cage of abdominal region – rise and fall of the signal. Respira-
tion rate is number of breaths that a person takes per minute. It 
was found to be associated with acute pain in (Stevens, 
Johnston, Petryshen, & Taddio, 1996). The respiration rate of 
one subject is shown in Fig. 6.   

 
Fig. 6. The respiration rate of a subject in painful and non-
painful state. 
 
    Blood Pressure 

Blood pressure also plays a key role when responding to 
pain. Blood pressure sensors are typically non-invasive as they 
are designed to measure systolic, diastolic, and mean arterial 
pressure via the subject’s oscillating blood pressure responses.  
One study (Fillingim & Maixner, 1996) showed higher blood 
pressure indicated a lower pain sensitivity. Fig. 7 shows the 
blood pressure of a subject in non-painful and painful state.  
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Fig. 7. An exemplary blood pressure in non-painful and pain-
ful state (upper: systolic pressure, lower: diastolic pressure).  
 
    Skin Conductance 

Skin conductance is a measure of the electrical conductance 
of skin based on the perspiratory gland activity. In this study, 
skin conductance data was collected on two fingers: the ring 
finger and index finger. For skin conductance, the following 
parameters are calculated: (1) mean value; (2) standard devia-
tion; (3) skin conductance change, which is calculated as the 
difference between pain state and non-pain state. Skin con-
ductance was found to increase as the pain level increased, as 
shown in Fig. 8. 

 
Fig. 8. An exemplary skin conductance plot showing skin 
conductance increasing as pain level increase 
 
    It was proved that fluctuations of skin conductance in unit 
time was related to postoperative pain (Ledowski et al., 2007). 
A lower fluctuations of skin conductance indicates a lower 
postoperative pain level. Fig. 9 shows the number of fluctua-
tions of skin conductance in a second in non-painful and pain-
ful states.  

 
Fig. 9. The mean fluctuations of skin conductance of subjects 
in non-painful and painful states 

 
Pupillary Unrest Under Ambient Light  

Pupil unrest is the fluctuation of people’s pupil diameter in 
both dark and bright environments. PUAL is calculated by 
computing the area under the curves (AUC) of the fast Fourier 
transformation of pupil diameter. It’s proved in (Bokoch, 
2015) that the relevant frequency range of the AUC is from 
0.2 to 2.7 Hz. The fast Fourier Transformation plot of the pu-
pil diameter is shown in Fig. 10.  

 
 
Fig. 10. FFT of pupil diameter plot from an exemplary subject 
(blue line shows the fft diagram of pain data, and orange line 
shows the fft diagram of non-pain data) 
 
   One-way ANOVA was performed to test the difference be-
tween the pain state and non-pain state. The mean PUAL of 
pain data set is 0.1345 and the mean PUAL of non-pain data 
set is 0.1132. The p-value of t-test is 0.014, which means the 
differences between two sets of data are significant at 0.05 
level.  
 
Facial Expression  

Facial expressions analysis is used for predicting pain 
intensity. This method is based on a set of facial landmarks 
(Werner et al., 2013). For each image from a given video, we 
first detect the region of the face using the Haar-like feature 
cascade detector (Lienhart, Kuranov, & Pisarevsky, 2003). 
After that, an ensemble of regression trees, which is based on  

 
Fig. 11. Face landmarks estimation on subjects who are under 
pain 
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gradient boosting, is applied to estimate the facial landmark 
positions (Kazemi & Sullivan, 2014). This algorithm is of high 
quality of accuracy and good real-time performance that suits 
our scenario. The facial landmarks extracted include: chin, left 
and right eyebrows, left and right eyes, nose bridge and tip, 
top and bottom tip. The outcome is shown in Fig. 11.  

The images were from the Shoulder-Pain dataset (Lucey et 
al., 2012) which is widely used for pain intensity estimation. 
The features of distances were extracted to capture the facial 
responses during pain. The distances between the eyebrows 
and eyes, eyes and mouth, eyebrows and mouth, as well as the 
width and height of the mouth were calculated. They were 
compared with those extracted from the images of which the 
pain intensity was already known through multivariate 
analysis of covariance and cluster analysis to figure out the 
differences and similarities. The final prediction would belong 
to the intensity that has the most similarities. Real time testing 
results are shown in Fig. 12.  
 

 
Fig. 12. Real time tesing results showing the pain level of a 
subject 
 
EEG Analysis 

EEG is an electrophysiological monitoring method that 
records the electrical activity of the brain. This paper focused 
on a topography analysis of brain activity in order to deter-
mine which regions of the brain were stimulated when experi-
encing pain. Topographies allowed us to determine whether 
brain activity was a viable physiological signal for the deter-
mination of the presence of pain.  

