COMPASS App: A Patient-centered Physiological based Pain Assessment System
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Chronic pain patients lack at-home pain assessment and management tools. The existing chronic-pain mobile
applications are either solely relying on self-report pain levels or restricted to formal clinical settings. Our app,
abbreviated from an NSF-funded project entitled Novel Computational Methods for Continuous Objective
Multimodal Pain Assessment Sensing System (COMPASS), is a multi-dimensional pain app that collects
physiological signals to predict objective pain levels and trace daily at-home activities by incorporating a
daily check-in section. Thirty-three healthy participants took part in a cold water pain test and a usability test.
The results showed the validity of the signals in predicting internalizing pain levels among the participants.
This COMPASS app system has great potential to be used by both patients and clinicians for a more accurate
assessment of pain levels towards efficient pain management and contribute to an expansion of mobile

healthcare.

INTRODUCTION

Chronic pain is a prevalent problem that can cause
continuous medical expenditures and reduce the quality of life.
According to the 2019 National Health Interview Survey,
20.4% of adults have chronic pain, and 7.4% of adults have
high-impact chronic pain that can frequently hinder their daily
activities (Zelaya, Dahlhamer, Lucas, & Connor, 2020).

Assessing chronic pain is critical to developing effective
management solutions, but traditional assessments rely on
physician-patient communication or self-reporting, which may
be unreliable (Lin et al., 2018). Recently, sensor-fusion pain
assessment methods that use physiological signals have
emerged, aiming to reduce inconsistencies. Machine learning
has accelerated the development of these methods (Guo, Wang,
Xiao, & Lin, 2021; Wang et al., 2022). Mobile health (m-health)
solutions also have become popular due to their mobility and
scalability (Sun et al., 2021). However, current m-health
solutions for pain management either rely solely on self-report
by patients or are limited to lab environments through pain
stimulus tests, slowing down scaling (Pfeifer et al., 2020). This
highlights the need for more accessible and objective pain
assessment and management solutions that can be delivered
remotely.

In this paper, an app that can have both clinical utility and
in-home pain management functions was proposed. The app
name is abbreviated from an NSF-funded project entitled Novel
Computational Methods for Continuous Objective Multimodal
Pain Assessment Sensing System (COMPASS) (Lin et al.,
2022). It predicted objective pain levels using physiological
signals and tracked daily activities affecting chronic pain. A
usability test was designed to improve this app. The results
showed the validity of using physiological signals to predict
internalizing pain levels. The architecture and test results of the
COMPASS app were introduced.

RELATED WORKS

M-health apps, particularly e-diaries, have been shown to
be valuable in managing chronic pain (Charoenpol, Tontisirin,
Leerapan, Seangrung, & Finlayson, 2019). The dialogue-style
action recording process triggers reflection, encouraging users
to adopt new behaviors (Kocielnik, Xiao, Avrahami, & Hsieh,
2018), which is similar to behavioral intervention therapy.
Mobile apps make this therapy more accessible and affordable,
leading to profound clinical importance (Simon et al., 2021).
However, the adoption of currently available mobile pain
management applications is hindered due to their limitations.
Reviews have found that most of those relying solely on
self-reporting (Pfeifer et al., 2020; Zhao, Yoo, Lancey, &
Varghese, 2019), leading to inconsistency in reported pain
levels. To address this problem, physiological signals have
been used and proved to be reliable (Alotaiby, Alshebeili,
Aljafar, & Alsabhan, 2019). They utilized a common spatial
pattern algorithm to extract features from ECG signals and then
Support Vector Machine (SVM) was adopted to achieve an
identification rate of 95.15%. It can be used in the classification
between pain and no-pain status, achieving 86% of accuracy in
five classes of pain (Modares-Haghighi, Boostani, Nami, &
Sanei, 2021). At-home cold water pain tests with pre-prepared
directions have also been shown to produce lab-level results,
paving the way for the combination of the sensor-fusion pain
assessment method with mobile apps (Mclntyre et al., 2020).

