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Chronic pain patients lack at-home pain assessment and management tools. The existing chronic-pain mobile 
applications are either solely relying on self-report pain levels or restricted to formal clinical settings. Our app, 
abbreviated from an NSF-funded project entitled Novel Computational Methods for Continuous Objective 
Multimodal Pain Assessment Sensing System (COMPASS), is a multi-dimensional pain app that collects 
physiological signals to predict objective pain levels and trace daily at-home activities by incorporating a 
daily check-in section. Thirty-three healthy participants took part in a cold water pain test and a usability test. 
The results showed the validity of the signals in predicting internalizing pain levels among the participants. 
This COMPASS app system has great potential to be used by both patients and clinicians for a more accurate 
assessment of pain levels towards efficient pain management and contribute to an expansion of mobile 
healthcare. 

 

INTRODUCTION 

Chronic pain is a prevalent problem that can cause 
continuous medical expenditures and reduce the quality of life. 
According to the 2019 National Health Interview Survey, 
20.4% of adults have chronic pain, and 7.4% of adults have 
high-impact chronic pain that can frequently hinder their daily 
activities (Zelaya, Dahlhamer, Lucas, & Connor, 2020). 

Assessing chronic pain is critical to developing effective 
management solutions, but traditional assessments rely on 
physician-patient communication or self-reporting, which may 
be unreliable (Lin et al., 2018). Recently, sensor-fusion pain 
assessment methods that use physiological signals have 
emerged, aiming to reduce inconsistencies. Machine learning 
has accelerated the development of these methods (Guo, Wang, 
Xiao, & Lin, 2021; Wang et al., 2022). Mobile health (m-health) 
solutions also have become popular due to their mobility and 
scalability (Sun et al., 2021). However, current m-health 
solutions for pain management either rely solely on self-report 
by patients or are limited to lab environments through pain 
stimulus tests, slowing down scaling (Pfeifer et al., 2020). This 
highlights the need for more accessible and objective pain 
assessment and management solutions that can be delivered 
remotely. 

In this paper, an app that can have both clinical utility and 
in-home pain management functions was proposed. The app 
name is abbreviated from an NSF-funded project entitled Novel 
Computational Methods for Continuous Objective Multimodal 
Pain Assessment Sensing System (COMPASS) (Lin et al., 
2022). It predicted objective pain levels using physiological 
signals and tracked daily activities affecting chronic pain. A 
usability test was designed to improve this app. The results 
showed the validity of using physiological signals to predict 
internalizing pain levels. The architecture and test results of the 
COMPASS app were introduced. 

RELATED WORKS 

M-health apps, particularly e-diaries, have been shown to 
be valuable in managing chronic pain (Charoenpol, Tontisirin, 
Leerapan, Seangrung, & Finlayson, 2019). The dialogue-style 
action recording process triggers reflection, encouraging users 
to adopt new behaviors (Kocielnik, Xiao, Avrahami, & Hsieh, 
2018), which is similar to behavioral intervention therapy. 
Mobile apps make this therapy more accessible and affordable, 
leading to profound clinical importance (Simon et al., 2021). 
However, the adoption of currently available mobile pain 
management applications is hindered due to their limitations. 
Reviews have found that most of those relying solely on 
self-reporting (Pfeifer et al., 2020; Zhao, Yoo, Lancey, & 
Varghese, 2019), leading to inconsistency in reported pain 
levels. To address this problem, physiological signals have 
been used and proved to be reliable (Alotaiby, Alshebeili, 
Aljafar, & Alsabhan, 2019). They utilized a common spatial 
pattern algorithm to extract features from ECG signals and then 
Support Vector Machine (SVM) was adopted to achieve an 
identification rate of 95.15%. It can be used in the classification 
between pain and no-pain status, achieving 86% of accuracy in 
five classes of pain (Modares-Haghighi, Boostani, Nami, & 
Sanei, 2021). At-home cold water pain tests with pre-prepared 
directions have also been shown to produce lab-level results, 
paving the way for the combination of the sensor-fusion pain 
assessment method with mobile apps (McIntyre et al., 2020). 