In data preprocessing, we used a 2-40Hz bandpass filter, 
common average reference (CAR), and independent compo-
nent analysis (ICA). ICA is a powerful technique and is able 
to separate independent sources linearly mixed in several sen-
sors. In our experiment, we used ICA to remove eye blinking 
and eye-movement artifacts from the raw EEG data. 

EEG signals can be divided into the following frequency 
band: delta (<4 Hz), theta (4-7 Hz), alpha (8-15 Hz), beta (16-
31 Hz), and gamma (>32 Hz). These frequency bands were 
used to investigate the differences for a ‘Pain’ and ‘No Pain’ 
state of subjects. Frequency domain analysis for EEG signals 

followed a few steps. We obtained the EEG power band to-
pography. In Fig. 13, the first (left) image shows the baseline 
data topography. The second (middle) image shows the topog-
raphy for the median time of the subject. The third (right) im-
age shows the topography at the end of the procedure. In the 
graph, a blue hue usually indicates a low power signal while 
the red hue symbolizes a powerful signal. We analyzed the 
EEG data in five different frequency ranges, finding that the 
delta frequency band was ideal for analyzing the EEG data 
(Chen & Rappelsberger, 1994).   

 

 
Fig. 13. Topographies of exemplary subject.  
 

Four components’ features from a subject are shown in 
Fig. 14. The first two components were useless, and the last 
two components were useful. The first two components pro-
vided no value to our analysis because they were mixed with 
eye artifacts, which produced noise and polluted the signal. 
However, we removed said artifacts using ICA to obtain the 
filtered data. 

 

 
Fig. 14.  Four components showing the component features 

 
Multimodal fusion and model optimization for pain classi-
fication 

The multimodal fusion system was indicated to be function-
al (Chang, Bowyer, & Flynn, 2003; Lahat, Adali, & Jutten, 
2015; Yang, Lin, & Bhattacharya, 2008). With numerous sig-
nals to analyze pain level, a multimodal fusion classification 
architecture scheme was designed, as shown in Fig. 15. 

In this experimental setting, we utilized known physiologi-
cal patterns pertaining to pain perception and train algorithms 
iteratively for data from multi-modal sources. With learning, 
feature extraction was applied to physiological modalities to 
generate pain classifications on a 0-10 scale (0 = No Pain; 10 
= Breakthrough Pain). The main goal of the sensor fusion al-
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gorithms was to establish a self-improving model for accurate 
and reliable estimation of pain. 

After feature extraction, all features were combined by con-
catenating individual features to a higher dimensional vector 
during feature fusion. Then we used the one-versus-the-rest 
algorithm to perform multi-classification. Each classifier was 
of two patterns and produces a real-valued confidence score 
for its decision. All classifiers were trained first. After all the 
trained classifiers performing classification, the 11 confidence 
scores were multiplied by 11 weights. The updating process 
found optimized weight parameters until predicted pain level 
agrees with true pain level. 
 

 
Fig. 15. A multimodal fusion classification architecture 
scheme 
 

The original testing procedure used all physiological sen-
sors. After performing feature selection, it was determined that 
EMG, respiration rate, skin temperature, and blood pressure 
did not show a significant impact on the model. Additionally, 
only two of the nine original EEG channels considered (FP2 
and C4) were not shown impactful. For future testing, these 
sensors and/or features could be used as low priority sensor. 
The remaining features include skin conductance, heart rate, 
EEG, facial repression, and PUAL. This reduction would re-
duce setup time and cost, as well as the invasiveness of the 
test, and hence improve overall efficiency.  

The incremental value of different sensors was suggested to 
be assessed in objective assessment. For example, under the 
condition certain signals may be missing or could not be rec-
orded, e.g. eye movement signal, facial expression signal. An-
other example is that EEG could not be recorded due to certain 
reasons (discomfort or bandage on the head). In these cases, 
we assign a confidence score and weight to each sensor to 
converge outcome in pain assessment 

Extreme gradient boosting tree, K-nearest neighbors, Naïve 
Bayes, neural network, random forest, and support vector ma-
chine modeling methods were used. Of all regression models 
tested, the random forest model and extreme gradient boosting 
tree were the two bests with regards to error measures. The 
random forest model was chosen as the final proof-of-concept 
model over the best-performing classification model. The re-
gression model outputs a specific expected pain value. This 
pain value will be more practical for doctors to use in a clini-

cal setting, and is less restrictive than the pre-defined pain 
categories of the classification models. The root mean square 
error (RMSE) of the random forest model is shown in Fig. 16.  

 

 
Fig. 16.  Root Mean Square Error (RMSE) of the random for-
est model 
 
To optimize the model, it is suggested that the effects of all the 
above involved sensors would continue to be investigated to 
study those with possible incremental values. 
 