To obtain a more specific estimation of pain levels, pain
intensity started to be treated as a continuous variable so
machine learning methods can be used (Lin et al., 2022). Some
researchers developed and evaluated an automatic and adaptable
pain assessment algorithm based on ECG features using real
pain data on postoperative patients (Naeini et al., 2021). Thirty-
two features from both the time domain and frequency domain
were extracted, and five classifiers were applied to perform five
pain-level tasks with the highest accuracy of 84.79%.
Respiration rate is also investigated in the pain assessment
research. Rui Cao et al. (Cao, Aqgajari, Naeini, &
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Figure 1. Al-Assisted Goal Pursuit Model

Rahmani, 2021) proposed an objective pain assessment method
using respiration rates from real post-operative patients. A
filter-based feature selection method was used to identify the top
most significant features and 8 features were finally selected.
Five classifiers were applied to perform the binary classification
tasks, and an accuracy of 81.41% was achieved.

One core idea of pain management application is to trigger
behavioral change. One of the most famous behavior change
models is the Theory of Planned Behavior (Ajzen, 1991), which
is widely applied to research fields. In 2019, TPB was refined
by incorporating the goal system theory, resulting in the Theory
of Reasoned Goal Pursuit (Ajzen & Kruglanski, 2019).
Compared with the original Theory of Planned Behavior, the
Theory of Reasoned Goal Pursuit is more suitable to be the base
framework of the COMPASS app since it emphasizes the
significance of the goal, which is considered the starting point
of behavior change.

METHODOLOGY
Al-Assisted Goal Pursuit Framework

An Al-assisted Goal Pursuit framework in Fig.1 has been
developed based on the Theory of Reasoned Goal Pursuit model
(Ajzen & Kruglanski, 2019) to guide the design of the
COMPASS app. The Al pain assessment system is at the core
of the COMPASS app. As depicted in the dashed border of
Fig.1, the Al pain assessment system predicts pain levels based
on physiological data collected by sensors. Feedback from the
Al pain assessment system helps users establish self-report
standards, improving the accuracy and consistency of self-
reported pain levels. Users can also provide feedback on the Al
pain predictions, which aids in customizing the pain assessment
algorithm for individual users.

The Al pain predictions can also subtly influence the users’
attitudes towards behaviors. Feedback from the AI pain
assessment provides an objective view of changes in users’ pain
sensitivity and pain levels. With objective data as a reference,
users are more likely to believe that certain behaviors will
benefit their overall pain management process.

In addition to the core Al pain assessment system, the
COMPASS app also considers the role of Behavioral Control
plays in behavior change (Ajzen & Kruglanski, 2019). In

the framework, the COMPASS system affects "Pain-related
Behavioral Control" by incorporating a daily check-in section.
Users can customize their daily check-ins by selecting the
behaviors they wish to monitor, such as sitting or diet shown in
Fig. 2. By achieving small goals each day, users can feel more
in control of their behaviors and experience a sense of
accomplishment.

Prototype Development

The COMPASS app is composed of four main sections,
with the Home page serving as the gateway to each of these
sections. Additionally, the Home page acts as a data dashboard
(refer to the leftmost screen in Fig. 2), enabling users to
view pain level trends and track their behavioral objectives
quickly. In the Profile section, users can personalize their basic
information and adjust interaction settings to enhance the app’s
suitability.

Bi-weekly cold water pain tests are scheduled in the
COMPASS app. With the assistance of the instructions
provided, users can perform the sensor connection, baseline
recording, pain report training, and the final cold water pain
report section (two Cold Water Pain Test screens in Fig. 2)
independently from the comfort of their homes. A bi-weekly
schedule, as opposed to weekly or monthly, is deemed to
provide a good temporal spread, enabling to capture the
variability of pain level and user comfort and safety.

The daily pain log check-in is the most frequently used
section, which contains a pain level log and a key behavior log.
For the pain level log, users connect the sensor to obtain a pain
level prediction from the algorithm, followed by a self-report of
their pain perception as feedback to the algorithm. Regarding
the key behavior log, users record their sleep, sitting, emotions,
and dietary data (two Daily Check-in screens in Fig. 2).

Research Questions

Based on the Al-assisted Goal Pursuit Model, the
COMPASS app prototype is developed. An experiment is
designed to explore the following research questions:

RQ1: How does the physiological signal help assess users’
pain level and how’s the assessment quality?

RQ2: How easy is it for users who suffer from pain to
navigate this app and perform cold water pain tests with it?



Home screen

Hi, Jennifer

How do you feel today?

06 February

25% 55%

The home screen is the
start point of the app. It
also serves as a data
dashboard that allows
users to get a glance at
their pain level change
(line chart) and
behavioral goals
(progress rings).