To obtain a more specific estimation of pain levels, pain 
intensity started to be treated as a continuous variable so 
machine learning methods can be used (Lin et al., 2022). Some 
researchers developed and evaluated an automatic and adaptable 
pain assessment algorithm based on ECG features using real 
pain data on postoperative patients (Naeini et al., 2021). Thirty-
two features from both the time domain and frequency domain 
were extracted, and five classifiers were applied to perform five 
pain-level tasks with the highest accuracy of 84.79%. 
Respiration rate is also investigated in the pain assessment 
research. Rui Cao et al. (Cao, Aqajari, Naeini, & 



 
 

Figure 1. AI-Assisted Goal Pursuit Model 
 
Rahmani, 2021) proposed an objective pain assessment method 
using respiration rates from real post-operative patients. A 
filter-based feature selection method was used to identify the top 
most significant features and 8 features were finally selected. 
Five classifiers were applied to perform the binary classification 
tasks, and an accuracy of 81.41% was achieved. 

One core idea of pain management application is to trigger 
behavioral change. One of the most famous behavior change 
models is the Theory of Planned Behavior (Ajzen, 1991), which 
is widely applied to research fields. In 2019, TPB was refined 
by incorporating the goal system theory, resulting in the Theory 
of Reasoned Goal Pursuit (Ajzen & Kruglanski, 2019). 
Compared with the original Theory of Planned Behavior, the 
Theory of Reasoned Goal Pursuit is more suitable to be the base 
framework of the COMPASS app since it emphasizes the 
significance of the goal, which is considered the starting point 
of behavior change. 

METHODOLOGY 

AI-Assisted Goal Pursuit Framework 

An AI-assisted Goal Pursuit framework in Fig.1 has been 
developed based on the Theory of Reasoned Goal Pursuit model 
(Ajzen & Kruglanski, 2019) to guide the design of the 
COMPASS app. The AI pain assessment system is at the core 
of the COMPASS app. As depicted in the dashed border of 
Fig.1, the AI pain assessment system predicts pain levels based 
on physiological data collected by sensors. Feedback from the 
AI pain assessment system helps users establish self-report 
standards, improving the accuracy and consistency of self-
reported pain levels. Users can also provide feedback on the AI 
pain predictions, which aids in customizing the pain assessment 
algorithm for individual users. 

The AI pain predictions can also subtly influence the users’ 
attitudes towards behaviors. Feedback from the AI pain 
assessment provides an objective view of changes in users’ pain 
sensitivity and pain levels. With objective data as a reference, 
users are more likely to believe that certain behaviors will 
benefit their overall pain management process. 

In addition to the core AI pain assessment system, the 
COMPASS app also considers the role of Behavioral Control 
plays in behavior change (Ajzen & Kruglanski, 2019).  In 

 
the framework, the COMPASS system affects "Pain-related 
Behavioral Control" by incorporating a daily check-in section. 
Users can customize their daily check-ins by selecting the 
behaviors they wish to monitor, such as sitting or diet shown in 
Fig. 2. By achieving small goals each day, users can feel more 
in control of their behaviors and experience a sense of 
accomplishment. 

Prototype Development 

The COMPASS app is composed of four main sections, 
with the Home page serving as the gateway to each of these 
sections. Additionally, the Home page acts as a data dashboard 
(refer to the leftmost screen in Fig. 2), enabling users to 
view pain level trends and track their behavioral objectives 
quickly. In the Profile section, users can personalize their basic 
information and adjust interaction settings to enhance the app’s 
suitability. 

Bi-weekly cold water pain tests are scheduled in the 
COMPASS app. With the assistance of the instructions 
provided, users can perform the sensor connection, baseline 
recording, pain report training, and the final cold water pain 
report section (two Cold Water Pain Test screens in Fig. 2) 
independently from the comfort of their homes. A bi-weekly 
schedule, as opposed to weekly or monthly, is deemed to 
provide a good temporal spread, enabling to capture the 
variability of pain level and user comfort and safety. 

The daily pain log check-in is the most frequently used 
section, which contains a pain level log and a key behavior log. 
For the pain level log, users connect the sensor to obtain a pain 
level prediction from the algorithm, followed by a self-report of 
their pain perception as feedback to the algorithm. Regarding 
the key behavior log, users record their sleep, sitting, emotions, 
and dietary data (two Daily Check-in screens in Fig. 2). 