RESULTS 
 

Based on this study, it was clear from the topographies that 
the general trend in initial brain activity was low for the EEG 
signals. However, brain activity began to gradually increase 
over the course of the experiment. With regards to the EEG 
frequency bands, the NIC program was used for signal analy-
sis. It was found that the delta frequency band (0 – 4.0 Hz) 
exhibited the largest amount of fluctuation and activity across 
all individuals. Since multiple measures were taken to mini-
mize the influence of noise on the signal, such as eye artifacts, 
unnecessary motion, and speech, this suggests that the delta 
frequency band is the ideal frequency range to be used for pain 
indication.  

A one-way analysis of variance was conducted on skin 
conductance and PUAL. The null hypothesis was tested 
against p < 0.05. The analysis was conducted at a 256Hz sam-
pling rate for all signals. Two male subjects were removed 
from the analysis due to the limited number of trials (< 2). 
Skin conductance initially increased in magnitude, then began 
to decrease over time. Facial expression was shown feasible 
for pain level assessment. For the Multimodal Sensor model-
ing, random forest models were the best performing model 
with an accuracy of 73.67% and extreme gradient boosting 
tree was close behind with accuracy of 72.98% 
 

DISCUSSION 
 

The experimental results supported the hypothesis that cer-
tain physiological signals are reliable indicators for the pres-
ence or absence of pain. Specifically, skin conductance, 
PUAL, heart rate, facial expression, and EEG were found to 
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provide meaningful results. Given certain scales and calibra-
tion schemes, a pain intensity scale that was based on physio-
logical signals could be developed. EEG data could then be 
used to support the pain intensity measurement based on the 
magnitude of brain activity. 

It is proposed to use a multi-modal physiological signal 
method for determining the presence of pain in an individual. 
First, skin conductance would be used as an initial short term 
indicator for when a subject experiences pain. The increase in 
skin conductance in the experiment was likely caused by the 
initial ‘shock’ subjects felt when they placed their hand in the 
ice bucket. Thus, it is suggested that skin conductance should 
be used for short-term (1-2 min) measurements of pain. EEG 
should be used for determining pain over a period of time 
greater than 2 minutes, primarily due to the behavior of the 
signals where increases in activity are only noticeable after a 
certain period of time, as shown in Fig. 13. 

EEG signals can be used more specifically for determining 
chronic pain, as it is a form of pain that is experienced contin-
uously over an extended period of time. Skin conductance 
would also play a factor in determining pain intensity in a sub-
ject experiencing chronic pain; however, these signals are 
more suitable in a time-restricted environment. Examples of 
these environments would be initial triage to a hospital ER or 
an outpatient clinic. 

Baseline measurements as comparison to collected meas-
urements would have to be standardized. Thus, we propose the 
collection of a large database of human physiological signals 
that are based on certain age ranges, genders, and ethnic back-
ground. 

The algorithm for detecting pain should involve the usage 
of weighting factors assigned to each physiological signal, 
depending on the environment the subject is being tested in 
and the duration of the measurement. These weights would 
influence the final output of the algorithm and output either a 
‘Pain’ or ‘No Pain’ indicator. Skin conductance results would 
be given a greater weight on the final outcome of the algo-
rithm in shorter measurements, for example. While the results 
of EEG would have an increased weight for measurements 
over 2 minutes. The purpose behind this weighting scheme is 
to make the algorithm’s application robust and applicable to 
all medical environments, including triage intake, ER, ICU, 
and outpatient clinics. 

Further experimentation is necessary to prove the efficien-
cy of this method; thus, further clinical trials will be conducted 
within outpatient clinics and hospital settings on both patients 
experiencing chronic and acute pain. Setting and each type of 
pain experienced would be tested separately in order to deter-
mine proper configurations and the ideal environment for the 
algorithm. Patient data will be used for the aforementioned 
algorithm to determine if it is a suitable method for the devel-
opment of a pain indicator and pain scale.  
 

CONCLUSION 
 

Based on our current data analysis, EEG, skin conduct-
ance, Pupillary Unrest under Ambient Light (PUAL) and faci-
al expression were determined to be good indicators of cold, 
tonic pain measurement because they exhibited the greatest 

difference from the baseline measurements. Furthermore, EEG 
delta band activity increased throughout the course of the ex-
periment. It is predicted that the power of delta bands increas-
es with an increase in pain level. This frequency range should 
be further investigated under various pain stimuli. It was rec-
ommended that these two signals be used to determine pro-
longed pain experiences such as patients exhibiting pain dur-
ing ICU or post-operation visits. For short pain experiences or 
when a quick evaluation of pain intensity is needed, such as 
during an initial patient assessment, skin conductance are ideal 
indicators for pain intensity. Due to the small sample size of 
the population, it is recommended to obtain a larger, homoge-
nous sample in order to minimize outliers and confirm our 
conclusions. We recommend further study of physiological 
signals during pressure pain stimulus, as this is also a determi-
nant for short-interval pain. 
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