Cold water pain test:
Sensor check

9:41 ol T -

< Cold Water Pain Test 7

Pre-test Checklist

A bucket of mixed water & ice,
more than 2000mL.

Equiptment is properly attached

Your Devices

Users will see this pre-

test check screen before

performing an at-home

cold water pain test. The

screen will check on
equipment (user-
reported) and sensor
(app-detected). This is
an error-proof process
we designed to improve
test data quality.

Cold water pain test:
Testing

9:41 il -

< Cold Water Pain Test 7

Pain Level Report:
Testing

Terminate when you cannot tolerate the pain

After a training session,
users will start a test
session lasting for 200
seconds. Users will
report their pain levels
by tapping on the hand
icon that appears every
20 seconds. Users can
also terminate the test
by hitting the Terminate
button anytime.

Daily Check-in:
Sitting

< Pain Log Check-in 2

Did you sit for more than 6
hours yesterday?

YES NO

Select your most common sitting position

& & &

The shown daily check-
in questions designed
for sitting only need two
clicks to finish. To make
it easier for users, all
daily check-in questions

are designed with simple

interactions.

Daily Check-in:
Diet

9:41 il T -

< Pain Log Check-in 2

Diet
Tap on each section of the plate to
survey your diet habits.

Veggies

To simplify the diet
check-in, the team
segmented the daily diet
into several food types.
For each food type,
users choose how their
daily take in compared
to a recommended
percentage supported by
pain-related research
papers.

Figure 2. Prototype Frames

Experiment Design

Participants. The majority of participants in this study
were students enrolled at Northeastern University in Boston,
Massachusetts. Individuals who were not affiliated with the
university were also included. All participants were required to
be adults and considered healthy. A total of 33 participants
completed the questionnaires, consisting of 16 male and 17
female subjects. The racial and ethnic diversity of the
participants consisted of White (81.8%), Latinx (15.2%), Asian
(9.1%), and preferred not to respond (3%). 29 participants were
pursuing bachelor’s degrees, while the other four were pursuing
master’s degrees. Additionally, most participants used iOS
smartphones (94.0%). All tests were conducted under the
oversight and approval of Northeastern University’s
Institutional Review Board (IRB #21-11-18).

Experiment Process. Participants were firstly asked to
finish a short questionnaire about their past m-health and painful
experiences. They were then asked to perform six tasks listed in
Table 1 on the app prototype. The tasks were designed to guide
participants in exploring the app.

One key task was to perform a cold water pain test
following the instructions provided on the app prototype. For
each subject, 120 seconds of baseline data were first collected.
Then, the subject placed their hand in a bucket of ice water.
Every 20 seconds, the subject was prompted to choose a pain
rating on a scale of 0-10 by pressing the buttons that appeared
on the app screen (See the middle screen in Fig. 2.) The test
concluded after 10 pain ratings were recorded (200 seconds). If
the pain became too extreme at any time, the subject was able

to terminate the test. Aidmed (Czekaj et al., 2020), a portable
medical device, was attached to the subject’s chest to collect the
physiological signals, including electrocardiogram (ECG),
respiration, and temperature data.

After completing all six tasks, participants were required to
answer a short questionnaire regarding their experience and
attitudes toward the app.

EXPERIMENT RESULT ANALYSIS
Usability Test and Survey Results

The initial section of the survey explored participants’
history of painful experiences. Among the 33 subjects, 22 had
never used any healthcare apps, while the remaining 11 reported
previous usage. When faced with pain, in contrast to the 19
subjects who chose not to, only 4 subjects pursued further
medical assistance from specialists. Six subjects reported
having been hospitalized for chronic pain, and 8 subjects
expressed difficulty in assessing the reasons for their discomfort
accurately.

Interestingly, recurring pain was not a common experience
among our subjects; only four reported pain recurrences in
particular areas, while the majority experienced sporadic pain.
However, this sporadic pain did not significantly impact their
daily functioning. The rest four who did experience chronic
pain sought medical care for persistent discomfort and tended
to endure their pain until it subsided.