Research Questions 

Based on the AI-assisted Goal Pursuit Model, the 
COMPASS app prototype is developed. An experiment is 
designed to explore the following research questions: 

RQ1: How does the physiological signal help assess users’ 
pain level and how’s the assessment quality? 

RQ2: How easy is it for users who suffer from pain to 
navigate this app and perform cold water pain tests with it? 



 
Figure 2. Prototype Frames 

 
Experiment Design 

Participants. The majority of participants in this study 
were students enrolled at Northeastern University in Boston, 
Massachusetts. Individuals who were not affiliated with the 
university were also included. All participants were required to 
be adults and considered healthy. A total of 33 participants 
completed the questionnaires, consisting of 16 male and 17 
female subjects. The racial and ethnic diversity of the 
participants consisted of White (81.8%), Latinx (15.2%), Asian 
(9.1%), and preferred not to respond (3%). 29 participants were 
pursuing bachelor’s degrees, while the other four were pursuing 
master’s degrees. Additionally, most participants used iOS 
smartphones (94.0%). All tests were conducted under the 
oversight and approval of Northeastern University’s 
Institutional Review Board (IRB #21-11-18). 

Experiment Process. Participants were firstly asked to 
finish a short questionnaire about their past m-health and painful 
experiences. They were then asked to perform six tasks listed in 
Table 1 on the app prototype. The tasks were designed to guide 
participants in exploring the app. 

One key task was to perform a cold water pain test 
following the instructions provided on the app prototype. For 
each subject, 120 seconds of baseline data were first collected. 
Then, the subject placed their hand in a bucket of ice water. 
Every 20 seconds, the subject was prompted to choose a pain 
rating on a scale of 0-10 by pressing the buttons that appeared 
on the app screen (See the middle screen in Fig. 2.) The test 
concluded after 10 pain ratings were recorded (200 seconds). If 
the pain became too extreme at any time, the subject was able 

 

to terminate the test. Aidmed (Czekaj et al., 2020), a portable 
medical device, was attached to the subject’s chest to collect the 
physiological signals, including electrocardiogram (ECG), 
respiration, and temperature data. 

After completing all six tasks, participants were required to 
answer a short questionnaire regarding their experience and 
attitudes toward the app. 

EXPERIMENT RESULT ANALYSIS 

Usability Test and Survey Results 

The initial section of the survey explored participants’ 
history of painful experiences. Among the 33 subjects, 22 had 
never used any healthcare apps, while the remaining 11 reported 
previous usage. When faced with pain, in contrast to the 19 
subjects who chose not to, only 4 subjects pursued further 
medical assistance from specialists. Six subjects reported 
having been hospitalized for chronic pain, and 8 subjects 
expressed difficulty in assessing the reasons for their discomfort 
accurately. 

Interestingly, recurring pain was not a common experience 
among our subjects; only four reported pain recurrences in 
particular areas, while the majority experienced sporadic pain. 
However, this sporadic pain did not significantly impact their 
daily functioning. The rest four who did experience chronic 
pain sought medical care for persistent discomfort and tended 
to endure their pain until it subsided. 

Subsequently, participants were asked to execute six tasks 
using the app prototype. Participants were allowed to ask 
for clarifications during the task, with the time still running. 



 
 

Figure 3. Survey Result 
 
Table 1. Time-based Efficiency of Tasks  

Task Time-Based Efficiency(goal/sec) 
Registration and login 0.0271 

Filling out the pre-questionnaire 0.0295 
Checking and editing Profile 0.0231 
Completing a pain log check-in 0.0140 
Completing a cold water pain test 0.0187 

Checking history log data 0.0256 
 
This decision might have influenced their success rates. As 
a result, we decided to adopt a time-based efficiency metric, 
that combines the success rate and the time spent on tasks. By 
measuring the time they took to complete (or abandon) each 
task, the time-based efficiency (Mifsud, n.d.) of the task can be 
calculated based on the equation below: 

 

physical comfort of the wearable devices involved. The same 
number affirmed the general usefulness of the app. While user 
intention to integrate the app into their routines varied, thirteen 
participants were willing to make it a regular part of their day 
and eight participants indicated they would likely use the app 
periodically. As for the pain management question, 17 out of 
the 33 participants stated they would resort to the app when 
experiencing pain, while 6 subjects expressed a tentative 
willingness to do the same. 