Subsequently, participants were asked to execute six tasks
using the app prototype. Participants were allowed to ask
for clarifications during the task, with the time still running.
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the 33 participants stated they would resort to the app when
experiencing pain, while 6 subjects expressed a tentative

This decision might have influenced their success rates. As e
willingness to do the same.

a result, we decided to adopt a time-based efficiency metric,
that combines the success rate and the time spent on tasks. By
measuring the time they took to complete (or abandon) each 1000

task, the time-based efficiency (Mifsud, n.d.) of the task can be 500 £55 &8 (e
calculated based on the equation below: 8.00 6.75

7.00 5.82
6.00 4.86
5.00 a51
4.00
Time Based Efficiency = A igg 1.48
NR 100

Where: 0.00

(X}

Pr Py oy

Pain Level

0 20 40 60 80 100 120 140 160 180 200

. Time (sec)
N=number of tasks (here is 1) positive teedback on the data recording process, mdicating 1t was

R=number of users (here is 33) a smooth experience. Sixteen people commented on the
ni/=The result of task i by user j; if user completed the task,

nij=1, otherwise n;=0

t;/=The time user j spent on task i

Table 1 presents the time-based efficiency of the six tasks
performed by the participants. As all participants were first-
time users, it is not surprising that they were more efficient in
completing common digital app tasks, such as filling out the
pre-questionnaire than in completing COMPASS app-specific
tasks. However, the efficiency data indicates that the
participants found the bi-weekly cold water pain test was easier
to complete than the pain log daily check-in. This suggests that
the information architecture and user flow of the check-in
process need further improvement. Since the pain log check-in
is a daily activity, confusion or difficulty in completing it may
lead to reduced user engagement over time.

A post-task survey was conducted to gather the
participants’ feedback on their experiences interacting with the
COMPASS app experience (Fig. 3). Almost 60% of the
participants found the app straightforward and not overly
complicated. In addition, about 80% felt confident using the
app without requiring technical assistance. They also provided



Figure 4. Pain Level Over Time

Physiological Signal and Model Performance

As for the completion of the cold water pain test, four
subjects terminated in the middle of their experiments. All
data including physiological signals and pain level
recordings from all subjects were recorded and compiled to
be analyzed. The first measure that the team focused on was
the change in pain level over time. As time continues, pain
levels will rise as seen by the visible trend, mean and range
in Fig. 4.

Physiological signals have been established as reliable
indicators of an individual’s varying states (Zhu, Kucyi,
Kramer, & Lin, 2022). Key signals, including ECG,
respiration, and temperature, were first preprocessed using
min-max standardization (Van Gent, Farah, Nes, & van
Arem, 2018). Subsequently, 20-second data segments were
divided into five 4-second samples, each labeled with the
pain level reported at the end of the 20-second period. The
0-10 pain level scale was categorized as low pain (0-5) and
high pain (6-10) to balance two classes, which represented
approximately 60.66% of the low pain class and 39.34% of
the high pain class. Statistical features of each signal such as
mean, standard deviation, max, min, and range, and
physiological features were extracted from



signals, including beats per minute, interbeat interval, standard
deviation of RR intervals, standard deviation of successive
differences, root mean square of successive differences, low
frequency between 0.05-0.15Hz, high frequency between 0.15-
0.5Hz, the ration of high frequency/low frequency, heart rate
variability, and respiration rate.

Table 2. Comparison of Model Performance
Model _ Precision __Recall  F-1 Score
DT 0.572 0.576 0.566
KNN 0.701 0.706 0.703

The collected data was split into 75% training and 25%
testing sets. Features were selected by setting the 0.8 variance
threshold on the training dataset. And Synthetic Minority
Oversampling Technique technique (Ferndndez, Garcia,
Herrera, & Chawla, 2018) was also applied to the training
dataset to solve the imbalance problem. Decision tree and k-
nearest neighbor machine learning models were applied to
classify the pain classes, with 5-fold cross-validation. Precision,
recall, and f-1 scores were selected as model evaluation metrics.
Results demonstrated that the KNN model outperformed the
DT model in predicting pain classes, achieving 70.3% F-1
score.

CONCLUSION

In conclusion, this paper has showcased the potential of
mobile health applications in aiding individuals with pain
tracking and management. By utilizing a cold water pain test,
we’ve been able to gauge a subject’s physiological sensitivity
to pain. The application of machine learning algorithms to this
physiological data has exhibited promising performance, with
an F-1 score of 70.3% for the k-Nearest Neighbors model. Our
usability testing showed that the majority of participants found
the application user-friendly and identified areas for
improvement. Moving forward, we will continue refining our
app and center on making it more accessible, personalized, and
user-friendly for those living with pain.
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