PR  PN 
 
ni j 

 
 
Where: 

Time Based Efficiency = 
j=1 i=1 ti j 

NR 

N=number of tasks (here is 1) 
R=number of users (here is 33) 
ni j=The result of task i by user j; if user completed the task, 
ni j=1, otherwise ni j=0 
ti j=The time user j spent on task i 
 

Table 1 presents the time-based efficiency of the six tasks 
performed by the participants. As all participants were first-
time users, it is not surprising that they were more efficient in 
completing common digital app tasks, such as filling out the 
pre-questionnaire than in completing COMPASS app-specific 
tasks. However, the efficiency data indicates that the 
participants found the bi-weekly cold water pain test was easier 
to complete than the pain log daily check-in. This suggests that 
the information architecture and user flow of the check-in 
process need further improvement. Since the pain log check-in 
is a daily activity, confusion or difficulty in completing it may 
lead to reduced user engagement over time. 

A post-task survey was conducted to gather the 
participants’ feedback on their experiences interacting with the 
COMPASS app experience (Fig. 3). Almost 60% of the 
participants found the app straightforward and not overly 
complicated. In addition, about 80% felt confident using the 
app without requiring technical assistance. They also provided 

positive feedback on the data recording process, indicating it was 
a smooth experience. Sixteen people commented on the 



 
 

Figure 4. Pain Level Over Time 
 

Physiological Signal and Model Performance 
As for the completion of the cold water pain test, four 

subjects terminated in the middle of their experiments. All 
data including physiological signals and pain level 
recordings from all subjects were recorded and compiled to 
be analyzed. The first measure that the team focused on was 
the change in pain level over time. As time continues, pain 
levels will rise as seen by the visible trend, mean and range 
in Fig. 4. 

Physiological signals have been established as reliable 
indicators of an individual’s varying states (Zhu, Kucyi, 
Kramer, & Lin, 2022). Key signals, including ECG, 
respiration, and temperature, were first preprocessed using 
min-max standardization (Van Gent, Farah, Nes, & van 
Arem, 2018). Subsequently, 20-second data segments were 
divided into five 4-second samples, each labeled with the 
pain level reported at the end of the 20-second period. The 
0-10 pain level scale was categorized as low pain (0-5) and 
high pain (6-10) to balance two classes, which represented 
approximately 60.66% of the low pain class and 39.34% of 
the high pain class. Statistical features of each signal such as 
mean, standard deviation, max, min, and range, and 
physiological features were extracted from 



signals, including beats per minute, interbeat interval, standard 
deviation of RR intervals, standard deviation of successive 
differences, root mean square of successive differences, low 
frequency between 0.05-0.15Hz, high frequency between 0.15-
0.5Hz, the ration of high frequency/low frequency, heart rate 
variability, and respiration rate. 

Table 2. Comparison of Model Performance  
 Model Precision Recall F-1 Score  

  DT 0.572 0.576 0.566  
  KNN 0.701 0.706 0.703  

 
The collected data was split into 75% training and 25% 

testing sets. Features were selected by setting the 0.8 variance 
threshold on the training dataset. And Synthetic Minority 
Oversampling Technique technique (Fernández, Garcia, 
Herrera, & Chawla, 2018) was also applied to the training 
dataset to solve the imbalance problem. Decision tree and k-
nearest neighbor machine learning models were applied to 
classify the pain classes, with 5-fold cross-validation. Precision, 
recall, and f-1 scores were selected as model evaluation metrics. 
Results demonstrated that the KNN model outperformed the 
DT model in predicting pain classes, achieving 70.3% F-1 
score. 

CONCLUSION 
In conclusion, this paper has showcased the potential of 

mobile health applications in aiding individuals with pain 
tracking and management. By utilizing a cold water pain test, 
we’ve been able to gauge a subject’s physiological sensitivity 
to pain. The application of machine learning algorithms to this 
physiological data has exhibited promising performance, with 
an F-1 score of 70.3% for the k-Nearest Neighbors model. Our 
usability testing showed that the majority of participants found 
the application user-friendly and identified areas for 
improvement. Moving forward, we will continue refining our 
app and center on making it more accessible, personalized, and 
user-friendly for those living with pain. 
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